3,500 Persistent VMware View VDI Users on Dell EMC SC5020 Storage

Dell EMC Engineering
July 2017
Revisions

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 2017</td>
<td>Initial release</td>
</tr>
</tbody>
</table>

Acknowledgements

Author: Damon Zaylskie

The information in this publication is provided “as is.” Dell Inc. makes no representations or warranties of any kind with respect to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular purpose.

Use, copying, and distribution of any software described in this publication requires an applicable software license.

© 2017 Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC, Dell EMC and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be trademarks of their respective owners.

Dell believes the information in this document is accurate as of its publication date. The information is subject to change without notice.
Table of contents

Revisions .. 2

Acknowledgements .. 2

Executive summary ... 5

1 Introduction .. 6

1.1 Objectives ... 6

1.2 Audience .. 6

2 Choosing VDI storage .. 7

3 Solution architecture ... 8

3.1 Environment ... 8

3.2 Software .. 8

3.2.1 Software components .. 8

3.2.2 VMware vSphere host ... 8

3.2.3 VMware Horizon 7.1 ... 8

3.2.4 Microsoft Windows 7 ... 10

3.2.5 Microsoft Windows Server 2016 ... 10

3.3 Hardware .. 10

3.3.1 Hardware components ... 10

3.3.2 Storage ... 10

3.3.3 Hosting environment ... 12

3.3.4 Networking ... 14

4 Testing ... 15

4.1 Test objectives ... 15

4.2 Test tools .. 15

4.2.1 Load generation .. 15

4.2.2 Load monitoring ... 15

4.3 Test phases .. 16

4.3.1 Boot phase ... 16

4.3.2 Login phase ... 17

4.3.3 Steady-state workload .. 20

4.4 Test results ... 22

5 Conclusion .. 23

A Environment .. 24
A.1 Horizon View .. 24
A.2 VMware hosts ... 24
A.3 VMware vCenter .. 24
A.4 Login VSI ... 25
A.5 Windows desktops .. 25
B Technical support and resources .. 26
B.1 VMware support ... 26
Executive summary

Storage has evolved dramatically over the last 10 years, especially with the advent of affordable solid-state drives (SSDs) enabling massive improvements in performance, latency, and density. The primary benefits of flash are now available in a number of platforms. However, even with the advantages of SSDs, architecture does still matter, and different solutions provide varying degrees of advantage at widely diverging price points.

This document records real-world workload performance data for a storage solution based on the cost-efficient Dell EMC™ SC5020 array. The test environment simulates a small- to mid-sized company with 3,500 end-user VMs running Microsoft® Windows® 7 and a workload typical of knowledge workers. The target IOPS load was 20 IOPS per virtual machine, for a total requirement of 70,000 IOPS.

The results show the SC5020 performing very well in a write-intensive VDI environment with latency well below 1ms, even at the target 70,000 IOPS level and beyond.

This document is a storage template for a 3,500 user persistent VDI environment. The storage tested provides excellent performance, but it is one large piece of the puzzle required to deliver a stable and reliable VDI solution, which requires an appropriately sized compute environment as well.
1. **Introduction**

The SC5020 array is a Dell EMC midrange storage solution appropriate for a wide range of workloads. It is dynamic, scalable, easy to manage, and supports a large number of client configurations, ranging from all-HDD to all-SSD or any hybrid combination. A broad spectrum of solid-state and spinning drive options are housed in a dense all-in-one form factor with flexible expansion capability, including the ability to federate multiple arrays.

SSDs, especially the new generation of mixed-use SSDs, are a great choice for VDI environments, providing top performance in a very small form factor with reduced power consumption.

For this solution, performance and cost-for-performance are the primary factors. The capacity footprint per VM is fairly small, but a large number of read/write operations per second are required for a good user experience. VDI is one of the most IOPS-intensive workloads today, with latency being the most critical measure of storage performance.

For the tests performed in this document, all hardware was updated to the newest, generally available firmware from the manufacturer.

1.1. **Objectives**

The primary objective of the testing effort is to demonstrate the performance and scalability of the Dell EMC SC5000 series array. By providing a baseline for performance and scale, an SC5000 series array can be sized to fit any midrange storage requirement, providing low latency and excellent performance for the cost. The key items tested are:

- IOP capability
- Latency under load
- Consistent performance under varying load

1.2. **Audience**

This reference architecture is targeted at anyone who wishes to better understand the performance and scalability of the SC5020 storage platform running the current generation of mixed-use solid-state drives. It is intended to show what the platform is capable of from a VDI workload perspective. The results will be different under other workloads. Performance under other workloads can be found on the Dell TechCenter page, [SC Series Technical Documents](https://www.dell.com/technicaldocuments).
Choosing VDI storage

When choosing a VDI storage platform, there are a few important factors to consider:

RAID tiering: Solutions from some vendors require pre-allocation and segregation of RAID levels, holding large amounts of storage captive, which can have negative cost and performance impacts. SC Series arrays present a fully virtualized storage pool, configuring and mixing RAID levels on demand across all drives to address reads and writes differently. RAID 10 is used for new writes, while blocks not being updated are converted to read only at parity RAID 5 or 6. This provides the performance benefits of RAID 10, plus the capacity benefits of RAID 5/6. RAID acts as a flexible sub-tier for Dell EMC arrays, optimizing data placement within each drive. This maximizes performance, capacity, and administrator efficiency.

Dynamic capacity: Dynamic capacity technology makes the initial VDI capacity sizing an easy exercise. Virtual volumes can be created for thousands of virtual desktops without pre-allocating physical capacity. Actual storage capacity is consumed only when data is written to disk. As the virtual environment grows to accommodate more users, the system dynamically provisions storage from a centralized pool of unused capacity. With dynamic capacity, storage purchases can be deferred until actually required and seamlessly added to the pool without any service disruption, thereby significantly enhancing project ROI. Capacity can be grown to over one petabyte without downtime.

Hypervisor integration: Additional operational efficiencies are realized through integration with the hypervisor layer. Dell SC Series arrays tightly integrate with industry-leading hypervisors such as VMware® vSphere®, Microsoft Hyper-V®, and Citrix® XenServer®. This integration enables optimal storage performance, lower costs, and simplified VDI deployments. As an example, the Dell Storage vSphere Web Client Plug-in reduces complexity by providing integrated storage provisioning and management. Support for VMware vStorage APIs for Array Integration (VAAI) enhances vSphere server performance by offloading storage-related tasks (such as hardware-assisted locking, full copy, and block zeroing), reducing vSphere server compute overhead, network traffic, and virtual desktop deployment times.

Compression and deduplication: Compression and deduplication, used together or separately, can provide cost savings, depending on the number of base images, clone type (linked or full), number of VMs, and numerous other factors. The number of variables make it difficult to predict actual space savings, but in general, VMs deduplicate fairly well. One exception is linked clones, which are already very space efficient and typically do not benefit from deduplication, which is why many vendors express their numbers using full clones to give the impression of more space savings from deduplication.
3 Solution architecture

3.1 Environment
There are a large number of components required to drive an environment of this scale. They all need to work together to provide a stable and seamless solution for VDI to work correctly.

3.2 Software
The solution is built on layers of software and hardware. Each component provides a key piece of the puzzle.

3.2.1 Software components
The solution presented in this paper used the following software:

- VMware Horizon® 7.1
- VMware vSphere hypervisor 6.5
- VMware vSphere management
- Login VSI® (for simulating real-world VDI workloads)
- Microsoft Windows Server® 2016 and Windows 7

All software components were updated to the most currently available patch level for the tests.

3.2.2 VMware vSphere host
VMware vSphere is the top enterprise virtualization platform used for building VDI and cloud infrastructures. VMware vSphere includes three major layers: virtualization, management, and interface. The virtualization layer includes infrastructure and application services. The management layer is central for configuring, provisioning, and managing virtualized environments. The interface layer includes the vSphere client and the vSphere web client.

Throughout the solution, all VMware and Microsoft best practices and prerequisites for core services are adhered to (for example, NTP, DNS, and Microsoft Active Directory®). The vCenter servers used in the solution are VMware vCenter Server Appliances v6.5. All hosts were running vSphere 6.5.

3.2.3 VMware Horizon 7.1
The VDI management platform used was VMware Horizon 7.1 with linked clones. Horizon allows a number of different cloning options, as well as managing discrete desktops. It is designed to scale to large numbers of end-points in a single interface, and provide consistency and manageability in large environments.

Linked clones were chosen for their management and small footprint. This is a very commonly used configuration because of its efficiencies and ease of use.
Horizon has several components that make up the product:

Connection Server: The Connection Server is the central hub for managing connections. Users connect using either the Horizon View client or a web browser. The Connection Server then connects the user to the proper virtual desktop session based on the assignments. Users can either be assigned a static machine (in this case, for persistence) or given a random machine in a non-persistent environment.

Composer: The Horizon View Composer server handles the tasks of provisioning virtual desktops to the proper pool using the correct base image. It also handles maintenance tasks, such as a desktop refresh or recompose. There were four Composer VMs, each registered to a connection server.

Horizon View agent: Installed on user devices, the Horizon View agent provides users with quick, secure, multi-protocol access to documents, applications, and desktops from any of the user's devices including smartphones, tablets, and PCs. VMware Horizon provides on-demand access to Windows, web, and Software as a Service (SaaS) applications.

Management console: The Horizon View management console is a web service application that can be run from any Windows server in the environment. The management servers used were configured using VMware vCenter™ 6.5 with a central Microsoft SQL Server® 2014 instance. There were four management servers configured, each controlling 875 virtual machines.

3.2.3.1 Linked clones

All 3,500 virtual machines were created in less than two hours using parallel environments taking advantage of the high performance all-flash array.

The virtual machines were created using the linked clone method in Horizon View. This provides efficient use of space and simplifies management. By using linked clones, a replica image is used for shared data resulting in a very small footprint. After cloning, the total space consumed is less than 2GB/VM in a persistent state before user login.

After the user profiles were created, the VMs each consumed approximately 2.8GB of space. This includes the user customizations, page file, and changes made to customize each VM to the assigned user. Each VM runs Microsoft Office 2010, Adobe® Reader®, and a mix of Login VSI™ applications.

Virtual desktops are assigned to the same user every time with desktop persistence. All changes made by a user are retained for future sessions. The changes are stored in a delta VMDK stored with the VM.

All the desktops are in an automated desktop pool with dedicated user assignments. Those desktops are based on a master desktop template, which is selected when the pool is created. This ensures each user gets a dedicated machine they can customize.

Horizon View also supports creating non-persistent environments to streamline support and troubleshooting. These desktops automatically revert to the default configuration upon user logoff.
3.2.4 Microsoft Windows 7
Each of the desktops was a Windows 7 Enterprise client. Windows 7 32-bit was chosen for this configuration. All patches were applied to the desktop image before the base replica was created.

Some Windows components were disabled to reduce resource requirements, in accordance with best practices. In each desktop, indexing was disabled, the frequency of Windows updates was limited, and pagefile and temporary files were redirected to a separate volume. All disk traffic was captured during the test runs.

3.2.5 Microsoft Windows Server 2016
For all Windows Server based functions, Windows Server 2016 was used, with all current patches. The VM hardware configuration varied based on the roles and is documented in the appendices.

3.3 Hardware
A fully functional VDI environment for 3,500 virtual machines requires a large amount of hardware with significant compute and memory resources. The act of virtualizing does realize great efficiencies but cannot eliminate the requirement to process data. The act of virtualizing collapses the environment into dense clusters of resources.

3.3.1 Hardware components
The hardware used to host the environment consisted of the following:

- Dell PowerEdge™ blade servers for VDI workload
- Dell PowerEdge M1000e blade enclosures
- Dell EMC Networking MXL Ethernet blade switches
- Dell EMC Networking S5000 top-of-rack (ToR) Ethernet switch
- Brocade® M5424 Fibre Channel (FC) blade modules
- Brocade 6505 FC ToR switches
- Dell EMC SC5020 storage array

There are many sizing tools to gauge the processor and memory requirements for virtual machines. They are outside the scope of this document. See the VMware community sizing guidelines.

3.3.2 Storage
The storage used was an SC5020 array with mixed-use solid-state drives. The mixed-use drives provide excellent performance with a very attractive price point. They are also low-power devices relative to spinning drives and generate far less heat. The storage density is also very good.

Technical highlights of the SC5020 include:

Array configurations: All-flash, hybrid, or HDD arrays.

Auto-tiering method: Policy-based migration based on real-time data usage, customizable 512KB-4MB page size.
Auto-tiering structure: Up to three primary (media-based) tiers total, with up to two SSD tiers (write- and read-intensive SSDs).

RAID support: RAID 0, 1, 5, 6, RAID 10, and RAID 10 DM (dual mirror); any combination of RAID levels can exist on a single array.

RAID tiering: Auto-provisions and dynamically restripes multiple RAID levels on the same tier; no need to pre-allocate RAID groups.

Thin provisioning: Active by default on all volumes, operates at full performance across all features.

Thin snapshots: Records changes only; snapshots auto-migrate to lower-cost storage.

Intelligent deduplication and compression: Selectable option per volume on SSD and/or HDD tiers. Compression-only option also available.

Standard replication: Synchronous/asyncronous through FC or iSCSI.

Federated multi-array systems: Live Migrate (included in base product) enables host-transparent data movement among arrays. Volume Advisor continually monitors federation to suggest optimal data placement based on customizable capacity or performance load balancing policies. Dell Storage Manager (DSM) provides data-center-level viewpoint and control.

Business continuity: Live Volume auto-failover, auto-repair, VMware Metro Stretch Cluster support, and Microsoft Azure® Site Recovery.

The tests were conducted using Storage Center OS (SCOS) 7.2 with system write cache disabled. There are considerable improvements to performance in SCOS 7.2 over previous versions. These gains will be available to all platforms supporting this release of firmware.

The drives used were 1.92TB drives, providing usable space of 1.75TB per drive. The system contained 30 drives with 2 dedicated spares. This provided 49TB of raw space. In this case, a smaller drive could be used as long as it provides the same performance per drive. This system is sized for capacity growth and to allow snapshots to be kept. The target for this test is performance not capacity, and final requirements will dictate the drive capacity used.

All storage hardware was configured to Dell best practices with vSphere. For more information, see the document, *Dell EMC SC Series Best Practices with VMware vSphere 5.x–6.x*.

3,500 Persistent VMware View VDI Users on Dell EMC SC5020 Storage | 3436-RA-V
3.3.3 Hosting environment

The environment running the VMs makes up the majority of the hardware required. The power, rack space, cooling, and management requirements are much larger than the storage components. This is normal based on the processing power and memory requirements of 3,500 virtual machines.

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td>PowerEdge M620, two 8-core Intel® Xeon® Processor E5-2680, 320GB RAM</td>
</tr>
<tr>
<td>Operating system</td>
<td>vSphere 6.5</td>
</tr>
<tr>
<td>Fibre Channel</td>
<td>QLogic® QME2572 HBA, Brocade M5424 chassis-based switch</td>
</tr>
<tr>
<td>Network</td>
<td>Dell EMC Networking MXL 10Gb dual-port Ethernet module</td>
</tr>
<tr>
<td>Virtual desktop configuration</td>
<td>2 vCPUs, 2GB RAM, VMXNet3, 30GB volume</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure VMs</td>
<td>4 vCPUs, 8GB RAM, VMXNet3 vNIC, Login VSI 4.1.25 agent</td>
</tr>
<tr>
<td>Operating system</td>
<td>Windows Server 2016</td>
</tr>
<tr>
<td>vNIC</td>
<td>VMXNet3</td>
</tr>
<tr>
<td>Applications</td>
<td>Microsoft Active Directory®, DNS, DHCP, vCenter Servers, Horizon Connection and Composer servers, Microsoft SQL Server®, DSM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>Windows Server 2016</td>
</tr>
<tr>
<td>vNIC</td>
<td>VMXNet3</td>
</tr>
<tr>
<td>Applications</td>
<td>Active Directory, DNS, DHCP, vCenter Servers, Horizon Connection and Composer servers, SQL Server, DSM</td>
</tr>
</tbody>
</table>
Table 4 Storage

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC5020</td>
<td>Dual storage controllers</td>
</tr>
<tr>
<td>16Gb 8-port Fibre Channel</td>
<td>QLogic 16Gb 4-port Fibre Channel adapters, 1 per controller head</td>
</tr>
<tr>
<td>SCOS 7.2</td>
<td>Storage firmware</td>
</tr>
<tr>
<td>Drives</td>
<td>30 x 1.92TB: 28 active, 2 spares</td>
</tr>
</tbody>
</table>

Figure 1 Hosting environment
A dedicated server was used for the Login VSI control and file-sharing server. This is due to the very high I/O requirements of the centralized share. At times, the throughput exceeded 4 Gb/sec from the file share. The Login VSI share server was a PowerEdge M620, with 144GB of RAM and 2 x 10Gbps Intel® Ethernet modules.

3.3.4 Networking

The network architecture consists of 10Gbps dual-port network adapters in each server trunked to a 10/40Gbps Dell EMC Networking MXL dual-switch stack in each blade chassis. Each MXL stack pair is cross-connected with a 40Gbps connection and trunked with two 40Gbps QSFP+ connections to a ToR Dell EMC Networking S5000 switch.
4 Testing

4.1 Test objectives
The series of tests run for this reference architecture are designed to capture the performance and data-reduction capabilities of the SC5000 series controllers. The tests were scaled to run within the limits of the SC5020 controllers and highlight their performance.

4.2 Test tools

4.2.1 Load generation
The load-generation tools used were created by Login VSI consultants. These are End User Computing standard tools for consistent load generation and allow Dell EMC to compare performance results across platforms and the industry by leveraging a standardized workload.

4.2.2 Load monitoring
Dell Storage Manager (DSM) was used to chart and report on all aspects of the underlying storage. DSM can share real-time I/O, report on historical performance or capacity utilization, as well as provide a single pane of glass for multiple storage arrays.

DSM is also the control plane for replication on SC Series arrays.
4.3 Test phases

4.3.1 Boot phase

Figure 2 shows the storage load as the virtual machines are turned on as quickly as possible. In order to achieve faster boot times, PowerCLI was used to connect to each of the hosts and power on virtual machines as quickly as possible. This may be required to boot an environment after a complete outage, whether controlled or unplanned. The figure shows the rapid boot times available on Dell EMC all-flash storage.

As the chart shows, almost 140,000 IOPS were generated during the time it took to boot all 3,500 VMs. The time required to boot all VMs to the login screen was less than 5 minutes. This workload is uncommon because most customers very rarely reboot an entire environment.
4.3.2 Login phase

This test is a more important scenario because it demonstrates the expected performance during mass user logins, a workload which is a daily occurrence. Each morning, users log in in waves, generating large amounts of data. The chart transitions directly into the next phase which is steady state. Figure 3 shows the login phase.

![Login phase chart](image)

Figure 3 Login phase

This chart shows the steady increase in load as more and more users log in to the system. As seen in the chart, the SC5020 provides excellent performance with predictable latency as the load increases.
Figure 4 shows the time to login and the number of sessions successfully launched.

Figure 4 Login time and sessions launched
Figure 5 shows the peak load generated.

The logins generated 72,000 IOPS, with latency under .8ms. This level of performance allows an excellent end-user experience, provided the compute and memory are properly sized. A storage latency this low ensures the storage will not be the gating factor in the user experience.
4.3.3 Steady-state workload

The steady-state workload used for these tests was targeted for 20 IOPS per user, to simulate a heavier-than-normal workload per user.

Figure 6 shows the load generated.
Figure 7 shows more detail for the steady-state load.

As Figure 7 shows, the constant workload generated just under 70,000 IOPS, at .7ms. Being able to sustain such a low latency at almost 20 IOPS per user ensures the SC5020 can provide fast, consistent performance for small to medium businesses.
4.4 Test results

Figure 8 shows the output from the Login VSI test tool, charting the user login and application response times. As indicated in the chart, the threshold is 1,986 ms, with an average latency provided of just 1,500 ms. This solution delivered a latency of 76 percent of the threshold.

Figure 8 Login VSI results
5 Conclusion

The true test of the workload is how well the system responds to user input. Storage is just one gear in the machine enabling users to run their workloads. The testing described in this document shows how well the storage performs under a full workload.

The data show the SC5020 storage array to be an excellent platform for up to 3,500 power users. It provides excellent performance and scalability, with up to 2PB of usable, configurable storage in a reliable and stable platform.
A Environment

A.1 Horizon View

Table 5 Horizon View configuration

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizon View</td>
<td>7.1</td>
</tr>
<tr>
<td>Role</td>
<td>Virtual machine assignment, management, web interface, connection broker</td>
</tr>
<tr>
<td>Servers</td>
<td>Four 4-core servers, 12GB RAM</td>
</tr>
<tr>
<td>Cabling</td>
<td>10Gbps VMXNet3</td>
</tr>
</tbody>
</table>

A.2 VMware hosts

Table 6 VMware host hardware configuration

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMware host</td>
<td>6.5</td>
</tr>
<tr>
<td>Role</td>
<td>End-user compute node</td>
</tr>
<tr>
<td>Hardware</td>
<td>Two 8-core processors, 320GB RAM</td>
</tr>
<tr>
<td>Storage</td>
<td>200GB SSD for boot/log</td>
</tr>
</tbody>
</table>

A.3 VMware vCenter

Table 7 vCenter server configuration

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMware vCenter appliance</td>
<td>6.5, two virtual vCenter appliances for end-user VMs, one appliance for infrastructure</td>
</tr>
<tr>
<td>Role</td>
<td>Management of all hosts, DRM load balancing, host monitoring</td>
</tr>
</tbody>
</table>
A.4 Login VSI

Table 8 Login VSI configuration

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login VSI</td>
<td>4.1.25</td>
</tr>
<tr>
<td>Role</td>
<td>Workload generation and application performance reporting</td>
</tr>
</tbody>
</table>

A.5 Windows desktops

Table 9 Virtual desktop configuration

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client desktops</td>
<td>Windows 7</td>
</tr>
<tr>
<td>Memory</td>
<td>2GB</td>
</tr>
<tr>
<td>Processor</td>
<td>2 vCPUs</td>
</tr>
<tr>
<td>Applications</td>
<td>Office 2010, Adobe Reader, WinZip®, Freemind, Doro PDF Writer</td>
</tr>
</tbody>
</table>
B Technical support and resources

Dell.com/support is focused on meeting customer needs with proven services and support.

Dell TechCenter is an online technical community where IT professionals have access to numerous resources for Dell software, hardware, and services.

Storage Solutions Technical Documents on Dell TechCenter provide expertise that helps to ensure customer success on Dell EMC Storage platforms.

B.1 VMware support

For VMware support, see the following resources:

- VMware.com
- Education and training
- Online documentation
- VMware communities