Best Practices for Securing a Dell Storage PS Series SAN

Dell Storage Engineering
October 2016
Revisions

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 2014</td>
<td>Initial release</td>
</tr>
<tr>
<td>October 2016</td>
<td>Updates</td>
</tr>
</tbody>
</table>

The information in this publication is provided “as is.” Dell Inc. makes no representations or warranties of any kind with respect to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular purpose.

Use, copying, and distribution of any software described in this publication requires an applicable software license.

Copyright © 2014 – 2016 Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be the property of their respective owners. Published in the USA [10/26/2016] [Best Practice] [BP1076]

Dell EMC believes the information in this document is accurate as of its publication date. The information is subject to change without notice.
Table of contents

Revisions..2

Acknowledgements..5

Executive summary...5

1 Introduction...6

1.1 Audience...6

2 Basic PS Series SAN security..7

2.1 Common Criteria evaluation...7

2.2 Operational environment..8

2.3 Administrative access points...8

2.4 Security access protocols...8

3 Protecting data at rest with self-encrypting drives..10

4 Protecting data in flight with IPsec ...11

4.1 Types of protected traffic..12

4.2 Securing replication traffic...12

4.3 IPsec policies..13

4.4 IPsec certificates..13

4.5 IPsec security parameters...13

4.6 IPsec security associations..14

4.7 IPsec pre-shared keys..14

4.8 IPsec configuration limitations ..14

4.9 Host connectivity considerations...16

4.10 Configuring IPsec...16

5 IPsec performance impact..17

6 Security scanning...18

6.1 Administrative interface port list..18

6.2 Group interface port list..19

6.3 Array member interface port list..20

6.4 Common security scanner warnings..20

7 Conclusion...21

A Configuring IPsec...22

A.1 Configuring a Windows Server 2012 storage host for IPsec..........................23

A.1.1 Configuring the Windows Server 2012 firewall....................................23
A.1.2 Configuring Windows Server 2012 IPsec defaults ... 24
A.1.3 Configuring a Windows Server 2012 Connection Security Rule .. 25
A.2 Configuring a PS Series storage group for IPsec ... 26
B Technical support and resources .. 27
B.1 Referenced or recommended Dell publications: .. 27
Acknowledgements

This best practice white paper was produced by the following members of the Dell Storage team:

Clay Cooper, Michael Kosacek, Richard Golasky and Danilo Feroce

Updated by Steven Lemons

Executive summary

This paper explores the technologies available for building a secure Dell™ Storage PS Series SAN with operational environment best practices, self-encrypting drives and IPsec network layer security.
1 Introduction

Dell Storage PS Series arrays provide a storage solution that delivers the benefits of consolidated networked storage in a self-managing iSCSI (Internet Small Computer System Interface) SAN (storage area network) that is affordable and easy to use, regardless of scale.

Data security is a primary concern in almost any IT environment. Business critical or confidential information must be protected from unauthorized access and properly disposed of when required. Many organizations are compelled to implement data protection technologies due to regulatory compliance.

This technical paper serves as a guide to deploying a secure PS Series SAN to prevent unauthorized access to the administrative interfaces and to protect data at rest using self-encrypting drives and data in flight using IPsec network layer security. IPsec is a set of standardized protocols designed to allow systems on IP-based networks to verify identities and create secured communication links.

1.1 Audience

This technical white paper is for storage administrators, SAN system designers, storage consultants, network and security consultants, or anyone tasked with building a secure, production SAN using PS Series storage. It is assumed that all readers have experience in designing and/or administering a shared storage solution. Also, there are some assumptions made in terms of familiarity with all current Ethernet standards as defined by the IEEE (Institute of Electrical and Electronic Engineers) as well as TCP/IP (Transmission Control Protocol/Internet Protocol) and iSCSI standards as defined by the IETF (Internet Engineering Task Force).
2 Basic PS Series SAN security

Traffic on a PS Series SAN takes place over a switched Ethernet network. It consists mainly of iSCSI protocol communication among the PS Series array members and the iSCSI initiators of the storage hosts. The SAN traffic may also include management and monitoring traffic required to administer the SAN.

A PS Series group offers a variety of mechanisms for preventing unauthorized access to administrative access points or to iSCSI targets.

In addition, self-encrypting drives are available to provide security for data at rest and IPsec can be configured to secure data in flight.

2.1 Common Criteria evaluation

PS Series storage controller firmware, version 5.1.1-H2, has been evaluated to conform to the Common Criteria for IT Security Evaluation (CC), version 3.1 by the Federal Office for Information Security most recently in March 2013.

The security target report that was conducted during the evaluation process can be found through the Common Criteria Portal at http://www.commoncriteriaportal.org/files/epfiles/0688b_pdf.pdf.

The primary security features evaluated by Common Criteria are:

- **Event auditing**: For each event, the user identity, role, date and time are recorded. This includes administrative logins and logouts as well as administrative actions.
- **User identity and authentication**: Ensures that a user provides credentials to access administrative functions or iSCSI targets. User credentials can be stored locally in the firmware, on a RADIUS (Remote Authentication Dial-In User Service) server, or in Active Directory. PS Series firmware 7.0 supports single sign on for administrative accounts using Active Directory. For iSCSI clients, credentials can be stored locally or on a RADIUS server.
- **Access control methods**: Control access to iSCSI targets by requiring CHAP (Challenge-Handshake Authentication Protocol) or by restricting access based on IP address or IQN (iSCSI qualified name), or any combination of these.
- **Residual information protection**: Zeros out each page of disk space at allocation time.
- **Security role management**: Allows users to have different levels of authorization. There are roles for administering the group, only certain pools, or only certain volumes. There is also a read-only administrator role that can view all information but cannot make changes.
- **Reliable time stamps**: Use an internal time source or an NTP (Network Time Protocol) server
- **Trusted channel**: Communication for administrative access over the Ethernet port. SSH (Secure Shell) is available for secure remote access to the CLI (Command Line Interface). Access to the web GUI (Graphical User Interface) is secured using TLS (Transport Layer Security).
2.2 **Operational environment**
Physical security is always the most basic form of protection for any business critical infrastructure. The PS Series SAN is designed to operate in a physically secure environment that is accessible only to system administrators.

Secondary services such as DNS (Domain Name System) and NTP should be from trustworthy sources.

The iSCSI network and the administrative network should be physically secure and logically protected using firewalling or network isolation. The iSCSI network should be physically separate from the end user application network unless Data Center Bridging (DCB) is used to converge the two networks.

Password complexity should be consistent with the authentication policy of the organization. The administrator chooses the initial password for the default administrator account (“grpadmin”) during initialization of the PS Series storage group, and any password may be changed at any later time as needed. If the password is lost, the administrative password can be reset through the serial console, but only with real time assistance from Dell support.

Firmware, security and anti-virus updates should be applied regularly to all systems having access to the SAN. In particular, web browsers and SSH clients used for remote administrative access should be kept up to date.

2.3 **Administrative access points**
Each PS Series array member can be accessed administratively using either the serial port or the Ethernet port. The CLI is available through the serial port using a terminal emulator or through the Ethernet port using SSH or Telnet. Both SSH and Telnet access are enabled by default, however disabling Telnet is recommended. Telnet transmits data in clear text and its use increases the risk exposure for that connection.

The Group Manager GUI is available through the administrative Ethernet port using a standard web browser. Initially, a signed Java application is downloaded using the web browser over TCP port 80. Once downloaded, the Java application securely connects to the PS Series group using the administrative credentials set during group initialization. The traffic is encrypted using TLS by default. The administrator may use an unencrypted connection instead, if that option is enabled. Disabling unencrypted GUI connections is recommended.

The PS Series group also supports SCP (Secure Copy) for copying firmware updates and diagnostic files to and from the array. It is a secure alternative to FTP (File Transfer Protocol). As with Telnet, FTP transmits information in clear text and it is not recommended.

The SAN Headquarters application can monitor the array members using SNMP (Simple Network Management Protocol). Additionally, a PS Series group can be configured to send email alerts to an SMTP (Simple Mail Transfer Protocol) server or to send system events to a syslog server.

2.4 **Security access protocols**
The PS Series group supports security protocols SSL/TLS and SSH, with a range of encryption algorithms. The protocols and algorithms enabled by default include some older protocols (such as SSH v1 and SSL v2) and encryption algorithms that are no longer recommended as best practices.
Unless it is necessary to enable access from older clients (web browsers or SSH clients) that do not support the current encryption protocols and authentication algorithms, Dell recommends disabling legacy protocols and algorithms for the best security.

You must use the CLI to disable the legacy protocols; see the `grpparams crypto-legacy-protocols` command in the *Dell EqualLogic Group Manager CLI Reference Guide*. You can also enable or disable SSH v1 protocol support; see the `grpparams cliaccess-ssh` command.
Protecting data at rest with self-encrypting drives

Data at rest is the data that resides on the physical hard drives within the array member chassis. In the case of a breach of physical security and the removal of a hard drive from an array member chassis, data could be extracted directly from a conventional hard drive.

Self-encrypting drives (SED) guard against this threat by encrypting data as it is written to the disk and decrypting data as it is read. PS Series arrays implement this technology in a manner that is fully transparent to the storage administrator and to the consumer of the data. Also, since the encryption is offloaded to the SED, performance impact is negligible. Hard drives that are removed from the array member chassis contain only encrypted data, impossible to access without the unique unlock key generated by the PS Series controller firmware during group initialization.

Another benefit of the implementation of SED technology is the Instant Secure Erase (ISE) feature. When hard drives or array members are re-commissioned, the controller firmware will reset the encryption key used to encrypt the data as it is written. Once the encryption key for a hard drive set changes, any data already on the drive is instantly and permanently inaccessible, obviating the need for time consuming hard drive data wiping.

For more on the PS Series implementation of SED technology, see EqualLogic PS Series Architecture: Self Encrypting Drive Management with PS Series Storage Arrays at http://en.community.dell.com/dell-groups/dtcmedia/m/mediagallery/20382259.aspx
4 **Protecting data in flight with IPsec**

Data in flight is data as it is transmitted over the wire using the IP protocol. IP packets contain unencrypted data payloads that can be easily read if the packet is captured in transit. One method of securing data in flight is to encrypt IP packet payloads using IPsec network layer security.

IPsec is a set of standardized protocols designed to allow systems on IP-based networks to verify identities and create secured communication links. IPsec uses cryptographic security mechanisms for authentication and protection. IPsec validates the identity of devices communicating over IP-based networks, encrypts all data passing between participating systems, and protects against disclosure, modification, eavesdropping and attack. IPsec is supported for both IPv4 and IPv6 networks.

Note: For more information about IPsec, refer to the website of the Internet Engineering Task Force, the organization that originally developed the IPsec protocols.

http://ietf.org

In the context of an iSCSI SAN that uses PS Series arrays, IPsec secures communications between group member arrays and between iSCSI initiators and the group. You can use policies to configure your IPsec implementation to protect iSCSI traffic based on initiator IP address, initiators in a specific subnet, or network protocol. IPsec authentication is handled using certificates or pre-shared keys.

Note: IPsec is supported only for PS Series array models (PS6xxx, PS41x0, and PS-M4110), and can be enabled for a group only if all members support IPsec.
4.1 Types of protected traffic

After IPsec is enabled, all network traffic between group members is automatically protected with IPsec using IKEv2. No further configuration is required.

All incoming or outgoing IP traffic that travels between hosts and the group can be protected with IPsec. This traffic includes, but is not limited to:

- iSCSI traffic
- Telnet and SSH connections to the Group Manager CLI
- HTTP connections to the Group Manager GUI
- SMTP email notifications
- Syslog
- NTP
- RADIUS
- SNMP

Note: If IPsec is enabled but no security parameters or policies are in place, intragroup traffic is protected, and traffic to and from the group is allowed to pass without being protected or dropped.

4.2 Securing replication traffic

The PS Series firmware provides no mechanism for using IPsec to protect replication traffic to an offsite storage group. If securing WAN replication traffic is a requirement, it is recommended to secure the traffic with a virtual private network (VPN) using a WAN optimizer or router.
4.3 **IPsec policies**

Traffic that meets the conditions stipulated by the policy can either be passed, dropped, or protected using an IPsec security parameter associated with the policy.

You can use IPsec policies to apply IPsec protection to traffic that meets one or more of the following criteria:

- Data traveling to or from specific IP addresses, or a range of IP addresses defined by a specific subnet or netmask.
- IPv4 or IPv6 traffic
- Specific network protocols: TCP, UDP, or ICMP (either IPv4 or IPv6)

Unless explicitly specified by the policy, traffic is allowed to pass. To drop all traffic that is not explicitly protected or passed, create an IPsec policy that drops traffic by default.

If multiple IPsec policies are in place, the system determines priority by their order of creation. Policies created first take precedence over policies created later.

IPsec policies can also be used to determine what traffic is being protected using IPsec, and what traffic is being passed or dropped without encryption.

4.4 **IPsec certificates**

Certificates are used in an IPsec configuration as one method of authenticating secured connections between iSCSI initiators and the group. Implementation of an IPsec-enabled SAN requires both a root-CA (Certificate Authority) certificate from the issuing authority and a local certificate to authenticate the group.

You can generate certificates suitable for use in IPsec connections to the PS Series using any Windows, OpenSSL, or other commercial Certificate Authority product.

From the Group Manager CLI, you can import, display, and delete certificates, using the IPsec certificate commands. See the *Dell EqualLogic Group Manager CLI Reference Guide* for more information.

4.5 **IPsec security parameters**

IPsec security parameters control the authentication and key negotiation carried out using the Internet Key Exchange IKEv1 or IKEv2 protocol.

Security parameters specify the following features:

- Using IKEv1, IKEv2, or manual keying

Note: Configuring IPsec to use manual keys is possible but is only included in the product to satisfy certification requirements. There are significant security risks when using manual IPsec keying and it should never be used. IKEv1 or IKEv2 are the recommended IPsec keying methods.

- End point authentication using certificates or pre-shared keys (PSK)
• Establishing Transport Mode or Tunnel Mode connections

Note: Unless specifically configured, IKEv1 and Transport Mode are used by default.

IPsec security parameters are managed using the ipsec security-params commands. See the *Dell EqualLogic Group Manager CLI Reference Guide* for more information.

4.6 IPsec security associations

The pairing of an IPsec security parameter with an IPsec policy form and IPsec security association (SA), which formalizes the secured connection between the group and a host connected to it. Each protected connection to the group is a unique security association, and each system can have multiple security associations, allowing it to have authenticated communications with many other systems.

Note: You can view or delete security associations using the IPsec security-association commands. See the *Dell EqualLogic Group Manager CLI Reference Guide* for more information.

4.7 IPsec pre-shared keys

As an alternative to using certificates, you can use pre-shared keys to authenticate secured connections. Pre-shared keys are identical strings that are specified at both ends of the communications pathway. The keys enable the systems to correctly identify each other.

Either ASCII or hexadecimal strings can be used. ASCII can be used in most situations. However, you can also use hexadecimal strings if your organization mandates their use, if you have systems that do not support the use of ASCII strings, or if you want to use non-ASCII characters.

4.8 IPsec configuration limitations

The limitations listed in the sections below apply when implementing IPsec.

- IPsec is only supported for certain PS Series array models, and can only be enabled for a group if all members support IPsec. See the *Dell EqualLogic PS Series Storage Arrays Release Notes* for more information.
- IPsec can only be enabled and configured using the Group Manager CLI. The Group Manager GUI provides no facility for configuring or monitoring IPsec.
- The PS Series array does not serve as an IPsec-secured gateway; it only behaves as an IPsec-secured host.
- You cannot use the save-config CLI command to preserve the group's IPsec certificates and pre-shared keys. The save-config command saves the CLI commands that were used to configure IPsec, but it does not save certificates that have been transferred to the array using FTP or SCP. Therefore, when you restore a configuration, you must manually restore any configuration options set using the IPsec certificate load, IPsec security-params create certificate, and IPsec security-params pre-shared-key commands.
- Kerberos-based authentication is not supported.
- Multiple Root Certificate Authorities (CA) are not supported.
- Certificate Revocation Lists (CRL) are not supported.
- Only users with group administrator privileges can configure IPsec.
- Perfect Forward Secrecy (PFS) is not supported.
- Encrypted private keys are not supported for X.509 format certificates.
- IKE mobility is not supported.
- NAT Traversal (NAT-T) is not supported. Dell recommends against placing a firewall that performs address translation between the PS Series group and its IPsec peers.
- The PS Series array uses a fixed rekey setting of 3600 seconds and 10GB. These values will be used for the Security Association unless the other end requests smaller values. Smaller values, such as those used in Windows by default, may produce excessive rekeying overhead; the PS Series values are recommended.
4.9 Host connectivity considerations

Enabling or disabling IPsec for the group using the IPsec enable and IPsec disable commands might disrupt host connectivity to the group for several minutes. To prevent unplanned outages, IPsec should be enabled or disabled during a planned maintenance window when there are no active iSCSI volume connections.

Consult the documentation for your host operating systems, HBAs, and iSCSI initiators to verify that they support IPsec. There might also be known issues and idiosyncrasies with the initiator IPsec support that require additional planning or configuration.

When configuring IPsec with Windows hosts, note the following:

- IPsec traffic is not always handled correctly if the IPsec policy is configured to protect only a subset of traffic between the host and the group. For example, if the IPsec policy protects only iSCSI traffic on port 3260, a Windows Server 2008 R2 host may not perform reliably when connecting to the group. As a workaround, IPsec policies should apply to all traffic passing between the group and Windows systems. Microsoft KB article 2665206 discusses this in detail at http://support.microsoft.com/kb/2665206.
- IPsec must be configured using the Windows Firewall with Advanced Security. Do not use the IPsec option in the Microsoft iSCSI initiator, which does not have the capability to fully configure an IPsec configuration between the host and the group. Further, if you attempt to configure an IPsec connection using the iSCSI initiator, the system might not allow you to remove the partial configuration and replace it with a complete configuration created with Windows Firewall.
- IPsec policies defined using the Local Security Policy Manager are not supported.

4.10 Configuring IPsec

See Appendix A for how to enable IPsec communication between a single storage host running Windows Server 2012 and a PS Series storage group.

For more information on the Dell Storage implementation of IPsec and for other examples of configuring IPsec with different operating systems, different authentication methods and different connection modes see the EqualLogic Group Manager Administrator’s Manual.

To find exact command line usage for configuring IPsec at the Group Manager CLI see the EqualLogic Group Manager CLI Reference Guide.

Both of the above documents can be found at the Dell PS SSeries support site (login required):

http://eqlsupport.dell.com
5 IPsec performance impact

The performance impact of IPsec varies by host and network configuration. Even if IPsec is only used to protect traffic between group members, I/O performance is still affected. Based on these factors, you can expect that using IPsec may degrade I/O performance.

Although PS Series array members use hardware to accelerate cryptographic operations, many initiators perform these operations in software using host CPU resources which can cause a further reduction in the speed of communications between iSCSI initiators and the group.
6 Security scanning

No security analysis would be complete without a review of open IP network protocol ports for a given system. Nmap, the open source network discovery and security auditing tool, was used for this purpose. The tables below list all TCP and UDP ports and services for a PS Series storage group. Not all services are enabled by default. Others, such as Telnet, can be disabled. For each port, the service description as reported by Nmap is listed as well as the actual port usage by a PS Series storage group.

In order for the PS Series storage and its associated services to function as expected, these ports must remain open through any firewalls or switch access control lists that reside in between the array members and the iSCSI initiators, the management servers or secondary services such as NTP.

6.1 Administrative interface port list

Table 1 and Table 2 list the ports and services available through the management network IP address. If the management interface is not enabled, then these ports and services will be available through the group IP address on the SAN.

Table 1 TCP ports and services available through the administrative interface

<table>
<thead>
<tr>
<th>TCP Port</th>
<th>Nmap</th>
<th>PS Series storage group</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>ftp</td>
<td>FTP</td>
</tr>
<tr>
<td>22</td>
<td>ssh</td>
<td>SSH</td>
</tr>
<tr>
<td>23</td>
<td>telnet</td>
<td>Telnet</td>
</tr>
<tr>
<td>25*</td>
<td>smtp</td>
<td>SMTP</td>
</tr>
<tr>
<td>80</td>
<td>http</td>
<td>Web GUI (Java app download only)</td>
</tr>
<tr>
<td>2606</td>
<td>netmon</td>
<td>Support Assist client for SANHQ</td>
</tr>
<tr>
<td>3002</td>
<td>exlm-agent</td>
<td>GUI communication</td>
</tr>
<tr>
<td>3003</td>
<td>cgms</td>
<td>GUI communication (encrypted)</td>
</tr>
<tr>
<td>20002</td>
<td>commtact-http</td>
<td>Group event logging</td>
</tr>
<tr>
<td>20003</td>
<td>commtact-https</td>
<td>Group event logging</td>
</tr>
</tbody>
</table>

* Not enabled by default
Table 2
UDP ports and services available through the administrative interface

<table>
<thead>
<tr>
<th>UDP Port</th>
<th>Nmap</th>
<th>PS Series storage group</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>ntp</td>
<td>NTP</td>
</tr>
<tr>
<td>161</td>
<td>snmp</td>
<td>SNMP</td>
</tr>
<tr>
<td>500*</td>
<td>isakmp</td>
<td>IPsec key exchange</td>
</tr>
<tr>
<td>514*</td>
<td>syslog</td>
<td>Syslog</td>
</tr>
</tbody>
</table>

* Not enabled by default

6.2 Group interface port list

Table 3 and Table 4 list the ports and services available through group IP address on the SAN even when the management interface is enabled. When the management interface is not enabled, the ports and services in Table 1 and Table 2 are available through the group interface.

Table 3
TCP ports and service available through the group interface

<table>
<thead>
<tr>
<th>TCP Port</th>
<th>Nmap</th>
<th>PS Series storage group</th>
</tr>
</thead>
<tbody>
<tr>
<td>3260</td>
<td>iscsi</td>
<td>iSCSI</td>
</tr>
<tr>
<td>9876</td>
<td>sd</td>
<td>iSCSI intra-system control</td>
</tr>
<tr>
<td>20002</td>
<td>commtact-http</td>
<td>Group event logging</td>
</tr>
<tr>
<td>20003</td>
<td>commtact-https</td>
<td>Group event logging</td>
</tr>
<tr>
<td>25555</td>
<td>unknown</td>
<td>Group communications</td>
</tr>
</tbody>
</table>

Table 4
UDP ports and services available through the group interface

<table>
<thead>
<tr>
<th>UDP Port</th>
<th>Nmap</th>
<th>PS Series storage group</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>ntp</td>
<td>NTP</td>
</tr>
<tr>
<td>500*</td>
<td>isakmp</td>
<td>IPsec key exchange</td>
</tr>
</tbody>
</table>

* Not enabled by default
6.3 Array member interface port list

Table 5 and Table 6 list the ports and services available through array member IP address on the SAN.

Table 5
TCP ports and services available through the array member interface

<table>
<thead>
<tr>
<th>TCP Port</th>
<th>Nmap</th>
<th>PS Series storage group</th>
</tr>
</thead>
<tbody>
<tr>
<td>3260</td>
<td>iscsi</td>
<td>iSCSI</td>
</tr>
<tr>
<td>9876</td>
<td>tcpwrapped</td>
<td>iSCSI intra-system control</td>
</tr>
<tr>
<td>20002</td>
<td>commtact-http</td>
<td>Group event logging</td>
</tr>
<tr>
<td>20003</td>
<td>commtact-https</td>
<td>Group event logging</td>
</tr>
<tr>
<td>25555</td>
<td>unknown</td>
<td>Group communications</td>
</tr>
</tbody>
</table>

Table 6
UDP ports and services available through the array member interface

<table>
<thead>
<tr>
<th>UDP Port</th>
<th>Nmap</th>
<th>PS Series storage group</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>ntp</td>
<td>NTP</td>
</tr>
<tr>
<td>500*</td>
<td>isakmp</td>
<td>IPsec key exchange</td>
</tr>
</tbody>
</table>

6.4 Common security scanner warnings

In earlier versions of the PS Series array firmware, TCP port 443 (https) was enabled. Although port 443 was only used on the PS Series storage group for downloading the secure java client and not for administrative access, some commercial security audit applications report an open TCP port 443 as a security risk.

To prevent these incorrect warnings from occurring, port 443 has been removed in PS Series firmware version 8.0. The secure java client is available for download over the default HTTP port 80.
Conclusion

A PS Series group offers a variety of mechanisms for preventing unauthorized access to administrative access points or to iSCSI targets.

PS Series storage controller firmware has been certified to conform to the Common Criteria for IT Security Evaluation (CC), version 3.1 by the Federal Office for Information Security most recently in March 2013.

The following actions are recommended to ensure the security of a PS Series SAN:

- Restrict physical access to the SAN
- Ensure password complexity is consistent with the organizational security policy
- Logically isolate and firewall the iSCSI and administrative networks
- Ensure all host systems and applications on the SAN are kept up to date with firmware and software updates, particularly web browsers and SSH clients used for administrative access
- Ensure secondary services such as DNS and NTP are trustworthy
- Use SSH for administrative CLI access and disable Telnet access
- Use SCP rather than FTP for copying files to and from the array members
- Disable unencrypted access to the administrative GUI
- Disable legacy cryptographic protocols
- Use self-encrypting drives (SED) to ensure that no data is lost in the event of a physical security breach
- If required, use IPsec to secure management traffic and data in flight
- If required, use a VPN to secure replication traffic

Depending on the workload, IPsec may impact performance.
A Configuring IPsec

The instructions below enable IPsec communication between a single storage host running Windows Server 2012 and an PS Series storage group using IPv4 addressing.

Pre-shared keys are used as the IPsec authentication method. The security association (SA) will be created using the IKEv1 (Internet Key Exchange) protocol and the IPsec connection will be in Transport Mode.

For more information on the implementation of IPsec and for other examples of configuring IPsec with different operating systems, different authentication methods and different connection modes see the *EqualLogic Group Manager Administrator’s Manual*.

To find exact command line usage for configuring IPsec at the PS Series Group Manager CLI see the *EqualLogic Group Manager CLI Reference Guide*.

Both of the above documents can be found at the Dell PS Series support site (login required):

http://eqlsupport.dell.com
A.1 Configuring a Windows Server 2012 storage host for IPsec

The following instructions will configure the Windows Server 2012 storage host to communicate with a PS Series storage group using IPsec.

A.1.1 Configuring the Windows Server 2012 firewall

Once the below instructions are performed, all inbound traffic from the PS Series storage group and each array member will be allowed to pass through the Windows Server 2012 firewall. Note that outbound traffic from the host to the storage group is allowed by default.

1. Open the Windows Firewall with Advanced Security management tool.
2. Click on Inbound Rules and choose to create a new rule.
3. Create a custom rule that applies to all programs and any protocols.
4. Add a SAN interface IP address for needed hosts to the local IP address list.
5. Add the storage group IP address and the IP addresses of all enabled ports of each array member to the remote IP address list.
6. Choose to Allow the connection. Do not choose to Allow the connection if it is secure.
7. Make the rule apply to the Domain, Private, and Public profiles.
8. Give the new rule a name.
A.1.2 Configuring Windows Server 2012 IPsec defaults

Since it is recommended that legacy cryptographic protocols be disabled (see Section 2.4), it is necessary to add a new security method to the IPsec main mode key exchange. Disabling legacy cryptographic protocols prevents the use of Diffie-Hellman groups shorter than 2048 bits. The new security method will use the Diffie-Hellman Group 14 key exchange algorithm that uses a modular exponentiation group with a 2048 bit modulus.

1. Open the firewall properties window from within the Windows Firewall with Advanced Security management tool.
2. Select the **IPsec Settings** tab and choose to customize IPsec defaults.
3. Set **Key exchange (Main Mode)** to **Advanced** and choose to customize.
4. Choose to add a security method and select **Diffie-Hellman Group 14** as the key exchange algorithm.
5. Move the newly created security method to first in the list using the arrow buttons.
6. Dell recommends setting the key lifetime to a minimum of 60 minutes to prevent frequent key exchanges from affecting network performance.
7. Click **Ok** in each open window to save changes.

![Figure 3 The Windows Firewall with Advanced Security firewall properties window](image-url)
A.1.3 Configuring a Windows Server 2012 Connection Security Rule

Creating a Windows Server 2012 Connection Security Rule is the equivalent of creating an IPsec security policy. Once the rule is created and enabled, Windows Server 2012 will only communicate with the remote system at a specified IP address if it can successfully establish a security association.

Figure 4 Creating a Connection Security Rule in the Windows Firewall with Advanced Security management tool

1. Open the Windows Firewall with Advanced Security management tool.
2. Select Connection Security Rules and choose to create a new rule.
3. Create a custom rule.
4. Add a SAN interface IP address for the needed hosts to the local IP address list.
5. Add the storage group IP address and the IP addresses of all enabled ports of each array member to the remote IP address list.
6. Choose to Require authentication for inbound and outbound connections.
7. Select the Advanced authentication method and choose to customize.
8. Choose to add a first authentication method.
9. Select Preshared key, type in the value of the key and click Ok.
10. Apply the rule to all ports and protocols.
11. Make the rule apply to the Domain, Private, and Public profiles.
12. Give the new rule a name.
A.2 Configuring a PS Series storage group for IPsec

The following instructions will configure a PS Series storage group to communicate with the previously configured Windows Server 2012 storage host.

13. Enable IPsec globally:

 psa_group> ipsec enable

 At this point, all traffic among the storage group array members will be protected with IPsec.

14. Create an IPsec security parameter:

 psa_group> ipsec security-params create <parameter-name> pre-shared-key key <password>

 The new security parameter will use the preshared key authentication method. The key specified in this command will need to match the key specified in the Windows Server 2012 Connection Security Rule.

15. Create an IPsec security policy:

 psa_group> ipsec policy create <policy-name> type v4 ip-addr <ip-address> protocol any action protect <parameter-name>

 Note: <ip-address> is the IP address of the Windows Server 2012 SAN interface.

 At this point, all IP traffic (regardless of port or protocol) between the storage group and the remote IP address will be secured with IPsec.

 Note: An IPsec security policy can be made to apply to an entire IP subnet by using the netmask parameter. For example:

 psa_group> ipsec policy create <policy-name> type v4 ip-addr <ip-network> netmask <netmask> protocol any action protect <parameter-name>
B Technical support and resources

Dell.com/support is focused on meeting customer needs with proven services and support.

Dell TechCenter is an online technical community where IT professionals have access to numerous resources for Dell software, hardware and services.

Storage Solutions Technical Documents on Dell TechCenter provide expertise that helps to ensure customer success on Dell Storage platforms.

B.1 Referenced or recommended Dell publications:

- Customer support web site, where you can find firmware releases and the associated documentation (site requires login):
 https://eqlsupport.dell.com

- Dell PS Series Configuration Guide:
 http://en.community.dell.com/dell-groups/dtcmedia/m/mediagallery/19852516/download.aspx

- Dell Storage Compatibility Matrix (DSCM):
 http://en.community.dell.com/dell-groups/dtcmedia/m/mediagallery/20438558

- Switch Configuration Guides for PS Series or SC Series SANs:
 http://en.community.dell.com/techcenter/storage/w/wiki/4250.switch-configuration-guides-for-ps-series-or-sc-series-sans

 http://en.community.dell.com/dell-groups/dtcmedia/m/mediagallery/20382259.aspx

- Force10 Switch documentation:

Common Criteria publications:

- http://www.commoncriteriaportal.org/