SUSE Linux Enterprise Server 11 SP3 cluster configuration for Dell PowerEdge VRTX with NFS storage

Setting up an active-passive SUSE Linux Enterprise Server (SLES) 11 service pack 3 cluster configuration for PowerEdge VRTX entry shared configuration with a NFS storage

Samir Sachdev
January 2015
Revisions

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 2015</td>
<td>Initial release</td>
</tr>
</tbody>
</table>

THIS WHITE PAPER IS FOR INFORMATIONAL PURPOSES ONLY, AND MAY CONTAIN TYPOGRAPHICAL ERRORS AND TECHNICAL INACCURACIES. THE CONTENT IS PROVIDED AS IS, WITHOUT EXPRESS OR IMPLIED WARRANTIES OF ANY KIND.

© 2013 Dell Inc. All rights reserved. Reproduction of this material in any manner whatsoever without the express written permission of Dell Inc. is strictly forbidden. For more information, contact Dell.

Performance of network reference architectures discussed in this document may vary with differing deployment conditions, network loads, and the like. Third party products may be included in reference architectures for the convenience of the reader. Inclusion of such third party products does not necessarily constitute Dell’s recommendation of those products. Please consult your Dell representative for additional information.

Trademarks used in this text:
Dell™, the Dell logo, Dell Boomi™, Dell Precision™, OptiPlex™, Latitude™, PowerEdge™, PowerVault™, PowerConnect™, OpenManage™, EqualLogic™, Compellent™, KACE™, FlexAddress™, Force10™ and Vostro™ are trademarks of Dell Inc. Other Dell trademarks may be used in this document. Cisco Nexus®, Cisco MDS®, Cisco NX-OS®, and other Cisco Catalyst® are registered trademarks of Cisco System Inc. EMC VNX®, and EMC Unisphere® are registered trademarks of EMC Corporation. Intel®, Pentium®, Xeon®, Core® and Celeron® are registered trademarks of Intel Corporation in the U.S. and other countries. AMD® is a registered trademark and AMD Opteron™, AMD Phenom™ and AMD Sempron™ are trademarks of Advanced Micro Devices, Inc. Microsoft®, Windows®, Windows Server®, Internet Explorer®, MS-DOS®, Windows Vista® and Active Directory® are either trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries. Red Hat® and Red Hat® Enterprise Linux® are registered trademarks of Red Hat, Inc. in the United States and/or other countries. Novell® and SUSE® are registered trademarks of Novell Inc. in the United States and other countries. Oracle® is a registered trademark of Oracle Corporation and/or its affiliates. Citrix®, Xen®, XenServer® and XenMotion® are either registered trademarks or
trademarks of Citrix Systems, Inc. in the United States and/or other countries. VMware®, Virtual SMP®, vMotion®, vCenter® and vSphere® are registered trademarks or trademarks of VMware, Inc. in the United States or other countries. IBM® is a registered trademark of International Business Machines Corporation. Broadcom® and NetXtreme® are registered trademarks of Broadcom Corporation. QLogic is a registered trademark of QLogic Corporation. Other trademarks and trade names may be used in this document to refer to either the entities claiming the marks and/or names or their products and are the property of their respective owners. Dell disclaims proprietary interest in the marks and names of others.
Contents

Revisions .. 2

1 Basic minimum cluster requirements .. 5
 1.1 Hardware requirements .. 5
 1.2 Software requirements ... 5

2 Initial setup ... 6
 2.1 Setting up the network .. 6
 2.2 Setting up the PowerEdge VRTX shared storage setup (entry-shared) .. 6
 2.3 Installing MegaRAID driver for Shared PERC Controller (SPERC) .. 6

3 High availability and cluster setup ... 8
 3.1 Installing SLE-HA extension ... 8
 3.2 Setting up the automatic cluster ... 8
 3.3 Specifying cluster settings .. 8
 3.3.1 Synchronizing the configuration file with Csync2 ... 12
 3.4 Bringing the cluster online ... 14
 3.5 Configuring management workstation as NTP server for time synchronization 14

4 NFS failover setup .. 15
 4.1 Installing NFSSERVER ... 15
 4.2 Setting up partition and filesystem ... 15
 4.3 Setting up stonith_sbd ... 15
 4.4 Adding NFS cluster resource ... 17
 4.5 Mounting NFS on a remote client ... 22

5 References ... 23
1 Basic minimum cluster requirements

1.1 Hardware requirements
- Two blades on PowerEdge VRTX entry shared chassis.
- PowerEdge VRTX should be in entry-shared configuration.
- One isolated external network switch connected to one port of each blade (em2 port).
- A separate system installed with SLES 11 SP3 to act as NTP Server, which is part of the same network. The two nodes are required for cluster time synchronization. This system can also be used later to mount the NFS file system created on the cluster.

1.2 Software requirements
- SLES 11 SP3 must be deployed, with default pattern, on each blade.
- SLES HA package must be installed from the accompanying ISO image.
- All the steps must be performed as a root user on the systems.
2 Initial setup
Perform the following procedures:
- Network Setup
- Plasma Shared Storage Setup
- MegaRAID Driver Installation for SPERC

2.1 Setting up the network
To set up the network:

1. Assign static address to the port in the same subnet range for Node 1 (192.168.1.1) and Node 2 (192.168.1.2).
 - Node 1 (hostname): sles-ha
 - Node 2 (hostname): sles-ha-1
3. Network Settings can be configured by accessing in /etc/hosts on both nodes and adding following entries on both nodes:
 - 192.168.1.1 sles-ha sles-ha
 - 192.168.1.2 sles-ha-1 sles-ha-1

2.2 Setting up the PowerEdge VRTX shared storage setup (entry-shared)
PowerEdge VRTX should be in an single controller entry-shared mode with at least two virtual disks configured and in Multiple Assignment mode. Both virtual disks must be assigned to both Node 1 and Node 2.
- VD1 is used as a STONITH drive
- VD2 is used as NFS storage managed by Cluster

2.3 Installing MegaRAID driver for Shared PERC Controller (SPERC)
Firmware on the SPERC should be (23.8.10-0059) for the Entry-Shared configuration.
1. Ensure that the drivers are exactly built for the kernel on the system for SLES 11 SP3 (3.0.76-0.11). This can be verified using the following command:
uname –a

2. Deploy a unified driver (6.803.00.00) on both the nodes using the following command:

   ```bash
   # rpm -ivh lsi-megaraid_sas-kmp-default-v06.803.00.00_3.0.76-0.11-1.x86_64.rpm
   ```

 Installation of the driver is completed. You can use the following command verify driver installation:

   ```bash
   sles-ha-1:~ #lsscsi
   ```

<table>
<thead>
<tr>
<th>Enclosure</th>
<th>Disk Type</th>
<th>Controller</th>
<th>Size</th>
<th>Mount Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0:0:32:0]</td>
<td>enclosu DP</td>
<td>BP12G+</td>
<td>1.00</td>
<td>-</td>
</tr>
<tr>
<td>[0:2:0:0]</td>
<td>disk</td>
<td>DELL</td>
<td>PERC H310</td>
<td>2.12</td>
</tr>
<tr>
<td>[1:2:0:0]</td>
<td>disk</td>
<td>DELL</td>
<td>Shared PERC8</td>
<td>3.18</td>
</tr>
<tr>
<td>[1:2:1:0]</td>
<td>disk</td>
<td>DELL</td>
<td>Shared PERC8</td>
<td>3.18</td>
</tr>
</tbody>
</table>

 The command above should list the local PERC Controller and the SPERC with the virtual disks associated to the SPERC.
3 High availability and cluster setup

3.1 Installing SLE-HA extension

For these steps, we are using SLE-HA as distributed in the separate ISO SLE-HA-11-SP3-x86_64-GM-CD1.iso.

To install this SLE-HA add-on:

1. Start YaST.
2. Select Software > Add-On Products.
3. Select the local ISO Image and then specify the path to ISO image.

3.2 Setting up the automatic cluster

1. On Node 1, run the following command to start the bootstrap script:

   ```
   # sleha-init
   ```

 If NTP is not configured on the nodes, a warning is displayed. Ignore the warning and continue. It is not mandatory to specify the data in all the fields. You can specify the cluster settings manually at a later stage.

2. Specify a shared virtual disk’s WWID in your node when prompted. For example, you can specify the MR VD’s WWID in the following format:

   ```
   /dev/disk/by-id/wwn-<id of the Shared VD>
   ```

3. On Node 2, run the following command to start the bootstrap script:

   ```
   # sleha-join
   ```

4. Provide the IP of the initiating node, in this scenario Node-1 (192.168.1.1) to complete the cluster setup on Node 2.

3.3 Specifying cluster settings

Once the automatic cluster is setup using the bootstrap scripts, you must specify additional settings to the cluster, which has not been performed during bootstrap.

1. Start the cluster module using the following command:

   ```
   # yast2 cluster
   ```

2. In Cluster - Communication Channel tab select udpu from the Transport drop-down list and clear the Redundant Channel field.

3. You can set the Bind Network Address as 192.168.1.0, because the range used is 192.168.1.x.
Ensure that the Multicast Port field is set to the default value of 5405.

4. Click *Add* and then specify the following IP address in *Member address* field:
 - 192.168.1.1
 - 192.168.1.2

5. Select the *Auto Generate Node ID* check box to automatically generate a unique ID for every cluster node.

6. Click *Finish* to confirm the changes for an existing cluster and close the cluster module. YaST writes the configuration to `/etc/corosync/corosync.conf` file.

7. In the Cluster - Security tab, select the *Enable Security Auth* check box.

8. Specify the threads value as 2 in the *Threads* field.

9. Click *Generate Auth Key File* to create an authentication key.

 The key is written to the `/etc/corosync/authkey` file. The key should be generated only on Node 1. To join the Node 2 to the cluster, the `authkey` file should be manually copied from Node 2 to Node 1.
10. In the Cluster – Service tab, select the **On – Start openais at booting** radio button as the **Booting** option.
11. Click **Finish**.
12. In the Cluster - Configure Csnc2 tab, click **Add** in the **Sync Host group** field and specify the local host names of all nodes in the cluster, to specify the synchronization group.

 For each node, the strings should be exactly as returned by `hostname` command.

 In the example displayed in the figure, the strings are sles-ha-1 and sles-ha for Node 2 and Node 1 respectively.
13. Click **Generate Pre-Shared-Keys** to create a key file for the synchronization group. The key file is written to `/etc/csync2/key_hagroup`. This file should also be copied to Node 2 from Node 1.

14. Click **Csync2** to activate **Turn csync2 ON**. The `chkconfig csync2` starts the **Csync2** automatically at boot time.

3.3.1 Synchronizing the configuration file with Csync2

To successfully synchronize the files with Csync2, ensure that the same csync2 configuration should be available on all nodes.

1. Copy the file `/etc/csync2/csync2.cfg` manually to Node 2 after the cluster configuration is completed and the files mentioned in the *Specifying cluster settings* section are generated.

Summary of files to be copied for Synchronization from Node 1 to Node 2 in the corresponding directories is listed below:

- `/etc/corosync/corosync.conf`
- `/etc/corosync/authkey`
/etc/csync2/key_hagroup
/etc/csync2/csync2.cfg

2. Both must be running on both nodes. Run the following command on all nodes to start both csync2 and xinetd services automatically on both the nodes, when the system is started.

 # chkconfig csync2 on
 # chkconfig xinetd on
 # rcxinetd start

 The services start.

 Figure 5 Cluster-Configure conntrackd

 Do not modify any of the default options in the Cluster-Configure conntrackd tab as the firewall is disabled.
3.4 Bringing the cluster online

1. Check if openais service is currently running by running the following command:

   ```
   # rcopenais status
   ```

2. If the openais service is not running then start OpenAIS/Corosync by running the following command:

   ```
   # rcopenais start
   ```

3. Repeat steps 1 and 2 for all nodes.

4. To check the status of cluster, run following command:

   ```
   # crm_mon
   ```

 If all nodes are online, the output should be similar to the following:

 Last change: Mon Feb 24 11:23:55 2014 by root via cibadmin on sles-ha
 Stack: classic openais (with plugin)
 Version: 1.1.9-2db99f1
 2 Nodes configured, 2 expected votes
 Online: [sles-ha sles-ha-1]

3.5 Configuring management workstation as NTP server for time synchronization

Configure both the nodes to use the NTP server in the network for synchronizing the time.

1. Click YaST -> Network Services.

2. Add the following entry to all the nodes (Node 1 and Node 2 in our case) in the /etc/ntp.conf to point to the NTP server in the network:

   ```
   server 192.168.1.254
   ```

3. Comment out rest of the lines that have a server name and IP address.
4 NFS failover setup

4.1 Installing NFSSERVER
Install `nfs-kernel-server` and all its dependencies on both Nodes (YaST Software Management). Alternatively run the following command:

```
# zypper install nfs-kernel-server
```

4.2 Setting up partition and filesystem
1. If `/dev/sda` and `/dev/sdb` are the two virtual disks available on SPERC, use the `fdisk` utility to create a single partition on both virtual disks as `/dev/sda1` and `/dev/sdb1`. In the current setup `/dev/sda1` is used as a STONITH_SBD drive and `/dev/sdb1` is used as NFS Mount Storage.

 `/dev/sda1` - STONITH (SBD Cluster Storage Resource)
 `/dev/sdb1` - NFS Mount

2. To make these drives usable create a partition of full size on these drives. The `/dev/sda1` drive is created for STONITH and `/dev/sdb1` for NFS.
3. Once the drives are partitioned, run the following command to format the drives with EXT3 filesystem.

   ```
sles-ha:~ # mkfs.ext3 /dev/sda1
sles-ha:~ # mkfs.ext3 /dev/sdb1
```

4.3 Setting up stonith_sbd
1. Configure Stonith_sbd accurately using the following command, as it is the fencing mechanism used in SLES-HA. The wwn refers to `/dev/sda1` that is outlined in the Setting up partition and filesystem section.

   ```
sles-ha:~# ls -l /dev/disk/by-id/ | grep wwn.*sd.1
```

 The command lists all the available disks by their WWN IDs.

 Ensure that you use only the wwn-<id> handle for configuring stonith_sbd. The /dev/sda1 handle is not persistent and using the handle might cause sbd unavailability after a reboot.

2. Run the following command:

   ```
sles-ha:~# sbd -d /dev/disk/by-id/wwn-<Id of STONITH disk>-part1 -4 20 -l 10 create
```

 After running the command the following response is displayed:
3. Run following command to obtain details on the parameters applied:

```
sles-ha:~# sbd -d /dev/disk/by-ld/wnn-<id> of STONITH disk>-part1 dump
```

The parameters for the Stonith-sbd to be configured are listed.

4. Verify that the contents of `/etc/sysconfig/sbd` are updated and that an entry for sbd device from the previously performed commands is reflected. Run the following command to can verify the contents:

```
sles-ha:~# cat /etc/sysconfig/sbd
SBD_DEVICE="/dev/disk/by-ld/wnn-<id>-part1"
SBD_OPTS="-W"
```

5. Copy the `/etc/sysconfig/sbd` file to the rest of nodes. In the current example, copy it to Node 2 using the following command:

```
sles-ha:~# scp /etc/sysconfig/sbd root@sles-ha-1:/etc/sysconfig
```

6. Run the following command to allocate sbd resource to Node 1:

```
sles-ha:~# sbd -d /dev/disk/by-ld/wnn-<id>-part1 allocate sles-ha
```

7. Run the following command to allocate sbd resource to Node 2:

```
sles-ha:~# sbd -d /dev/disk/by-ld/wnn-<id>-part1 allocate sles-ha-1
```

8. Run the following command to confirm that the resource has been successfully allocated to both the nodes:

```
sles-ha:~# sbd -d /dev/disk/by-ld/wnn-<id>-part1 list
0 sles-ha clear
1 sles-ha-1 clear
```

9. Run the following command to restart the OpenAIS/corosync daemon on both nodes:

```
sles-ha:~# rcopenais restart
sles-ha-1:~# rcopenais restart
```

10. Run the following command to verify that both the nodes are able to communicate to each other through sbd:

```
sles-ha:~# sbd -d /dev/disk/by-ld/wnn-<id>-part1 message sles-ha-1 test
```

11. Run the following command on separate terminals of both nodes to verify that the communication succeeds:
sles-ha-1: # tail -f /var/log/messages

12. Run the following command to send message from sles-ha-1 to sles-ha. Press CTRL + C to exit from the previous command.

 sles-ha-1:$ sbd -d /dev/disk/by-wwn-<id>-part1 message sles-ha test

13. Once message communication is tested and successful, configure stonith_sbd as a resource using the crm command line utility.

 sles-ha:$ crm configure
 crm(live)configure# property stonith-enabled="true"
 crm(live)configure# property stonith-timeout="70s"
 crm(live)configure# primitive stonith_sbd stonith:external/sbd params
 sbd_device="/dev/disk/by-wwn/<id>-part1"
 crm(live)configure# commit
 crm(live)configure# quit

 You can modify the cluster policy setting as shown below:

 sles-ha:$ crm configure
 crm(live)configure# property no-quorum-policy="ignore"
 crm(live)configure# rsc_defaults resource-stickiness="100"
 crm(live)configure# commit
 crm(live)configure# quit

4.4 Adding NFS cluster resource

1. Create mount folders on both nodes (sles-ha and sles-ha-1).

 sles-ha:$ mkdir /nfs
 sles-ha:$ mkdir /nfs/part2

 sles-ha-1:$ mkdir /nfs
 sles-ha-1:$ mkdir /nfs/part2

 The virtual disk mentioned in this section is the second virtual disk to be created. The details mentioned in this section are specific to the /dev/sdb1 virtual disk created and formatted in the previous sections. The /dev/disk/by-wwn-<id> is the qualifier for the second drive instead of /dev/sdb1.
This drive being created is not a Quorum Drive.
Ensure that you do not manually mount this ext3 partition. Mounting the partition manually corrupts the file system.

2. Add the following contents to `/etc/exports` on both `sles-ha` and `sles-ha-1` using a text file editor program such as vi.

```
sles-ha:~ # vi /etc/exports
/nfs/part2 *(fsid=1,rw,no_root_squash,mountpoint)
```

Ensure that there is no a space between `*` and `(` in the `/etc/exports` file.

3. Configure the NFSSERVER to be started or stopped by the cluster.

```
sles-ha:~ #crm config

crm(live)configure# primitive lsb_nfsserver lsb:nfsserver op monitor interval="15s" timeout="15s"
```

4. Configure a file system service

```
crm(live)configure# primitive p_fs_part2 ocf:heartbeat:Filesystem params device=/dev/disk/by-id/wwn-<id of data volume>-part1 directory=/nfs/part2 fstype=ext3 op monitor interval="10s"
```

5. Configure a Virtual IP address. The IP address is different from the IP address is binded to the Ethernet ports. This IP address moves between both the nodes. Specify the netmask according to your network. For the current example, use 192.168.1.100 as floating IP address for NFS Mount available to be mounted.

```
crm(live)configure# primitive p_ip_nfs ocf:heartbeat:IPaddr2 params ip=192.168.1.100 cidr_netmask=24 op monitor interval="30s"
```

6. Create a group and add the resources part of the same group. Ensure that `stonith_sbd` is not part of this group.

```
crm(live)configure# group g_nfs p_fs_part2

crm(live)configure# edit g_nfs

A text editor is displayed. Modify the group `g_nfs` as mentioned below:

```
group g_nfs p_ip_nfs p_fs_part2 lsb_nfsserver
```

```
crm(live)configure# commit

crm(live)configure# quit
```

7. Verify that the resources are added and the parameters are set to the value as specified below:
sles-ha-2:~ # crm configure show
node sles-ha
node sles-ha-1
primitive lsb_nfsserver lsb:nfsserver \ 
  op monitor interval="15s" timeout="15s" \ 
  meta target-role="Started"
primitive p_fs_part2 ocf:heartbeat:Filesystem \ 
  params device="/dev/disk/by-wwn-0x6b8ca3a0edba01a96364e5ea4dbf2-part1" directory="/nfs/part2" ftype="ext3" \ 
  op monitor interval="10s" \ 
  meta target-role="Started"
primitive p_ip_nfs ocf:heartbeat:IPaddr2 \ 
  params ip="192.168.1.100" cidr_netmask="24" \ 
  op monitor interval="30s"
primitive stonith_sbd stonith:external/sbd \ 
  params sbd_device="/dev/disk/by-wwn-0x6b8ca3a0edba01a96364e5ea4dbf2-part1"

    group g_nfs p_ip_nfs p_fs_part2 lsb_nfsserver \ 
    meta target-role="Started"
    property $id="cib-bootstrap-options" \ 
    no-quorum-policy="ignore" \ 
    placement-strategy="balanced" \ 
    dc-version="1.1.9-2db99f1" \ 
    cluster-infrastructure="classic openais (with plugin)" \ 
    expected-quorum-votes="2" \ 
    stonith-timeout="70s" \ 
    default-action-timeout="120s" \ 
    default-resource-stickiness="100" \ 
    last-lrm-refresh="1393026384"
    rsc_defaults $id="rsc-options" \
resource-stickiness="100" \
migration-threshold="3"

    op_defaults $id="op-options" \
timeout="600" \
record-pending="false"

8. Verify that the values of the cluster are set as displayed in following images. Run the following command to open the Cluster configuration GUI:

sles-ha-1:~ # crm_gui

9. Specify hacluster as the default user name and linux as the default password for the cluster.

Figure 6 CRM configuration
10. Verify that the cluster is configured as expected, by running the following command.

    sles-ha-1:# crm_mon
    Last change: Mon Feb 24 11:23:55 2014 by root via cibadmin on sles-ha
    Stack: classic openais (with plugin)
    Current DC: sles-ha - partition with quorum
    Version: 1.1.9-2db99f1
    2 Nodes configured, 2 expected votes
    4 Resources configured.
Online: [ sles-ha sles-ha-1 ]

Resource Group: g_nfs

p_ip_nfs (ocf::heartbeat:IPaddr2): Started sles-ha

p_fs_part2 (ocf::heartbeat:Filesystem): Started sles-ha

lsb_nfsserver (lsb:nfsserver): Started sles-ha

stonith_sbd (stonith:external/sbd): Started sles-ha-1

4.5 Mounting NFS on a remote client

On the remote system, run the following command to mount the exported NFS partition.

```
mount -t nfs 192.168.1.100:/nfs/part2 /srv/nfs/part2
```

In the example in this document a workstation is used to mount the NFS partition and the IO mounts locally management station.
References

- LSI Syncro CS SLES Cluster Setup Reference Guide