Real Time Storage Configuration Using PERC9 on Dell 13th Generation PowerEdge Servers

This Dell technical white paper provides information about PERC9 real time storage configuration using supported iDRAC8 interfaces.

Dell Engineering
January 2015

Authors

Texas Roemer

Punita Punita

Anish Kurunthil

A Dell Technical White Paper
Dell 13th generation of PowerEdge servers feature the integrated Dell Remote Access Controller with Lifecycle Controller (iDRAC8) along with PowerEdge RAID Controller (PERC9). This new combination provides real time configuration for key storage operations which allows an agent-free, no-reboot method for configuring storage. This white paper provides a general overview of real time storage configuration with customer facing use case examples using supported iDRAC8 interfaces (iDRAC GUI, RACADM and WSMAN).

1 Introduction
 1.1 Existing Solution
 1.2 Real-Time Configuration
 1.3 RAID Commands Supported by Real Time
 1.4 RAID Command Not Supported by Real Time
 1.5 Prerequisites

2 Use Cases
 2.1 Use WSMAN to Assign Dedicated HotSpare in Real Time
 2.2 Use RACADM to Create a VirtualDisk in Real Time
 2.3 Use iDRAC GUI to Delete One VirtualDisk and Assign Dedicated HotSpare to Existing VirtualDisk
Executive Summary

Dell 13th generation of PowerEdge servers feature the integrated Dell Remote Access Controller with Lifecycle Controller (iDRAC8) along with PowerEdge RAID Controller (PERC9). This new combination provides real time configuration for key storage operations which allows an agent-free, no-reboot method for configuring storage. This white paper provides a general overview of real time storage configuration with customer facing use case examples using supported iDRAC8 interfaces (iDRAC GUI, RACADM and WSMAN).
1 Introduction

Storage configuration typically requires either an OS agent (Open Management Storage Services, part of the OpenManage Server Assistant or OMSA) or a server reboot into the controller’s firmware interface. In today’s business environment, neither approach is convenient for datacenter operations. OS agents require accessing the OS and potentially interfering with workloads, tenants, or other owners of the platform. Rebooting the server introduces downtime to the platform. To avoid these problems, iDRAC8 now supports real-time configuration for storage operations.

1.1 Existing Solution

Prior to PowerEdge 12th generation platforms, storage configurations using iDRAC interfaces required a reboot to apply the configuration changes. This not only took more time to apply the configuration but also required shutting down applications running on the host. With real-time configuration, storage configuration can be applied without a host reboot, saving time and without affecting workloads running on the host.

1.2 Real-Time Configuration

In Dell PowerEdge 13th generation platforms, iDRAC8 supports PERC9 which will allow administrators to perform real-time storage configuration through the sideband interface on the management controller. The sideband interface allows storage configuration in two steps. In the first step, configuration/attribute is set (pending operation) and in the second step a job is created to apply the pending configuration/attributes. With 13th generation platforms and PERC9, administrators can select the real-time update option while creating a job, enabling configuration changes without host reboot. This is unlike PowerEdge 12th generation servers which require a reboot to apply the configuration.

Administrators may prefer to set multiple configurations (stacked operation) and then create one common job for the entire configuration. For example, a single target config job can be created to run in real time to apply multiple storage configurations - reset the controller, create a VD, and assign a dedicated hotspare.

The use case section below details a number of potential real-time storage configuration scenarios using iDRAC8 interfaces (WSMAN, RACADM and GUI).

1.3 RAID Commands Supported by Real Time
- Create Virtual Disk
- Delete Virtual Disk
- Reset Controller Configuration
- Clear Foreign Configuration
- Import Foreign Configuration
- Initialize Virtual Disk (Fast and Full)
- Consistency Check for Virtual Disk
- Start/Stop Patrol Read
- Assign/Unassign Global and Dedicated Hotspares
- Blink/Unblink Physical Disk/Virtual Disk
- Local Key Management (Create Security Key, Change Security Key, Delete Security Key)
- Controller Attributes
- Virtual Disk Attributes
- Convert drive to RAID (Note: Only supported on iDRAC 8.2.10.10 or newer)
- Convert drive to NonRAID (Note: Only supported on iDRAC 8.2.10.10 or newer)

For detailed information on each RAID command, refer to the iDRAC homepage and then search for the iDRAC interface you want to use to perform the RAID action.

Link to iDRAC homepage:
http://www.delltechcenter.com/iDRAC

1.4 RAID Command Not Supported by Real Time

- Encrypt(lock)virtual disks

1.5 Prerequisites

Make sure that the following prerequisites are met before performing a real time configuration:

- 13th generation of Dell PowerEdge server with any iDRAC8 license installed.
• Host must be powered on and in an idle state. It should be out of POST, F2 or USC to run real time configuration.

• Controller must be PERC9 with 9.1 or newer firmware to support real time configuration. If needed, you can check to see if your controller supports real time capability using any iDRAC interface (iDRAC GUI, RACADM or WSMAN). Look for parameter “Realtime Capability” and if you see a value of “capable” or “1”, real time configuration is supported.

Example: To verify real time configuration support by the controller using RACADM, I look for the parameter “Realtime Capability” which should show a value of “Capable”.

```
racadm> storage get controllers -o

RAID.Integrated.1-1
Status = Ok
DeviceDescription = Integrated RAID Controller 1
RollupStatus = Ok
Name = PERC H330 Mini (Embedded)
FirmwareVersion = 25.2.1.0037
DriverVersion = Information Not Available
RebuildRate = 1
BgiRate = 2
CheckConsistencyRate = 3
ReconstructRate = 4
PatrolReadRate = 30
PatrolReadMode = Manual
PatrolReadState = Stopped
CheckConsistencyMode = Stop On Error
LoadBalanceSetting = Auto
CopybackMode = ON with SMART
PreservedCache = Not Present
CacheMemorySize = 0 MB
PersistHotspare = Disabled
SpindownUnconfiguredDrives = Disabled
```
SpindownHotspare = Disabled
TimeintervalforSpindown = 30 (Minutes)
SecurityStatus = Encryption Capable
EncryptionMode = None
SasAddress = 0x5C81F660C029B200
PciDeviceId = 0x5f
PciSubDeviceId = 0x1f4b
PciVendorId = 0x1000
PciSubvendorId = 0x1028
PciBus = 0x3
PciDevice = 0x0
PciFunction = 0x0
BusWidth = Unknown
SlotLength = Unknown
SlotType = Unknown
MaxCapableSpeed = 12.0 Gb/s
LearnMode = Not supported
T10PICapability = Capable
SupportRAID10UnevenSpans = Supported
SupportEnhancedAutoForeignImport = Supported
EnhancedAutoImportForeignConfig = Enabled
SupportControllerBootMode = Supported
ControllerBootMode = Continue Boot On Error
RealtimeConfigurationCapability = Capable
CurrentControllerMode = RAID
2 Use Cases

This section addresses use case examples that a customer administrator might face in their work environment, using different supported iDRAC interfaces. For each use case listed, it will utilize one of the supported iDRAC interfaces but you can use any one of the supported iDRAC interfaces to complete the use case.

2.1 Use WSMAN to Assign Dedicated HotSpare in Real Time

Use Case: My server configuration is: PowerEdge R630 with PERC H730 Mini, RAID 1 already created using drives 0 and 1 with Windows operating system installed. I want to assign a dedicated hot spare to the RAID 1 but I don’t want to bring down the OS or reboot the server since it is currently running as a DHCP / DNS server.

Solution: Use WSMAN interface to assign a dedicated hot spare in real-time without rebooting the server.

1. Validate that the controller supports real time configuration by running an enum on DCIM_ControllerView. - Verify a value of “1” for the property RealtimeCapability, which signifies real time support.

Example of WSMAN Command and Output:

```
```

DCIM_ControllerView

- Bus = 2
- CacheSizeInMB = 1024
- CacheContainsCapability = 0
- ControllerFirmwareVersion = 25.2.1.0037
- Device = 0
- DeviceCardDataBusWidth = Unknown
- DeviceCardManufacturer = DELL
- DeviceCardSlotLength = 2
DeviceCardSlotType = Unknown
DeviceDescription = Integrated RAID Controller 1
DriverVersion = 6.600.21.08
EncryptionCapability = 1
EncryptionMode = 0
FQDD = RAID.Integrated.1-1
Function = 0
InstanceID = RAID.Integrated.1-1
KeyID = null
LastSystemInventoryTime = 20140917175359.000000+000
LastUpdateTime = 20140917185101.000000+000
MaxAvailablePCILinkSpeed = Generation 3
MaxPossiblePCILinkSpeed = Generation 3
PCIDeviceID = 5D
PCISlot = 1
PCISubDeviceID = 1F49
PCISubVendorID = 1028
PCIVendorID = 1000
PatrolReadState = 1
PrimaryStatus = 1
ProductName = PERC H730 Mini
RealtimeCapability = 1
RollupStatus = 1
SASAddress = 5C81F660DEE70500
SecurityStatus = 1
SlicedVDCapability = 1
SupportControllerBootMode = 1
SupportEnhancedAutoForeignImport = 1
SupportRAID10UnevenSpans = 1
T10PICapability = 1

2. Run an enum on DCIM_VirtualDiskView class to see the RAID 1 already created. You will see RAIDTypes = 4 (RAID 1) and PhysicalDiskIDs show disk 0 and 1 which was used to create the VD.

Example of WSMAN command and output:

```bash
```

DCIM_VirtualDiskView

- BlockSizeInBytes = 512
- BusProtocol = 5
- Cache = 0
- DeviceDescription = Virtual Disk 0 on Integrated RAID Controller 1
- DiskCachePolicy = 256
- FQDD = Disk.Virtual.0:RAID.Integrated.1-1
- InstanceID = Disk.Virtual.0:RAID.Integrated.1-1
- LastSystemInventoryTime = 20140917175110.000000+000
- LastUpdateTime = 20140917185101.000000+000
- LockStatus = 0
- MediaType = 2
- Name = RAID ONE
- ObjectStatus = 0
- OperationName = None
- OperationPercentComplete = 0
- PendingOperations = 0
- PrimaryStatus = 1
- RAIDStatus = 2
- RAIDTypes = 4
- ReadCachePolicy = 32
- RemainingRedundancy = 1
RollupStatus = 1
SizeInBytes = 11945377920
SpanDepth = 1
SpanLength = 2
StartingLBAinBlocks = 0
StripeSize = 128
T10PIStatus = 0
VirtualDiskTargetID = 0
WriteCachePolicy = 2

3. Run an enum on DCIM_PhysicalDiskView class to see which drives are installed in the system. For drives 0 and 1, you will notice RAIDStatus = 2 which means drives are online and being used for the VD. For disk 2, RAIDStatus = 1 which means drive is in ready state but not being used. This is the drive that we will be using to assign dedicated hot spare.

Example of WSMAN Command and Output:

```
```

DCIM_PhysicalDiskView

- BlockSizeInBytes = 512
- BusProtocol = 5
- Connector = 0
- DeviceDescription = Disk 0 in Backplane 1 of Integrated RAID Controller 1
- DriveFormFactor = 1
- FQDD = Disk.Bay.0:Enclosure.Internal.0-1:RAID.Integrated.1-1
- FreeSizeInBytes = 0
- HotSpareStatus = 0
- InstanceID = Disk.Bay.0:Enclosure.Internal.0-1:RAID.Integrated.1-1
- LastSystemInventoryTime = 20140917175110.000000+000
- LastUpdateTime = 20140917185101.000000+000
- Manufacturer = ATA
ManufacturingDay = 0
ManufacturingWeek = 0
ManufacturingYear = 0
MaxCapableSpeed = 3
MediaType = 1
Model = SDLENE7B 120G 1H
OperationName = None
OperationPercentComplete = 0
PPID = MY0HM1PM771114340M22A00
PredictiveFailureState = 0
PrimaryStatus = 1
RaidStatus = 2
RemainingRatedWriteEndurance = 255
Revision = 1NM2
RollupStatus = 1
SASAddress = 500056B31234ABC0
SecurityState = 0
SerialNumber = FD000CN8
SizeInBytes = 119453777920
Slot = 0
SupportedEncryptionTypes = None
T10PICapability = 0
UsedSizeInBytes = 119453777920

DCIM_PhysicalDiskView
BlockSizeInBytes = 512
BusProtocol = 5
Connector = 0
DeviceDescription = Disk 1 in Backplane 1 of Integrated RAID Controller 1
DriveFormFactor = 1
FQDD = Disk.Bay.1:Enclosure.Internal.0-1:RAID.Integrated.1-1

FreeSizeInBytes = 0

HotSpareStatus = 0

InstanceId = Disk.Bay.1:Enclosure.Internal.0-1:RAID.Integrated.1-1

LastSystemInventoryTime = 20140917175110.000000+000

LastUpdateTime = 20140917185101.000000+000

Manufacturer = ATA

ManufacturingDay = 0

ManufacturingWeek = 0

ManufacturingYear = 0

MaxCapableSpeed = 3

MediaType = 1

Model = SDLENE7B 120G 1H

OperationName = None

OperationPercentComplete = 0

PPID = MY0HM1PM771114340M4CA00

PredictiveFailureState = 0

PrimaryStatus = 1

RaidStatus = 2

RemainingRatedWriteEndurance = 255

Revision = 1NM2

RollupStatus = 1

SASAddress = 500056B31234ABC1

SecurityState = 0

SerialNumber = FD000CQ2

SizeInBytes = 119453777920

Slot = 1

SupportedEncryptionTypes = None

T10PICapability = 0
UsedSizeInBytes = 119453777920

DCIM_PhysicalDiskView

BlockSizeInBytes = 512
BusProtocol = 5
Connector = 0
DeviceDescription = Disk 2 in Backplane 1 of Integrated RAID Controller 1
DriveFormFactor = 1
FQDD = Disk.Bay.2:Enclosure.Internal.0-1:RAID.Integrated.1-1
FreeSizeInBytes = 119453777920
HotSpareStatus = 0
InstanceID = Disk.Bay.2:Enclosure.Internal.0-1:RAID.Integrated.1-1
LastSystemInventoryTime = 20140917175110.000000+000
LastUpdateTime = 20140917185101.000000+000
Manufacturer = ATA
ManufacturingDay = 0
ManufacturingWeek = 0
ManufacturingYear = 0
MaxCapableSpeed = 3
MediaType = 1
Model = SDLENE7B 120G 1H
OperationName = None
OperationPercentComplete = 0
PPID = MY0HM1PM771114340M4MA00
PredictiveFailureState = 0
PrimaryStatus = 1
RaidStatus = 1
RemainingRatedWriteEndurance = 255
Revision = 1NM2
RollupStatus = 1
4. To assign a drive as a dedicated hotspare, use AssignSpare() method on DCIM_RAIDService. This method requires two parameters (Target and VirtualDiskArray) in an xml file which this method will call. For Target, you want to pass in the drive InstanceID from DCIM_PhysicalDiskView that you want to assign for the dedicated hot spare. For VirtualDiskArray, pass in the VD InstanceID from DCIM_VirtualDiskView.

 Example of the xml file:

   ```
   <p:VirtualDiskArray>DISK.Virtual.0:RAID.Integrated.1-1</p:VirtualDiskArray>
   </p:AssignSpare_INPUT>
   ``

   **Example of WSMAN command and output:**

   ```
 ``

 AssignSpare_OUTPUT

 RebootRequired = OPTIONAL

 ReturnValue = 0

 NOTE: An OUTPUT return of “RebootRequired=OPTIONAL” means a job can be staged or created in real-time.

5. To apply the configuration change in real-time, create a target config job using the CreateTargetedConfigJob method. For this method, we need to pass in three parameters: Target,
ScheduledStartTime and Realtime. For Target, you need to pass in the controller InstanceID from DCIM_ControllerView class. For ScheduledStartTime, we are going to pass in “TIME_NOW” for the value since we want this configuration change to be applied immediately. For Realtime, we are going to pass in “1” for a value which means the server will not reboot and perform the configuration changes in real time.

Example of WSMAN Command and Output:

```
```

CreateTargetedConfigJob_OUTPUT

```
Job

EndpointReference

  Address = http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

ReferenceParameters


LifecycleJob

  SelectorSet

    Selector: InstanceID = JID_109846482878, __cimnamespace = root/dcim

  ReturnValue = 4096
```

6. Job ID should be returned once you invoke CreateTargetedConfigJob method. Take this job ID and execute get command on DCIM_LifeCycleJob class. You should already see a job status of “Running”. Continue to query this job status until you see a “Completed” status (this shouldn’t take more than two minutes to show Completed job status).

Example of WSMAN Command and Output:

```
```

DCIM_LifecycleJob

```
ElapsedTimeSinceCompletion = null

_InstanceID = JID_109846482878

JobStartime = TIME_NOW

JobStatus = Running
```
JobUntilTime = TIME_NA
Message = Job in progress.
MessageArguments = NA
MessageID = PR20
Name = Config:RAID:RAID.Integrated.1-1
PercentComplete = 50

DCIM_LifecycleJob
ElapsedTimeSinceCompletion = 0
InstanceID = JID_109846482878
JobStartTime = TIME_NOW
JobStatus = Completed
JobUntilTime = TIME_NA
Message = Job completed successfully.
MessageArguments = NA
MessageID = PR19
Name = Config:RAID:RAID.Integrated.1-1
PercentComplete = 100

7. Once the job is marked completed, run an enum on DCIM_VirtualDiskView class and verify PhysicalDiskIDs property. You will now see disk 2 listed along with disk 0 and 1. You can also run an enum on DCIM_PhysicalDiskView class and HotSpareStatus property will now have a value of ”1” which means dedicated for disk 2.

Example of WSMAN Command and Output:

DCIM_VirtualDiskView
BlockSizeInBytes = 512
BusProtocol = 5
CacheCade = 0
DeviceDescription = Virtual Disk 0 on Integrated RAID Controller 1
DiskCachePolicy = 256
FQDD = Disk.Virtual.0:RAID.Integrated.1-1
InstanceId = Disk.Virtual.0:RAID.Integrated.1-1
LastSystemInventoryTime = 20140917201742.000000+000
LastUpdateTime = 20140917185101.000000+000
LockStatus = 0
MediaType = 2
Name = RAID ONE
ObjectStatus = 0
OperationName = None
OperationPercentComplete = 0
PendingOperations = 0
PrimaryStatus = 1
RAIDStatus = 2
RAIDTypes = 4
ReadCachePolicy = 32
RemainingRedundancy = 1
RollupStatus = 1
SizeInBytes = 119453777920
SpanDepth = 1
SpanLength = 2
StartingLBAinBlocks = 0
StripeSize = 128
T10PIStatus = 0
VirtualDiskTargetID = 0
WriteCachePolicy = 2

```
```

DCIM_PhysicalDiskView

```
BlockSizeInBytes = 512
BusProtocol = 5
Connector = 0
DeviceDescription = Disk 0 in Backplane 1 of Integrated RAID Controller 1
DriveFormFactor = 1
FQDD = Disk.Bay.0:Enclosure.Internal.0-1:RAID.Integrated.1-1
FreeSizeInBytes = 0
HotSpareStatus = 1
InstanceID = Disk.Bay.2:Enclosure.Internal.0-1:RAID.Integrated.1-1
LastSystemInventoryTime = 20140917175110.000000+000
LastUpdateTime = 20140917185101.000000+000
Manufacturer = ATA
ManufacturingDay = 0
ManufacturingWeek = 0
ManufacturingYear = 0
MaxCapableSpeed = 3
MediaType = 1
Model = SDLENE7B 120G 1H
OperationName = None
OperationPercentComplete = 0
PPID = MY0HM1PM771114340M22A00
PredictiveFailureState = 0
PrimaryStatus = 1
RaidStatus = 1
RemainingRatedWriteEndurance = 255
Revision = 1NM2
```
RollupStatus = 1
SASAddress = 500056B31234ABC0
SecurityState = 0
SerialNumber = FD000CN8
SizeInBytes = 119453777920
Slot = 0
SupportedEncryptionTypes = None
T10PICapability = 0
UsedSizeInBytes = 119453777920

8. Finally, check the configuration results by invoking GetConfigResults method on the target config job. You should see a “CHANGE” entry along with NewValue “Dedicated” and “Success” status.

Example of WSMAN Command and Output:

```
```

GetConfigResults_OUTPUT

```
ConfigResults = <ConfigResults><JobID> JID_109846482878</JobID><FQDD>RAID.Integrated.1-1</FQDD><Operation name="CHANGE"><DisplayValue>Solid State Disk 0:1:2</DisplayValue><Name>Solid State Disk 0:1:2</Name><Detail><OldValue>No</OldValue><NewValue>Dedicated</NewValue></Detail><Status>Success</Status><ErrorCode>0</ErrorCode></Operation></ConfigResults>
```

ReturnValue = 0

2.2 Use RACADM to Create a VirtualDisk in Real Time

Use Case: My server configuration is: PowerEdge R630 with PERC H730 Mini, RAID 1 already created using drives 0 and 1 with Windows operating system installed. RAID 1 also has a dedicated hot spare assigned using disk 2. My issue is I want to back up data in the OS but I don’t want to use the drives with the operating system and I can’t shut down the server since its being used as an NTP server.

Solution: To solve this issue, hot plug two drives and create a RAID 0 in real-time. Once the creation of RAID 0 is complete, it will automatically show up in the OS and can then be initialized and formatted. The following example, uses the RACADM interface to create a RAID 0 in real-time without rebooting the server.
1. Verify disk management in the operating system, which shows that only one disk (disk 0) exists which contains the OS.

 OS Screenshot Example:

 ![Disk Management Screenshot](image)

2. Validate the controller supports real time configuration. Run “racadm storage get controllers –o” and verify RealtimeConfigurationCapability = Capable.

 Example of RACADM Command and Output:

   ```
   racadm>>racadm storage get controllers -o
   ```

 racadm storage get controllers -o

 RAID.Integrated.1-1

 Status = Ok

 DeviceDescription = Integrated RAID Controller 1
RollupStatus = Ok
Name = PERC H730 Mini (Embedded)
FirmwareVersion = 25.2.1.0037
DriverVersion = 6.600.21.08
RebuildRate = 1
BgiRate = 4
CheckConsistencyRate = 2
ReconstructRate = 3
PatrolReadRate = 30
PatrolReadMode = Manual
PatrolReadState = Stopped
CheckConsistencyMode = Stop On Error
LoadBalanceSetting = Auto
CopybackMode = ON with SMART
PreservedCache = Not Present
CacheMemorySize = 1024 MB
PersistHotspare = Disabled
SpindownUnconfiguredDrives = Disabled
SpindownHotspare = Disabled
TimeintervalforSpindown = 30 (Minutes)
SecurityStatus = Encryption Capable
EncryptionMode = None
SasAddress = 0x5C81F660DEE70500
PciDeviceId = 0x5d
PciSubdevicedId = 0x1f49
PciVendorId = 0x1000
PciSubvendorId = 0x1028
PciBus = 0x0
PciDevice = 0x0
PciFunction = 0x0
BusWidth = Unknown
SlotLength = Unknown
SlotType = Unknown
MaxCapableSpeed = 12.0 Gb/s
LearnMode = Not supported
T10PICapability = Capable
SupportRAID10UnevenSpans = Supported
SupportEnhancedAutoForeignImport = Supported
EnhancedAutoImportForeignConfig = Disabled
SupportControllerBootMode = Supported
ControllerBootMode = Continue Boot On Error
RealtimeConfigurationCapability = Capable
CurrentControllerMode = RAID

3. Run "racadm storage get vdisks -o" which should return RAID 1 that already exists.

Example RACADM Command and Output:

```
racadm>>storage get vdisks -o
```

`racadm storage get vdisks -o`

```
Disk.Virtual.0:RAID.Integrated.1-1
Status                     = Ok
DeviceDescription          = Virtual Disk 0 on Integrated RAID Controller 1
Name                       = RAID ONE
RollupStatus               = Ok
State                      = Online
OperationalState           = Not applicable
Layout                     = Raid-1
Size                       = 111.25 GB
SpanDepth                  = 1
```
AvailableProtocols = SATA
MediaType = SSD
ReadPolicy = Read Ahead
WritePolicy = Write Back
StripeSize = 64K
DiskCachePolicy = Default
BadBlocksFound = NO
Secured = NO
RemainingRedundancy = 1
EnhancedCache = Not Applicable
T10PIStatus = Disabled
BlockSizeInBytes = 512

4. Hot plug two drives into drive bays 8 and 9. Now run “racadm storage get pdisks” which will return these drives along with the other three drives that were used to create RAID 1 with a dedicated hot spare. Let’s now verify the drives are in “Ready” state. Take one of the drive FQDDs and run “racadm storage get pdisks: Disk.Bay.8.Enclosure.Internal.0-1:RAID.Integrated.1-1 –p State” which should return “State = Ready”. Make sure to repeat this command for the other drive that was hot plugged which should also return “State = Ready”.

Example of RACADM command and output:

racadm>>racadm storage get pdisks

racadm storage get pdisks
Disk.Bay.0:Enclosure.Internal.0-1:RAID.Integrated.1-1
Disk.Bay.1:Enclosure.Internal.0-1:RAID.Integrated.1-1
Disk.Bay.2:Enclosure.Internal.0-1:RAID.Integrated.1-1
Disk.Bay.8:Enclosure.Internal.0-1:RAID.Integrated.1-1
Disk.Bay.9:Enclosure.Internal.0-1:RAID.Integrated.1-1

racadm>>racadm storage get pdisks:Disk.Bay.8:Enclosure.Internal.0-1:RAID.Integrated.1-1 -p State

racadm storage get pdisks:Disk.Bay.8:Enclosure.Internal.0-1:RAID.Integrated.1-1 -p State
Disk.Bay.8:Enclosure.Internal.0-1:RAID.Integrated.1-1
State = Ready

```
```


Disk.Bay.9:Enclosure.Internal.0-1:RAID.Integrated.1-1

State = Ready

5. Using the two drive FQDDs that were hot plugged, create a RAID 0 by running "racadm storage createvd:RAID.Integrated.1-1 -rl r0 -pdkey:Disk.Bay.8:Enclosure.Internal.0-1:RAID.Integrated.1-1,Disk.Bay.9:Enclosure.Internal.0-1:RAID.Integrated.1-1".

RACADM Example Command and Output:

```
```


STOR094 : The storage configuration operation is successfully completed

and the change is in pending state.

To apply the configuration operation immediately, create a configuration job using the --realtime option.

To apply the configuration after restarting the server, create a configuration job using the -r option.

To create the necessary real-time and restart jobs, run the jobqueue command.

For more information about jobqueue command, run the `racadm help jobqueue` command.

6. In the output, you will notice it returns using "--realtime" or "-r" which means the configuration job can be performed in real-time or a staged job creation. To run this configuration job in real-time, we will be using "--realtime". Also we want this configuration job to run immediately so we will be using "TIME_NOW" for scheduled start time (-s). Run "racadm jobqueue create RAID.Integrated.1-1 -s TIME_NOW --realtime" which will create a configuration job for the set pending VD. Take this job ID and query the status which you should see as "Running". Continue to query the job ID until you see "Completed" status(this should take more than two minutes to show completed status).

RACADM Example Command and Output:

```
```
```plaintext
racadm> racadm jobqueue create RAID.Integrated.1-1 -s TIME_NOW --realtime

racadm jobqueue create RAID.Integrated.1-1 -s TIME_NOW --realtime

RAC1024: Successfully scheduled a job.

Verify the job status using 'racadm jobqueue view -i JID_xxxxx' command.

Commit JID = JID_110005275595

```
8. Run "racadm storage get vdisks –o" which should now return RAID 1 along with newly created RAID 0.

RACADM Example Command and Output:

```bash
cracadm storage get vdisks -o
```

```
racadm storage get vdisks -o
Disk.Virtual.0:RAID.Integrated.1-1
  Status = Ok
  DeviceDescription = Virtual Disk 0 on Integrated RAID Controller 1
  Name = RAID ONE
  RollupStatus = Ok
  State = Online
  OperationalState = Not applicable
  Layout = Raid-1
  Size = 111.25 GB
  SpanDepth = 1
  AvailableProtocols = SATA
  MediaType = SSD
  ReadPolicy = Read Ahead
  WritePolicy = Write Back
  StripeSize = 64K
  DiskCachePolicy = Default
  BadBlocksFound = NO
  Secured = NO
  RemainingRedundancy = 1
  EnhancedCache = Not Applicable
  T10PIStatus = Disabled
  BlockSizeInBytes = 512
Disk.Virtual.1:RAID.Integrated.1-1
```
Status = Ok
DeviceDescription = Virtual Disk 1 on Integrated RAID Controller 1
Name = Virtual Disk 1
RollupStatus = Ok
State = Online
OperationalState = Not applicable
Layout = Raid-0
Size = 222.50 GB
SpanDepth = 1
AvailableProtocols = SATA
MediaType = SSD
ReadPolicy = No Read Ahead
WritePolicy = Write Through
StripeSize = 64K
DiskCachePolicy = Enabled
BadBlocksFound = NO
Secured = NO
RemainingRedundancy = 0
EnhancedCache = Not Applicable
T10PIStatus = Disabled
BlockSizeInBytes = 512

9. Finally, check disk management which should now display the new disk (disk 2) that was just created.

Screenshot Example:
2.3 Use iDRAC GUI to Delete One VirtualDisk and Assign Dedicated HotSpare to Existing VirtualDisk

Use Case: My server configuration is: PowerEdge R630 with PERC H730 Mini with two virtual disks already created. RAID 1 using drives 0 and 1 with Windows operating system installed. RAID 0 using drives 2, 8 and 9 which are being used to store data. I want to assign a dedicated hot spare to RAID 1 but I don’t have any extra available drives. I no longer need the RAID 0 for storing data so I can delete it, then use one of the drives to assign as a dedicated hot spare for RAID 1. The issue is I can’t power down the server because the OS is running HyperV and multiple virtual machines are running and being used.

Solution: To solve this issue, use the iDRAC GUI interface to delete RAID 0 VD and assign a dedicated hot spare in real-time without a host reboot.

1. Verify disk management in the operating system, disk 0 is the VD with OS installed, disk 2 is the disk used for storing data.

 OS Screenshot Example:
2. Launch the iDRAC GUI using any browser, go to Storage / Virtual Disks / Properties Tab which should show both RAID 0 and RAID 1.

iDRAC GUI Example:
3. Go to Storage / Virtual Disks / Manage Tab and for RAID 0, from the “Virtual Disk Actions” drop down box, select “Delete” which will prompt you with a system alert pop-up message warning you that this will delete the VD. Select “Ok” to continue (image 1). Next select “Add to Pending Operations” from the “Apply Operations Mode” drop down box and click the “Apply” button (image 2). You will be prompted with an information pop-up message stating this will be added to pending operations. Select the “Pending Operations” button (image 3). It will now display another information pop-up message showing the pending operations that have been set so far (Delete Virtual Disk); select “Close” button (image 4).

iDRAC GUI Examples(images 1 through 4):
4. You should still be on the Storage / Virtual Disks / Manage Tab page and will notice that only RAID 1 is listed. From the “Virtual Disks Actions” drop down box, select “Assign disk 2” under manage dedicated hot spares. Select “Apply Now” from “Apply Operation Mode” drop down box and select the “Apply” button. You will be prompted with an information pop-up message stating that it will also apply other pending operations (delete virtual disk that we set pending earlier). Select “Create Job” button (image 1). After a few seconds, you will now see a success pop-up message, then select the “Job Queue” button which will take you to the job queue tab page (image 2). You should see a RAID configuration job created along with a job status of “Running” (image 3). Stay on this page until you see a job status of “Completed” which should take no longer than two minutes (image 4).

iDRAC GUI Examples(images 1 through 4):
5. Go to Storage / Virtual Disks / Properties Tab and for RAID 1, expand the VD to see detailed information (image 1). Select “View Physical Disks” which will take you to Storage / Physical Disks / Properties tab. You should see disk 0 and 1 as “Online” and disk 2 as “Ready” and Hot Spare as “Dedicated” (image 2).
6. Validate the Lifecycle logs for the configuration changes just applied. Go to Logs / Lifecycle Log which should show entries for drives ready, delete virtual disk, assign dedicated hot spare and job ID completed successfully.

iDRAC GUI Example:
7. The final step is to validate in the OS that you no longer see disk 2 listed in disk management.

OS Screenshot Example: