Deploying FCoE (FIP Snooping) on Dell PowerConnect 10G Switches: M8024-k, 8024 and 8024F

Dell Networking Solutions Engineering
March 2012
Revisions

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2012</td>
<td>Rev. 2.0</td>
<td>Kevin Locklear</td>
</tr>
</tbody>
</table>

Copyright © 2012 – 2017 Dell Inc. or its subsidiaries. All Rights Reserved.
Except as stated below, no part of this document may be reproduced, distributed or transmitted in any form or by any means, without express permission of Dell.
You may distribute this document within your company or organization only, without alteration of its contents.
Performance of network reference architectures discussed in this document may vary with differing deployment conditions, network loads, and the like. Third party products may be included in reference architectures for the convenience of the reader. Inclusion of such third party products does not necessarily constitute Dell’s recommendation of those products. Please consult your Dell representative for additional information.

Trademarks used in this text: Dell™, the Dell logo, Dell Boomi™, PowerEdge™, PowerVault™, PowerConnect™, OpenManage™, EqualLogic™, Compellent™, KACE™, FlexAddress™, Force10™ and Vostro™ are trademarks of Dell Inc. EMC VNX®, and EMC Unisphere® are registered trademarks of Dell. Other Dell trademarks may be used in this document. Cisco Nexus®, Cisco MDS®, Cisco NX-OS®, and other Cisco Catalyst® are registered trademarks of Cisco System Inc. Intel®, Pentium®, Xeon®, Core® and Celeron® are registered trademarks of Intel Corporation in the U.S. and other countries. AMD® is a registered trademark and AMD Opteron™, AMD Phenom™ and AMD Sempron™ are trademarks of Advanced Micro Devices, Inc. Microsoft®, Windows®, Windows Server®, Internet Explorer®, MS-DOS®, Windows Vista® and Active Directory® are either trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries. Red Hat® and Red Hat® Enterprise Linux® are registered trademarks of Red Hat, Inc. in the United States and/or other countries. Novell® and SUSE® are registered trademarks of Novell Inc. in the United States and other countries. Oracle® is a registered trademark of Oracle Corporation and/or its affiliates. VMware®, Virtual SMP®, vMotion®, vCenter® and vSphere® are registered trademarks or trademarks of VMware, Inc. in the United States or other countries. IBM® is a registered trademark of International Business Machines Corporation. Broadcom® and NetXtreme® are registered trademarks of QLogic is a registered trademark of QLogic Corporation. Other trademarks and trade names may be used in this document to refer to either the entities claiming the marks and/or names or their products and are the property of their respective owners. Dell disclaims proprietary interest in the marks and names of others.
Table of contents

Revisions ... 2
Introduction ... 5

1 Configuration scenarios ... 6
 1.1 Important notes prior to deployment ... 7
 1.1.1 No Simple Mode ... 7
 1.1.2 Non-FIP-aware switches ... 7
 1.1.3 Stacking ... 7
 1.1.4 Dell PowerConnect 4.2 or greater firmware on M8024-k or 8024F 7

2 Scenario 1: Deploying the Dell PowerConnect 8024 Series FSB in a Cisco 5000 Series Switch (NPIV) environment .. 8
 2.1 Configuring the Dell PowerConnect M8024-k, 8024, and 8024F for FIP Snooping 10
 2.1.1 Command-Line Interface Method ... 11
 2.2 Configuring the Cisco 5000 series switch with firmware version 5.x for a single connection from the Dell PowerConnect M8024-k or 8024(F) .. 15
 2.2.1 Command Line Interface Method ... 15
 2.2.2 Command Line Interface Method—Cisco Nexus 5548 .. 16
 2.2.3 Basic validation for the Cisco Nexus 5000 series switch configuration 19
 2.3 Basic troubleshooting areas ... 26

3 Scenario 2: Configuring Multiple Uplinks into LAG for Cisco Nexus 5000 Series Switch (NPIV) Environment .. 28
 3.1 Configuring the Cisco Nexus 5000 series switch with firmware ver 5.x for a multiple link LAG (link aggregation) connection at the Top-of-Rack ... 29
 3.1.1 Command-Line Interface Method ... 29
 3.2 Configuring the M8024-k, 8024, and 8024F for FIP Snooping 31
 3.2.1 Command-Line Interface Method ... 31

4 Scenario 3: Configuring Multiple Uplinks into LAG for Cisco Nexus 5000 Series Switch (NPV mode) Environment .. 33
 4.1 Configuring the Cisco Nexus 5000 series switch with firmware ver 5.0(3)N2(2a) in NPV mode for a multiple link LAG (link aggregation) connection from the Dell PowerConnect M8024-k or 8024(F) ... 34
 4.1.1 Command-Line Interface Method ... 34

5 Updating firmware .. 37
 5.1 Command-line interface method .. 37
 5.2 Web interface method ... 39

A Full CLI examples ... 42
 A.1 M8024-k CLI example ... 42
Introduction

The PowerConnect™ M8024-k, 8024 and 8024F switches are now DCB/DCBx capable with a downloadable update. **Starting with firmware 4.2**, the latest PowerConnect™ 10 Gigabit switches can now be used as an FCoE Transit Switch (FIP Snooping Bridge, T11, BB-5). With this new firmware implementation Converged Network Adapters (CNAs) can be used in the rack-mount or blade server to enable access to Fibre Channel networks and their storage.

Note: The PowerConnect™ M8024 (predecessor to the M8024-k) does not support the FIP Snooping capability and will not be supported for any of the described scenarios.

This document provides an easy to use guide for configuring FIP Snooping on the Dell PowerConnect™ **M8024-k Blade Switch** (Figure 1), and the **PowerConnect™ 8024F** (Figure 2).

![Figure 1 Dell PowerConnect™ M8024-k Switch (10GigE)](image1)

Figure 1 Dell PowerConnect™ M8024-k Switch (10GigE)

![Figure 2 Dell PowerConnect™ 8024F (10GigE)](image2)

Figure 2 Dell PowerConnect™ 8024F (10GigE)

Note: The Dell M1000e Server Chassis includes a console redirect feature that allows you to manage each PowerConnect M8024-k module from a single serial connection to the chassis. For more information about console redirect, see the Dell Blade Server CMC User's Guide at http://support.dell.com/support/edocs/software/smdrac3/cmc/index.htm.
Configuration scenarios

The following sections will present very basic examples of deploying the 10G switches for FIP Snooping and will provide step-by-step explanations of the CLI commands as a guide. The GUI does not currently support configurations for FIP Snooping. Consult the table of contents above for a list of examples covered in this document.

Figure 3 General overviews of deployment

The following suggested configurations used to deploy this solution is done in a sequential order for reading but as Figure 3 represents this is more of a simultaneous process. There are dependencies that will be occurring during the configuration that will rely on other parts of the process. Storage configuration is not covered in any depth due to the possibility for various supported storage devices as part of the whole solution.
1.1 Important notes prior to deployment

1.1.1 No Simple Mode
Each of the following scenarios in this document assume that the PowerConnect™ 8024 model switch being used is in **normal Switch Mode (not Simple Mode)** and is using firmware version 4.2.x.x or later.

Note: If Simple Mode is enabled it will need to be disabled prior to implementing the deployment covered in this document. FCoE is not supported with the PowerConnect 8024 model switches in Simple Mode. The CLI command in the example may be used for disabling Simple Mode, but please consult the User Guide for more information on specifics of Simple Mode.

```
configure
no mode simple
```

Figure 4 Disabling simple mode

1.1.2 Non-FIP-aware switches
If a Non-FIP-Aware switch is introduced anywhere in the data path FCoE will not be supported and can’t be expected to work as designed. The Dell PowerConnect M8024-k and 8024F are considered non-FIP-aware switches until they have the 4.2 or greater firmware installed. See updating firmware section for instructions on performing this update.

1.1.3 Stacking
Stacking is not recommended in an FCoE environment with the Dell PowerConnect 8024 Model Switches. If the switches are stacked the configuration should be changed to disable stacking. Please refer to the Dell PowerConnect 8024 4.2 firmware user’s guide for further details on disabling or changing stacking ports. If the configuration is used in this manner lossless Ethernet and reliability cannot be guaranteed.

1.1.4 Dell PowerConnect 4.2 or greater firmware on M8024-k or 8024F
As mentioned in the non-FIP-aware bullet the Dell PowerConnect Switches will not support FCoE or FIP snooping without 4.2 or greater firmware. See updating firmware section to perform this update.
2 Scenario 1: Deploying the Dell PowerConnect 8024 Series FSB in a Cisco 5000 Series Switch (NPIV) environment

This first example is a basic, single connection between devices example using the Dell PowerConnect M8024-k. This configuration is being shown for the purposes of simplification and potentially easing into the progression of a more in-depth setup. It is also easier to use a simple configuration such as this setup to aid in troubleshooting of the initial install. In a typical business environment most configurations will be scaled to include several connections between servers and storage. The scenarios following this one will show some of these larger configurations. Note that this configuration will also work in the rack server environment with Dell PowerConnect 8024F switch.

![Diagram of setup](image)

Figure 5 Simple 1-link connection between devices
The flowchart in Figure 6 is a general overview of how the deployment will occur. This includes the basic planning that will need to take place in order for most of the steps in the rest of the document to fall into place.

Figure 6 Planning and configuration overview
Figure 7 is a graphical representation of how many of the configuration pieces are considered parallel settings. Most of the configuration will depend heavily on configurations being completed in more than just one place.

Overview of parallel configuration

In many of the business environments where this configuration will be installed there will be different administrators for the different areas of the infrastructure. In other words there may be a LAN infrastructure administrator, a storage or SAN administrator, and potentially a server administrator. These different team members will have to work together for a successful deployment of all the involved parts. In an M1000e blade server environment it may be the server admin that deploys the blade servers, operating systems, network adapter drivers, and very possibly configures the blade IOM networking switches. If different admins are involved as described these tasks can be done in parallel to enable a quicker deployment.

It is important to understand certain checks or validations along the way may rely on configurations being completed in a different part of the infrastructure.

2.1 Configuring the Dell PowerConnect M8024-k, 8024, and 8024F for FIP Snooping

The Dell PowerConnect 8024 model switches will monitor FIP packets and will establish the proper filtering, and priorities for the FCoE traffic that is passed through the configured links. To see an example of the full configuration, [Appendix A.1, M8024-k CLI example](#).
2.1.1 Command-Line Interface Method

```plaintext
configure
no mode simple
vlan database
vlan 20,1000
exit
hostname "mySwitch"
vlan database
vlan 20,1000
exit
feature fip-snooping
vlan 20,1000
fip-snooping enable
exit
interface out-of-band
ip address 192.168.10.1 255.255.255.0 192.168.10.254
exit
classofservice dotlp-mapping 1 1
classofservice dotlp-mapping 2 2
classofservice dotlp-mapping 3 3
classofservice dotlp-mapping 4 4
classofservice dotlp-mapping 5 5
classofservice dotlp-mapping 6 6
exit
interface Tvl/0/1
switchport general pvid 20
switchport general allowed vlan add 20
switchport general allowed vlan add 1000 tagged
switchport general allowed vlan remove 1
switchport mode general
lldp dhcp port-role auto-down
spanning-tree portfast
exit
interface Tvl/0/20
switchport general pvid 20
switchport general allowed vlan add 20
switchport general allowed vlan add 1000 tagged
switchport general allowed vlan remove 1
spanning-tree cost 0
spanning-tree port-priority 0
switchport mode general lldp dhcp port-role auto-up
fip-snooping port-mode fcf
exit
```

Figure 8 Example commands for Dell PowerConnect M8024-k

CAUTION: The “copy running-configuration startup-configuration” command should be issued after several impacting steps so that the switch will retain the configuration settings put into place on the next boot.

CAUTION: Routed VLANs can’t have FIP-snooping enabled. VLAN 1 may be set for routing and this must be changed in the VLAN database if it is going to be used as the native VLAN or PVID.

2.1.1.1 Step by Step explanation of CLI example

- **Configure** – this brings the prompt into the configuration interface
 - `no mode simple` – puts switch into normal mode
 - `vlan database` - moves down into the VLAN database interface
> **vlan 20** – add VLAN 20 to use for untagged traffic or as the native VLAN
> **vlan 1000** - add VLAN 1000 to the VLAN database, this will be the FCoE VLAN
> **exit** – exit the current level of the interface configuration

- **hostname “mySwitch”** – set the hostname of the switch in this example “mySwitch”
- **feature fip-snooping** - this turns on the fip-snooping capability of the switch
- **vlan 20,1000** – this moves the interface into vlan 20,1000
 > **fip-snooping enable** – this enables the fip-snooping capabilities on these particular VLAN’s. Both must be included for the initial TLV negotiation to establish the FCoE VLAN
 > **exit** – exit interface configuration

- **interface out-of-band** – move into the interface out-of-band configuration interface
 > **ip address 192.168.100.1 255.255.255.0 192.168.100.254** – this sets the out-of-band management interface IP address, subnet, and gateway for the switch
 > **exit** – exit the interface configuration

- **classofservice dot1p-mapping x x** – establishes direct CoS mapping for the priorities (must be in place for certain CNAs

- **interface te1/0/1** – this moves into the interface te1/0/1 configuration
 > **switchport general pvid 20** – establishes the native VLAN as 20, you must remove VLAN 1 in order for this to function correctly
 > **switchport general allowed vlan add 20** - adds VLAN 20 the trunk as an untagged VLAN
 > **switchport general allowed vlan add 1000 tagged** – this sets up a trunk with a tagged VLAN of 1000 (the FCoE VLAN), and includes the native VLAN as untagged if general mode is enabled.
 > **switchport general allowed remove vlan 1** – this removes vlan 1 which would typically be the native vlan otherwise.
 > **switchport mode general** – this enables the port for general mode
 > **lldp dcbx port-role auto-down** – sets the DCBx port-role to be auto-down for an ENode connection
 > **spanning-tree portfast** – sets the ports to a portfast behavior since these are internal-facing server ports.
 > **exit** – exits the interface configuration

- **interface te1/0/20** – this moves into the interface te1/0/20 configuration
 > **switchport general pvid 20** – establishes the native VLAN as 20, you must remove VLAN 1 in order for this to function correctly
 > **switchport general allowed vlan add 20** - adds VLAN 20 the trunk as an untagged VLAN
 > **switchport general allowed vlan add 1000 tagged** - - this sets up a trunk with a tagged VLAN of 1000 (the FCoE VLAN), and includes the native VLAN as untagged if general mode is enabled.
 > **switchport general allowed remove vlan 1** – this removes vlan 1 which would typically be the native vlan otherwise.
> **switchport mode general** – this enables the port for mode general
> **spanning-tree cost 0** – sets spanning tree cost to 0
> **spanning-tree port-priority 0** – sets this ports priority to 0 so that it has the lowest spanning tree priority in case a loop is created elsewhere on the switch
> **lldp dcbx port-role auto-up** – sets the DCBx port-role to be auto-up which dynamically sets the configuration-source for an FCF connection
> **fip-snooping port-mode fcf** – enables the port for fip-snooping from an FCF connection
> **exit** - exits the interface configuration
> **exit** – exits from configuration mode

Critical steps: The “copy running-configuration startup-configuration” command should be issued after important steps so that the switch will retain the configuration settings when the switch is next rebooted or if a power loss occurs. It is also a good practice to copy a well-validated working configuration to a separate location such as the management station for the networks, and have a backup-configuration saved local to the switch.

2.1.1.2 Further explanation of key points:

- The spanning-tree settings in this example are established to keep the port from being potentially blocked by spanning-tree. This could occur because another cable is plugged into a port with a lower priority, causing a loop. When the uplink port is set to zero (0) it will have the lowest priority and therefore most likely not end up in a blocked state.
- A second key setting to note is “switchport general allowed vlan remove 1”. This command must be entered if you are choosing to use a different PVID or native VLAN. A port cannot have two native VLANs. In this example the configuration is set to use VLAN 20 since typically the recommendation is to have regular untagged traffic on a different VLAN other than just 1 for segregation of the network. In addition when the FCF sends information to the fip-snooping bridge (FSB) or M8024-k in this case, the M8024-k is receiving the initial information for negotiation on its untagged vlan (vlan 20 in this case). Once the initial negotiations have occurred properly the FCoE traffic will traverse the FCoE VLAN (in this case VLAN 1000).
- The last configuration line “fip-snooping port-mode fcf” is also key to this configuration. This line establishes where the FCF is attached to the switch. With this setting the port is configured to make Fibre Channel aware of the connection via this port to the forwarder. The previous line “lldp dcbx port-role auto-up,” is setting this port to be aware of DCBx TLV’s, the difference being the fip-snooping configuration line points to the port for using fip-snooping to be FCF, and the lldp configuration points to the point for doing DCBx negotiations.
Figure 9 Dell PowerConnect M8024-k configuration overview
2.2 Configuring the Cisco 5000 series switch with firmware version 5.x for a single connection from the Dell PowerConnect M8024-k or 8024(F)

The CLI commands below are necessary for an un-configured Cisco 5020. The CLI will show additional lines that are either default or can't be changed and are not added for this example. The CLI will also show the lines in a different order after they have been entered. See Appendix A.1, M8024-k CLI example, for a copy of the full configuration for a 5548UP reference.

2.2.1 Command Line Interface Method

```
feature fcoe
feature mgmr
feature telnet
feature lacp
feature lldp

system default switchport trunk mode auto
vlan 20
vlan 1000
   fcoe vsan 2
vsan database
   vsan 2
   vsan 2 interface vf0/1
   vsan 2 interface fc2/1
interface vf0/1
   bind interface ethernet1/1
   no shutdown
interface fc2/1
   switchport trunk mode auto
   no shutdown
interface ethernet1/1
   switchport mode trunk
   switchport trunk native vlan 20
   switchport trunk allowed vlan 1000

zone name bladel vsan 2
   member interface fco2/1
zonem set name set1 vsan 2
   member bladel
zonemset activate name set1 vsan 2
```

Figure 10 Sample CLI for Cisco Nexus 5020
The following CLI commands are necessary for an un-configured Cisco Nexus 5548UP or Cisco Nexus 5596. The full CLI will show additional lines that are either default or can't be changed and are not added for this example. The CLI will also show the lines in a different order after they have been entered. Appendix-A Cisco Nexus 5548UP CLI example will have a copy of the full configuration.

2.2.2 Command Line Interface Method—Cisco Nexus 5548

```bash
feature fcoe
feature mply
feature telnet
feature lACP

system default switchport trunk mode auto
system qos

  service-policy type qos input fcoe-default-in-policy
  service-policy type queuing input fcoe-default-in-policy
  service-policy type queuing output fcoe-default-out-policy
  service-policy type network qos fcoe default-nq-policy

vlan 20
vlan 1000

  fcoe vsan 2

vsan database
  vsan 2

  vsan 2 interface vfcl
  vsan 2 interface fc2/1

interface vfcl

  bind interface Ethernet1/1
  no shutdown

interface fc2/1
```

Figure 11 Sample CLI for Cisco Nexus 5548

Note: The provided Cisco commands should be referenced in the Nexus 5000 Series NX-OS SAN Switching Configuration Guide. The CLI entries above only cover the areas that must be added to enable FCoE capabilities on the particular ports being used of a Cisco Nexus 5020 and Nexus 5548. This topic will be covered after the Step by Step explanation of the CLI example.
2.2.2.1 Step by Step explanation of the CLI example

- **Configure** – this brings you into the configuration interface.
 - **feature FCOE** – enables the feature for FCOE as long as the licensing and FC modules are installed.
 - **feature NPIV** – enables the FC ports to accept multiple logins (Necessary for Compellent).
 - **feature LACP** – enables the switch to be able to use port-channel groups in a LACP mode.
 - **feature LLDP** – enables the switch to use LLDP which is needed for DCBx negotiations. Some switch versions will have this on by default and the entry will not be needed.
 - **system qos**
 > service-policy type qos input fcoe-default-in-policy
 > service-policy type queuing input fcoe-default-in-policy
 > service-policy type queuing output fcoe-default-out-policy
 > service-policy type network-qos fcoe-default-nq-policy
 > these are qos settings that are in place by default on the 5010 and 5020 Cisco Nexus switches. These settings will have to be input for the 5548 and 5596 Cisco Nexus switches.
 - **system default switchport trunk mode auto** – sets trunk mode to auto for FC ports; optionally this can be set to off, or on if needed.
 - **vlan 20** – this is the VLAN to be used for the Native VLAN.
 - **vlan 1000** - this is the VLAN being used for FCoE in this example
 > fcoe vsan 2 – this establishes the previous VLAN 1000 as an FCoE VLAN in VSAN 2.
 - **vsan database** – enter into the vsan database interface.
 > vsan 2 – initializes VSAN 2
 > vsan 2 interface vfc1 – set interface vfc1 to be part of VSAN 2
 > vsan 2 interface fc2/1 – set interface fc2/1 to be part of VSAN 2
 - **interface vfc1** – selects virtual fc interface vfc1 (vfc1 is an example and can be a different number based on the admin’s choice at configuration time).
 > Bind interface Ethernet1/1 – this binds interface Ethernet 1/1 to the virtual fc interface which in this case is vfc1. This is one form of binding the VFC. The other form would be to bind the VFC to the FCoE FIP MAC address of the CNA being used. Examples of this will be included later in the document.
 > no shutdown – turns the virtual interface on since default is shutdown.
 - **Interface fc2/1** – selects the fc2/1 interface (which will typically be the first fibre channel port on the Nexus 5020.
 > no shutdown – turns the fc2/1 interface on since default is shutdown.
 - **interface Ethernet 1/1** – selects interface Ethernet 1/1
 Deploying FCoE (FIP Snooping) on Dell PowerConnect 10G Switches: M8024-k, 8024 and 8024F

- switchport mode trunk – set switchport mode to trunk for the 2 VLAN’s.
- switchport trunk allowed vlan 1000 – add allowed VLAN 1000 to the trunk.

- Zone name blade1 vsan 2 – this will set the name for your zone (blade1 can be any chosen name); vsan 2 will match the vsan you have created.

> Member interface fc2/1 - this adds the fc2/1 interface as a member of the zone.

> member pwwn xx:xx:xx:xx:xx:xx:xx:xx – adds the port WWN of the ENode device to the zone. (Insert the port WWN of the device being used).

- zoneset name set1 vsan 2 – move into the zoneset interface (in this case the name is set1 but could be any name and the VSAN number is based on the FCoE VLAN being used).

> member blade1 – this includes the blade1 zone into this zoneset.

- zoneset activate name set1 vsan 2 – activates the zoneset containing these zones.

2.2.2.2 Further explanation of key points:

- In order for devices to communicate end-to-end they must participate in the same VSAN. In this sample configuration the VFC is bound to either the FCoE FIP MAC Address of the Converged Network Adapter in the blade server or an actual interface that would be a connection from the modular switch (in this case M8024-K) connecting the blade servers. The recommended configuration for this is to bind to the FCoE FIP MAC address of the CNA.

However, as an easy setup step it is possible to bind a VFC to the physical interface or port-channel in order to determine which FCoE FIP MAC addresses will present from the CNA’s. These can be noted and then matched with the M1000e’s CMC -> Server Overview -> WWN/MAC Summary that can be seen in Figure 15 on the next page. This is applicable only to the M8024-k modular switch with blade servers. For the rack-mounted 8024 switches the CNA’s would need to be verified on the servers themselves. This verification can be done through each adapters driver properties in the different operating systems.

![Cisco Nexus 5000 series configuration sequence](image-url)

Figure 12 Cisco Nexus 5000 series configuration sequence
2.2.3 Basic validation for the Cisco Nexus 5000 series switch configuration

With connections made via fiber optic cable or direct connect cable (twin-ax) the basic connectivity on the port between the two switches can be verified. These cables or SFP+ transceivers must only be Cisco-branded products for the Cisco Nexus to link properly. The following command is used to give a port status overview: `SHOW INTERFACE BRIEF`. This example has been shortened from the actual results but will display the results of active ports and VFC interfaces. Verify that the ports which are expected to have links show up correctly.
Check the spanning tree configuration. Blocking ports should be understood and when they show in this entry it should be the number expected. Otherwise it could be that an unintentional cable loop has been created that will need to be resolved. Type: SHOW SPANNING-TREE SUMMARY

Figure 14 Example of show interface brief command

Figure 15 show spanning-tree summary command – current configuration with Figure 15.ports states
Next, verify that negotiations have happened properly between the FCF and end devices, in this case the Cisco Nexus 5020 is the FCF. Type: `SHOW FLOGI DATABASE`

![Image of show flogi database]

Figure 16 show flogi database command – devices that have completed fabric login

At this point the VFC and FC interfaces should be populated in the FLOGI database. This command is showing the devices that have done a valid FLOGI (fabric login) to the Cisco Nexus switch. The VFC should show the expected port and node WWN of the CNA being used in the server.

The following command will show the status of the zones that have been put into place. The asterisks will indicate devices that have an established session (have negotiated and logged in) with the Cisco Nexus 5020. Type: `SHOW ZONESET ACTIVE`. This command will show the current activated zoneset and all the participating zones with their individual members.

![Image of show zoneset active]

Figure 17 show zoneset active command

With all cables in place between the switches and the FC/FCoE SAN, use the following commands to validate your configuration.

First check general status of the ports, and links by using: `SHOW INTERFACE STATUS`
Figure 18 Show interface status results

Use the `SHOW SPANNING-TREE BLOCKEDPORTS` command to check the status of ports that may be impacted by spanning tree. This is also a good point to make sure that the spanning-tree behaviors are as expected, such as Priority, which switch is root, etc.

Figure 19 `show spanning-tree blockedports` command

On the PowerConnect M8024-k, 8024 or 8024F the sessions can be checked by using:

<table>
<thead>
<tr>
<th>Port</th>
<th>Name</th>
<th>Duplex</th>
<th>Speed</th>
<th>Neg</th>
<th>Link</th>
<th>Flow Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tel/0/1</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td>Down</td>
<td>Inactive</td>
</tr>
<tr>
<td>Tel/0/2</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td>Down</td>
<td>Inactive</td>
</tr>
<tr>
<td>Tel/0/3</td>
<td></td>
<td>Full</td>
<td>10000</td>
<td></td>
<td>Up</td>
<td>Inactive</td>
</tr>
<tr>
<td>Tel/0/4</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td>Down</td>
<td>Inactive</td>
</tr>
<tr>
<td>Tel/0/5</td>
<td></td>
<td>Full</td>
<td>10000</td>
<td></td>
<td>Up</td>
<td>Inactive</td>
</tr>
<tr>
<td>Tel/0/6</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td>Down</td>
<td>Inactive</td>
</tr>
<tr>
<td>Tel/0/7</td>
<td></td>
<td>Full</td>
<td>10000</td>
<td></td>
<td>Up</td>
<td>Inactive</td>
</tr>
<tr>
<td>Tel/0/8</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td>Down</td>
<td>Inactive</td>
</tr>
<tr>
<td>Tel/0/9</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td>Down</td>
<td>Inactive</td>
</tr>
<tr>
<td>Tel/0/10</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td>Down</td>
<td>Inactive</td>
</tr>
<tr>
<td>Tel/0/11</td>
<td></td>
<td>Full</td>
<td>10000</td>
<td></td>
<td>Up</td>
<td>Active</td>
</tr>
<tr>
<td>Tel/0/12</td>
<td></td>
<td>Full</td>
<td>10000</td>
<td></td>
<td>Up</td>
<td>Inactive</td>
</tr>
<tr>
<td>Tel/0/13</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td>Down</td>
<td>Inactive</td>
</tr>
<tr>
<td>Tel/0/14</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td>Down</td>
<td>Inactive</td>
</tr>
<tr>
<td>Tel/0/15</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td>Down</td>
<td>Inactive</td>
</tr>
<tr>
<td>Tel/0/16</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td>Down</td>
<td>Inactive</td>
</tr>
<tr>
<td>Tel/0/17</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td>Down</td>
<td>Inactive</td>
</tr>
<tr>
<td>Tel/0/18</td>
<td></td>
<td>SFP</td>
<td>10000</td>
<td></td>
<td>Off</td>
<td>Inactive</td>
</tr>
<tr>
<td>Tel/0/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Up</td>
<td>Inactive</td>
</tr>
<tr>
<td>Tel/0/20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Up</td>
<td>Inactive</td>
</tr>
</tbody>
</table>

---- |---- |---- |-----|------|--------------|
SHOW FIP-SNOOPING. This will show the VLAN’s that are snooped and configured, along with how many FCF’s, and ENode devices that are available. If there is no entry or “0” FCF’s or ENode’s after running this command there is possibly a missed step in the configuration. Proceeding beyond this point will not be possible until this configuration error is corrected.

![SHOW FIP-SNOOPING Command Output]

Figure 20 show fip snooping command
The following command will show a set of vital information on the DCBX configuration. Type: SHOW LLDP DCBX INTERFACE ALL. The important things to note with this command are that the configuration source selected is "True" and that the configuration source port is configured as expected to be the uplink to the top-of-rack FCF switch. It can also be noted that ports that are expected to be passing DCBX traffic should have counter statistics listed here.

![Image of command output]

Figure 21 show lldp dcbx interface all

The highlighted port lines show the ports that are actively taking part in FCoE traffic. The role shown by each of the server facing ports should always be auto-down, while the role for the uplinks to the FCF should be auto-up or configuration source. There should be both DCBX Tx counters as well as DCBX Rx counters to show that the negotiations actually occurred with the particular devices.
The following command will show a set of vital information on the DCBX configuration. Type: `SHOW LLDP DCBX INTERFACE TE1/0/20 DETAIL`. This command will show more specific detail about the configuration that has been negotiated between the devices. In this example port te1/0/20 is used as it is one of the uplink ports into the top-of-rack FCF switch.

Some key items in these results will be “true” for peer is configuration source, “Auto-up” for auto-configuration port role and local configuration PFC(3) En/Will/Error configured as Y/Y/N. As an additional note you should also see PFC enable vector: 3:1, this shows that priority queue 3 is set as “strict” and will be lossless.

![Figure 22 Show lldp dcbx interface te1/0/20 detail](image)

Finally, after these validation steps, go into the disk management interface of the server. If the SAN is configured appropriately the server will have an available LUN to use for storage.
<table>
<thead>
<tr>
<th>Problem</th>
<th>Potential problem area</th>
<th>Potential fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>basic Connectivity Between CNA and 8024 Series switch is not present</td>
<td>Cable is not connected or is failing</td>
<td>Connect or Change cable and reconnect</td>
</tr>
<tr>
<td>(ping between devices)</td>
<td>The OS on the server is not configured to have the network card enabled or active</td>
<td>Check adapter settings in the OS and verify ports turned on or enabled</td>
</tr>
<tr>
<td></td>
<td>The driver for the applicable OS is not loaded</td>
<td>Load driver and ensure both Ethernet and storage device drivers are in place</td>
</tr>
<tr>
<td></td>
<td>Internal server facing ports on the M8024-k may not be enabled (no shutdown)</td>
<td>Determine which internal ports should be enabled and configure the ports on</td>
</tr>
<tr>
<td></td>
<td>External or regular ports on the 8024 series switch or Cisco Nexus 5000 series switch</td>
<td>Determine which external ports should be enabled and configure the ports on</td>
</tr>
<tr>
<td></td>
<td>Untagged or Native VLAN's are not configured appropriately. If PVID is changed on</td>
<td>Configure Native VLAN's appropriately. See PowerConnect 8024 CLI section or</td>
</tr>
<tr>
<td></td>
<td>8024 series, VLAN 1 must be removed</td>
<td>Cisco Nexus 5000 series CLI section for detail</td>
</tr>
<tr>
<td>ENode’s or FCF entries are not present on the PowerConnect 8024 series</td>
<td>See above basic connectivity problems</td>
<td>see above</td>
</tr>
<tr>
<td>switch</td>
<td>Applicable FCoE or storage driver is not configured in the server OS for the CNA</td>
<td>This could be an indication that the storage side of the CNA driver has</td>
</tr>
<tr>
<td></td>
<td>CNA may not be configured as willing (will negotiate values with the FCF switch)</td>
<td>Some CNA’s have the option to configure the DCB settings manually. This will</td>
</tr>
<tr>
<td></td>
<td>PowerConnect 8024 may not have appropriate firmware in place, it must be 4.2.0.4 or</td>
<td>Download and install firmware 4.2.0.4 or greater see upgrade firmware section</td>
</tr>
<tr>
<td></td>
<td>ENode’s or FCF entries are not present on the PowerConnect 8024 series switch -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco Nexus 5000 series switch may not have the supported firmware in place. Must be</td>
<td>Download and install latest Cisco firmware.</td>
</tr>
<tr>
<td></td>
<td>Feature FCoE may not be configured on Cisco Nexus 5000 series switch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fip-snooping may not be enabled on the native and FCoE VLAN on the Dell PowerConnect</td>
<td>See PowerConnect 8024 CLI section for explanation of enabling both VLAN’s for</td>
</tr>
<tr>
<td></td>
<td>8024 series switch</td>
<td>fip-snooping</td>
</tr>
<tr>
<td>Problem</td>
<td>Potential problem area</td>
<td>Potential fix</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>The VFC entries may not be present on the Cisco Nexus 5000 series switch</td>
<td>Ensure that VFC’s are created that will be applicable to the connection. This can be bound to the FCoE-FIP MAC of the CNA or to the physical interface of the Cisco Nexus 5000 Series switch</td>
<td></td>
</tr>
<tr>
<td>The VFC entry may not be enable (no shutdown)</td>
<td>Check VFC entries applicable to the connection and make sure "no shutdown" is part of the configuration for that interface</td>
<td></td>
</tr>
<tr>
<td>The FCoE VLAN may not match on both sides (PowerConnect 8024 and Cisco Nexus 5000 series tagged VLAN entries matched to the FCoE feature)</td>
<td>The same tagged VLAN should pass FCoE traffic from the PowerConnect 8024 series switch to the Cisco Nexus 5000 series switch. Configure this VLAN appropriately - see CLI explanation sections</td>
<td></td>
</tr>
<tr>
<td>LACP feature may not be enabled on Cisco Nexus 5000 series switch for applicable LAG’s between the two switches</td>
<td>Configure feature LACP on the Cisco Nexus, and make sure the applicable port-channel is put into the configuration - see CLI explanation sections for further detail</td>
<td></td>
</tr>
<tr>
<td>Configuration classofservice dot1p mapping may not be in place on the PowerConnect switch</td>
<td>See PowerConnect 8024 CLI section for explanation of applying this configuration</td>
<td></td>
</tr>
<tr>
<td>CNA’s that have NPAR capabilities may not have the partitions configured appropriately for FCoE</td>
<td>See CNA documentation for applicable partition settings for FCoE use</td>
<td></td>
</tr>
<tr>
<td>FLOGI entries for CNA’s are not present on Cisco Nexus 5000 series switch</td>
<td>See above basic connectivity problems</td>
<td>see above</td>
</tr>
<tr>
<td>Verify above section on ENode’s or FCF present on PowerConnect 8024 series switch</td>
<td></td>
<td>see above</td>
</tr>
<tr>
<td>FLOGI entries for FC devices are not present on Cisco Nexus 5000 series switch</td>
<td></td>
<td>Connect or Change cable and reconnect</td>
</tr>
<tr>
<td>Storage license for Cisco Nexus may not be installed.</td>
<td>Check licenses on Cisco Nexus and install if necessary</td>
<td></td>
</tr>
<tr>
<td>End storage device is not powered on</td>
<td>Power on Storage device</td>
<td></td>
</tr>
<tr>
<td>Storage device is not configured to communicate with FCF or FC switch</td>
<td>Configure storage device to have applicable settings</td>
<td></td>
</tr>
<tr>
<td>FC port on Cisco Nexus not configured</td>
<td>Configure FC ports for particular storage device and turn on (no shutdown)</td>
<td></td>
</tr>
<tr>
<td>Cisco Nexus may be configured for NPV which allows for the logins to occur on FC switch further downstream</td>
<td>Check configuration of Cisco Nexus. If configured for NPV check for FLOGI logins on the FC switch that the Cisco Nexus is connected to.</td>
<td></td>
</tr>
</tbody>
</table>
3 Scenario 2: Configuring Multiple Uplinks into LAG for Cisco Nexus 5000 Series Switch (NPIV) Environment

Figure 23 Multiple port link (LAG) configuration between switches and storage
3.1 Configuring the Cisco Nexus 5000 series switch with firmware ver 5.x for a multiple link LAG (link aggregation) connection at the Top-of-Rack

The typical scenario in a business environment consists of more than one connection or uplink. The following illustrations and examples describe a two link LAG from an M8024-k to the Cisco Nexus 5020.

3.1.1 Command-Line Interface Method

```bash
feature fcoe
system default switchport trunk mode auto
feature telnet
feature npiv
feature lacp

vlan 20
vlan 1000
  fcoe vsan 2

vsan database
  vsan 2
  vsan 2 interface vfe1
  vsan 2 interface fc0/1
  vsan 2 interface fc0/2

interface port-channel1
  switchport mode trunk
  switchport trunk native vlan 20
  switchport trunk allowed vlan 1000

interface vfe1
  bind interface port-channel1
  no shutdown

interface fc0/1
  no shutdown

interface fc0/2
  no shutdown

interface Ethernet1/1
  switchport mode trunk
  switchport trunk native vlan 20
  switchport trunk allowed vlan 1000
  channel-group 1 mode active

interface Ethernet1/2
  switchport mode trunk
  switchport trunk native vlan 20
  switchport trunk allowed vlan 1000
  channel-group 1 mode active

zone name blade1 vsan 2
  member interface fc0/1

zone name blade2 vsan 2
  member interface fc0/2

zoneset name set1 vsan 2
  member blade1
  member blade2

zoneset activate name set1 vsan 2
```

Figure 24 Multiple-port-link (LAG) Cisco 5020 configuration
3.1.1.1 Step-by-step explanation of CLI example (only covering the differences from the single-port configuration)

- **interface vfc1** — selects virtual fc interface vfc1 (vfc1 is an example and can be a different number based on choice at configuration time)
 - **bind interface port-channel1** — this binds interface port-channel1 to the virtual fc interface which in this case is vfc1.
 - **no shutdown** — turns the virtual interface on since default is shutdown

- **interface fc2/2** — selects the fc2/2 interface (this is an additional FC port for the 2 connections)
 - **no shutdown** — turns the fc2/1 interface on since default is shutdown

- **interface Ethernet 1/1** — selects interface Ethernet 1/1
 - **switchport mode trunk** — set switchport mode to trunk for the 2 VLAN’s
 - **switchport trunk native vlan 20** — add native VLAN 20 to the trunk
 - **switchport trunk allowed vlan 1000** — add allowed VLAN 1000 to the trunk
 - **channel-group 1 mode active** — this interface is part of a port channel

- **interface Ethernet 1/2** — selects interface Ethernet 1/2
 - **switchport mode trunk** — set switchport mode to trunk for the 2 VLAN’s
 - **switchport trunk native vlan 20** — add native VLAN 20 to the trunk
 - **switchport trunk allowed vlan 1000** — add allowed VLAN 1000 to the trunk
 - **channel-group 1 mode active** — this interface is part of port channel

- **zone name blade1 vsan 2** — this will set the name for your zone (blade1 can be any chosen name), vsan 2 will match the vsan you have created.
 - **member interface fc2/1** — this adds the fc2/1 interface as a member of the zone.
 - **member pwnn xx:xx:xx:xx:xx:xx:xx:xx** — adds the port WWN of the ENode device to the zone (this should match the CNA of the server being used, in this case blade2).

- **zone name blade2 vsan 2** — this will set the name for your zone (blade1 can be any chosen name), vsan 2 will match the vsan you have created.
 - **member interface fc2/2** — this adds the fc2/1 interface as a member of the zone.
 - **member pwnn xx:xx:xx:xx:xx:xx:xx:xx** — adds the port WWN of the ENode device to the zone (this should match the CNA of the server being used, in this case blade 2).

- **zoneset name set1 vsan 2** — move into the zoneset interface (in this case the name is set1 but could be any name and the VSAN number is based on the FCoE VLAN being used.
 - **member blade1** — this includes the blade1 zone into this zoneset
 - **member blade2** — this includes the blade2 zone into this zoneset

- **zoneset activate name set1 vsan 2** — activates the zoneset containing these zones
3.2 Configuring the M8024-k, 8024, and 8024F for FIP Snooping

This is an example of the necessary CLI commands for 8024 model switches configured with two links in a LAG or port-channel uplinked to the Cisco 5020. This provides more bandwidth and fail-over capability which would be more typical in the larger scale infrastructure typically used.

3.2.1 Command-Line Interface Method

```bash
configure
no mode simple
vlan database
vlan 1000
exit
hostname "myswitch"
feature fip-snooping
vlan 1,1000
fip-snooping enable
exit
interface out-of-band
ip address 198.18.100.x 255.255.255.0 198.18.255.254
classofservice dot1p-mapping 3 3
exit

interface Te1/0/1
switchport general allowed vlan add 1000 tagged
switchport mode general
lldp dcbx port-role auto-down
exit

interface Te1/0/2
switchport general allowed vlan add 1000 tagged
switchport mode general
lldp dcbx port-role auto-down
exit

interface Te1/0/19
channel-group 1 mode active
lldp dcbx port-role auto-up
exit

interface Te1/0/20
channel-group 1 mode active
lldp dcbx port-role auto-up
exit

interface port-channel 1
switchport general allowed vlan add 1000 tagged
switchport mode general
fip-snooping port-mode fcf
exit
```

Figure 25 Multiple port uplink (LAG) M8024-k configuration

3.2.1.1 Step by Step explanation of Dell PowerConnect M8024-k CLI example with multiple port (LAG) uplink (only covering the differences from the single port configuration)

- **interface te1/0/19** – this moves into the interface te1/0/19 configuration
 - **channel-group 1 mode active** – adds this interface to the channel-group 1
 - **lldp dcbx port-role auto-up** – sets the DCBX port-role to be auto-up for an FCF connection
- **exit** - exit the interface configuration

- **interface te1/0/20** – this moves into the interface te1/0/20 configuration
 - **channel-group 1 mode active** – adds this interface to the channel-group 1
 - **lldp dcbx port-role auto-up** – sets the DCBX port-role to be auto-up for an FCF connection
 - **exit** - exit the interface configuration

- **interface port-channel 1** – this moves into the interface te1/0/20 configuration
 - **switchport general allowed vlan add 1000 tagged** - this sets up a trunk with a tagged VLAN of 1000 (the FCoE VLAN), and includes the native VLAN as untagged if general mode is enabled.
 - **switchport mode general** – this enables the port for mode general
 - **fip-snooping port-mode fcf** – enables the port for fip-snooping from an FCF connection
 - **exit** – exit the interface configuration

- **exit** - exit the interface configuration

3.2.1.2 Validation

Follow the same validation steps as mentioned with the single link steps to ensure that this configuration is working correctly. The ideal method for troubleshooting or validation is to take one link at a time.
Scenario 3: Configuring Multiple Uplinks into LAG for Cisco Nexus 5000 Series Switch (**NPV** mode)

Environment

![Diagram of network configuration]

Figure 26 Multiple-link configuration between switches and storage
4.1 Configuring the Cisco Nexus 5000 series switch with firmware ver 5.0(3)N2(2a) in NPV mode for a multiple link LAG (link aggregation) connection from the Dell PowerConnect M8024-k or 8024(F)

The typical scenario in a business environment consists of more than one connection or uplink. The following pictures and examples describe a two link LAG from an M8024-k to the Cisco 5020.

4.1.1 Command-Line Interface Method

```plaintext
feature fcoe
system default switchport trunk mode auto
feature telnet
feature lacp
feature npv
feature npiv

vlan 20
vlan 1000
  fcoe vlan 2

vSAN database
  vlan 2
  vlan 2 interface vfc1
  vlan 2 interface vfc2
  vlan 2 interface fc2/1
  vlan 2 interface fc2/2

interface port-channel
  switchport mode trunk
  switchport trunk native vlan 20
  switchport trunk allowed vlan 1000

interface vfc1
  no shutdown
interface vfc2
  no shutdown

interface fc2/1
  no shutdown
interface fc2/2
  no shutdown

interface Ethernet1/1
  switchport mode trunk
  switchport trunk native vlan 20
  switchport trunk allowed vlan 1000
  channel-group 1 mode active

interface Ethernet1/2
  switchport mode trunk
  switchport trunk native vlan 20
  switchport trunk allowed vlan 1000
  channel-group 1 mode active
```

Figure 27 Multiple-port-link Cisco 5020 configuration
4.1.1.1 Step-by-step explanation of CLI example for the Cisco Nexus 5000 series using NPV (only covering the differences from the single-port configuration)

- **feature NPV** – enables the NPV feature which turns off zoning. The FC side of the Nexus 5000 series switch effectively turns into just a FC gateway (just passing FC out to another switch). When this feature is enabled the Cisco Nexus 5000 series switch will have to do a full reload because it is completely changing the way it deals with the FC packet behavior. Be prepared for this reload because it may impact a currently running network environment.

4.1.1.2 Configuring the Dell PowerConnect M8024-k, 8024, and 8024F for FIP Snooping with Cisco Nexus 5000 series switch in NPV mode

The configuration will be the same as previously mentioned in the single or multiple port configurations. The simplicity of the PowerConnect 8024 series switch setup for FIP Snooping is one of the great advantages to using this in an FCoE network.

4.1.1.3 ETS Behavior and CoS configurations on the PowerConnect 8024 series switches

The 8024 family devices will pass ETS information between end devices and the FCF but local settings are not changed in the 8024 series switches. This process allows for a best effort approach in the default configuration. This will be sufficient for the typical business usage model but for more in-depth settings the following CoS settings can be set in order to apply exact minimum thresholds for the queues that will be used for FCoE or iSCSI. These minimum thresholds are a guaranteed minimum bandwidth for the queues involved, in this case priority queue 3 for FCoE or 4 for iSCSI. The following example is applicable to the FCoE class of service queue 3 settings. (These settings can also be found in the [appendix in the full CLI example](#).)

```bash
! Default priority is 0 (CoS queue 0). Untagged frames receive the default priority treatment.
!
interface range te1/0/1-16

! Set CoS queue 3 to strict priority (not WRED) per 802.1Qaz
coq-queue strict 3

! Reserve 50% bw for CoS queue 3
coq-m우s min-bandwidth 0 0 50 0 0 0
exit
```

Figure 28 CoS settings to establish minimum bandwidth for FCoE queue

Note: In the above example the first setting is made on interfaces te1/0/1 through 16. These are all the internal server-facing ports on the M8024-k modular switch. The settings for te1/0/20 are based on this port being an uplink from the M8024-k modular switch to the Cisco Nexus 5000 series switch. As mentioned above the full configuration with these settings in place can be seen in the [Appendix A – M8024-k CLI example](#).
4.1.1.4 Further notes on ETS/CoS behavior settings

Careful consideration should be taken when establishing the strict priority queues and managing bandwidth reservations. If FCoE and iSCSI are configured on the same switch and these settings are used to configure both CoS queues it is possible to choke the bandwidth being allowed for regular LAN traffic. As a suggested method limiting the queues for these priorities to 30 or 40 percent would keep this from occurring. The preferred method for configuration is fabric separation or in simpler terms; separating the two storage types onto different switches for ease of management and bandwidth control.

Figure 29 Fabric separation as preferred method for management of networks and storage
5 Updating firmware

Note: Be sure to check the Release Notes and any special instructions that may have come with new firmware updates. It is important to follow instructions found in those documents if they deviate from this white paper.

Steps for upgrading the firmware on a stack of switches are similar to upgrading the firmware on a single switch. After downloading a new image to the Master by using the File Download page in the Web UI or the copy command in the CLI, the downloaded image is distributed to all member units of the stack. The instructions below will guide you through these steps.

5.1 Command-line interface method

To find the firmware version the switch is using, enter the following command: show version

```
PowerConnectM8024-k #show version

Image Descriptions
  image1 : default image
  image2 :

  Images currently available on Flash
  unit  image1  image2  current-active  next-active
  ----  -------  -------  ----------  ----------
  1   4.1.0.9   4.1.0.6  image1     image1
```

The commands below demonstrate how to copy the firmware file down to the switch via a TFTP server. The switch will need access to the TFTP server on the network and the firmware file will need to be present in the download folder of the TFTP server. Perform the following command from the CLI (press Y when prompted):

```
console#copy tftp://198.18.1.64/PC8024v4.2.0.4.stk image

Transfer Mode: TFTP
Server IP Address: 198.18.1.64
Source File Path: ./PC8024v4.2.0.4.stk
Data Type: Code
Destination Filename: image

Management access will be blocked for the duration of the transfer
Are you sure you want to start? (y/n) y

TFTP code transfer starting
12487236 bytes transferred...
File contents are valid. Copying file to flash...

File transfer operation completed successfully.
```

Note: Be patient, as this procedure may take a few minutes.

Perform another show version command to confirm that the new firmware has been downloaded to the switch. Notice that the firmware was copied into the inactive image for each member.
The current-active column now shows the same values as the next-active column. The next step is to activate the image that contains the new firmware. In this example, the switch will need image2 activated. Perform the following commands:

![Console output showing activated image2](image)

Notice that the next-active column now shows different values than the current-active column.

Before performing the following `update bootcode` command, read the Release Notes and any special instructions for updating the firmware release. It is generally required that you update bootcode only on major releases of the firmware, whereas minor releases will not require the update to bootcode. It is recommended to only run this command if required. Press Y when prompted.

![Console output showing update bootcode](image)

Updating and rebooting the switch will take a few minutes. If the bootcode is not required, then a simple reload command will need to be performed. After reload, the firmware upgrade is complete.

To validate, login to the switch and perform a show version command. For the example given the following displays:

![Console output showing show version](image)
5.2 Web interface method

Find the firmware versions that the stack members are using.

1. Select System > File Management > Active Images.
2. Look in the Current-Active column to find which images are enabled.
3. Since image2 is active, look in the Image 2 Version column to see what version each stack member is at. These firmware versions being used should be the same across all stack member units.

![Active Images tab: Detail](image)

Figure 30 Active Images tab: Detail

The commands below demonstrate how to copy the firmware file down to the switch via a TFTP server. The switch will need access to the TFTP server on the network and the firmware file will need to be present in the download folder of the TFTP server. If other methods are preferable over TFTP please see the User’s Guide. Perform the following steps:

1. Select System > File Management > File Download.
2. Select Firmware for the File Type and TFTP for the Transfer Mode.
3. Enter the IP address of the TFTP server into the Server Address field, and enter the name of the Firmware file into the Source File Name field.
4. If not in the root directory of the TFTP server, enter the path of the firmware file.

![File Download tab: Detail](image)

Figure 31 File Download tab: Detail
5. Click **Apply**.

The dialog box below will appear after a short period stating that the transfer is complete.

![POWERCONNECT 8024 Informational dialog box](image)

Figure 32 POWERCONNECT 8024 Informational dialog box

6. Click **Close**.

7. Select System > File Management > Active Images.

Notice that the firmware (i.e. 4.2.0.4) is copied into the *inactive* image for each member.

Also notice that the switch still has the same Current-Active image as before.

![Active Images tab: Detail](image)

Figure 33 Active Images tab: Detail

8. Under the Next-Active column, select the new image, such as image 2, for the switch or stack.

![Active Images tab: Detail fields](image)

Figure 34 Active Images tab: Detail fields

9. Click **Apply**.

The Current-Active column should now show the opposite values as what is in the Next-Active column. A reload is required to active the firmware.
10. Select **System > General > Reset**. Choose **All** in the Switch ID menu.

![Reset tab: Detail](image)

Figure 35 Reset tab: Detail

11. Click **Apply**.

12. After the stack resets, verify that the new firmware is active.

13. Select **System > File Management > Active Images** again.

Note: The new firmware (i.e. 4.2.0.4) is now the Current Active image for each member.

![Active Images: Detail screen](image)

Figure 36 Active Images: Detail screen

While downgrading to a previous firmware is supported, all features and functions that were not part of the previous firmware will be lost, including those features and functions that were introduced in the current firmware in use. Firmware version 4.2 or later must be active for the DCB or stacking features to work correctly. Do not downgrade the switch to firmware version 4.1.x.x or earlier.
A Full CLI examples

A.1 M8024-k CLI example

show running-config
!Current Configuration:
!System Description "PowerConnect M8024-k, 4.2.1.3, VxWorks 6.6"
!System Software Version 4.2.1.3
!Cut-through mode is configured as disabled
!System Operational Mode "Normal"
!
configure
no mode simple
vlan database
vlan 20,1000
exit
!
slot 1/0 2 ! PCM8024-k
feature fip-snooping
vlan 20,1000
fip-snooping enable
exit
stack
member 1 1 ! PCM8024-k
exit
!
no logging console
username "root" password e6e6b8981c1030d5650da159e79539a privilege 15 encrypted
line console
exec-timeout 0
exit
!
classofservice dot1p-mapping 1 1
classofservice dot1p-mapping 2 2
classofservice dot1p-mapping 3 3
classofservice dot1p-mapping 4 4
classofservice dot1p-mapping 5 5
classofservice dot1p-mapping 6 6
!
interface Te1/0/1

!
switchport general allowed vlan add 20
switchport general allowed vlan add 1000 tagged
switchport general allowed vlan remove 1
lldp dcbx port-role auto-down
exit
!
interface Te1/0/2
cos-queue min-bandwidth 0 0 0 50 0 0 0
cos-queue strict 3
shutdown
spanning-tree port-priority 0
mtu 2500
switchport mode general
switchport general pvid 20
switchport general allowed vlan add 20
switchport general allowed vlan add 1000 tagged
switchport general allowed vlan remove 1
lldp dcbx port-role auto-down
exit
!
interface Te1/0/3
cos-queue min-bandwidth 0 0 0 50 0 0 0
cos-queue strict 3
mtu 2500
switchport mode general
switchport general pvid 20
switchport general allowed vlan add 20
switchport general allowed vlan add 1000 tagged
switchport general allowed vlan remove 1
lldp dcbx port-role auto-down
exit
!
interface Te1/0/4
cos-queue min-bandwidth 0 0 0 50 0 0 0
cos-queue strict 3
shutdown
spanning-tree port-priority 0
mtu 2500
switchport mode general
switchport general pvid 20
switchport general allowed vlan add 20
switchport general allowed vlan add 1000 tagged
switchport general allowed vlan remove 1
lldp dcbx port-role auto-down
exit
!
interface Te1/0/5
cos-queue min-bandwidth 0 0 0 50 0 0 0
cos-queue strict 3
spanning-tree port-priority 0
mtu 2500
switchport mode general
switchport general pvid 20
switchport general allowed vlan add 20
switchport general allowed vlan add 1000 tagged
switchport general allowed vlan remove 1
lldp dcbx port-role auto-down
exit
!
interface Te1/0/6
cos-queue min-bandwidth 0 0 0 50 0 0 0
cos-queue strict 3
shutdown
spanning-tree port-priority 0
mtu 2500
switchport mode general
switchport general pvid 20
switchport general allowed vlan add 20
switchport general allowed vlan add 1000 tagged
switchport general allowed vlan remove 1
lldp dcbx port-role auto-down
exit
!
interface Te1/0/7
cos-queue min-bandwidth 0 0 0 50 0 0 0
cos-queue strict 3
spanning-tree port-priority 0
mtu 2500
switchport mode general
switchport general pvid 20
switchport general allowed vlan add 20
switchport general allowed vlan add 1000 tagged
switchport general allowed vlan remove 1
lldp dcbx port-role auto-down
exit
!
interface Te1/0/8
cos-queue min-bandwidth 0 0 0 50 0 0 0
cos-queue strict 3
spanning-tree port-priority 0
mtu 2500
switchport mode general
switchport general pvid 20
switchport general allowed vlan add 20
switchport general allowed vlan add 1000 tagged
switchport general allowed vlan remove 1
lldp dcbx port-role auto-down
exit
!
interface Te1/0/9
 cos-queue min-bandwidth 0 0 0 50 0 0 0
 cos-queue strict 3
 spanning-tree port-priority 0
 mtu 2500
 switchport mode general
 switchport general pvid 20
 switchport general allowed vlan add 20
 switchport general allowed vlan add 1000 tagged
 switchport general allowed vlan remove 1
 lldp dcbx port-role auto-down
 exit
!
interface Te1/0/10
 cos-queue min-bandwidth 0 0 0 50 0 0 0
 cos-queue strict 3
 shutdown
 spanning-tree port-priority 0
 mtu 2500
 switchport mode general
 switchport general pvid 20
 switchport general allowed vlan add 20
 switchport general allowed vlan add 1000 tagged
 switchport general allowed vlan remove 1
 lldp dcbx port-role auto-down
 exit
!
interface Te1/0/11
 cos-queue min-bandwidth 0 0 0 50 0 0 0
 cos-queue strict 3
 spanning-tree port-priority 0
 mtu 2500
 switchport mode general
 switchport general pvid 20
 switchport general allowed vlan add 20
 switchport general allowed vlan add 1000 tagged
 switchport general allowed vlan remove 1
 lldp dcbx port-role auto-down
 exit
!
interface Te1/0/12

Deploying FCoE (FIP Snooping) on Dell PowerConnect 10G Switches: M8024-k, 8024 and 8024F | version 2.0
cos-queue min-bandwidth 0 0 0 50 0 0 0
cos-queue strict 3
spanning-tree port-priority 0
mtu 2500
switchport mode general
switchport general pvid 20
switchport general allowed vlan add 20
switchport general allowed vlan add 100 tagged
switchport general allowed vlan remove 1
lldp dcbx port-role auto-down
exit!

interface Te1/0/13
cos-queue min-bandwidth 0 0 0 50 0 0 0
cos-queue strict 3
shutdown
spanning-tree port-priority 0
mtu 2500
switchport mode general
switchport general pvid 20
switchport general allowed vlan add 20
switchport general allowed vlan add 100 tagged
switchport general allowed vlan remove 1
lldp dcbx port-role auto-down
exit!

interface Te1/0/14
cos-queue min-bandwidth 0 0 0 50 0 0 0
cos-queue strict 3
shutdown
spanning-tree port-priority 0
mtu 2500
switchport mode general
switchport general pvid 20
switchport general allowed vlan add 20
switchport general allowed vlan add 100 tagged
switchport general allowed vlan remove 1
lldp dcbx port-role auto-down
exit!

interface Te1/0/15
cos-queue min-bandwidth 0 0 0 50 0 0 0
cos-queue strict 3
shutdown
spanning-tree port-priority 0
mtu 2500
switchport mode general
switchport general pvid 20
switchport general allowed vlan add 20
switchport general allowed vlan add 1000 tagged
switchport general allowed vlan remove 1
lldp dcbx port-role auto-down
exit
!
interface Te1/0/16
cos-queue min-bandwidth 0 0 0 50 0 0 0
cos-queue strict 3
shutdown
spanning-tree port-priority 0
mtu 2500
switchport mode general
switchport general pvid 20
switchport general allowed vlan add 20
switchport general allowed vlan add 1000 tagged
switchport general allowed vlan remove 1
lldp dcbx port-role auto-down
exit
!
interface Te1/0/17
cos-queue min-bandwidth 0 0 0 50 0 0 0
cos-queue strict 3
shutdown
spanning-tree port-priority 0
mtu 2500
switchport mode general
switchport general pvid 20
switchport general allowed vlan add 20
switchport general allowed vlan add 1000 tagged
switchport general allowed vlan remove 1
exit
!
interface Te1/0/18
cos-queue min-bandwidth 0 0 0 50 0 0 0
cos-queue strict 3
shutdown
spanning-tree port-priority 0
mtu 2500
switchport mode general
switchport general pvid 20
switchport general allowed vlan add 20
switchport general allowed vlan add 1000 tagged
switchport general allowed vlan remove 1
exit
!
interface Te1/0/19
channel-group 2 mode active
cos-queue min-bandwidth 0 0 0 50 0 0 0
cos-queue strict 0 3
spanning-tree port-priority 0
mtu 2500
switchport general allowed vlan add 20
switchport general allowed vlan add 1000 tagged
switchport general allowed vlan remove 1
lldp dcbx port-role auto-up
exit!
interface Te1/0/20
channel-group 2 mode active
cos-queue min-bandwidth 0 0 0 50 0 0 0
cos-queue strict 0 3
spanning-tree port-priority 0
mtu 2500
switchport general allowed vlan add 20
switchport general allowed vlan add 1000 tagged
switchport general allowed vlan remove 1
lldp dcbx port-role auto-up
exit!
interface port-channel 2
cos-queue min-bandwidth 0 0 0 50 0 0 0
cos-queue strict 3
spanning-tree port-priority 0
switchport mode general
switchport general pvid 20
switchport general allowed vlan add 20
switchport general allowed vlan add 1000 tagged
switchport general allowed vlan remove 1
mtu 2500
fip-snooping port-mode fcf
exit!
interface port-channel 3
mtu 2500
exit!
interface port-channel 4
mtu 2500
exit
Skipped port-channel 5 through 126 for space

interface port-channel 127
mtu 2500
exit
!
interface port-channel 128
mtu 2500
exit
enable password f611e082a05f5562f1d0d2bbcef2b5bf encrypted
exit

console#

A.2 Cisco Nexus 5548UP CLI example

Technet5548-1# show running-config

!Command: show running-config
!Time: Tue Feb 14 22:47:07 2012

version 5.0(3)N2(2a)
feature fcoe

feature telnet
cfs ipv4 distribute
feature lacp
feature lldp

username admin password 5 $1$0bcPjaAd$t3MSaSb34/4QiOx/i15VM0 role
network-admin
ip domain-lookup
hostname Technet5548-1
class-map type qos class-fcoe
class-map type queuing class-fcoe
 match qos-group 1
class-map type queuing class-all-flood
 match qos-group 2
class-map type queuing class-ip-multicast
 match qos-group 2
class-map type network-qos class-fcoe
 match qos-group 1
class-map type network-qos class-all-flood
 match qos-group 2
class-map type network-qos class-ip-multicast
 match qos-group 2
system qos
 service-policy type qos input fcoe-default-in-policy
 service-policy type queuing input fcoe-default-in-policy
 service-policy type queuing output fcoe-default-out-policy
 service-policy type network-qos fcoe-default-nq-policy
slot 1
 port 31-32 type fc
snmp-server user admin network-admin auth md5
 0x18e86ba84d1d511fcb6fe4b5e02dc408 priv
 0x18e86ba84d1d511fcb6fe4b5e02dc408 local
snmp-server enable traps entity fru

vrf context management
 ip route 0.0.0.0/0 172.25.188.254
vlan 1
vlan 20
 name NATIVE_VLAN

vlan 1000
 fcoe vsan 2
 name FCoE_VLAN
vsan database
 vsan 2
interface port-channel2
 switchport mode trunk
 switchport trunk native vlan 20
 switchport trunk allowed vlan 1000
interface vfc3
 bind mac-address 14:fe:b5:8e:5b:f2
 no shutdown
interface vfc4
 bind mac-address 14:fe:b5:8e:5b:f0
 no shutdown
interface vfc5
 bind mac-address 14:fe:b5:8e:5c:09
 no shutdown
interface vfc6
bind mac-address 14:fe:b5:8e:5c:0b
no shutdown

interface vfc7
 bind mac-address 14:fe:b5:8e:5c:26
 no shutdown

interface vfc8
 bind mac-address 14:fe:b5:8e:5c:24
 no shutdown

vsan database
 vsan 2 interface vfc3
 vsan 2 interface vfc4
 vsan 2 interface vfc5
 vsan 2 interface vfc6
 vsan 2 interface vfc7
 vsan 2 interface vfc8
 vsan 2 interface fc1/31
 vsan 2 interface fc1/32

feature npv
feature npiv

interface fc1/31
 switchport trunk mode on
 no shutdown

interface fc1/32
 switchport trunk mode on
 no shutdown

interface Ethernet1/1

interface Ethernet1/2

interface Ethernet1/3

interface Ethernet1/4

interface Ethernet1/5

interface Ethernet1/6

interface Ethernet1/7

interface Ethernet1/8
interface Ethernet1/9

interface Ethernet1/10

interface Ethernet1/11

interface Ethernet1/12

interface Ethernet1/13

interface Ethernet1/14

interface Ethernet1/15

interface Ethernet1/16

interface Ethernet1/17

interface Ethernet1/18

interface Ethernet1/19

interface Ethernet1/20

interface Ethernet1/21

interface Ethernet1/22

interface Ethernet1/23

interface Ethernet1/24

interface Ethernet1/25

interface Ethernet1/26
 switchport mode trunk
 switchport trunk native vlan 20
 switchport trunk allowed vlan 1000

interface Ethernet1/27
 switchport mode trunk
 switchport trunk native vlan 20
 switchport trunk allowed vlan 1000

interface Ethernet1/28
 switchport mode trunk
 switchport trunk native vlan 20
 switchport trunk allowed vlan 1000
interface Ethernet1/29
 switchport mode trunk
 switchport trunk native vlan 20
 switchport trunk allowed vlan 1000
 channel-group 2 mode active

interface Ethernet1/30
 switchport mode trunk
 switchport trunk native vlan 20
 switchport trunk allowed vlan 1000
 channel-group 2 mode active

interface mgmt0
 ip address 172.25.188.100/16
line console
line vty
boot kickstart bootflash:/n5000-uk9-kickstart.5.0.3.N2.2a.bin
boot system bootflash:/n5000-uk9.5.0.3.N2.2a.bin
interface fc1/31
 switchport mode NP
interface fc1/32
 switchport mode NP
B Network Switch Versions

Version information for the network switches used in creating this document are as follows:

Table 1 Switch Firmware Versions

<table>
<thead>
<tr>
<th>Network switch</th>
<th>Dell PowerConnect™ M8024k</th>
<th>Dell PowerConnect™ 8024/8024F</th>
<th>Cisco 5020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software version</td>
<td>4.2.0.1, 4.2.0.2, 4.2.0.3, 4.2.0.4, 4.2.1.3</td>
<td>4.2.0.1, 4.2.0.2, 4.2.0.3, 4.2.0.4, 4.2.1.3</td>
<td>5.0(3)N2(2a), 5.0(3)N1(1b)</td>
</tr>
</tbody>
</table>
Basic Terminology

- **FIP snooping**: With FIP snooping enabled on the PowerConnect™ 8024 model switches, FIP logins, solicitations, and advertisements are monitored. In this monitoring or snooping process the switch gathers information pertaining to the ENode and FCF addresses. With this information the switch will then place filters that only allow access to ENode devices that have logged-in successfully. This enables the FCoE VLAN to deny all other traffic except this lossless FCoE storage traffic.

 The filtering process also secures the end-to-end path between the ENode device and the FCF. The ENode will only be able to talk with the FCF in which it has logged into.

- **FIP snooping bridge (FSB)**: With a switch configured to performing FIP snooping the industry term for this switch is FSB or FIP snooping bridge. It is performing FIP snooping as described in the previous term.

- **FCF**: FCoE forwarders (FCFs) act as an Ethernet and FC switch combined. All typical termination functions that would occur on a FC switch occur on the FCF. FCF’s give VF_Ports and VE_Ports for their virtual FC interfaces.

- **PFC**: Priority Flow Control (PFC), or Per-Priority Pause is defined in the IEEE 802.1Qbb standard. PFC is flow control based on priority settings and adds additional information to the standard pause frame. The additional fields added to the pause frame allow devices to pause traffic on a specific priority instead of pausing all traffic. (IEEE, 2009) Pause frames will be initiated by the FCF in most cases when its receive buffers are starting to reach a congested point. With PFC traffic is paused instead of dropped and retransmitted. This provides the lossless network behavior necessary for FC packets to be encapsulated and passed along the Ethernet paths.

- **NPIV**: N-port identifier virtualization which enables multiple N-port fabric logins at the same time on the same physical FC link (Cisco Systems, Inc., 2011).This term is in reference to the Cisco Nexus 5000 series switches implementation of NPIV.

- **NPV**: N-port virtualizer is a FC aggregation method which passes traffic through to end devices, while eliminating the need to use a domain ID for this device (Cisco Systems, Inc., 2011). This term is also in reference to configuration settings on the Cisco Nexus 5000 series switches.

- **VSAN**: Virtual SAN is a logical partitioning of physical connections to provide for fabric or SAN separation.

Note: The Dell M1000e Server Chassis includes a console redirect feature that allows you to manage each PowerConnect M8024-k module from a single serial connection to the chassis. For more information about console redirect, see the Dell Blade Server CMC User's Guide at: http://support.dell.com/support/edocs/software/smdrac3/cmc/index.htm.
References

About Dell

Dell EMC is a leading technology provider to commercial and public enterprises around the world.