Dell PowerEdge VRTX Networking

A Dell EMC Deployment and Configuration Guide
VRTX I/O Module Basic Configuration, Use and Troubleshooting
Version 1.6

Dell Networking Solutions Engineering
July 2016
Revisions

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 2016</td>
<td>Version 1.6 Update wording, section 1</td>
<td>DNSE: EAB,</td>
</tr>
<tr>
<td>June 2016</td>
<td>Version 1.5 Updated document based on field comments (section 1.2) along with wording changes throughout.</td>
<td>DNSE: EB, DS, EC, SC</td>
</tr>
<tr>
<td>December 2014</td>
<td>Version 1.4 Added R1-2210 Switch to document and made minor changes.</td>
<td>DNSE: EB, MM</td>
</tr>
<tr>
<td>July 2014</td>
<td>Version 1.2 and 1.3 minor changes to the troubleshooting section</td>
<td>DNSE: SH, KL, MM</td>
</tr>
<tr>
<td>June 2014</td>
<td>Version 1.1</td>
<td>DNSE: SH, KL, E</td>
</tr>
<tr>
<td>October 2013</td>
<td>Version 1.0</td>
<td>TA, AB</td>
</tr>
</tbody>
</table>

Copyright © 2014-2016 Dell Inc. or its subsidiaries. All Rights Reserved.

Except as stated below, no part of this document may be reproduced, distributed or transmitted in any form or by any means, without express permission of Dell EMC.

You may distribute this document within your company or organization only, without alteration of its contents. THIS DOCUMENT IS PROVIDED “AS-IS”, AND WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED. IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE SPECIFICALLY DISCLAIMED. PRODUCT WARRANTIES APPLICABLE TO THE DELL EMC PRODUCTS DESCRIBED IN THIS DOCUMENT MAY BE FOUND AT: http://www.dell.com/learn/us/en/vn/terms-of-sale-commercial-and-public-sector-warranties

Performance of network reference architectures discussed in this document may vary with differing deployment conditions, network loads, and the like. Third party products may be included in reference architectures for the convenience of the reader. Inclusion of such third party products does not necessarily constitute Dell EMC’s recommendation of those products. Please consult your Dell EMC representative for additional information.

Trademarks used in this text: Dell™, the Dell logo, Dell Boomi™, PowerEdge™, PowerVault™, PowerConnect™, OpenManage™, EqualLogic™, Compellent™, KACE™, FlexAddress™, Force10™ and Vostro™ are trademarks of Dell Inc. Other Dell trademarks may be used in this document. Cisco Nexus®, Cisco MDS®, Cisco NX-OS®, and other Cisco Catalyst® are registered trademarks of Cisco System Inc. EMC VNX®, and EMC Unisphere® are registered trademarks of EMC Corporation. Intel®, Pentium®, Xeon®, Core® and Celeron® are registered trademarks of Intel Corporation in the U.S. and other countries. AMD® is a registered trademark and AMD Opteron™, AMD Phenom™ and AMD Sempron™ are trademarks of Advanced Micro Devices, Inc. Microsoft®, Windows®, Windows Server®, Internet Explorer®, MS-DOS®, Windows Vista® and Active Directory® are either trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries. Red Hat® and Red Hat® Enterprise Linux® are registered trademarks of Red Hat, Inc. in the United States and/or other countries. Novell® and SUSE® are registered trademarks of Novell Inc. in the United States and other countries. Oracle® is a registered trademark of Oracle Corporation and/or its affiliates. VMware®, Virtual SMP®, vMotion®, vCenter® and vSphere® are registered trademarks or trademarks of VMware, Inc. in the United States or other countries. IBM® is a registered trademark of International Business Machines Corporation. Broadcom® and NetXtreme® are registered trademarks of QLogic is a registered trademark of QLogic Corporation. Other trademarks and trade names may be used in this document to refer to either the entities claiming the marks and/or names or their products and are the property of their respective owners. Dell EMC disclaims proprietary interest in the marks and names of others.
Table of Contents

Revisions .. 2

1 Introduction ... 4
 1.1 VRTX Pass-Through Module (R1-PT) .. 4
 1.2 VRTX 1GbE Switch Module (R1-2401) ... 6
 1.3 VRTX 10GbE Switch Module (R1-2210) ... 8
 1.4 General networking best practices for VRTX 1GbE and 10GbE switch modules 9

2 Dell PowerEdge VRTX 1GbE or 10GbE switch configuration via GUI 11
 2.1 Logging into CMC GUI 11
 2.2 Logging into the PowerEdge VRTX Switch Module ... 12
 2.3 Configuring VLANs.. 13
 2.4 Configuring Trunk Ports ... 15
 2.5 Configuring Link Aggregation Ports .. 16

3 Connectivity, troubleshooting and product tips for VRTX Ethernet switches using CLI 18
 3.1 Prerequisites ... 18
 3.2 Configure the VRTX CMC for access to the CMC CLI, and switch CLI 18
 3.2.1 Connect to the switch CLI from CMC CLI, SSH, and Telnet 18
 3.3 Basic connectivity and management from the switch CLI ... 19
 3.3.1 Check the status of all interfaces ... 19
 3.3.2 Check a specific port status from the switch CLI ... 20
 3.3.3 Shut/no shut a switch port from the switch CLI ... 20
 3.3.4 Save the running-configuration on a switch from the switch CLI 20
 3.3.5 Reload a switch from the switch CLI .. 21
 3.3.6 Assign an IP address to switch VLAN 1 from the switch CLI 21
 3.4 Troubleshooting and connectivity tips ... 22
 3.4.1 Password recovery and setting the switch to factory defaults 22
 3.4.2 Troubleshooting flow chart .. 23
 3.4.3 Additional explanation of troubleshooting steps ... 25

A Acronyms used in this document .. 29

B Additional resources .. 30

Support and feedback ... 30

About Dell EMC .. 30
1 Introduction

Dell PowerEdge VRTX is an infrastructure product focused on remote, branch and small office requirements.

This document outlines the configuration of the Dell PowerEdge VRTX 1GbE Switch Module to establish basic connection to the local network and provides basic connectivity troubleshooting. You can configure the Dell PowerEdge VRTX with an integrated 1GbE Pass-Through module, an integrated 1GbE Switch Module or a 10GbE Switch Module. Dell EMC recommends the 1GbE or 10GbE switch module for most applications.

Figure 1 illustrates the primary components of the Dell PowerEdge VRTX chassis with a GbE switch module.

![Dell PowerEdge VRTX Chassis Components](image)

1.1 VRTX Pass-Through Module (R1-PT)

The VRTX R1-PT, is a 1Gb Ethernet Pass-Through Module (PTM) that allows devices to connect directly to the blade server NIC. The PTM extends each blade server NIC port using an internal port that is a direct connection to an external RJ45 on the PTM. This allows devices to directly connect to the blade server NIC port at 10/100/1000 Mbps, which they auto-negotiate. If auto-negotiation does not establish the proper connections, you may need to manually configure the ports at the server or top-of-rack (ToR) switch.

The PTM supports the first two NIC ports on each blade server slot. Internal ports to blade servers remain down until the corresponding external port comes up. The Pass-Through module is not a switch. Therefore, module set-up must include connecting the external ports to an edge or ToR switch. This enables blade servers within the chassis to pass traffic between each blade server. The pass through module does not have a graphical user
interface (GUI) nor command line interface (CLI) for configuration. Table 1, Figure 2 and Figure 3 present VRTX PTM port mapping:

Table 1 VRTX PTM port mapping

![VRTX PTM port mapping table]

Figure 2 VRTX PTM port mapping

![VRTX PTM port mapping diagram]
1.2 VRTX 1GbE Switch Module (R1-2401)

The VRTX 1GbE Switch Module, model R1-2401, is a layer 2 switch that supports 10/100/1000 Mb Ethernet. Both the switch GUI and switch CLI provide access for configuring the switch. The Out-of-Band (OOB) management IP must be on a different IP subnet than the subnets defined on all of the other switch interfaces (port, VLAN). All internal ports (gi 1/1 – gi 4/4) communicate together as if plugged into a rack switch, supporting east-west traffic and north-south traffic. The external ports allow communication to any upstream device on the network as if the ports were typical switching/bridging devices. Figure 4 and Figure 5 show the switch port mapping for the VRTX Gb switch.
Figure 4 VRTX 1Gb switch port

Figure 5 Location-based VRTX 1Gb switch port-mapping
1.3 VRTX 10GbE Switch Module (R1-2210)

The VTRX 10GbE Switch Module, model R1-2210, is a layer 2 switch that supports speeds up to 10 Gbps. Both the switch GUI and CLI provide access for configuring the switch. The OOB management IP must be on a different IP subnet than those defined on all other switch interfaces (port, VLAN). Blade servers are connected to internal (te 1/1 – te 4/4) ports. The internal ports communicate together allowing for east-west traffic. The external ports allow for north-south communication to any upstream devices on the network as if the ports were typical switching/bridging device. Key features of the R1-2210 include the following internal (server-to-server) and external connections:

- Internal 10Gb SFP+ ports: 16
- External 10Gb SFP+ ports: 4
- External 1Gb RJ45 ports: 2

Figure 6 and Figure 7 show the switch port mapping for the R1-2210.
1.4 General networking best practices for VRTX 1GbE and 10GbE switch modules

- Ensure that the local network DHCP server IP address pool can support multiple unique IP addresses. For static IP addresses assigned to the Dell PowerEdge VRTX 1GbE switch, ensure that they are unique from the local network DHCP server pool.
- Uplink switch ports in IEEE 802.1Q trunk or Link Aggregation Group (LAG) configurations on Dell PowerEdge VRTX 1GbE or 10GbE switch modules require identical IEEE 802.1Q trunks or LAG configurations. See Figure 8.
- Dell EMC recommends creating a separate VLAN when establishing a management link to the Dell PowerEdge VRTX Chassis Management Controller (CMC). The CMC and any in-band IP configuration for management must be on different subnets. Following best practices, in Figure 8, an in-band management port would be on a separate VLAN than the CMC.
Figure 8 Basic network topology with separation of management subnets

Uplink Switch

Dell Networking 5524

Link Aggregation Group (LAG)

Dell PowerEdge VRTX

VLAN5

VLAN Trunk
2 Dell PowerEdge VRTX 1GbE or 10GbE switch configuration via GUI

To configure the PowerEdge VRTX 1GbE or 10GbE switch IOM, follow the steps below:

1. Log in to the CMC.
2. Log in to the VRTX Switch IOM.
3. Configure the VLANs.
4. Configure the trunk ports.
5. Configure the Link Aggregations Ports.

Note: The following sections include detailed instructions on each of the steps above. Section 3.2 includes additional CLI configuration commands.

2.1 Logging into CMC GUI

For instructions on configuring CMC settings, see the "Chassis Management Controller Version x.x for Dell PowerEdge VRTX User's Guide" at dell.com/support/manuals.

1. Go to the LCD display on the front of the PowerEdge VRTX system.
2. Select **IP Summary** from the main menu screen.
 The CMC IP address displays along with iDRAC IP address.

Note: Navigate using the up and down arrow buttons. Make selections using the center button.

3. Open a web browser.
4. Enter the CMC IP address from step 2 in the address field.
5. Enter the default Username: **root** and Password: **calvin** in the Dell PowerEdge VRTX CMC Login screen and click **Submit**.
 The Chassis Management Controller GUI displays. See Figure 9.
Dell EMC recommends setting a unique username and password.

2.2 Logging into the PowerEdge VRTX Switch Module

1. Navigate to the I/O Module Overview option in the Chassis Management Controller GUI's left pane. See Figure 10.

2. Click on Launch I/O Module GUI.
3. The Login screen to the VRTX Switch Module displays. See Figure 11.
4. Enter the default Username: root and Password: calvin, and click Submit in the login screen to display the VRTX Switch Module Home page.

Notes:
1. Dell EMC recommends setting a unique username and password.
2. By default, the 1GbE and 10GbE switch module obtains its IP address from the local DHCP server. However, the IP address can be assigned statically by selecting the <Setup> entry from the I/O Module Overview page. Changing this IP address will result in the current connection no longer working until the new IP address is used in the browser.

2.3 Configuring VLANs

Note: The following information applies to the 1GbE switch module. The steps to configure the 10GbE switch module are similar (only the port numbering changes).

1. Expand Switching → VLAN in the VRTX Switch Module Home page’s left pane and click VLAN Membership. See Figure 12.
2. Click Add in the VLAN membership pane.
3. Enter 10 in the VLAN ID field.
4. Enter Server node 1 in the VLAN name field.
5. Click Apply.
6. Repeat steps 1 – 5 to configure the VLAN 20 and server node 2 VLANs.
7. Click **Port Settings** in the left pane and click **Edit**. See Figure 13.
8. Select the **Internal Port** radio button on the Port Settings tab and select gi1/1 from the Internal Port drop-down menu, which is the server port in this example.
9. Select **Access** from the Port VLAN Mode drop-down menu.
10. Click 1 in the VLAN list field and click **Remove**.
11. Enter 10 in the VLAN list box, and click **Add**.
12. Click **Apply**.

Figure 13 Assigning VLANs to server nodes

13. Select **gi2/1** in the Internal Port drop-down menu.
14. Click 1 in the VLAN list and click **Remove**.
15. Enter 20 in the VLAN list and click **Add**.
16. Click **Apply**.
17. Click the floppy drive icon in the upper-right corner of the Port Settings: Edit page to save all new settings to the start-up configuration.

2.4 Configuring Trunk Ports

Note: The following information applies to the 1GbE switch module. The steps to configure the 10GbE switch module are similar (only the port numbering changes).

1. Expand **Port Settings** in the VRTX Switch Module **Home** page’s left pane. See Figure 14.
2. Click **Edit** on the Port Settings tab.
3. Select the **External Port** radio button.
4. Select gi0/1 on the drop-down menu, which is the external port connected to the uplink switch. All the VLANs must be in the VLAN list field.
5. Select **Trunk** from the **Port VLAN Mode** drop-down menu.
6. Enter 10 in the **VLAN List** field, and click **Add**.
7. Click **Apply**.
8. Enter 20 in the **VLAN List** field and click **Apply**.
9. Click the floppy drive icon in the upper-right of the Port Settings : Edit page to save all the new settings to start-up configuration.

Figure 14 Assigning Trunk Ports

Note: Figure 14 is only an example and not representative of the previous settings made.
2.5 Configuring Link Aggregation Ports

Sometimes it is desirable to “aggregate” multiple ports together to obtain more bandwidth to support multiple downstream devices. Follow the steps below to configure LAG ports:

1. Expand **Link Aggregation → LAG Membership** in the left pane. See Figure 15.
2. Click **Edit** under the **LAG Membership** tab.
 - The default LAG Group is 1.
 - Add ports as members to this LAG group.
3. Click the Gi0/1 LAG button under external ports.
 - This adds a check mark.
4. Click on the **LACP** button for the port.
 - This adds an L when LACP is used.
 - LACP is an industry-standard protocol that allows the two switches to exchange information and bring up the LAG without configuration errors. The non-LACP option tries to enable the ports even with configuration errors and potentially looping the switch connections.
5. Repeat steps 3 and 4 for Gi0/2.
6. Continue adding ports that form the LAG to the uplink switch, as needed.
7. Click **Apply**.

Figure 15 Assigning Ports to LAG Membership

Note: Add a LAG, and then an LACP to internal, server-facing ports on the same server with the understanding that this requires teaming/bonding the ports in the particular operating system being used.

8. Click **VLAN → LAG Settings**. See Figure 16.
Figure 16 Setting LAG as Trunk

9. Click **Edit**.
10. Change the Port VLAN Mode for **LAG 1** to **Trunk**.
11. Click **Apply**.
12. Click the floppy disk icon in the upper-right of the Port Settings : Edit page to save all new settings to the start-up configuration.
13. Click **logout** in the upper right corner of the window.

Note: Figure 16 is only an example and not representative of the previous settings made.
3 Connectivity, troubleshooting and product tips for VRTX Ethernet switches using CLI

The following sections contain steps to enable or troubleshoot basic connectivity. Most of these steps are CLI-only. Therefore, these sections focus on this method.

3.1 Prerequisites

The following procedures use the switch CLI, CMC CLI and blade server operating system (OS) to troubleshoot connectivity between the VRTX switch and the VRTX blade servers. These procedures require access to the VRTX switch and VRTX blade servers.

Note: See the next section on configuring the CMC for CLI access to locate instructions for connecting to the devices.

3.2 Configure the VRTX CMC for access to the CMC CLI, and switch CLI

Section 2.1 shows how to determine the IP address of the CMC. This is the same address used to access the CMC CLI.

You can also access the CLI more directly using the serial port on the back of the CMC card in the VRTX chassis.

The default serial connection settings are as follows:

- Baud rate – 115200
- User – root
- Password – calvin

3.2.1 Connect to the switch CLI from CMC CLI, SSH, and Telnet

Use the following command to connect to the switch CLI from the CMC CLI, SSH terminal or Telnet terminal.

```
$ connect switch
```

The keyboard command to exit the switch CLI and return to the CMC CLI is `Ctrl-\-` pressed simultaneously.
3.3 Basic connectivity and management from the switch CLI

The following sections contain the basic commands to enable connectivity and management through the switch CLI.

3.3.1 Check the status of all interfaces

Log in to the switch CLI and run `show interface status` to see all the interfaces and their current status.

```
VRTX-switch#show interfaces status

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Duplex</th>
<th>Speed</th>
<th>Neg</th>
<th>Ctrl</th>
<th>State</th>
<th>Pressure</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi0/1</td>
<td>1G-Copper</td>
<td>Full</td>
<td>1000</td>
<td>Enabled</td>
<td>Off</td>
<td>Up</td>
<td>Disabled</td>
<td>Off</td>
</tr>
<tr>
<td>gi0/2</td>
<td>1G-Copper</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>gi0/3</td>
<td>1G-Copper</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Down</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>gi0/4</td>
<td>1G-Copper</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Down</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>gi0/5</td>
<td>1G-Copper</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Down</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>gi0/6</td>
<td>1G-Copper</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Down</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>gi0/7</td>
<td>1G-Copper</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Down</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>gi0/8</td>
<td>1G-Copper</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Down</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>gi1/1</td>
<td>1G-Copper</td>
<td>Full</td>
<td>1000</td>
<td>Enabled</td>
<td>Off</td>
<td>Up</td>
<td>Disabled</td>
<td>Unknown</td>
</tr>
<tr>
<td>gi1/2</td>
<td>1G-Copper</td>
<td>Full</td>
<td>1000</td>
<td>Enabled</td>
<td>Off</td>
<td>Up</td>
<td>Disabled</td>
<td>Unknown</td>
</tr>
<tr>
<td>gi1/3</td>
<td>1G-Copper</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Down</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>gi1/4</td>
<td>1G-Copper</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Down</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>gi2/1</td>
<td>1G-Copper</td>
<td>Full</td>
<td>1000</td>
<td>Enabled</td>
<td>Off</td>
<td>Up</td>
<td>Disabled</td>
<td>Unknown</td>
</tr>
<tr>
<td>gi2/2</td>
<td>1G-Copper</td>
<td>Full</td>
<td>1000</td>
<td>Enabled</td>
<td>Off</td>
<td>Up</td>
<td>Disabled</td>
<td>Unknown</td>
</tr>
<tr>
<td>gi2/3</td>
<td>1G-Copper</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Down</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>gi2/4</td>
<td>1G-Copper</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Down</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>gi3/1</td>
<td>1G-Copper</td>
<td>Full</td>
<td>1000</td>
<td>Enabled</td>
<td>Off</td>
<td>Up</td>
<td>Disabled</td>
<td>Unknown</td>
</tr>
<tr>
<td>gi3/2</td>
<td>1G-Copper</td>
<td>Full</td>
<td>1000</td>
<td>Enabled</td>
<td>Off</td>
<td>Up</td>
<td>Disabled</td>
<td>Unknown</td>
</tr>
<tr>
<td>gi3/3</td>
<td>1G-Copper</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Down</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>gi3/4</td>
<td>1G-Copper</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Down</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>gi4/1</td>
<td>1G-Copper</td>
<td>Full</td>
<td>1000</td>
<td>Enabled</td>
<td>Off</td>
<td>Up</td>
<td>Disabled</td>
<td>Unknown</td>
</tr>
<tr>
<td>gi4/2</td>
<td>1G-Copper</td>
<td>Full</td>
<td>1000</td>
<td>Enabled</td>
<td>Off</td>
<td>Up</td>
<td>Disabled</td>
<td>Unknown</td>
</tr>
<tr>
<td>gi4/3</td>
<td>1G-Copper</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Down</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>gi4/4</td>
<td>1G-Copper</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Down</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>
```

Flow Link

<table>
<thead>
<tr>
<th>Ch</th>
<th>Type</th>
<th>Duplex</th>
<th>Speed</th>
<th>Neg</th>
</tr>
</thead>
<tbody>
<tr>
<td>oob</td>
<td>100M-Copper</td>
<td>Full</td>
<td>100</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
```
3.3.2 Check a specific port status from the switch CLI
Log in to the switch CLI and run `show interface status gi s/p` (where s= slot, p=port).

Example for a Down port:

```
VRTX-switch#show interface status gi1/1
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Duplex</th>
<th>Speed</th>
<th>Neg ctrl</th>
<th>Flow</th>
<th>Link</th>
<th>Back</th>
<th>Pressure</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/1</td>
<td>1G</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Down</td>
<td>--</td>
</tr>
</tbody>
</table>

Example for an Up port:

```
VRTX-switch#show interface status gi1/1
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Duplex</th>
<th>Speed</th>
<th>Neg ctrl</th>
<th>Flow</th>
<th>Link</th>
<th>Back</th>
<th>Pressure</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/1</td>
<td>1G</td>
<td>Full</td>
<td>1000</td>
<td>Enabled</td>
<td>Off</td>
<td>Up</td>
<td>Off</td>
<td>Disabled</td>
<td>Off</td>
</tr>
</tbody>
</table>

3.3.3 Shut/no shut a switch port from the switch CLI
Log in to the switch CLI and go to interface configuration mode, identify the switch port you want to configure and enter the appropriate shut/no shut command:

```
VRTX-switch#config
VRTX-switch(config)#interface gi1/1
VRTX-switch(config-if)#shutdown
VRTX-switch(config-if)#no shutdown
VRTX-switch(config-if)#end
```

3.3.4 Save the running-configuration on a switch from the switch CLI
Type the following command from the switch CLI to save the running-config to be active in the event of a switch reload:

```
VRTX-switch#copy running-config startup-config
```
3.3.5  **Reload a switch from the switch CLI**
Log in to the switch CLI and type the following command to reload or reboot the switch:

```
VRTX-switch#reload
VRTX-switch#This command will reset the whole system and disconnect your current session. Do you want to continue? (Y/N)[N]Y
```

**Note:** Be sure to save running-config from section 3.3.4 before reloading.

3.3.6  **Assign an IP address to switch VLAN 1 from the switch CLI**
Log in to the switch CLI and configure the VLAN 1 IP address.

**Note:** If you completed this configuration in previous sections with the CMC GUI. You do not need to do it again.

3.3.6.1  **Connect the network to an external port on a VRTX switch**

If using a DHCP IP Address
Use the following commands for VLAN 1 IP address assignment with DHCP:

```
VRTX-switch#config
VRTX-switch(config)#interface vlan 1
VRTX-switch(config-if)#ip address dhcp
VRTX-switch(config-if)#end
```

If using Static IP Address
Use the following commands for VLAN 1 static IP address assignment. This example applies the IP address 192.168.3.100 to the switch.

**Note:** This address must match the applicable infrastructure where the VRTX is being installed.

```
VRTX-switch#config
VRTX-switch(config)#interface vlan 1
VRTX-switch(config-if)#ip address 192.168.3.100 /24
VRTX-switch(config-if)#end
```

**Confirm application of the IP address to the interface**
Use the following command to verify VLAN 1 IP address configuration. In this example, `nnn.nnn.nnn.nnn` is specific to the infrastructure being used.

```
VRTX-switch#show ip interface
Gateway IP Address Activity Status Type IP Address I/F Type Status
------------------ -------------- ---- ----------- ------ ------ -------
nnn.nnn.nnn.nnn Active dhcp nnn.nnn.nnn.nnn vlan 1 DHCP Valid
```
3.4 Troubleshooting and connectivity tips
This section covers general and connectivity troubleshooting. While it may not address all problems, it should cover the most common problems.

3.4.1 Password recovery and setting the switch to factory defaults
If device management access uses the switch’s local user database and loses the password, there are two procedures to recover the password: through the CMC and through the switch’s Startup Menu.

Set the switch to factory default and recover the password through the CMC
The following command resets the switch to factory default, enabling password recovery.

Note: Completion of this procedure loses the current switch configuration. Enter this command through the CMC CLI.

Log in and enter the following command:

```
$ racadm racresetcfg -m switch
```

The previous command restores the switch to the default configuration with default settings. Use the default username and password on the next boot.

Password recovery through the switch startup menu
You can only access the Startup Menu through a CMC connection to the switch and only on FW releases 2.0.0.39 and higher

To enter the Startup menu after logging into the CMC CLI, enter the following command:

```
$ connect switch
```

Log in to the switch console CLI and then reload the switch confirming the action with a Y

```
VRTX-switch# reload
VRTX-switch#This command will reset the whole system and disconnect your current session. Do you want to continue? (Y/N)[N]Y
```

The switch automatically terminates the CMC switch connection. Quickly re-login to the switch to capture the switch during switch POST:

```
$ connect switch
```

1. When the prompt: Autoboot in 2 seconds - press RETURN displays during the switch boot process, press RETURN before 2 seconds have passed. The Startup Menu now displays.
2. Select option [3] Password Recovery from the Startup menu and press Enter to ignore the request for the current password when the switch boot process continues.
   The boot process continues and ignores the password prompt.
4. Update password.

**Note:** If the service password-recovery command is enabled, complete configuration is retained. If the service password-recovery command is disabled, the switch is restored to the default configuration and uses default settings and default user/password on the next boot.

### 3.4.2 Troubleshooting flow chart

The troubleshooting flow chart shown in Figure 17 and Figure 18 provides server I/O connectivity troubleshooting. For additional explanation of the steps in the flow chart, see Section 3.4.3.

**Figure 17  Troubleshooting Flow Chart (Part 1)**
Figure 18  Troubleshooting Flow Chart (Part 2)

Try the following steps to re-initialize ports and attempt successful ping:
- shut/no shut switch port
- Disable/enable NIC port in OS
- Restart blade server
- Reseat blade server
- Reload switch (saving running config before reload)
- Set switch to factory default configuration
- Reseat switch (save running config before reload)
- (Last Resort) Power cycle chassis via CMC CLI racadm chassiactio n powercycle command or CMC GUI (shut down blade servers, then power cycle chassis, confirm switch is up before powering on blade servers)

Is the MAC address for NIC present on the switch?

NO

- Assign IP address to the NIC Port in the server OS
- Verify Firewall on the blade server OS allows ping traffic to be received
- Assign an IP address on the same subnet as the NIC to switch VLAN 1

YES

Can the switch ping the NICs IP address?

NO

Move the blade server to another slot to determine slot specific failure.

YES

Have you already moved the blade to another slot in the VRTX chassis to test connections?

NO

- Assign IP address to the NIC Port in the server OS
- Verify Firewall on the blade server OS allows ping traffic to be received
- Assign an IP address on the same subnet as the NIC to switch VLAN 1

YES

Can the switch ping the NICs IP address?

NO

***If you have already done this contact tech support

YES

Connectivity established

Continued from first half of chart

- Assign IP address to the NIC Port in the server OS
- Assign an IP address on the same subnet as the NIC to switch VLAN 1
- Verify Firewall on the blade server OS allows ping traffic to be received

NO

Can the switch ping the NICs IP address?

NO

Finish:

YES

Connectivity established

Back to beginning of flow chart

Continued from first half of chart
3.4.3 Additional explanation of troubleshooting steps

3.4.3.1 How to Confirm the NIC is present on blade server

Enter the LifeCycle Controller during Post or check the blade server information from the CMC.

1. During blade server POST, enter LifeCycle Controller mode (F10) and confirm NIC is listed in inventory
   - If it is not listed:
     a. Verify installation of NIC in blade server.
     b. Install NIC if necessary.
   - If it is listed:
     a. Restart or reseat blade server.
     b. If after restart/reseat of blade server, blade server does not recognize NIC, a NIC may have failed. Please contact technical support.

2. From CMC, review blade server information and confirm listing of NIC in configuration
   - If it is not listed:
     a. Verify NIC is installed in blade server
     b. If NIC is not installed, install NIC
   - If it is listed:
     a. Restart or reseat blade server
     b. If after restart/reseat of the blade server, the blade server does not recognize the NIC, a NIC may have failed. Please contact technical support.

Notes:
1. OS's may not enumerate NIC ports in order. Confirm the NIC's physical location, either in LifeCycle Controller Mode (F10), UEFI BIOS setup (F2) or within the OS to determine the corresponding switch port.
2. NICs are configured with IPv4 and IPv6 enabled by default. To reconfigure NIC defaults, use either the Dell LifeCycle Controller Mode (F10), UEFI BIOS setup (F2), the NIC Configuration Utility that ships with all NICs (may need to be installed, download from support.dell.com), or the advanced Network Settings options within the OS. The Network Settings options within the OS may be part of the adapter configuration settings and should be used for Intel NICs in lieu of a NIC Configuration Utility since they do not provide one.

3.4.3.2 The switch CLI shows the interface down and blade server NIC shows not connected or link down in OS

1. Confirm that the blade server is up.
   a. From CMC, review the blade server information.
   b. Confirm that the blade server is powered on. If not, power up the blade server.
   c. Confirm the blade server NIC is present and recognized.

2. OS still shows not connected, but NIC is confirmed present
a. Enter config mode from the switch CLI and execute shut/no shut on the switch port.
b. Verify switch port link state. If up, re-initialization of the link was required to bring port up.
c. If port is still down, follow these steps to re-initialize the ports to get a link “up” state.
   i. Disable/Enable NIC port in OS.
   ii. Restart blade server.
   iii. Reseat blade server.
   iv. Save running-config and reload switch.
   v. Set switch to factory default configuration.
   vi. Save running-config and reseat switch.
   vii. (Last Resort) Power cycle chassis via CMC CLI or CMC GUI racadm chassiscfg command.
      1. Shut down blade servers first, then power cycle chassis.
      2. Confirm switch is booted to login before powering on blade servers.
d. Determine whether port down is slot specific.
   i. Move blade server to new slot.
   ii. Verify switch port status.
      1. If switch ports are down, note defective ports and contact technical support.
      2. If switch ports are up, point of failure for failing slot position could be with switch ports or slot.
      3. Optionally, test the rest of the slots.
      4. To determine whether the switch is the point of failure, further debug must be done. Next step is to contact tech support.

3.4.3.3 The interface shows up from the CLI, but connectivity to the blade server NIC fails
1. Confirm blade server is up
   a. From CMC, review blade server information.
   b. If blade server is not powered on, power up blade server.
   c. Confirm the blade server NIC is present and recognized.
2. Confirm that the network cable is plugged into the switch and the link light is on.
3. Determine whether NIC MAC addresses exist in the switch MAC address table.
   a. Determine the MAC address of NIC ports.
      From blade server
      i. Windows: Run ipconfig in command window.
      ii. Linux: Run ifconfig in command window.
      From CMC
      i. Access blade server iDRAC from CMC GUI and review Network Configuration.
b. From switch CLI run command **show mac address-table**. Review switch MAC address list for NIC MAC addresses (can also associate to switch port ID listed with each MAC address).

**Note:** More than one MAC can be present per NIC port if NIC is a CNA

4. Confirm ping traffic passes if NIC MAC addresses are present
   From the switch CLI – enter in the appropriate address for *nnn.nnn.nnn.nnn* with nnn.nnn.nnn.nnn being the appropriate IP address on the infrastructure subnet.

   ```
 VRTX-switch#ping nnn.nnn.nnn.nnn
 Pinging nnn.nnn.nnn.nnn with 18 bytes of data:
 18 bytes from nnn.nnn.nnn.nnn: icmp_seq=1. time=0 ms
 18 bytes from nnn.nnn.nnn.nnn: icmp_seq=2. time=0 ms
 18 bytes from nnn.nnn.nnn.nnn: icmp_seq=3. time=0 ms
 18 bytes from nnn.nnn.nnn.nnn: icmp_seq=4. time=0 ms
 ----nnn.nnn.nnn.nnn PING Statistics----
 4 packets transmitted, 4 packets received, 0% packet loss
 round-trip (ms) min/avg/max = 0/0/0
   ```

5. If NIC MAC addresses are not present, restart blade server, repeat MAC address review after blade server restart
   a. Assign IP Address to NIC port.
      Do this via the blade server OS.
   b. Verify Firewall on blade server OS allows ping traffic to be received.
   c. Assign an IP Address on the same subnet as NIC to switch VLAN 1.
   d. From switch ping NIC IP address.
      - If ping is successful, connectivity is established.
      - If ping is unsuccessful, try each step below to reinitialize ports and attempt successful ping.
        o Shut/no shut switch port.
        o Disable/Enable NIC port in OS.
        o Restart blade server.
        o Reseat blade server.
        o Save running-config and reload switch.
        o Set switch to factory default configuration.
        o Save running-config and reset switch.
        o Last Resort - Power cycle chassis via CMC CLI `racadm chassi$action powercycle` command or CMC GUI (shut down blade servers, then power cycle chassis, confirm switch is up before powering on blade servers).
      - If ping is still unsuccessful, verify if connectivity failure is slot specific.
        o Move blade server to new slot.
          a. Verify switch port status.
          b. Verify if NIC MAC addresses are present.
          c. If NIC MAC addresses are present, shut/no shut a switch port from the switch CLI, complete the following steps:
i. Log in to the switch CLI and go to interface configuration mode.

ii. Identify the switch port you want to configure.

iii. Enter the appropriate shut/no shut command.

iv. Contact tech support, noting defective ports (i.e., if ports 1/1-4 did not connect properly, and ports 2/1-4 do, switch is defective for ports 1/1-4).

   o If NIC MAC addresses are still not present after slot move, repeat previous steps. If these steps fail, the switch as a whole may be failing:
      a. Shut/no shut switch port.
      b. Disable/Enable NIC port in OS.
      c. Restart blade server.
      d. Reseat blade server.
      e. Save running-config and reload switch.
      f. Save running-config and reseat switch.
      g. (Last Resort) Power cycle chassis via CMC CLI or CMC GUI using the `racadm chassism action powercycle` command (shut down blade servers, then power cycle chassis, confirm switch is up then power-on blade servers).
# Acronyms used in this document

The following table lists the acronyms that this document contains and their meanings:

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMC</td>
<td>Chassis management controller</td>
</tr>
<tr>
<td>CLI</td>
<td>Command line interface</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical user interface</td>
</tr>
<tr>
<td>IOM</td>
<td>I/O module</td>
</tr>
<tr>
<td>LAG</td>
<td>Link aggregation group</td>
</tr>
<tr>
<td>OOB</td>
<td>Out-of-band</td>
</tr>
<tr>
<td>OS</td>
<td>Operating system</td>
</tr>
<tr>
<td>PTM</td>
<td>Pass-through module</td>
</tr>
<tr>
<td>TOR</td>
<td>Top of rack</td>
</tr>
</tbody>
</table>
B Additional resources

- Additional information for the Dell PowerEdge VRTX can be found at Dell PowerEdge VRTX Product Page.

- The User Guide for the Dell PowerEdge VRTX contains additional configuration details. Download the latest User Guide at http://www.dell.com/support. This site is focused on meeting your needs with proven services and support.

- http://DellTechCenter.com is an IT Community where you can connect with Dell EMC Customers and Dell EMC employees to share knowledge, best practices, and information about Dell EMC products and installations.

- For information on VRTX training, please visit learndell.com/server or email Dell EMC Education Services at US_Training@Dell.com.

Support and feedback

Contacting technical support

Support Contact Information Web: http://Support.Dell.com/
Telephone: USA: 1-800-945-3355

Feedback for this document

We encourage readers of this publication to provide feedback on the quality and usefulness of this deployment guide by sending an email to Dell_Networking_Solutions@Dell.com

About Dell EMC

Dell EMC is a worldwide leader in data center and campus solutions, which includes the manufacturing and distribution of servers, network switches, storage devices, personal computers, and related hardware and software. For more information on these and other products, please visit the Dell EMC website at http://www.dell.com.