Document History

<table>
<thead>
<tr>
<th>Title</th>
<th>Publication number</th>
<th>Summary of changes</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric OS Troubleshooting and Diagnostics Guide</td>
<td>53-1001187-01</td>
<td>Added support for Virtual Fabrics, fcPing, pathInfo, and additional troubleshooting tips.</td>
<td>November 2008</td>
</tr>
<tr>
<td>Fabric OS Troubleshooting and Diagnostics Guide</td>
<td>53-1001340-01</td>
<td>Added support for checking physical connections, updated commands, removed obsolete information, and moved the FCIP and FICON chapters into their respective books.</td>
<td>July 2009</td>
</tr>
<tr>
<td>Fabric OS Troubleshooting and Diagnostics Guide</td>
<td>53-1001769-01</td>
<td>Added support for the Rolling Reboot Detection feature and the Superping tool; added enhancements for supportSave and spinFab; updated commands; transferred the iSCSI chapter into its respective book.</td>
<td>March 2010</td>
</tr>
<tr>
<td>Fabric OS Troubleshooting and Diagnostics Guide</td>
<td>53-1002150-01</td>
<td>Added Frame Viewer and Diagnostics port features.</td>
<td>April 2011</td>
</tr>
<tr>
<td>Fabric OS Troubleshooting and Diagnostics Guide</td>
<td>53-1002150-02</td>
<td>Updated the Diagnostics port feature.</td>
<td>June 2011</td>
</tr>
<tr>
<td>Fabric OS Troubleshooting and Diagnostics Guide</td>
<td>53-1002751-01</td>
<td>Updated for Fabric OS v7.1.0</td>
<td>December 2012</td>
</tr>
<tr>
<td>Fabric OS Troubleshooting and Diagnostics Guide</td>
<td>53-1002751-02</td>
<td>Corrected errors and omissions in the guide.</td>
<td>March 2013</td>
</tr>
<tr>
<td>Fabric OS Troubleshooting and Diagnostics Guide</td>
<td>53-1002930-01</td>
<td>Updated for Fabric OS v7.2.0.</td>
<td>July 2013</td>
</tr>
<tr>
<td>Fabric OS Troubleshooting and Diagnostics Guide</td>
<td>53-1003141-01</td>
<td>Updated for Fabric OS v7.3.0.</td>
<td>June 2014</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Firmware Download Errors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blade troubleshooting tips</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firmware download issues</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troubleshooting with the firmwareDownload command</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gathering additional information</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USB error handling</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Considerations for downgrading firmware</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preinstallation messages</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blade types</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firmware versions</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platform</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routing</td>
<td>60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 6</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passwords</td>
<td>61</td>
</tr>
<tr>
<td>Password recovery options</td>
<td>62</td>
</tr>
<tr>
<td>Device authentication</td>
<td>62</td>
</tr>
<tr>
<td>Protocol and certificate management</td>
<td>63</td>
</tr>
<tr>
<td>Gathering additional information</td>
<td>63</td>
</tr>
<tr>
<td>SNMP</td>
<td>64</td>
</tr>
<tr>
<td>Gathering additional information</td>
<td>64</td>
</tr>
<tr>
<td>FIPS</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 7</th>
<th>Virtual Fabrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Virtual Fabrics troubleshooting</td>
<td>65</td>
</tr>
<tr>
<td>Fabric identification issues</td>
<td>66</td>
</tr>
<tr>
<td>Logical Fabric issues</td>
<td>66</td>
</tr>
<tr>
<td>Base switch issues</td>
<td>67</td>
</tr>
<tr>
<td>Logical switch issues</td>
<td>68</td>
</tr>
<tr>
<td>Switch configuration blade compatibility</td>
<td>69</td>
</tr>
<tr>
<td>Gathering additional information</td>
<td>70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 8</th>
<th>ISL Trunking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link issues</td>
<td>71</td>
</tr>
<tr>
<td>Buffer credit issues</td>
<td>72</td>
</tr>
<tr>
<td>Getting out of buffer-limited mode</td>
<td>72</td>
</tr>
</tbody>
</table>
Chapter 9 Zoning

Overview of corrective action ... 73
Verifying a fabric merge problem 73
Verifying a TI zone problem .. 73
Segmented fabrics .. 74
Zone conflicts .. 75
Resolving zoning conflicts ... 76
Correcting a fabric merge problem quickly 77
Changing the default zone access 77
Editing zone configuration members 77
Reordering the zone member list 78
Checking for Fibre Channel connectivity problems 78
Checking for zoning problems 79
Gathering additional information 80

Chapter 10 Diagnostic Features

Fabric OS diagnostics .. 81
Diagnostic information .. 81
Power-on self-test .. 82
Disabling POST ... 84
Enabling POST ... 84
Switch status ... 84
Viewing the overall status of the switch 85
Displaying switch information 85
Displaying the uptime for a switch 87
Using the spinFab and portTest commands 87
Debugging spinFab errors .. 88
Clearing the error counters 89
Enabling a port ... 90
Disabling a port .. 90
Port information ... 90
Viewing the status of a port 90
Displaying the port statistics 91
Displaying a summary of port errors for a switch 92
Equipment status ... 93
Checking the temperature, fan, and power supply 94
Checking the status of the fans 94
Checking the status of a power supply 94
Checking temperature status 95
System message log ... 95
Displaying the system message log with no page breaks .. 96
Displaying the system message log one message at a time . 96
Clearing the system message log 96
Port log ... 96
Viewing the port log ... 97
About This Document

In this chapter

- How this document is organized .. xi
- Supported hardware and software xii
- What's new in this document ... xiii
- Document conventions .. xiii
- Additional information ... xv
- Getting technical help ... xv
- Document feedback .. xvi

How this document is organized

The document contains the following chapters:

- **Chapter 1, “Introduction,”** gives a brief overview of troubleshooting the Fabric OS, and provides procedures for gathering basic information from your switch and fabric to aid in troubleshooting.
- **Chapter 2, “General Troubleshooting,”** provides information on licensing, hardware, and syslog issues.
- **Chapter 3, “Connectivity,”** provides information and procedures on troubleshooting various link issues.
- **Chapter 4, “Configuration,”** provides troubleshooting information and procedures for configuration file issues.
- **Chapter 5, “Firmware Download Errors,”** provides procedures for troubleshooting firmware download issues.
- **Chapter 6, “Security,”** provides procedures for user account and security issues.
- **Chapter 7, “Virtual Fabrics,”** provides procedures for troubleshooting Virtual Fabrics.
- **Chapter 8, “ISL Trunking,”** provides procedures for resolving trunking issues.
- **Chapter 9, “Zoning,”** provides preparations and procedures for performing firmware downloads, as well troubleshooting information.
- **Chapter 10, “Diagnostic Features,”** provides procedures for the use of the diagnostics commands for the chassis, ports, and other chassis equipment, as well as providing information on the system messages.
- **Appendix A, “Switch Type and Blade ID,”** provides reference information to guide you in understanding switch output.
- **Appendix B, “Hexadecimal Conversion,”** provides reference information for translating hexadecimal output.
Supported hardware and software

In those instances in which procedures or parts of procedures documented here apply to some switches but not to others, this guide identifies which switches are supported and which are not.

Although many different software and hardware configurations are tested and supported by Brocade Communications Systems, Inc. for Fabric OS v7.3.0, documenting all possible configurations and scenarios is beyond the scope of this document.

The following hardware platforms are supported by this release of Fabric OS:

- Brocade 300 switch
- Brocade 5100 switch
- Brocade 5300 switch
- Brocade 5410 embedded switch
- Brocade 5424 embedded switch
- Brocade 5430 embedded switch
- Brocade 5431 embedded switch
- Brocade 5432 embedded switch
- Brocade 5450 embedded switch
- Brocade 5460 embedded switch
- Brocade 5470 embedded switch
- Brocade 5480 embedded switch
- Brocade M6505 embedded switch
- Brocade 6505 switch
- Brocade 6510 switch
- Brocade 6520 switch
- Brocade 6547 embedded switch
- Brocade 6548 embedded switch
- Brocade 7800 extension switch
- Brocade 7840 extension switch
- Brocade VA-40FC
- Brocade Encryption Switch
- Brocade DCX Backbone family:
 - Brocade DCX
 - Brocade DCX-4S
- Brocade DCX 8510 Backbone family:
 - Brocade DCX 8510-4
 - Brocade DCX 8510-8
What’s new in this document

The following information is added:

• Support for Brocade 7840 extension switch.
• Support for FC16-64 port blade.
• POST2 section is updated.

For further information about documentation updates for this release, refer to the release notes.

Document conventions

This section describes text formatting conventions and important notice formats used in this document.

Text formatting

The narrative-text formatting conventions that are used are as follows:

bold text Identifies command names
Identifies the names of user-manipulated GUI elements
Identifies keywords and operands
Identifies text to enter at the GUI or CLI

italic text Provides emphasis
Identifies variables
Identifies paths and Internet addresses
Identifies document titles

`code text` Identifies CLI output
Identifies command syntax examples

Command syntax conventions

For readability, command names in the narrative portions of this guide are presented in mixed lowercase: for example, `switchShow`. In actual examples, command lettercase is often all lowercase. Otherwise, this manual specifically notes those cases in which a command is case-sensitive. Command syntax in this manual follows these conventions:

command Commands are printed in bold.

--option, option Command options are printed in bold.

-argument, arg Arguments.

[] Optional element.

variable Variables are printed in italics. In the help pages, values are underlined or enclosed in angled brackets `< >`.
Command examples

This book describes how to perform configuration tasks using the Fabric OS command line interface, but does not describe the commands in detail. For complete descriptions of all Fabric OS commands, including syntax, operand descriptions, and sample output, refer to the Fabric OS Command Reference.

Notes, cautions, and warnings

The following notices and statements are used in this manual. They are listed below in order of increasing severity of potential hazards.

--- NOTE
A note provides a tip, guidance, or advice, emphasizes important information, or provides a reference to related information.

--- ATTENTION
An Attention statement indicates potential damage to hardware or data.

--- CAUTION
A Caution statement alerts you to situations that can be potentially hazardous to you or cause damage to hardware, firmware, software, or data.

--- DANGER
A Danger statement indicates conditions or situations that can be potentially lethal or extremely hazardous to you. Safety labels are also attached directly to products to warn of these conditions or situations.

Key terms

For definitions specific to Brocade and Fibre Channel, refer to the Brocade Glossary.

For definitions of SAN-specific terms, visit the Storage Networking Industry Association online dictionary at:

http://www.snia.org/education/dictionary
Additional information

This section lists additional Brocade and industry-specific documentation that you might find helpful.

Brocade resources

To get up-to-the-minute information, go to http://my.brocade.com and register at no cost for a user ID and password.

White papers, online demonstrations, and data sheets are available through the Brocade website at:

For additional Brocade documentation, visit the Brocade website:

http://www.brocade.com

Release notes are available on the MyBrocade website and are also bundled with the Fabric OS firmware.

Other industry resources

For additional resource information, visit the Technical Committee T11 website. This website provides interface standards for high-performance and mass storage applications for Fibre Channel, storage management, and other applications:

http://www.t11.org

For information about the Fibre Channel industry, visit the Fibre Channel Industry Association website:

http://www.fibrechannel.org

Getting technical help

Contact your switch support supplier for hardware, firmware, and software support, including product repairs and part ordering. To expedite your call, have the following information available:

1. General Information
 - Switch model
 - Switch operating system version
 - Error numbers and messages received
 - supportSave command output
 - Detailed description of the problem, including the switch or fabric behavior immediately following the problem, and specific questions
 - Description of any troubleshooting steps already performed and the results
 - Serial console and Telnet session logs
2. Switch Serial Number

The switch serial number and corresponding bar code are provided on the serial number label, as illustrated below.

![Serial Number Label](image)

The serial number label is located as follows:

- Brocade 5424 — On the bottom of the switch module.
- Brocade 300, 5100, and 5300 — On the switch ID pull-out tab located on the bottom of the port side of the switch.
- Brocade 6505, 6510, and 6520 — On the switch ID pull-out tab located inside the chassis on the port side on the left.
- Brocade 7800 — On the bottom of the chassis.
- Brocade DCX Backbone — On the bottom right on the port side of the chassis.
- Brocade DCX-4S Backbone — On the bottom right on the port side of the chassis.
- Brocade DCX 8510-4 — On the nonport side of the chassis, on the left just below the left power supply.
- Brocade DCX 8510-8 — On the bottom right on the port side of the chassis and directly above the cable management comb.

3. World Wide Name (WWN)

Use the `licenseIdShow` command to display the chassis WWN.

If you cannot use the `licenseIdShow` command because the switch is inoperable, you can get the WWN from the same place as the serial number, except for the Brocade DCX. For the Brocade DCX, access the numbers on the WWN cards by removing the Brocade logo plate at the top of the nonport side of the chassis.

Document feedback

Quality is our first concern at Brocade and we have made every effort to ensure the accuracy and completeness of this document. However, if you find an error or an omission, or you think that a topic needs further development, we want to hear from you. Forward your feedback to:

documentation@brocade.com

Provide the title and version number of the document and as much detail as possible about your comment, including the topic heading and page number and your suggestions for improvement.
Introduction

In this chapter

- Troubleshooting overview .. 1
- Most common problem areas 2
- Questions for common symptoms 2
- Gathering information for your switch support provider 5
- Building a case for your switch support provider 7

Troubleshooting overview

This book is a companion guide to be used in conjunction with the Fabric OS Administrator’s Guide. Although it provides a lot of common troubleshooting tips and techniques, it does not teach troubleshooting methodology.

Troubleshooting should begin at the center of the SAN — the fabric. Because switches are located between the hosts and storage devices and have visibility into both sides of the storage network, starting with them can help narrow the search path. After eliminating the possibility of a fault within the fabric, see if the problem is on the storage side or the host side, and continue a more detailed diagnosis from there. Using this approach can quickly pinpoint and isolate problems.

For example, if a host cannot detect a storage device, run the `switchShow` command to determine if the storage device is logically connected to the switch. If not, focus first on the switch directly connecting to storage. Use your vendor-supplied storage diagnostic tools to better understand why it is not visible to the switch. If the storage can be detected by the switch, and the host still cannot detect the storage device, then there is still a problem between the host and the switch.

Network Time Protocol

One of the most frustrating parts of troubleshooting is trying to synchronize a switch’s message logs and portlogs with other switches in the fabric. If you do not have Network Time Protocol (NTP) set up on your switches, then trying to synchronize log files to track a problem is more difficult.
Most common problem areas

Table 1 identifies the most common problem areas that arise within SANs and identifies tools to use to resolve them.

<table>
<thead>
<tr>
<th>Problem area</th>
<th>Investigate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric</td>
<td>• Missing devices</td>
</tr>
<tr>
<td></td>
<td>• Marginal links (unstable connections)</td>
</tr>
<tr>
<td></td>
<td>• Incorrect zoning configurations</td>
</tr>
<tr>
<td></td>
<td>• Incorrect switch configurations</td>
</tr>
<tr>
<td></td>
<td>• Switch LEDs</td>
</tr>
<tr>
<td></td>
<td>• Switch commands (for example, switchShow or nsAllShow) for diagnostics</td>
</tr>
<tr>
<td></td>
<td>• Web or GUI-based monitoring and management software tools</td>
</tr>
<tr>
<td>Storage Devices</td>
<td>• Physical issues between switch and devices</td>
</tr>
<tr>
<td></td>
<td>• Incorrect storage software configurations</td>
</tr>
<tr>
<td></td>
<td>• Device LEDs</td>
</tr>
<tr>
<td></td>
<td>• Storage diagnostic tools</td>
</tr>
<tr>
<td></td>
<td>• Switch commands (for example, switchShow or nsAllShow) for diagnostics</td>
</tr>
<tr>
<td>Hosts</td>
<td>• Physical issues between switch and devices</td>
</tr>
<tr>
<td></td>
<td>• Downgrade HBA firmware</td>
</tr>
<tr>
<td></td>
<td>• Incorrect device driver installation</td>
</tr>
<tr>
<td></td>
<td>• Incorrect device driver configuration</td>
</tr>
<tr>
<td></td>
<td>• Device LEDs</td>
</tr>
<tr>
<td></td>
<td>• Host operating system diagnostic tools</td>
</tr>
<tr>
<td></td>
<td>• Device driver diagnostic tools</td>
</tr>
<tr>
<td></td>
<td>• Switch commands (for example, switchShow or nsAllShow) for diagnostics</td>
</tr>
<tr>
<td></td>
<td>Also, make sure you use the latest HBA firmware recommended by the switch supplier or on the HBA supplier's website</td>
</tr>
<tr>
<td>Storage Management Applications</td>
<td>• Incorrect installation and configuration of the storage devices that the software references. For example, if using a volume-management application, check for:</td>
</tr>
<tr>
<td></td>
<td>- Incorrect volume installation</td>
</tr>
<tr>
<td></td>
<td>- Incorrect volume configuration</td>
</tr>
<tr>
<td></td>
<td>• Application-specific tools and resources</td>
</tr>
</tbody>
</table>

Questions for common symptoms

You first must determine what the problem is. Some symptoms are obvious, such as the switch rebooted without any user intervention, or more obscure, such as your storage is having intermittent connectivity to a particular host. Whatever the symptom is, you must gather information from the devices that are directly involved in the symptom.

Table 2 lists common symptoms and possible areas to check. You may notice that an intermittent connectivity problem has lots of variables to look into, such as the type of connection between the two devices, how the connection is behaving, and the port type involved.
<table>
<thead>
<tr>
<th>Symptom</th>
<th>Areas to check</th>
<th>Chapter or Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade is faulty</td>
<td>Firmware or application download</td>
<td>Chapter 2, “General Troubleshooting”</td>
</tr>
<tr>
<td></td>
<td>Hardware connections</td>
<td>Chapter 5, “Firmware Download Errors”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 7, “Virtual Fabrics”</td>
</tr>
<tr>
<td>Blade is stuck in the “LOADING” state</td>
<td>Firmware or application download</td>
<td>Chapter 5, “Firmware Download Errors”</td>
</tr>
<tr>
<td>Configuration upload or download fails</td>
<td>FTP or SCP server or USB availability</td>
<td>Chapter 4, “Configuration”</td>
</tr>
<tr>
<td>E_Port failed to come online</td>
<td>Correct licensing</td>
<td>Chapter 2, “General Troubleshooting”</td>
</tr>
<tr>
<td></td>
<td>Fabric parameters</td>
<td>Chapter 3, “Connectivity”</td>
</tr>
<tr>
<td></td>
<td>Zoning</td>
<td>Chapter 7, “Virtual Fabrics”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 9, “Zoning”</td>
</tr>
<tr>
<td>EX_Port does not form</td>
<td>Links</td>
<td>Chapter 3, “Connectivity”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 7, “Virtual Fabrics”</td>
</tr>
<tr>
<td>Fabric merge fails</td>
<td>Fabric segmentation</td>
<td>Chapter 2, “General Troubleshooting”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 3, “Connectivity”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 7, “Virtual Fabrics”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 9, “Zoning”</td>
</tr>
<tr>
<td>Fabric segments</td>
<td>Licensing</td>
<td>Chapter 2, “General Troubleshooting”</td>
</tr>
<tr>
<td></td>
<td>Zoning</td>
<td>Chapter 3, “Connectivity”</td>
</tr>
<tr>
<td></td>
<td>Virtual Fabrics</td>
<td>Chapter 7, “Virtual Fabrics”</td>
</tr>
<tr>
<td></td>
<td>Fabric parameters</td>
<td>Chapter 9, “Zoning”</td>
</tr>
<tr>
<td>FCIP tunnel bounces</td>
<td>FCIP tunnel, including the network between FCIP tunnel endpoints</td>
<td>Fibre Channel over IP Administrator’s Guide</td>
</tr>
<tr>
<td>FCIP tunnel does not come online</td>
<td>FCIP tunnel, including the network between FCIP tunnel endpoints</td>
<td>Fibre Channel over IP Administrator’s Guide</td>
</tr>
<tr>
<td>FCIP tunnel does not form</td>
<td>Licensing</td>
<td>Chapter 2, “General Troubleshooting”</td>
</tr>
<tr>
<td></td>
<td>Fabric parameters</td>
<td>Fibre Channel over IP Administrator’s Guide</td>
</tr>
<tr>
<td>FCIP tunnel is sluggish</td>
<td>FCIP tunnel, including the network between FCIP tunnel endpoints</td>
<td>Fibre Channel over IP Administrator’s Guide</td>
</tr>
<tr>
<td>Feature is not working</td>
<td>Licensing</td>
<td>Chapter 2, “General Troubleshooting”</td>
</tr>
<tr>
<td>FCR is slowing down</td>
<td>FCR LSAN tags</td>
<td>Chapter 2, “General Troubleshooting”</td>
</tr>
<tr>
<td>FICON switch does not talk to hosts</td>
<td>FICON settings</td>
<td>FICON Administrator’s Guide</td>
</tr>
<tr>
<td>Firmware download fails</td>
<td>FTP or SCP server or USB availability</td>
<td>Chapter 5, “Firmware Download Errors”</td>
</tr>
<tr>
<td></td>
<td>Firmware version compatibility</td>
<td>Chapter 7, “Virtual Fabrics”</td>
</tr>
<tr>
<td></td>
<td>Unsupported features enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Firmware versions on switch</td>
<td></td>
</tr>
<tr>
<td>Host application times out</td>
<td>FCR LSAN tags</td>
<td>Chapter 2, “General Troubleshooting”</td>
</tr>
<tr>
<td></td>
<td>Marginal links</td>
<td>Chapter 3, “Connectivity”</td>
</tr>
<tr>
<td>Intermittent connectivity</td>
<td>Links</td>
<td>Chapter 3, “Connectivity”</td>
</tr>
<tr>
<td></td>
<td>Trunking</td>
<td>Chapter 8, “ISL Trunking”</td>
</tr>
<tr>
<td></td>
<td>Buffer credits</td>
<td>Fibre Channel over IP Administrator’s Guide</td>
</tr>
<tr>
<td></td>
<td>FCIP tunnel</td>
<td></td>
</tr>
<tr>
<td>LEDs are flashing</td>
<td>Links</td>
<td>Chapter 3, “Connectivity”</td>
</tr>
<tr>
<td>LEDs are steady</td>
<td>Links</td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Common Symptoms (Continued)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Areas to Check</th>
<th>Chapter or Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>License issues</td>
<td>Licensing</td>
<td>Chapter 2, “General Troubleshooting”</td>
</tr>
<tr>
<td>LSAN is slow or times-out</td>
<td>LSAN tagging</td>
<td>Chapter 2, “General Troubleshooting”</td>
</tr>
<tr>
<td>Marginal link</td>
<td>Links</td>
<td>Chapter 3, “Connectivity”</td>
</tr>
<tr>
<td>No connectivity between host and storage</td>
<td>Cables, SCSI timeout errors, SCSI retry errors, Zoning</td>
<td>Chapter 3, “Connectivity” Chapter 8, “ISL Trunking” Chapter 9, “Zoning” Fibre Channel over IP Administrator’s Guide</td>
</tr>
<tr>
<td>No light on LEDs</td>
<td>Links</td>
<td>Chapter 3, “Connectivity”</td>
</tr>
<tr>
<td>Port cannot be moved</td>
<td>Virtual Fabrics</td>
<td>Chapter 7, “Virtual Fabrics”</td>
</tr>
<tr>
<td>SCSI retry errors</td>
<td>Buffer credits, FCIP tunnel bandwidth</td>
<td>Fibre Channel over IP Administrator’s Guide</td>
</tr>
<tr>
<td>SCSI timeout errors</td>
<td>Links, HBA, Buffer credits, FCIP tunnel bandwidth</td>
<td>Chapter 3, “Connectivity” Chapter 8, “ISL Trunking” Fibre Channel over IP Administrator’s Guide</td>
</tr>
<tr>
<td>Switch constantly reboots</td>
<td>Rolling Reboot Detection, FIPS</td>
<td>Chapter 6, “Security”</td>
</tr>
<tr>
<td>Switch reboots during configupd/download</td>
<td>Configuration file discrepancy</td>
<td>Chapter 4, “Configuration”</td>
</tr>
<tr>
<td>Syslog messages</td>
<td>Hardware, SNMP management station</td>
<td>Chapter 2, “General Troubleshooting” Chapter 6, “Security”</td>
</tr>
<tr>
<td>Trunk bounces</td>
<td>Cables are on same port group, SFPs, Trunked ports</td>
<td>Chapter 8, “ISL Trunking”</td>
</tr>
<tr>
<td>Trunk failed to form</td>
<td>Licensing, Cables are on same port group, SFPs, Trunked ports, Zoning, E_Port QoS configuration mismatch</td>
<td>Chapter 2, “General Troubleshooting” Chapter 3, “Connectivity” Chapter 8, “ISL Trunking” Chapter 9, “Zoning”</td>
</tr>
<tr>
<td>User forgot password</td>
<td>Password recovery</td>
<td>Chapter 6, “Security”</td>
</tr>
</tbody>
</table>
Gathering information for your switch support provider

If you are troubleshooting a production system, you must gather data quickly. As soon as a problem is observed, perform the following tasks. For more information about these commands and their operands, refer to the Fabric OS Command Reference.

1. Enter the `supportSave` command to save RASlog, TRACE, supportShow, core file, FFDC data, and other support information from the switch, chassis, blades, and logical switches.

2. Gather console output and logs.

 NOTE
 To execute the `supportSave` command on the chassis, you must log in to the switch on an account with the admin role that has the chassis role permission.

Setting up your switch for FTP

1. Connect to the switch and log in using an account with admin permissions.

2. Enter the `supportFtp` command and respond to the prompts.

 Example of supportFtp command
   ```
   switch:admin> supportftp -s
   Host IP Addr[1080::8:800::200C:417A]:
   User Name[njoe]: userFoo
   Password[********]: <hidden>
   Remote Dir[support]:
   supportftp: parameters changed
   ```

 NOTE
 Refer to “Automatic trace dump transfers” on page 100 for more information on setting up for automatic transfer of diagnostic files as part of standard switch configuration.

Using the `supportSave` command

The `supportSave` command uses the default switch name to replace the chassis name regardless of whether the chassis name has been changed to a non-factory setting. If Virtual Fabrics is enabled, the `supportSave` command uses the default switch name for each logical fabric.
Gathering information for your switch support provider

1. Connect to the switch and log in using an account with admin permissions.

2. Enter the appropriate `supportSave` command based on your needs:
 - If you are saving to an FTP or SCP server, use the following syntax:
     ```
     supportSave [-n] [-c]
     ```
 When invoked without operands, this command goes into interactive mode. The following operands are optional:
 - `-n`—Does not prompt for confirmation. This operand is optional; if omitted, you are prompted for confirmation.
 - `-c`—Uses the FTP parameters saved by the `supportFtp` command. This operand is optional; if omitted, specify the FTP parameters through command line options or interactively. To display the current FTP parameters, run `supportFtp` on a dual-CP system, run `supportFtp` on the active CP.
 - On platforms that support USB devices, you can use your Brocade USB device to save the support files. To use your USB device, use the following syntax:
     ```
     supportsave [-U -d remote_dir]
     ```
 - `-U`—Saves support data to an attached USB device. When using this option, a target directory must be specified with the `-d` option.
 - `-d remote_dir`—Specifies the remote directory to which the file is to be transferred. When saving to a USB device, the remote directory is created in the `/support` directory of the USB device by default.

Changing the supportSave timeout value

While running the `supportSave` command, you may encounter a timeout. A timeout occurs if the system is in a busy state due to the CPU or I/O bound from a lot of port traffic or file access. A timeout can also occur on very large machine configurations or when the machine is under heavy usage. If this occurs, an SS-1004 message is generated to both the console and the RASlog to report the error. You must rerun the `supportSave` command with the `-t` option.

Example of SS-1004 message:

SS-1004: “One or more modules timed out during supportsave. Please retry supportsave with -t option to collect all logs.”

Use this feature when you observe that `supportSave` has timed out.

1. Connect to the switch and log in using an account with admin permissions.

2. Enter the `supportSave` command with the `-t` operand, and specify a value from 1 through 5.

The following example increases the `supportSave` modules timeout to two times of the original timeout setting.

```
switch:admin> supportSave -t 2
```
Capturing output from a console

Some information, such as boot information is only outputted directly to the console. To capture this information, you must connect directly to the switch through its management interface, either a serial cable or an RJ-45 connector that is specifically used for Ethernet connection to the management network.

1. Connect directly to the switch using hyperterminal.
2. Log in to the switch using an account with admin permissions.
3. Set the utility to capture output from the screen.
 Some utilities require this step to be performed prior to opening up a session. Check with your utility vendor for instructions.
4. Enter the command or start the process to capture the required data on the console.

Capturing command output

1. Connect to the switch through a Telnet or SSH utility.
2. Log in using an account with admin permissions.
3. Set the Telnet or SSH utility to capture output from the screen.
 Some Telnet or SSH utilities require this step to be performed prior to opening up a session. Check with your Telnet or SSH utility vendor for instructions.
4. Enter the command or start the process to capture the required data on the console.

Building a case for your switch support provider

The questions listed in “Basic information” should be printed out and answered in their entirety and be ready to send to your switch support provider when you contact them. Having this information immediately available expedites the information-gathering process that is necessary to begin determining the problem and finding a solution.

Basic information

1. What is the switch’s current Fabric OS level?
 To determine the switch’s Fabric OS level, enter the `firmwareShow` command and write down the information.
2. What is the switch model?
 To determine the switch model, enter the `switchShow` command and write down the value in the `switchType` field. Cross-reference this value with the chart located in Appendix A, “Switch Type and Blade ID”.
3. Is the switch operational? Yes or no.
4. Impact assessment and urgency:
 - Is the switch down? Yes or no.
 - Is it a standalone switch? Yes or no.
• Are there VE, VEX, or EX ports connected to the chassis? Yes or no. Use the `switchShow` command to determine the answer.
• How large is the fabric? Use the `nsAllShow` command to determine the answer.
• Do you have encryption blades or switches installed in the fabric? Yes or no.
• Do you have Virtual Fabrics enabled in the fabric? Yes or no. Use the `switchShow` command to determine the answer.
• Do you have IPsec installed on the switch’s Ethernet interface? Yes or no. Use the `ipsecConfig --show` command to determine the answer.
• Do you have In-band Management installed on the switch’s Gigabit Ethernet ports? Yes or no. Use the `portShow iproute geX` command to determine the answer.
• Are you using NPIV? Yes or no. Use the `switchShow` command to determine the answer.
• Are there security policies turned on in the fabric? If so, what are they? Gather the output from the following commands:
 - `secPolicyShow`
 - `fddCfg --showall`
 - `ipfilter --show`
 - `authUtil --show`
 - `secAuthSecret --show`
 - `fipsCfg --showall`

5. Is the fabric redundant? If yes, what is the MPIO software? (List vendor and version.)

6. If you have a redundant fabric, did a failover occur? To verify, view the RASlogs on both CPs and look for messages related to `haFailover`, for example, HAM-1004.

7. Was POST enabled on the switch? Use the `diagPost` command to verify if POST is enabled or not.

8. Which CP blade was active? (Only applicable to Brocade DCX, DCX-4S, and DCX 8510 family enterprise-class platforms.) Use the `haShow` command in conjunction with the RASlogs to determine which is the active and standby CP. They will reverse roles in a failover and their logs are separate.

Detailed problem information

Obtain as much of the following information as possible prior to contacting the SAN technical support vendor.

Document the sequence of events by answering the following questions:
• When did the problem occur?
• Is this a new installation?
• How long has the problem been occurring?
Building a case for your switch support provider

- Are specific devices affected?
 - If so, what are their World Wide Name Numbers?
- What happened prior to the problem?
- Is the problem reproducible?
 - If so, what are the steps to reproduce the problem?
- What configuration was in place when the problem occurred?
- A description of the problem with the switch or the fault with the fabric.
- The last actions or changes made to the system environment:
 - Settings
 - supportSave output
- Host information:
 - OS version and patch level
 - HBA type
 - HBA firmware version
 - HBA driver version
 - Configuration settings
- Storage information:
 - Disk/tape type
 - Disk/tape firmware level
 - Controller type
 - Controller firmware level
 - Configuration settings
 - Storage software (such as EMC Control Center, Veritas SPC, and so on.)
- If this is a Brocade DCX, DCX-4S, or DCX 8510 family enterprise-class platform, is the CPs in-sync? Yes or no.
 Use the haShow command to determine the answer.
- List out when and what were the last actions or changes made to the switch, the fabric, and the SAN or metaSAN.
- In Table 3, list the environmental changes added to the network.

<table>
<thead>
<tr>
<th>TABLE 3</th>
<th>Environmental changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Change</td>
<td>Date when change occurred</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Building a case for your switch support provider

Gathering additional information

The following features that require you to gather additional information. The additional information is necessary in order for your switch support provider to effectively and efficiently troubleshoot your issue. Refer to the chapter or document specified for the commands used for the data you must capture:

- Configurations, refer to Chapter 3, “Connectivity”.
- Firmware download, refer to Chapter 5, “Firmware Download Errors”.
- Trunking, refer to Chapter 8, “ISL Trunking”.
- Zoning, refer to Chapter 9, “Zoning”.
- FCIP tunnels, refer to the Fibre Channel over IP Administrator’s Guide.
- FICON, refer to the FICON Administrator’s Guide.
General Troubleshooting

In this chapter

- Licenses ... 11
- Time ... 11
- Frame Viewer ... 12
- Switch message logs .. 12
- Switch boot .. 14
- FC-FC routing connectivity 16

Licenses

Some features require licenses in order to work properly. To view a list of features and their associated licenses, refer to the Fabric OS Administrator’s Guide. Licenses are created using a switch’s License Identifier so you cannot apply one license to different switches. Before calling your switch support provider, verify that you have the correct licenses installed by using the licenseShow command.

Symptom A feature is not working.

Probable cause and recommended action
Refer to the Fabric OS Administrator’s Guide to determine if the appropriate licenses are installed on the local switch and any connecting switches.

Determining installed licenses
1. Connect to the switch and log in using an account with admin permissions.
2. Enter the licenseShow command.
 A list of the currently installed licenses on the switch is displayed.

Time

Symptom Time is not in-sync.

Probable cause and recommended action
NTP is not set up on the switches in your fabric. Set up NTP on your switches in all fabrics in your SAN and metaSAN.

For more information on setting up NTP, refer to the Fabric OS Administrator’s Guide.
Frame Viewer

When a frame is unable to reach its destination due to timeout, unroutable, or destination unreachable, it is discarded. You can use Frame Viewer to find out the flows that contained the dropped frames, which can help you determine which applications might be impacted. Using Frame Viewer, you can see exactly what time the frames were dropped. (Timestamps are accurate to within one second.) Additionally, this assists in the debug process.

You can view and filter up to 20 discarded frames per chip per second for 1200 seconds using a number of fields with the `framelog` command.

Symptom
Frames are being dropped.

Probable cause and recommended action

Frames are timing out.

Viewing frames

1. Connect to the switch and log in using an account with admin permissions.
2. Enter the `framelog --show` command.

Switch message logs

Switch message logs (RAS logs) contain information on events that happen on the switch or in the fabric. This is an effective tool in understanding what is going on in your fabric or on your switch. RAS logs are independent on director class switches. Weekly review of the RAS logs is necessary to prevent minor problems from becoming larger issues, or in catching problems at an early stage.

There are two sets of logs. The `ipAddrShow` command provides the IP addresses of the CP0 and CP1 control processor blades and associated RAS logs.

The following common problems can occur with or in your system message log.

Symptom
Inaccurate information in the system message log.

Probable cause and recommended action

In rare instances, events gathered by the Track Change feature can report inaccurate information to the system message log.

For example, a user enters a correct user name and password, but the login was rejected because the maximum number of users had been reached. However, when looking at the system message log, the login was reported as successful.

If the maximum number of switch users has been reached, the switch still performs correctly, in that it rejects the login of additional users, even if they enter the correct user name and password information.
However, in this limited example, the Track Change feature reports this event inaccurately to the system message log; it appears that the login was successful. This scenario only occurs when the maximum number of users has been reached; otherwise, the login information displayed in the system message log reflects reality.

Refer to the Fabric OS Administrator’s Guide for information regarding enabling and disabling Track Changes (TC).

Symptom
MQ errors are appearing in the switch log.

Probable cause and recommended action
An MQ error is a message queue error. Identify an MQ error message by looking for the two letters MQ followed by a number in the error message:

```
2004/08/24-10:04:42, [MQ-1004], 218,, ERROR, ras007, mqRead, queue = raslog-test-string0123456-raslog, queue D = 1, type = 2
```

MQ errors can result in devices dropping from the switch’s Name Server or can prevent a switch from joining the fabric. MQ errors are rare and difficult to troubleshoot; resolve them by working with the switch supplier. When encountering an MQ error, issue the `supportSave` command to capture debug information about the switch; then, forward the `supportSave` data to the switch supplier for further investigation.

Symptom
\(^2\)C bus errors are appearing in the switch log.

Probable cause and recommended action
\(^2\)C bus errors generally indicate defective hardware or poorly seated devices or blades; the specific item is listed in the error message. Refer to the Fabric OS Message Reference for information specific to the error that was received. Some Chip-Port (CPT) and Environmental Monitor (EM) messages contain \(^2\)C-related information.

If the \(^2\)C message does not indicate the specific hardware that may be failing, begin debugging the hardware, as this is the most likely cause.

Symptom
Core file or FFDC warning messages appear on the serial console or in the system log.

Probable cause and recommended action
Issue the `supportSave` command. The messages can be dismissed by issuing the `supportSave -R` command after all data is confirmed to be collected properly.

Error example:

```
*** CORE FILES WARNING (10/22/08 - 05:00:01 ) ***
3416 KBytes in 1 file(s)
use "supportsave" command to upload
```
Switch boot

Symptom
The enterprise-class platform model rebooted again after an initial bootup.

Probable cause and recommended action
This issue can occur during an enterprise-class platform bootup with two CPs. If any failure occurs on the active CP, before the standby CP is fully functional and has obtained HA sync, the standby CP may not be able to take on the active role to perform failover successfully.

In this case, both CPs reboot to recover from the failure.

Rolling Reboot Detection
A rolling reboot occurs when a switch or enterprise-class platform has continuously experienced unexpected reboots. This behavior is continuous until the rolling reboot is detected by the system. Once the Rolling Reboot Detection (RRD) occurs, the switch is put into a stable state so that only minimal supportSave output need be collected and sent to your service support provider for analysis. USB is also supported in RRD mode. The USB device can be enabled by entering usbstorage -e and the results collected by entering supportsave -U -d MySupportSave. Not every reboot activates the Rolling Reboot Detection feature.

ATTENTION
If a rolling reboot is caused by a Linux kernel panic, then the RRD feature is not activated.

Reboot classification
There are two types of reboots that occur on a switch and enterprise-class platform: expected and unexpected. Expected reboots occur when the reboots are initialized by commands; these types of reboots are ignored by the Rolling Reboot Detection (RRD) feature. They include the following commands:

- reboot
- haFailover
- fastBoot
- firmwareDownload

The RRD feature is activated and halts rebooting when an unexpected reboot reason is shown continuously in the reboot history within a certain period of time. The period of time depends on the switch. The following reboots are considered unexpected reboots:

- Reset
 A reset reboot may be caused by one of the following:
 - Power-cycle of the switch or CP
 - Linux reboot command
 - Hardware watchdog timeout
 - Heartbeat loss-related reboot
• Software Fault: Kernel Panic
 - If the system detects an internal fatal error from which it cannot safely recover, it outputs an error message to the console, dumps a stack trace for debugging, and then performs an automatic reboot.
 - After a kernel panic, the system may not have enough time to write the reboot reason, causing the reboot reason to be empty. This is treated as a reset case.

• Software fault
 - Software Watchdog
 - ASSERT

• Software recovery failure
 This is an HA bootup-related issue and happens when a switch is unable to recover to a stable state. The HASM log contains more details and specific information on this type of failure, such as one of the following:
 - Failover recovery failed: Occurs when failover recovery fails and the CP must reboot.
 - Failover when standby CP unready: Occurs when the active CP must fail over, but the standby CP is not ready to take over mastership.
 - Failover when LS trans incomplete: Takes place when a logical switch transaction is incomplete.

• Software bootup failure
 This is an HA bootup-related issue and happens when a switch is unable to load the firmware to a usable state. The HASM log contains more details and specific information on this type of failure, such as one of the following:
 - System bring up timed out: The CP failed to come up within the time allotted.
 - LS configuration timed out and failed: The logical switch configuration failed and timed out.

After RRD is activated, the admin level permission is required to log in. Enter the supportShow or supportSave command to collect a limited amount of data to resolve the issue.

Restrictions
The following restrictions are applicable on the RRD feature:
- RRD works only on CFOS-based systems and is not available on AP blades.
- If FIPS mode is enabled, then the RRD feature works in record-only mode.
- RRD relies on the bootprom and the Linux kernel working properly.
- RRD only works during the 30 minutes immediately after the switch boots. If the switch does not reboot for 30 minutes, then RRD is deactivated.

Collecting limited supportSave output on the Rolling Reboot Detection
1. Log in to the switch on the admin account.
 A user account with admin privileges is not able to collect limited supportSave output.
2. After you see the message in the following example, press Enter.
3. Enter the `supportSave` command to go into interactive mode. Alternatively, if using a USB device, enter `usbstorage -e`.

4. Respond to the prompts.

5. Once the `supportSave` command had completed, contact your service support provider to provide them with the data.

The following message is an example of the screen on a Brocade DCX.

```
 Fabos Version 7.1.0_main_bld23
 switch login: admin
 Password: <hidden text>
***********************************************************************

 * Fabric OS has detected frequent switch reboot condition. *
 * Following actions can be taken to recover the switch: *
 * - take off or replace the bad blades. *
 * - use supportsave to collect supportsave data. *
 *
***********************************************************************

Please change passwords for switch default accounts now.
Use Control-C to exit or press 'Enter' key to proceed.
```

FC-FC routing connectivity

This section describes tools you can use to troubleshoot Fibre Channel routing connectivity and performance.

Generating and routing an ECHO

The FC-FC Routing Service enables you to route the ECHO generated when an `fcPing` command is issued on a switch, providing `fcPing` capability between two devices in different fabrics across the FC router.

The `fcPing` command sends a Fibre Channel ELS ECHO request to a pair of ports. It performs a zone check between the source and destination. In addition, two Fibre Channel Extended Link Service (ELS) requests are generated. The first ELS request is from the domain controller to the source port identifier. The second ELS request is from the domain controller to the destination port identifiers. The ELS ECHO request elicits an ELS ECHO response from a port identifier in the fabric and validates link connectivity.

Use the `fcPing` command to validate link connectivity to a single device or between a pair of devices.

ATTENTION

There are some devices that do not support the ELS ECHO request. In these cases, the device either does not respond to the request or send an ELS reject. When a device does not respond to the ELS request, further debugging is required; however, do not assume that the device is not connected.
On the edge Fabric OS switch, make sure that the source and destination devices are properly configured in the LSAN zone before entering the `fcPing` command. This command performs the following functions:

- Checks the zoning configuration for the two ports specified.
- Generates an ELS ECHO request to the source port specified and validates the response.
- Generates an ELS ECHO request to the destination port specified and validates the response.

```
switch:admin> fcPing 0x020800 22:00:00:04:cf:75:63:85
Source: 0x020800
Destination: 22:00:00:04:cf:75:63:85
Zone Check: Zoned
Pinging 0x020800 with 12 bytes of data:
  received reply from 0x020800: 12 bytes time:1159 usec
  received reply from 0x020800: 12 bytes time:1006 usec
  received reply from 0x020800: 12 bytes time:1008 usec
  received reply from 0x020800: 12 bytes time:1038 usec
  received reply from 0x020800: 12 bytes time:1010 usec
5 frames sent, 5 frames received, 0 frames rejected, 0 frames timeout
Round-trip min/avg/max = 1006/1044/1159 usec
```

Regardless of the device’s zoning configuration, the `fcPing` command sends the ELS frame to the destination port. A destination device can take any one of the following actions:

- Send an ELS Accept to the ELS request.
- Send an ELS Reject to the ELS request.
- Ignore the ELS request.

For details about the `fcPing` command, refer to the Fabric OS Command Reference.

Example of one device that accepts the request and another device that rejects the request

```
switch:admin> fcPing 10:00:00:00:c9:29:0e:c4 21:00:00:20:37:25:ad:05
Source: 10:00:00:00:c9:29:0e:c4
Destination: 21:00:00:20:37:25:ad:05
Zone Check: Not Zoned
Pinging 10:00:00:00:c9:29:0e:c4 [0x20800] with 12 bytes of data:
  received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1162 usec
  received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1013 usec
  received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1442 usec
  received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1052 usec
  received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1012 usec
5 frames sent, 5 frames received, 0 frames rejected, 0 frames timeout
Round-trip min/avg/max = 1012/1136/1442 usec
Pinging 21:00:00:20:37:25:ad:05 [0x211e8] with 12 bytes of data:
  Request rejected by 21:00:00:20:37:25:ad:05: Command not supported: time: 1159 usec
  Request rejected by 21:00:00:20:37:25:ad:05: Command not supported: time: 1006 usec
  Request rejected by 21:00:00:20:37:25:ad:05: Command not supported: time: 1008 usec
  Request rejected by 21:00:00:20:37:25:ad:05: Command not supported: time: 1038 usec
  Request rejected by 21:00:00:20:37:25:ad:05: Command not supported: time: 1010 usec
5 frames sent, 0 frames received, 5 frames rejected, 0 frames timeout
Round-trip min/avg/max = 0/0/0 usec
```
Example using **fcPing** with a single destination (in this example, the destination is a device node WWN)

```
switch:admin> fcping 20:00:00:00:c9:3f:7c:b8
Destination: 20:00:00:00:c9:3f:7c:b8
Pinging 20:00:00:00:c9:3f:7c:b8 [0x370501] with 12 bytes of data:
received reply from 20:00:00:00:c9:3f:7c:b8: 12 bytes time:825 usec
received reply from 20:00:00:00:c9:3f:7c:b8: 12 bytes time:713 usec
received reply from 20:00:00:00:c9:3f:7c:b8: 12 bytes time:714 usec
received reply from 20:00:00:00:c9:3f:7c:b8: 12 bytes time:741 usec
received reply from 20:00:00:00:c9:3f:7c:b8: 12 bytes time:880 usec
5 frames sent, 5 frames received, 0 frames rejected, 0 frames timeout
Round-trip min/avg/max = 713/774/880 usec
```

Superping

Superping refers to the **fcPing --allpaths** command, which is a diagnostic tool used to test all least-cost ISLs between a source and destination switch. When you run the command, you are provided with a list of all available least-cost paths from a source domain to a destination device. Superping isolates links with potential failures so that you can investigate these ISLs to determine the exact links.

Superping works by sending ECHO frames to a destination device and outputting the status of each ISL it traverses whether or not the response from the destination device is received. Each ECHO frame can choose any path from multiple available paths in the fabric to reach the destination device. This utility allows you to do the following:

- Run a sanity test that exercises all the ISLs and internal links in different paths that route to the destination device.
- Determines the least-cost path to aid in designing fabric redundancy.
- Determines the specific ISLs and internal links with failures.
- Exercises all ISL links in the base fabric for a logical fabric configuration.

The number of actual paths covered when using the superping feature depends on two other parameters that you can specify optionally. When you issue the **fcPing --allpaths** command without any other options, Superping covers all ISLs in the routes between source to destination, as shown in Figure 1.
In the following example, Superping is invoked using the `fcPing --allpaths` command to destination domain 165. The following example displays each hop in (Domain1/Index1-> Domain2/Index2) format. To reach destination domain 165 from source domain 3 there are two unique end-to-end paths. In the first path, the frame traverses from egress port index 205 on source domain 3 to ingress port index 25 on domain 207. On domain 207, the frame traverses from egress port index 42 to ingress port index 3 in domain 101. On domain 101, the frame goes from egress port index 16 to ingress port index 99 on domain 165.

```
ECP80:FID128:admin> fcping --allpaths 165
Pinging(size:12 bytes) destination domain 165 through all paths

PATH SWITCH1--> SWITCH2--> SWITCH3 SWITCH4 STATUS
---------------------------------------------------------------------------------
```

Superping can isolate links with failures so that you can further investigate these ISLs to determine the exact links giving the errors.

NOTE

Superping provides an indication if all ISLs are covered. If all the ISLs are not covered, you can increase the coverage count and maximum retries to transmit, so that complete coverage of all ISLs is achieved.
Consider the following example in which a few errors are recorded on ISLs 3/205→2/25, 3/204→2/27, 2/42→101/3, and 2/1→101/8. The potential faulty link is internal port 0/284 on domain 2 with the maximum of 100 percent failure.

ISL Coverage

<table>
<thead>
<tr>
<th>SNO</th>
<th>ISL</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2/1[128]→101/8[128]</td>
<td>FAILURE(8/33)</td>
</tr>
</tbody>
</table>

Internal Port Coverage

<table>
<thead>
<tr>
<th>SNO</th>
<th>DOMAIN</th>
<th>INTRNL_PORT</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2[128]</td>
<td>0/272</td>
<td>SUCCESS(40/40)</td>
</tr>
<tr>
<td>2</td>
<td>2[128]</td>
<td>0/276</td>
<td>SUCCESS(44/44)</td>
</tr>
<tr>
<td>3</td>
<td>2[128]</td>
<td>0/280</td>
<td>SUCCESS(30/30)</td>
</tr>
<tr>
<td>4</td>
<td>2[128]</td>
<td>0/284</td>
<td>FAILURE(20/20) <= 100% failure</td>
</tr>
</tbody>
</table>

When an ECHO frame is dropped, all the ISLs in the path are marked as failed. It is not possible to determine the exact ISL link that dropped the frame. Because of this, all the ISLs in the path record some failures. The ISL with the actual error has the maximum percentage of failures, as this ISL, when selected in any possible path, causes the ECHO frame to be dropped and accumulates a higher failure percentage.

Restrictions

- Fabric reconfiguration cannot occur while using the Superping feature. It is assumed that the fabric is stable before the `fcPing --allpaths` command is executed.
- The control path for interswitch communication should be available, even if the data path for device-to-device communication may have resource starvation.
- When executed in a fabric with trunk ports, only the trunk master index is output to the user (for example, individual coverage statistics for each trunk-member are not available).
- All switches must have Fabric OS v6.3.0 or later.
- Superping requires that the FC ECHO ELS frame is supported by end-devices.
- In TI Zones, when failover is disabled and Superping is executed on a destination device included in the TI Zone, then Superping displays failures on all ISLs that are not part of the TI Zone. Also, when Superping is executed on a device that is not present in a TI Zone, failures are shown on all ISLs that are part of any TI Zone.
- This feature is not supported in interopMode 2 or 3.
- In frame redirection configurations, where there is a physical host, physical target, virtual initiator, and virtual target; Superping only identifies the path from the physical host to the physical target regardless of whether the data path consists of the path from the physical target to the virtual target through the virtual initiator.
Routing and statistical information

The `pathInfo` command displays routing and statistical information from a source port index on the local switch to a destination port index on another switch. This routing information describes the full path that a data stream travels between these ports, including all intermediate switches.

ATTENTION

Using the `pathInfo` command when exchange-based routing is turned on can provide different paths with each attempt.

The routing and statistics information are provided by every switch along the path, based on the current routing-table information and statistics calculated continuously in real time. Each switch represents one hop.

Use the `pathInfo` command to display routing information from a source port on the local switch to a destination port on another switch. The command output describes the exact data path between these ports, including all intermediate switches.

When using the `pathInfo` command in Fabric OS v6.3.0 across fabrics connected through an FC router, the command represents backbone information as a single hop. The command captures details about the FC router to which ingress and egress EX_Ports are connected, but it hides the details about the path the frame traverses from the ingress EX_Ports to the egress EX_Ports in the backbone.

To use `pathInfo` across remote fabrics, you must specify both the fabric ID (FID) and the domain ID of the remote switch. Optionally, you can specify the source PID and destination PID. You cannot use the `pathInfo` command to obtain source port information across remote FCR fabrics. When obtaining path information across remote fabrics, the destination switch must be identified by its domain ID. Identifying the switch by name or WWN is not accepted.

Use the `pathInfo` command to display basic path information to a specific domain in command line mode:

```
switch:admin> pathinfo 5
Hop | In Port | Domain ID (Name) | Out Port | BW | Cost
------------------------------------------
0   | 2       | sw0             | 6        | 4G | 500
1   | 23      | sw0             | 8        | 4G | 500
2   | 4       | sw0             | 3        | 4G | 500
3   | 12      | sw0             | 18       | 4G | 10000
4   | 4       | switch_3        | 0        | 4G | 500
5   | 26      | switch_3        | E        | -  | -
```

Use the `pathInfo` command to display basic and extended statistics in interactive mode:

```
switch:admin> pathinfo
Max hops: (1..127) [25]
Fabric Id: (1..128) [-1]
Domain|Wwn|Name: [] 8
Source port: (0..15) [-1]
Destination port: (0..255) [-1]
Source pid: (0x0..0xefff00) [ffffffff] 0x061600
Destination pid: (0x0..0xefff00) [0] 0x01f001
Basic stats (yes, y, no, n): [no] y
Extended stats (yes, y, no, n): [no] y
Trace reverse path (yes, y, no, n): [no]
Source route (yes, y, no, n): [no]
Timeout: (1000..30000) [10000]
```
Performance issues

Symptom General slow-down in FCR performance and scalability.

Probable cause and recommended action

As LSAN zone databases get bigger, it takes more switch resources to process them. Use the enforce tag feature to prevent a backbone switch from accepting unwanted LSAN zone databases into its local database.

Symptom Host application times out.

Probable cause and recommended action

The FCR tends to take a long time (more than 5 seconds) to present and set up paths for the proxy devices. Certain hosts are able to do discovery much faster and, as a result, they end up timing out. Use the speed tag feature to always present the target proxy to the host. This helps sensitive hosts to do a quick discovery without timing out or causing an application failure.
Chapter 3

Connectivity

In this chapter

• Port initialization and FCP auto-discovery process 23
• Link issues .. 25
• Connection problems .. 25
• Link failures ... 28
• Marginal links ... 30
• Device login issues .. 33
• Media-related issues .. 35
• Segmented fabrics ... 37
• Port mirroring .. 40

Port initialization and FCP auto-discovery process

The steps in the port initialization process represent a protocol used to discover the type of connected device and establish the port type and port speed. The possible port types are as follows:

• U_Port—Universal FC port. The base Fibre Channel port type and all unidentified, or uninitiated ports are listed as U_Ports.
• L_Port/FL_Port—Fabric Loop port. Connects public loop devices.
• E_Port—Expansion port. Assigned to ISL links.
• EX_Port—A type of E_Port. It connects a Fibre Channel router to an edge fabric. From the point of view of a switch in an edge fabric, an EX_Port appears as a normal E_Port. It follows applicable Fibre Channel standards as other E_Ports. However, the router terminates EX_Ports rather than allowing different fabrics to merge as would happen on a switch with regular E_Ports.
• M_Port—A mirror port. A mirror port allows you to configure a switch port to connect to a port to mirror a specific source port and destination port traffic passing though any switch port. This is only supported between F_Ports.
• VE_Port—A virtual E_Port. A Gigabit Ethernet switch port configured for an FCIP tunnel is called a VE_Port (virtual E_Port). However, with a VEX_Port at the other end, it does not propagate fabric services or routing topology information from one edge fabric to another.
Port initialization and FCP auto-discovery process

- **VEX_Port**—A virtual EX_Port. It connects a Fibre Channel router to an edge fabric. From the point of view of a switch in an edge fabric, a VEX_Port appears as a normal VE_Port. It follows the same Fibre Channel protocol as other VE_Ports. However, the router terminates VEX_Ports rather than allowing different fabrics to merge as would happen on a switch with regular VE_Ports.

Figure 2 shows the process behind port initialization. Understanding this process can help you determine where a problem resides. For example, if your switch cannot form an E_Port, you understand that the process never got to that point or does not recognize the switch as an E_Port. Possible solutions would be to look at licensing and port configuration. Verify that the correct licensing is installed or that the port is not configured as a loop port, a G_Port, or the port speed is not set.

![Flowchart: Simple port initialization process](image)

FIGURE 2 Simple port initialization process

The FCP auto-discovery process enables private storage devices that accept the process login (PRLI) to communicate in a fabric.

If device probing is enabled, the embedded port commences with port login (PLOGI) and attempts a PRLI into the device to retrieve information to enter into the Name Server. This enables private devices that do not perform a fabric login (FLOGI), but accept PRLI, to be entered in the Name Server and receive full fabric citizenship.

A fabric-capable device registers information with the Name Server during a FLOGI. These devices typically register information with the Name Server before querying for a device list. The embedded port will still conduct PLOGI and attempt PRLI with these devices.

To display the contents of a switch’s Name Server, use the `nsShow` or `nsAllShow` command. For more information about these Name Server commands, refer to the Fabric OS Command Reference.
Link issues

Symptom
Port LEDs are flashing.

Probable cause and recommended action
Depending on the rate of the flash and the color of the port LED, this could mean several things. To determine what is happening on either your port status LED or power status LED, refer to that switch’s model hardware reference manual. There is a table that describes the purpose of the LEDs and explains the current behavior as well as suggested resolutions.

Symptom
Port LEDs are steady.

Probable cause and recommended action
The color of the port LED is important in this instance. To determine what is happening on either your port status LED or power status LED, refer to that switch’s model hardware reference manual. There is a table that describes the purpose of the LEDs and explains the current behavior as well as suggested resolutions.

Symptom
No light from the port LEDs.

Probable cause and recommended action
If there is no light coming from the port LED, then no signal is being detected. Check your cable and SFP to determine the physical fault.

Connection problems

Determine if the problem is the target or the host, then continue to divide the suspected problem-path in half until you can pinpoint the problem. One of the most common solutions is zoning. Verify that the host and target are in the same zone. For more information on zoning, refer to Chapter 9, “Zoning”.

Checking the physical connection

- Check the cables running to and from the host and storage to the switch.
 This path includes the patch panel. Verify that none of the cables are damaged, including indentations or bent cable.
- Check the SFP on the HBAs and switches.
 Verify that they are known to be in good working condition. You can do this by swapping the current SFP with a known working SFP.
- Clean the optics.
 There are many kits on the market for cleaning fiber optics. You want to find a product that does not leave residue either from a lint-free wipe or from the solvent.
Checking the logical connection

1. Enter the `switchShow` command.
2. Review the output from the command and determine if the device successfully logged in to the switch.
 - A device that is logically connected to the switch is registered as an F_Port, L_Port, E_Port, EX_Port, VE_Port, VEX_Port, or N_Port.
 - A device that is not logically connected to the switch is registered as a G_Port or U_Port, if NPIV is not on the switch.
3. Enter the `slotShow -m` command to verify that all blades are enabled and not faulty, disabled, or in some other non-available state.
4. Perform the appropriate actions based on how your missing device is connected:
 - If the missing device is logically connected, proceed to the next troubleshooting procedure (“Checking the Name Server” on page 27).
 - If the missing device is not logically connected, check the device and everything on that side of the data path. Also refer to “Link failures” on page 28 for additional information.

Checking the path includes verifying the following for the host:
- The host OS is configured correctly.
- The third-party vendor multi-pathing input/output (MPIO) software, if it is being used, is configured correctly.
- The HBA and storage device and the driver and firmware are compatible with the switch based on the compatibility matrix.
- The driver settings and binaries are up-to-date.
- The device Basic Input Output System (BIOS) settings are correct.
- The HBA configuration is correct according to manufacturer’s specifications.
- The SFPs in the HBA are compatible with the host’s HBA.
- The SFP on the switch is compatible with the switch.
- The switch settings related to the host are configured correctly.

Checking the path includes the following for the target:
- The driver settings and binaries are up-to-date.
- The device Basic Input Output System (BIOS) settings are correct.
- The HBA configuration is correct according to the manufacturer’s specifications.
- The SFPs in the HBA are compatible with the target HBA.
- The switch settings related to the target are configured correctly.

Refer to “Checking for a loop initialization failure” on page 29 as the next potential trouble spot.
Checking the Name Server

1. Enter the `nsShow` command on the switch to determine if the device is attached:

   ```
   switch:admin> nsShow
   The Local Name Server has 9 entries {
   Type Pid   COS    PortName             NodeName            TTL(sec)
   *N   021a00;   2,3;20:00:00:e0:69:f0:07:c6;10:00:00:e0:69:f0:07:c6; 895
   Fabric Port Name: 20:0a:00:60:69:10:8d:fd
   NL   051edc;   3;21:00:00:20:37:d9:77:96;20:00:00:20:37:d9:77:96; na
   FC4s: FCP [SEAGATE ST318304FC 0005]
   Fabric Port Name: 20:0e:00:60:69:10:9b:5b
   NL   051ee0;   3;21:00:00:20:37:d9:73:0f;20:00:00:20:37:d9:73:0f; na
   FC4s: FCP [SEAGATE ST318304FC 0005]
   Fabric Port Name: 20:0e:00:60:69:10:9b:5b
   NL   051ee1;   3;21:00:00:20:37:d9:76:b3;20:00:00:20:37:d9:76:b3; na
   FC4s: FCP [SEAGATE ST318304FC 0005]
   Fabric Port Name: 20:0e:00:60:69:10:9b:5b
   NL   051ee2;   3;21:00:00:20:37:d9:77:5a;20:00:00:20:37:d9:77:5a; na
   FC4s: FCP [SEAGATE ST318304FC 0005]
   Fabric Port Name: 20:0e:00:60:69:10:9b:5b
   NL   051ee4;   3;21:00:00:20:37:d9:74:d7;20:00:00:20:37:d9:74:d7; na
   FC4s: FCP [SEAGATE ST318304FC 0005]
   Fabric Port Name: 20:0e:00:60:69:10:9b:5b
   NL   051ee8;   3;21:00:00:20:37:d9:6f:eb;20:00:00:20:37:d9:6f:eb; na
   FC4s: FCP [SEAGATE ST318304FC 0005]
   Fabric Port Name: 20:0e:00:60:69:10:9b:5b
   NL   051ee9;   3;21:00:00:20:37:d9:74:59;20:00:00:20:37:d9:74:59; na
   Fabric Port Name: 20:0e:00:60:69:10:9b:5b
   N    051f00;   2,3;50:06:04:82:bc:01:9a:0c;50:06:04:82:bc:01:9a:0c; na
   FC4s: FCP [EMC SYMMEETRIX 5267]
   Fabric Port Name: 20:0f:00:60:69:10:9b:5b
   ```

2. Look for the device in the Name Server (NS) list, which lists the nodes connected to that switch. This allows you to determine if a particular node is accessible on the network.

 - If the device is not present in the NS list, the problem is between the device and the switch. There may be a time-out communication problem between edge devices and the name server, or there may be a login issue. First check the edge device documentation to determine if there is a time-out setting or parameter that can be reconfigured. Also, check the port log for NS registration information and FCP probing failures (using the `fcpProbeShow` command). If these queries do not help solve the problem, contact the support organization for the product that appears to be inaccessible.
 - If the device is listed in the NS, the problem is between the storage device and the host. There may be a zoning mismatch or a host/storage issue. Proceed to Chapter 9, “Zoning”.

3. Enter the `portLoginShow` command to check the port login status.
4. Enter the `fcprobeShow` command to display the FCP probing information for the devices attached to the specified F_Port or L_Port. This information includes the number of successful logins and SCSI INQUIRY commands sent over this port and a list of the attached devices.

5. Check the port log to determine whether or not the device sent the FLOGI frame to the switch, and the switch probed the device.

Link failures

A link failure occurs when a server, storage, or switch device is connected to a switch, but the link between the devices does not come up. This prevents the devices from communicating to or through the switch.

If the `switchShow` command or LEDs indicate that the link has not come up properly, use one or more of the following procedures.

The port negotiates the link speed with the opposite side. The negotiation usually completes in one or two seconds; however, sometimes the speed negotiation fails.

Determining a successful speed negotiation

NOTE

Skip this procedure if the port speed is set to a static speed through the `portCfgSpeed` command.

1. Enter the `portCfgShow` command to display the port speed settings of all the ports.
2. Enter the `switchShow` command to determine if the port has module light.
3. Enter the `portCfgSpeed` command to change the port speed to 1, 2, 4 or 8 Gbps, depending on what speed can be used by both devices. This should correct the negotiation by setting to one speed.
4. Enter the `portLogShow` or `portLogDump` command.
5. Check the events area of the output:

<table>
<thead>
<tr>
<th>time</th>
<th>task</th>
<th>event</th>
<th>port</th>
<th>cmd</th>
<th>args</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:38:51.976</td>
<td>SPEE</td>
<td>sn</td>
<td><Port#></td>
<td>NC</td>
<td>00000001,00000000,00000001</td>
</tr>
<tr>
<td>14:39:39.227</td>
<td>SPEE</td>
<td>sn</td>
<td><Port#></td>
<td>NC</td>
<td>00000002,00000000,00000001</td>
</tr>
</tbody>
</table>

 - In the event column, `sn` indicates a speed negotiation.
 - In the cmd column, `NC` indicates the negotiation has completed.

If these fields do not appear, proceed to the step 6.

6. Correct the negotiation by entering the `portCfgSpeed [slotnumber/]portnumber, speed_level` command if the fields in step 5 do not appear.

   ```
   switch:admin> portcfgspeed
   Usage: portCfgSpeed PortNumber  Speed_Level
   Speed_Level:  0 - Auto Negotiate
                 1 - 1Gbps
                 2 - 2Gbps
                 4 - 4Gbps
                 8 - 8Gbps
                 ax - Auto Negotiate + enhanced retries
   ```
Checking for a loop initialization failure

1. Verify the port is an L_Port.
 a. Enter the `switchShow` command.
 b. Check the last field of the output to verify that the switch port indicates an L_Port. If a loop device is connected to the switch, the switch port must be initialized as an L_Port.
 c. Check to ensure that the state is online; otherwise, check for link failures.

Example of an online L_Port

<table>
<thead>
<tr>
<th>Area</th>
<th>Port</th>
<th>Media</th>
<th>Speed</th>
<th>State</th>
<th>Proto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>66</td>
<td>66</td>
<td>N8</td>
<td>No_Module</td>
<td></td>
</tr>
<tr>
<td></td>
<td>67</td>
<td>67</td>
<td>id</td>
<td>AN</td>
<td>No_Sync</td>
</tr>
<tr>
<td></td>
<td>68</td>
<td>68</td>
<td>id</td>
<td>N2</td>
<td>Online L-Port 13 public</td>
</tr>
</tbody>
</table>

2. Verify that loop initialization occurred if the port to which the loop device is attached does not negotiate as an L_Port.
 a. Enter the `portLogShow` or `portLogDump` command to display the port log for all ports on the switch; or if you are looking for a specific port, enter the `portLogDumpPort` command.
 b. Check argument number four for the loop initialization soft assigned (LISA) frame 0x11050100.

```
switch:admin> portlogdumpport 4
  time   task       event  port cmd  args
  ------------------------------------------
  11:40:02.078 PORT Rx3 23 20 22000000,00000000,ffffffff,11050100
  Received LISA frame
```

The LISA frame indicates that the loop initialization is complete.

3. Skip point-to-point initialization by using the `portCfgLport` command.
 The switch changes to point-to-point initialization after the LISA phase of the loop initialization. This behavior sometimes causes trouble with old HBAs.

Checking for a point-to-point initialization failure

1. Enter the `switchShow` command to confirm that the port is active and has a module that is synchronized.
 If a fabric device or another switch is connected to the switch, the switch port must be online.

2. Enter the `portLogShow` or `portLogDump` commands.

3. Verify the event area for the port state entry is `pstate`. The command entry `AC` indicates that the port has completed point-to-point initialization.

```
switch:admin> portlogdumpport 4
  time   task       event  port cmd  args
  ------------------------------------------
  11:38:21.726 INTR   pstate  4   AC
```
4. Skip over the loop initialization phase.
 After becoming an active port, the port becomes an F_Port or an E_Port depending on the
device on the opposite side. If the opposite device is a host or target device, the port becomes
an F_Port. If the opposite device is another switch, the port becomes an E_Port.
 If there is a problem with the host or target device, enter `portCfgGPort` to force the port to try to
come up as point-to-point only.

Correcting a port that has come up in the wrong mode

1. Enter the `switchShow` command.
2. Check the output from the `switchShow` command and follow the suggested actions in Table 4.

<table>
<thead>
<tr>
<th>Output</th>
<th>SwitchShow output and suggested action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disabled</td>
<td>If the port is disabled because persistent disable or security reasons, attempt to resolve the issue and then enter the <code>portEnable</code> or, if persistently disabled, <code>portCfgPersistentEnable</code> command.</td>
</tr>
<tr>
<td>Bypassed</td>
<td>The port may be testing.</td>
</tr>
<tr>
<td>Loopback</td>
<td>The port may be testing.</td>
</tr>
<tr>
<td>E_Port</td>
<td>If the opposite side is not another switch, the link has come up in a wrong mode. Check the output from the <code>portLogShow</code> or <code>PortLogDump</code> commands and identify the link initialization stage where the initialization procedure went wrong.</td>
</tr>
<tr>
<td>F_Port</td>
<td>If the opposite side of the link is a private loop device or a switch, the link has come up in a wrong mode. Check the output from <code>portLogShow</code> or <code>PortLogDump</code> commands.</td>
</tr>
<tr>
<td>G_Port</td>
<td>The port has not come up as an E_Port or F_Port. Check the output from <code>portLogShow</code> or <code>PortLogDump</code> commands and identify the link initialization stage where the initialization procedure went wrong.</td>
</tr>
<tr>
<td>L_Port</td>
<td>If the opposite side is not a loop device, the link has come up in a wrong mode. Check the output from <code>portLogShow</code> or <code>PortLogDump</code> commands and identify the link initialization stage where the initialization procedure went wrong.</td>
</tr>
</tbody>
</table>

NOTE
If you are unable to read a portlog dump, contact your switch support provider for assistance.

Marginal links

A marginal link involves the connection between the switch and the edge device. Isolating the exact cause of a marginal link involves analyzing and testing many of the components that make up the link (including the switch port, switch SFP, cable, edge device, and edge device SFP).
Troubleshooting a marginal link can involve inspecting the error counters described in “Troubleshooting a marginal link,” or running diagnostics on a link, a port, or an end-to-end path.

The `portLoopbackTest` command is used to verify the functional operation of a path on a switch. This test sends frames from a given port’s transmitter and loops them back into the same port’s receiver. The loopback is done at the parallel loopback path. The path traversed in this test does not include the media or the fiber cable.
Table 5 shows the different loopback modes you can use when using **portLoopbackTest** to test a marginal link.

TABLE 5 Loopback modes

<table>
<thead>
<tr>
<th>Loopback mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Port Loopback (loopback plugs)</td>
</tr>
<tr>
<td>2</td>
<td>External Serializer/Deserializer (SerDes) loopback</td>
</tr>
<tr>
<td>5</td>
<td>Internal (parallel) loopback (indicates no external equipment)</td>
</tr>
<tr>
<td>7</td>
<td>Back-end bypass and port loopback</td>
</tr>
<tr>
<td>8</td>
<td>Back-end bypass and SerDes loopback</td>
</tr>
<tr>
<td>9</td>
<td>Back-end bypass and internal loopback</td>
</tr>
</tbody>
</table>

Troubleshooting a marginal link

1. Enter the **portErrShow** command.

2. Determine whether there is a relatively high number of errors (such as CRC errors or ENC_OUT errors), or if there are a steadily increasing number of errors to confirm a marginal link. Sample the data every 5 minutes until you see the counters increment.

 - The *frames tx* and *rx* are the number of frames being transmitted and received.
 - The *crc_err* counter are frames with CRC errors. If this counter goes up, then the physical path should be inspected. Check the cables to and from the switch, patch panel, and other devices. Check the SFP by swapping it with a known good working SFP.

 If you see this issue on an 8 Gbps blade, use the **portCfgFillWord** command to reduce EMI.

 - The *crc_g_eof* counter are frames with CRC errors and a good EOF. The first port detecting a CRC error marks the frame with a bad EOF and passes the frame on to its destination. Subsequent ports in the path also detect the CRC error and the *crc_err* counter increments on these ports. However, because the first port marked the frame with a bad EOF, the good EOF counter on the subsequent ports does not increment. The marginal link associated with the port with an increasing good EOF counter is the marginal link and the source of the errors.

 - The *enc_out* are errors that occur outside the frame and usually indicating a bad primitive. To determine if you are having a cable problem, take snapshots of the port errors by using the **portErrShow** command in increments of 5 to 10 minutes. If you notice the *crc_err* counter go up, you have a bad or damaged cable, or a bad or damaged device in the path.

 NOTE

 ICLs see *enc_out* errors when ports on one side of the link are disabled.

 - The *disc_c3* errors are discarded class 3 errors, which means that the switch is holding onto the frame longer than the hold time allows. One problem this could be related to is ISL oversubscription.
3 Marginal links

```
switch:admin> porterrshow
frames  enc  crc  crc   too too  bad  enc disc link loss loss frjt fbsy
tx   rx  in  err g_eof shrt long eof out c3  fail sync sig

============================================================================
0:  665k 7.0k   0    0    0    0    6    0    0    1    2    0    0
1:    0    0    0    0    0    0    0    0    0    0    0    2    0    0
2:    0    0    0    0    0    0    0    0    0    0    0    1    0    0
3:    0    0    0    0    0    0    0    0    0    0    0    1    0    0
4:    0    0    0    0    0    0    0    0    0    0    0    1    0    0
5:    0    0    0    0    0    0    0    0    0    0    0    1    0    0
6:    0    0    0    0    0    0    0    0    0    0    0    1    0    0
7:    0    0    0    0    0    0    0    0    0    0    0    1    0    0
8:    0    0    0    0    0    0    0    0    0    0    0    1    0    0
9:    0    0    0    0    0    0    0    0    0    0    0    1    0    0
10:    0    0    0    0    0    0    0    0    0    0    0    1    0    0
11:    0    0    0    0    0    0    0    0    0    0    0    1    0    0
12:    0    0    0    0    0    0    0    0    0    0    0    1    0    0
13:    0    0    0    0    0    0    0    0    0    0    0    1    0    0
14:    0    0    0    0    0    0    0    0    0    0    0    1    0    0
15:    0    0    0    0    0    0    0    0    0    0    0    1    0    0
16:  665k 7.4k   0    0    0    0    6    0    0    1    2    0    0
```

(output truncated)

3. If you suspect a marginal link, isolate the areas by moving the suspected marginal port cable to a different port on the switch. Reseating of SFPs may also cure marginal port problems.

 If the problem stops or goes away, the switch port or the SFP is marginal (proceed to step 6).

 If the problem does not stop or go away, refer to step 7.

4. Run `portLoopbackTest` on the marginal port. You need an adapter to run the loopback test for the SFP. Otherwise, run the test on the marginal port using the loopback mode `lb=5`. Use the different modes shown in Table 5 to test the port. Refer to the Fabric OS Command Reference for additional information on this command.

5. Check the results of the loopback test and proceed as follows:
 - If the loopback test failed, the port is bad. Replace the port blade or switch.
 - If the loopback test did not fail, the SFP was bad.

6. Replace the SFP on the marginal port.

7. Perform the following steps to rule out cabling issues:
 a. Insert a new cable in the suspected marginal port.
 b. Enter the `portErrShow` command to determine if a problem still exists.
 - If the `portErrShow` output displays a normal number of generated errors, the issue is solved.
 - If the `portErrShow` output still displays a high number of generated errors, follow the troubleshooting procedures for the Host or Storage device in the following section, "Device login issues".
Device login issues

A correct login is when the port type matches the device type that is plugged in. In the following example, it shows that the device connected to Port 1 is a fabric point-to-point device and it is correctly logged in as an F_Port.

```
switch:admin> switchshow
switchName:brcd5300
switchType:64.3
switchState:Online
switchMode:Native
switchRole:Subordinate
switchDomain:1
switchId:fffc01
switchWwn:10:00:00:05:1e:40:ff:c4
zoning:OFF
switchBeacon:OFF
FC Router:OFF
FC Router BB Fabric ID:1
```

```
Area Port Media Speed State     Proto
=====================================  
0   0   --    N8   No_Module
1   1   -- N4   Online      FC  F-Port  10:00:00:05:1e:8f:c1:31
2   2   -- N8   No_Module
3   3   -- N8   No_Module
  (output truncated)
61  61   -- N8   No_Module
62  62   -- N8   No_Module
63  63   -- N8   No_Module
64  64 id N2   Online    E-Port  10:00:00:05:1e:34:d0:05 "1_d1"  
    (Trunk master)
65  65   -- N8   No_Module
66  66   -- N8   No_Module
67  67 id AN   No_Sync
68  68 id N2   Online    L-Port 13 public
69  69   -- N8   No_Module
70  70   -- N8   No_Module
71  71 id N2   Online    L-Port 13 public
72  72   -- N8   No_Module
73  73   -- N8   No_Module
74  74   -- N8   No_Module
75  75   -- N8   No_Module
76  76 id N2   Online    E-Port  10:00:00:05:1e:34:d0:05 "1_d1"  
    (upstream)(Trunk master)
77  77 id N4   Online    F-Port 10:00:00:06:2b:0f:6c:1f
78  78   -- N8   No_Module
79  79 id N2   Online    E-Port  10:00:00:05:1e:34:d0:05 "1_d1"  
    (Trunk master)
```

Pinpointing problems with device logins

1. Log in to the switch as admin.
2. Enter the `switchShow` command; then, check for state logins.
3. Enter the `portCfgShow` command to see if the port is configured correctly.

In some cases, you may find that the port has been locked as an L_Prot and the device attached is a fabric point-to-point device such as a host or switch. This would be an incorrect configuration for the device and therefore the device cannot log in to the switch.

To correct this type of problem, remove the Lock L_Port configuration using the `portCfgDefault` command.

```
switch:admin> portcfgshow
Ports of Slot 0    0  1  2  3    4  5  6  7    8  9 10 11   12 13 14 15
-----------------+--+--+--+--+----+--+--+--+----+--+--+--+----+--+--+--+
Speed             AN AN AN AN   AN AN AN AN   AN AN AN AN   AN AN AN AN
Trunk Port        ON ON ON ON   ON ON ON ON   ON ON ON ON   ON ON ON ON
Long Distance     .. .. .. ..   .. .. .. ..   .. .. .. ..   .. .. .. ..
VC Link Init      .. .. .. ..   .. .. .. ..   .. .. .. ..   .. .. .. ..
Locked L_Prot     .. .. .. ..   .. .. .. ..   .. .. .. ..   .. .. .. ..
Locked G_Prot     .. .. .. ..   .. .. .. ..   .. .. .. ..   .. .. .. ..
Disabled E_Prot   .. .. .. ..   .. .. .. ..   .. .. .. ..   .. .. .. ..
ISL R_RDY Mode    .. .. .. ..   .. .. .. ..   .. .. .. ..   .. .. .. ..
RSCN Suppressed   .. .. .. ..   .. .. .. ..   .. .. .. ..   .. .. .. ..
Persistent Disable.. .. .. ..   .. .. .. ..   .. .. .. ..   .. .. .. ..
NPIV capability   ON ON ON ON   ON ON ON ON   ON ON ON ON   ON ON ON ON
```

where AN:AutoNegotiate, ..:OFF, ??:INVALID,
SN:Software controlled AutoNegotiation.

4. Enter the `portErrShow` command; then, check for errors that can cause login problems. A steadily increasing number of errors can indicate a problem. Track errors by sampling the port errors every five or ten minutes until you see the problem occur again.

5. Enter the `portFlagsShow` command; then, check to see how a port has logged in and where a login failed (if a failure occurred):

```
switch:admin> portflagsshow
Port  SNMP   Physical   Flags
-------------------------------
0 Offline   In_Sync    PRESENT U_PORT LED
1 Online    In_Sync    PRESENT ACTIVE F_PORT G_PORT U_PORT SEGMENTED LOGIN LED
LOGIN NOELP LED ACCEPT
2 Offline   No_Light   PRESENT U_PORT LED
3 Offline   No_Module  PRESENT U_PORT LED
4 Offline   No_Module  PRESENT U_PORT LED
5 Offline   No_Light   PRESENT U_PORT LED
6 Offline   No_Module  PRESENT U_PORT LED
7 Offline   No_Module  PRESENT U_PORT LED
8 Offline   No_Light   PRESENT U_PORT LED
9 Offline   No_Light   PRESENT U_PORT LED
10 Offline  No_Module  PRESENT U_PORT LED
11 Offline  No_Module  PRESENT U_PORT LED
12 Offline  No_Module  PRESENT U_PORT LED
13 Offline  No_Module  PRESENT U_PORT LED
14 Online   In_Sync    PRESENT ACTIVE F_PORT G_PORT U_PORT LOGICAL_ONLINE
LOGIN NOELP LED ACCEPT
15 Online   In_Sync    PRESENT ACTIVE E_PORT G_PORT U_PORT SEGMENTED LOGIN
LED
```
6. Enter the `portLogDumpPort portid` command where the port ID is the port number; then, view the device-to-switch communication.

```
switch:admin> portlogdumpport 8 | more
```

<table>
<thead>
<tr>
<th>time</th>
<th>task</th>
<th>event</th>
<th>port</th>
<th>cmd</th>
<th>args</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thu Nov 6 16:52:39 2008</td>
<td>PORT</td>
<td>scn</td>
<td>8</td>
<td>1</td>
<td>00010004,4302000f,02000000</td>
</tr>
<tr>
<td></td>
<td>PORT</td>
<td>scn</td>
<td>8</td>
<td>2</td>
<td>ce3dfab0,d9672800,00000002</td>
</tr>
<tr>
<td></td>
<td>PORT</td>
<td>scn</td>
<td>8</td>
<td>2</td>
<td>ce3dfab0,d9672800,00000002</td>
</tr>
<tr>
<td></td>
<td>PORT</td>
<td>scn</td>
<td>8</td>
<td>5</td>
<td>00000000,00000000,00000002</td>
</tr>
<tr>
<td></td>
<td>PORT</td>
<td>scn</td>
<td>8</td>
<td>1</td>
<td>00010004,4302000f,02000000</td>
</tr>
<tr>
<td></td>
<td>PORT</td>
<td>scn</td>
<td>8</td>
<td>1</td>
<td>00010004,4302000f,02000000</td>
</tr>
<tr>
<td></td>
<td>IOCTL</td>
<td>88010004</td>
<td>1,0</td>
<td>* 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPEE</td>
<td>sn</td>
<td>8</td>
<td>WS</td>
<td>00000000,00000000,00000000</td>
</tr>
<tr>
<td></td>
<td>SPEE</td>
<td>sn</td>
<td>8</td>
<td>NM</td>
<td>00000000,00000000,00000000</td>
</tr>
<tr>
<td></td>
<td>SPEE</td>
<td>sn</td>
<td>8</td>
<td>NF</td>
<td>00000000,00000000,00000000</td>
</tr>
<tr>
<td></td>
<td>SPEE</td>
<td>sn</td>
<td>8</td>
<td>NC</td>
<td>00000000,00000000,00000000</td>
</tr>
<tr>
<td></td>
<td>LOOP</td>
<td>loopscn</td>
<td>8</td>
<td>LIP</td>
<td>8002</td>
</tr>
<tr>
<td></td>
<td>LOOP</td>
<td>loopscn</td>
<td>8</td>
<td>LIP</td>
<td>f7f7</td>
</tr>
<tr>
<td></td>
<td>LOOP</td>
<td>loopscn</td>
<td>8</td>
<td>LIM</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>PORT</td>
<td>Tx3</td>
<td>8</td>
<td>12</td>
<td>22000000,00000000,fffffff,11010000</td>
</tr>
<tr>
<td></td>
<td>PORT</td>
<td>Rx3</td>
<td>8</td>
<td>12</td>
<td>22000000,00000000,fffffff,11010000</td>
</tr>
<tr>
<td></td>
<td>PORT</td>
<td>Tx3</td>
<td>8</td>
<td>20</td>
<td>22000000,00000000,fffffff,11020000</td>
</tr>
<tr>
<td></td>
<td>PORT</td>
<td>Rx3</td>
<td>8</td>
<td>20</td>
<td>22000000,00000000,fffffff,11020000</td>
</tr>
<tr>
<td></td>
<td>PORT</td>
<td>Tx3</td>
<td>8</td>
<td>20</td>
<td>22000000,00000000,fffffff,11030000</td>
</tr>
<tr>
<td></td>
<td>PORT</td>
<td>Rx3</td>
<td>8</td>
<td>20</td>
<td>22000000,00000000,fffffff,11030000</td>
</tr>
</tbody>
</table>

NOTE
Refer to “Port log” on page 96 for overview information about `portLogDump`.

Media-related issues

This section provides procedures that help pinpoint any media-related issues, such as bad cables and SFPs, in the fabric. The tests listed in Table 6 are a combination of **structural** and **functional** tests that can be used to provide an overview of the hardware components and help identify media-related issues.

- **Structural** tests perform basic testing of the switch circuit. If a structural test fails, replace the main board or port blade.
- **Functional** tests verify the intended operational behavior of the switch by running frames through ports or bypass circuitry.

TABLE 6
Component test descriptions

<table>
<thead>
<tr>
<th>Test name</th>
<th>Operands</th>
<th>Checks</th>
</tr>
</thead>
<tbody>
<tr>
<td>portTest</td>
<td>[-ports itemlist] [-iteration count] [-userdelay time] [-timeout time] [-pattern pattern] [-patsize size] [-seed seed] [-listtype porttype]</td>
<td>Used to isolate problems to a single replaceable element and isolate problems to near-end terminal equipment, far-end terminal equipment, or transmission line. Diagnostics can be executed every day or on demand.</td>
</tr>
</tbody>
</table>
The following procedures are for checking switch-specific components.

Testing the external transmit and receive path of a port

1. Connect to the switch and log in as admin.
2. Connect the port you want to test to any other switch port with the cable you want to test.
3. Enter the `portLoopbackTest -lb_mode 2` command.

Testing the internal components of a switch

1. Connect to the switch and log in as admin.
2. Connect the port you want to test to any other switch port with the cable you want to test.
3. Enter the `portLoopbackTest -lb_mode 5` command where 5 is the operand that causes the test to run on the internal switch components (this is a partial list—refer to the Fabric OS Command Reference for additional command information):
 - `[-nframes count]`—Specify the number of frames to send.
 - `[-lb_mode mode]`—Select the loopback point for the test.
 - `[-spd_mode mode]`—Select the speed mode for the test.
 - `[-ports itemlist]`—Specify a list of user ports to test.

Testing components to and from the HBA

1. Connect to the switch and log in as admin.
2. Enter the `portTest` command (refer to the Fabric OS Command Reference for information on the command options).

Refer to Table 7 on page 36 for a list of additional tests that can be used to determine the switch components that are not functioning properly. Refer to the Fabric OS Command Reference for additional command information.

The HBA `bcu fcDiag --linkbeacon` command can be used to beacon a target port on the switch. For more information on using this command, refer to the Brocade Adapters Administrator’s Guide.

TABLE 7 Switch component tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>portBeacon</td>
<td>Sets port beaconing mode.</td>
</tr>
<tr>
<td>portLoopbackTest</td>
<td>Performs a functional test of port N to N path. Verifies the functional components of the switch.</td>
</tr>
<tr>
<td>turboRamTest</td>
<td>Verifies that the on chip SRAM located in the 4 and 8 Gbps ASIC is using the Turbo-Ram BIST circuitry. This allows the BIST controller to perform the SRAM write and read operations at a much faster rate.</td>
</tr>
</tbody>
</table>
Segmented fabrics

Fabric segmentation is generally caused by one of the following conditions:

- Incompatible fabric parameters (refer to “Reconciling fabric parameters individually” on page 37)
- Incompatible zoning configuration (refer to Chapter 9, “Zoning”)
- Domain ID conflict (refer to “Reconciling fabric parameters individually” on page 37)
- Fabric ID conflict (refer to Chapter 7, “Virtual Fabrics”)
- Incompatible security policies
- Incorrect fabric mode
- Incorrect policy distribution
- Incompatible software features

There are a number of settings that control the overall behavior and operation of the fabric. Some of these values, such as the domain ID, are assigned automatically by the fabric and can differ from one switch to another in the fabric. Other parameters, such as the BB credit, can be changed for specific applications or operating environments, but must be the same among all switches to allow the formation of a fabric.

The following fabric parameters must be identical on each switch for a fabric to merge:

- R_A_TOV
- E_D_TOV
- Data field size
- Sequence level switching
- Suppress class F traffic
- Per-frame route priority
- Long-distance fabric (not necessary on Brocade DCX, DCX-4S, 6505, 6510, 6520, and the Brocade DCX 8510 Backbone families; for more information regarding these product types, refer to Appendix A, “Switch Type and Blade ID”.)

Reconciling fabric parameters individually

1. Log in to one of the segmented switches as admin.
2. Enter the `configShow -pattern “fabric.ops”` command.
3. Log in to another switch in the same fabric as admin.
4. Enter the `configShow -pattern “fabric.ops”` command.
5. Compare the two switch configurations line by line and look for differences. Do this by comparing the two Telnet windows or by printing the `configShow -pattern “fabric.ops”` output. Also, verify that the fabric parameter settings (refer to the list of fabric parameters in “Segmented fabrics”) are the same for both switches.
6. Connect to the segmented switch after the discrepancy is identified.
7. Disable the switch by entering the `switchDisable` command.
8. Enter the `configure` command to edit the appropriate fabric parameters for the segmented switch.

9. Enable the switch by entering the `switchEnable` command.

Alternatively, you can reconcile fabric parameters by entering the `configUpload` command for each switch and upload a known-good configuration file. If you do this option, the two switches must be the same model.

Downloading a correct configuration

You can restore a segmented fabric by downloading a previously saved correct backup configuration to the switch. Downloading in this manner reconciles any discrepancy in the fabric parameters and allows the segmented switch to rejoin the main fabric. For details on uploading and downloading configurations, refer to the *Fabric OS Administrator’s Guide*.

Reconciling a domain ID conflict

If a domain ID conflict appears, the conflict is only reported at the point where the two fabrics are physically connected. However, there may be several conflicting domain IDs, which appear as soon as the initial conflict is resolved.

Typically, the fabric automatically resolves domain conflicts during fabric merges or builds unless Insistent Domain ID (IDID) is configured. If IDID is enabled, switches that cannot be programmed with a unique domain ID are segmented out. Check each switch that has IDID configured and make sure their domain IDs are unique within the configuration.

Repeat the following procedure until all domain ID conflicts are resolved.

1. Enter the `fabricShow` command on a switch from one of the fabrics.
2. In a separate Telnet window, enter the `fabricShow` command on a switch from the second fabric.
3. Compare the `fabricShow` output from the two fabrics. Note the number of domain ID conflicts; there may be several duplicate domain IDs that must be changed. Determine which switches have domain overlap and change the domain IDs for each of those switches.
4. Choose the fabric on which to change the duplicate domain ID; connect to the conflicting switch in that fabric.
5. Enter the `switchDisable` command.
6. Enter the `configure` command.
7. When the **Fabric Parameters** prompt displays, type `y`.
8. When the **Domain** prompt displays, type in the new number.
9. Press Enter on all prompts to accept their default settings.
10. Enter the `switchEnable` command.

 This enables the joining switch to obtain a new domain ID as part of the process of coming online. The fabric principal switch allocates the next available domain ID to the new switch during this process.

11. Repeat step 4 through step 10 if additional switches have conflicting domain IDs.
Example of setting the domain ID

```
switch_89:FID89:admin> switchdisable
switch_89:FID89:admin> configure

Configure...

Fabric parameters (yes, y, no, n): [no] y

Domain: (1..239) [1] 89
WWN Based persistent PID (yes, y, no, n): [no]
Allow XISL Use (yes, y, no, n): [yes]
R_A_TOV: (4000..120000) [10000]
E_D_TOV: (1000..5000) [2000]
WAN_TOV: (0..30000) [0]
MAX_HOPS: (7..19) [7]
Data field size: (256..2112) [2112]
Sequence Level Switching: (0..1) [0]
Disable Device Probing: (0..1) [0]
Suppress Class F Traffic: (0..1) [0]
Per-frame Route Priority: (0..1) [0]
Long Distance Fabric: (0..1) [0]
BB credit: (1..27) [16]
Disable FID Check (yes, y, no, n): [no]
Insistent Domain ID Mode (yes, y, no, n): [no]
Virtual Channel parameters (yes, y, no, n): [no]
F-Port login parameters (yes, y, no, n): [no]
Zoning Operation parameters (yes, y, no, n): [no]
RSCN Transmission Mode (yes, y, no, n): [no]
Arbitrated Loop parameters (yes, y, no, n): [no]
System services (yes, y, no, n): [no]
Portlog events enable (yes, y, no, n): [no]
ssl attributes (yes, y, no, n): [no]
rpcd attributes (yes, y, no, n): [no]
webtools attributes (yes, y, no, n): [no]
```

WARNING: The domain ID will be changed. The port level zoning may be affected

Reconciling incompatible software features

Earlier releases of software may not be supported in new versions of Fabric OS code. This may be due to a software feature changing or new services being supported. If you suspect that you are trying to introduce a switch into a fabric that has an older version of code, check the release notes to verify that any features on that switch are supported in the fabric with the newer code.

When the Management Server (MS) Platform services are enabled on a switch running Fabric OS v7.0.0 and later and you try to merge this switch into a fabric that does not have this feature enabled, the switch does not merge and a segmentation occurs. To resolve this, either turn the MS Platform services off or enable them on every switch in the fabric.

In Fabric OS v7.0.0 and later, an ESC frame is used to exchange fabric parameters to detect Enhanced TI Zones, interoperability mode, and Virtual Fabric FID conflicts. If at any point during the ESC frame exchange, a link with incompatible parameters is detected, the switch running Fabric OS v7.0.0 and later does not join into the existing fabric. To fix this issue, refer to the Fabric OS Administrator's Guide for more information on that specific software feature.
Port mirroring

With port mirroring, you can configure a switch port to mirror the traffic between a specific source and destination port. This is only supported between F_Ports. This is a useful way to troubleshoot a problem port without bringing down the host and destination links to insert an inline analyzer.

Port mirroring captures traffic between two devices. It mirrors only the frames containing the SID/DID to the mirror port. Because of the way it handles mirroring, a single mirror port can mirror multiple mirror connections. This also means that the port cannot exceed the maximum bandwidth of the mirror port. Attempts to mirror more traffic than what available bandwidth allows results in the port mirror throttling the SID/DID traffic so that traffic does not exceed the maximum available bandwidth.

The bandwidth of the mirror port is unidirectional. In general, a host (SID) talks to multiple storage devices (DIDs). Thus, a host does not send full line rate to a single target. A mirror port configured at 4 Gbps can only support up to 4 Gbps of traffic. A normal 4 Gbps F_Port is bidirectional and can support up to 8 Gbps (4 Gbps transmit and 4 Gbps receive) of traffic. If the mirror port bandwidth is exceeded, no credits are returned to the receiver port and thus those devices involved in the mirror connection see a degraded level of performance.

Use port mirroring to detect missing frames, which may occur with zoning issues or hold timeouts, capture protocol errors, and capture ULP traffic (SCSI/FICON). This feature cannot be used on embedded switch traffic.

In-Order Delivery

If In-Order Delivery (IOD) is enabled, adding or deleting a port mirror connection causes a frame drop. Port mirroring basically reroutes a given connection to the mirror port. The mirror traffic takes an extra route to the mirror port. When the extra route is removed, the frames between the two ports go directly to the destination port. The frames at the mirror port could be queued at the destination port behind those frames that went directly to the destination port. To prevent this IOD issue, port mirroring drops those frames from the mirror port when a connection is disabled. If IOD has been disabled, port mirroring does not drop any frames, but does have an IOD error.

Port mirroring considerations

Before creating port mirror connections, consider the following limitations:

- A mirror port can be any port on the same switch as the source identifier port.
- If FCR is enabled, do not enable port mirroring.
- Only one domain can be mirrored. After a domain is defined, only mirror ports on the defined domain can be used. The first connection defines the restriction on the domain, which can be either the local domain or a remote domain.
- The mirror port must be attached to one port of the analyzer port pair. The second analyzer port must be set for parallel loopback. Do not attach a N_Port, a NL_Port, or an E_Port to the analyzer port, as the mirror port cannot negotiate linkup with any other port.
- A switch that is capable of port mirroring can support a minimum of one and a maximum of three mirror connections. Refer to Table 9 on page 42 to determine the number of mirror connections your switch or blade can support.
- Mirror port bandwidth limits mirror connections.
Port mirroring

- Deleting a port mirroring connection with IOD enabled causes frame drop between two endpoints.
- Using the firmware download procedure to downgrade to previous Fabric OS releases that do not support port mirroring requires that you remove all the port mirroring connections. If you downgrade to a previous version of Fabric OS, you cannot proceed until the mirroring connections are removed.
- Port mirroring is supported with Virtual Fabrics with the limitation that you cannot have FCR enabled within the same 8-port group.
- If you have NPIV or 10-bit address mode enabled on a Brocade 300, 5300, 5410, 5450, 5460, 5470, 5480, 7800, or the M5424 platforms, all devices from the same NPIV port or 10-bit addressing mode hit the same mirror connection, regardless of different AL_PAs, because the validation is done only for the first 16 bits of the SID/DID.
- Port mirroring is not supported for the shared area ports of 48-port blades in the default switch. However, when the ports are assigned to a 10-bit address logical switch, port mirroring is supported.
- For the 48-port and 64-port blades, port mirroring is always supported on the non-shared area ports.

For the shared area ports, port mirroring is supported in Virtual Fabrics mode if the ports are assigned to a 10-bit address logical switch. Port mirroring is not supported on the shared area ports in non-Virtual Fabrics mode.

If a Fabric Vision license is installed and if port mirror connections are defined or enabled on 16 Gbps-capable Fibre Channel ports, flow creation for Flow Mirror will fail.

Similarly, if a Fabric Vision license is installed and a flow is created or activated for Flow Mirror, if you attempt to create a port mirror connection using 16Gbps-capable Fibre Channel ports, the port mirror commands will fail.

Supported platforms

Port mirroring is supported only in FC ports. In general, a platform or blade supporting port mirroring supports both the mirror ports and the mirror connections. Exceptions are listed in Table 8.

<table>
<thead>
<tr>
<th>Brocade Model</th>
<th>Fabric OS v6.1.1_enc</th>
<th>Fabric OS v6.3.0</th>
<th>Fabric OS v6.4.0</th>
<th>Fabric OS v7.1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brocade Encryption Switch</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>FS8-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCX-4S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCOE10-24</td>
<td>Port mirroring is not supported.</td>
<td>Port mirroring is supported on the Brocade FCOE10-24.</td>
<td>Port mirroring is supported on the Brocade FCOE10-24.</td>
<td></td>
</tr>
</tbody>
</table>
Port mirroring

Maximum mirror connections

Table 9 shows the maximum number of mirror connections you can add to a mirror port.

TABLE 9 Maximum number of mirror connections

<table>
<thead>
<tr>
<th>Model</th>
<th>Maximum number of mirror connections (chassis-wide)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brocade 300</td>
<td>1</td>
</tr>
<tr>
<td>Brocade 5100</td>
<td>3</td>
</tr>
<tr>
<td>Brocade 5300</td>
<td>1</td>
</tr>
<tr>
<td>Brocade 5410</td>
<td>1</td>
</tr>
<tr>
<td>Brocade 5431</td>
<td>1</td>
</tr>
<tr>
<td>Brocade 5450</td>
<td>1</td>
</tr>
<tr>
<td>Brocade 5460</td>
<td>1</td>
</tr>
<tr>
<td>Brocade 5470</td>
<td>1</td>
</tr>
<tr>
<td>Brocade 5480</td>
<td>1</td>
</tr>
<tr>
<td>Brocade 7800</td>
<td>1</td>
</tr>
<tr>
<td>Brocade 6505</td>
<td>3</td>
</tr>
<tr>
<td>Brocade 6510</td>
<td>3</td>
</tr>
<tr>
<td>Brocade 6520</td>
<td>3</td>
</tr>
<tr>
<td>Brocade 6547</td>
<td>3</td>
</tr>
<tr>
<td>Brocade DCX</td>
<td>3</td>
</tr>
<tr>
<td>Brocade DCX-4S</td>
<td>3</td>
</tr>
<tr>
<td>Brocade 8510-4</td>
<td>3</td>
</tr>
<tr>
<td>Brocade 8510-8</td>
<td>3</td>
</tr>
<tr>
<td>Brocade Encryption Switch</td>
<td>3</td>
</tr>
<tr>
<td>Brocade M5424</td>
<td>1</td>
</tr>
<tr>
<td>Brocade M6505</td>
<td>3</td>
</tr>
<tr>
<td>FC8-16/32</td>
<td>3</td>
</tr>
</tbody>
</table>
Configuring a port to be a mirror port

1. Connect to the switch and log in using an account with admin permissions.
2. Enter the `portCfg mirrorport [slot number/] port number --enable` command.

NOTE
The `enable` command enables the port as a mirror port. The `disable` command disables the mirror port configuration.

Adding a port mirror connection

1. Connect to the switch and log in using an account with admin permissions.
2. Enter the `portMirror --add slotnumber/portnumber SourceID DestID` command.

The configuration database keeps information about the number of port mirror connections configured on a switch, the number of chunks of port mirroring data that are stored, and the chunk number.

Deleting a port mirror connection

1. Connect to the switch and log in using an account with admin permissions.
2. Enter the `portMirror --del SourceID DestID` command.

For example, to delete the port mirror connection on mirror port 2, you could enter the following command:

```
switch:admin> portMirror --del 0x011400 0x240400
```

When removing a mirror connection, always use this method to ensure that the data is cleared. Deleting a connection removes the information from the database.
Displaying port mirror connections

1. Connect to the switch and log in using an account with admin permissions.
2. Enter the `portMirror --show` command.

 You should see output similar to the following:

   ```
   switch:admin> portmirror --show
   
   Number of mirror connection(s) configured: 4
   
   Mirror_Port  SID       DID       State
   18           0x070400  0x0718e2  Enabled
   18           0x070400  0x0718e3  Enabled
   18           0x070400  0x0718ef  Enabled
   18           0x070400  0x0718e0  Enabled
   ```
Configuration upload and download issues

It is important to maintain consistent configuration settings on all switches in the same fabric because inconsistent parameters (such as inconsistent PID formats) can cause fabric segmentation. As part of standard configuration maintenance procedures, it is recommended that you back up all important configuration data for every switch on a host computer server for emergency reference.

NOTE
For information about AD-enabled switches using Fabric OS v5.2.0 or later, refer to the Fabric OS Administrator’s Guide.

For information about Virtual Fabrics using Fabric OS v6.3.0 or later, refer to the Fabric OS Administrator’s Guide.

Symptom The configuration upload fails.

Probable cause and recommended action
If the configuration upload fails, it may be because of one or more of the following reasons:

• The FTP or SCP server’s host name is not known to the switch.
 Verify with your network administrator that the switch has access to the FTP server.

• The USB path is not correct.
 If your platform supports a USB memory device, verify that it is connected and running. Verify that the path name is correct by using the `usbStorage -l` command.

Example of `usbStorage -l` command

```
switch:admin> usbstorage -l
firmwarekey\ 0B 2007 Aug 15 15:13
support\ 106MB 2007 Aug 24 05:36
  support1034\ 105MB 2007 Aug 23 06:11
config\ 0B 2007 Aug 15 15:13
firmware\ 380MB 2007 Aug 15 15:13
  FW_v6.0.0\ 380MB 2007 Aug 15 15:13
Available space on usbstorage 74%
```
Configuration upload and download issues

- The FTP or SCP server's IP address cannot be contacted.

Verify that you can connect to the FTP server. Use your local PC to connect to the FTP server or ping the FTP server.

Example of a successful ping

C:\> ping 192.168.163.50
Pinging 192.168.163.50 with 32 bytes of data:
Reply from 192.168.163.50: bytes=32 time=5ms TTL=61
Ping statistics for 192.168.163.50:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 4ms, Maximum = 5ms, Average = 4ms

If your ping is successful from your computer, but you cannot reach it from inside your data center, there could be a block on the firewall to not allow FTP connections from inside the data center. Contact your network administrator to determine if this is the cause and to resolve it by opening the port up on both inbound and outbound UDP and TCP traffic.

Example of a failed ping

C:\> ping 192.168.163.50
Pinging 192.168.163.50 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 192.168.163.50:
Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

If your ping has failed, then you should verify the following:
- The ports are open on the firewall.
- The FTP server is up and running.

- You do not have configuration upload permission on the switch.

There may be some restrictions if you are using Admin Domains or Role-Based Access Control. For more information on these types of restrictions, refer to the Fabric OS Administrator's Guide.

- You do not have permission to write to the directory on the FTP or SCP server.

Example of a failed login to the FTP server

The output should be similar to the following on an unsuccessful login:

C:\> ftp 192.168.163.50
Connected to 192.168.163.50
220 Welcome to Services FTP service.
User (10.10.252.50:(none)): userFoo
331 Please specify the password.
Password: <hidden>
530 Login incorrect.
Login failed.

If your login to the FTP or SCP server has failed, verify the user name and password are correct.
On a Virtual Fabrics-enabled switch, you do not have the chassis role permission set on your user account.

Implement one change at a time, then issue the command again. By implementing one change at a time, you are able to determine what works and what does not work. Knowing which change corrected the problems help you to avoid this problem in future endeavors.

Symptom
The configuration download fails.

Probable cause and recommended action
If the configuration download fails, it may be because of one or more of the following reasons:

• The FTP or SCP server’s host name is not known to the switch.
Verify with your network administrator that the switch has access to the FTP server.

• The USB path is incorrect.
If your platform supports a USB memory device, verify that it is connected and running. Verify that the path name is correct. It should be the relative path from /usb/usbstorage/brocade/configdownload or use absolute path.

NOTE
Root access is required to see the mentioned path.

• The FTP or SCP server’s IP address cannot be contacted.
Verify that you can connect to the FTP server. Use your local PC to connect to the FTP server or ping the FTP server.

• There was a reason to disable the switch.
Note, however, that you must disable the switch for some configuration downloads. For more information on how to perform a configuration download without disabling a switch, refer to the Fabric OS Administrator’s Guide.

• You do not have permission on the host to perform configuration download.
There may be some restrictions if you are using Admin Domains or Role-Based Access Control. For more information on these types of restrictions, refer to the Fabric OS Administrator’s Guide.

• The configuration file you are trying to download does not exist on the host.
• The configuration file you are trying to download is not a switch configuration file.
• If you selected the (default) FTP protocol, the FTP server is not running on the host.
• The configuration file that you are trying to download uses incorrect syntax.
• The user name and password are incorrect.

Symptom
The switch reboots during the configuration download.

Probable cause and recommended action
If you are issuing the command with the -vf option, the rebooting is normal. You can continue with the instructions. Otherwise, issue the command again as follows.

• Enter the configDownload -vf command to download Virtual Fabrics-related data. This causes both CPs to reboot.
• Enter the `configDownload` command, without the `-vf` operand, to download the regular configuration data. This step does not cause a reboot. However, the `configDownload` command issues a notice that "A switch reboot is required for the changes to take effect." There is no reliable mechanism to determine, which parameters may or may not require a reboot. To ensure that all configuration changes are applied correctly, Brocade strongly recommends that you always reboot the switch after a configuration download.

Symptom
Configuration did not seem to change after the configuration download process finished.

Probable cause and recommended action

Verify that the switch was rebooted by checking the system log. If you are doing this on a enterprise-class platform, verify that both CPs rebooted by checking the system log.

If any error occurs during the download, such as an error about a particular key, it is important to issue the `configDefault` command and attempt to repeat the `configDownload` command.

Gathering additional information

Be sure to capture the output from the commands you are issuing both from the switch and from your computer when you are analyzing the problem.

Send this and all logs to your switch support provider.

Messages captured in the logs

Configuration download generates both RASlog and Audit log messages resulting from execution of the `configDownload` command.

The following messages are written to the logs:

- `configDownload completed successfully` ... (RASlog and Audit log)
- `configUpload completed successfully` ... (RASlog)
- `configDownload not permitted` ... (Audit log)
- `configUpload not permitted` ... (RASlog)
- (Warning) Downloading configuration without disabling the switch was unsuccessful. (Audit log)

Brocade configuration form

Use this form in Table 10 as a hard copy reference for your configuration information.

In the hardware reference manuals for the Brocade DCX, and DCX-4S modular switches, there is a guide for FC port setting tables. Print out Table 10 and use it to record configuration information for the various blades.

TABLE 10 Brocade configuration and connection

<table>
<thead>
<tr>
<th>Brocade configuration settings</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td></td>
</tr>
<tr>
<td>Gateway address</td>
<td></td>
</tr>
<tr>
<td>Brocade configuration settings</td>
<td>Value</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Chassis configuration option</td>
<td></td>
</tr>
<tr>
<td>Management connections</td>
<td></td>
</tr>
<tr>
<td>Serial cable tag</td>
<td></td>
</tr>
<tr>
<td>Ethernet cable tag</td>
<td></td>
</tr>
<tr>
<td>Configuration information</td>
<td></td>
</tr>
<tr>
<td>Domain ID</td>
<td></td>
</tr>
<tr>
<td>Switch name</td>
<td></td>
</tr>
<tr>
<td>Ethernet IP address</td>
<td></td>
</tr>
<tr>
<td>Ethernet subnet mask</td>
<td></td>
</tr>
<tr>
<td>Total number of local devices (nsShow)</td>
<td></td>
</tr>
<tr>
<td>Total number of devices in fabric (nsAllShow)</td>
<td></td>
</tr>
<tr>
<td>Total number of switches in the fabric (fabricShow)</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 5

Firmware Download Errors

In this chapter

- Blade troubleshooting tips .. 51
- Firmware download issues ... 52
- Troubleshooting with the firmwareDownload command 55
- USB error handling ... 56
- Considerations for downgrading firmware 56

Blade troubleshooting tips

This chapter refers to the following specific types of blades inserted into the Brocade DCX, DCX-4S, and DCX 8510 family enterprise-class platforms:

- FC blades or port blades contain only Fibre Channel ports: Brocade FC8-16/32/32E/48/48E/64 and FC16-32/48/64.
- AP blades contain extra processors, some with specialized ports, and have the Fabric OS code downloaded to them automatically in the chassis: FX8-24, FS8-18, and FCOE10-24.
- CP blades have a control processor (CP) used to control the entire switch; they can be inserted only into slots 6 and 7 on the Brocade DCX and DCX 8510-8, and slots 4 and 5 on the Brocade DCX-4S and DCX 8510-4.
- CR8 and CR4S-8 core blades provide ICL functionality between two Brocade DCX Backbones. CR8 blades can be inserted only into slots 5 and 8 on the Brocade DCX. CR4S-8 blades can be inserted only into slots 3 and 6 on the Brocade DCX-4S.
- CR16-8 and CR16-4 core blades provide ICL functionality between two Brocade DCX 8510 Backbones. CR16-8 blades can be inserted only into slots 5 and 8 on the Brocade DCX 8510-8. CR16-4 blades can be inserted only into slots 3 and 6 on the Brocade DCX 8510-4.

Typically, issues detected during firmware download to AP blades do not require recovery actions on your part.

If you experience frequent failovers between CPs that have different versions of firmware, then you may notice multiple blade firmware downloads and a longer startup time.

Symptom

Relocation of internal image times out on CP8 control processor blade.

Probable cause and recommended action

This can be caused by issues in the co-CPU. If this happens, the firmware download process synchronizes the partitions in the main-CPU and co-CPU by starting a firmware commit operation. Wait at least 15 minutes for the commit operation to complete, issue the firmwareShow command to verify the partitions are synchronized, and reissue the firmwareDownload command. If the problem persists, you must contact the switch service provider.
Firmware download issues

NOTE
This message only appears with Fabric OS v7.1.0 and earlier versions.

Symptom
The blade is faulty (issue slotShow to confirm).

Probable cause and recommended action
If the port or application blade is faulty, enter the slotPowerOff and slotPowerOn commands for the port or application blade. If the port or application blade still appears to be faulty, remove it and re-insert it into the chassis.

Symptom
The AP blade is stuck in the “LOADING” state (issue slotShow to confirm).

Probable cause and recommended action
If the blade remains in the loading state for a significant period of time, the firmware download times out. Remove the blade and re-insert it. When it boots up, autoleveling is triggered and the firmware download is attempted again.

Firmware download issues

CAUTION
After you start the firmware download process, do not enter any disruptive commands (such as reboot) that interrupt the process. The entire firmware download and commit process can take up to 30 minutes.

If there is a problem, wait for the time-out (30 minutes for network problems) before issuing the firmwareDownload command again. Disrupting the process can render the switch inoperable and require you to seek help from your switch service provider.

Do not disconnect the switch from power during the process because the switch could become inoperable when rebooted.

The following symptoms describe common firmware download issues and their recommended actions.

Symptom
Firmware download times out.

Probable cause and recommended action
This can be caused by an excessively slow network. If it takes more than 30 minutes to download firmware on a switch, or on each CP in a director, the firmware download process times out. If a timeout occurs on a switch, the firmware download process synchronizes the two partitions on the switch by starting a firmware commit operation. If a timeout occurs in a director, the firmware download process synchronizes the firmware on the two partitions on the CP blades by starting a firmware commit operation on each CP.
Wait at least 15 minutes for the commit operation to complete, then use the `firmwareShow` command to verify the partitions are synchronized. In some older versions of firmware, the firmware commit operation may not be started automatically on the switch (or on the standby CP in the director). In this case, you can enter the `firmwareCommit` command manually on the switch (or on the standby CP in the director) to synchronize the partitions. After the firmware commit operation completes, re-issue the `firmwareDownload` command to upgrade the system.

Symptom
Cannot upgrade directly to v7.2.0.

Probable cause and recommended action

If the switch is running Fabric OS v7.0.0 or earlier, you are not allowed to upgrade directly to v7.2.0 because of the “one-version” rule. Upgrade your switch to Fabric OS version v7.1.0 before upgrading to v7.2.0. The “one-version” rule also applies to downgrading.

Symptom
Server is inaccessible or firmware path is invalid.

NOTE

The entire firmware directory must be loaded onto the USB device under the firmware directory prior to using the USB device for firmware download.

Probable cause and recommended action

- The FTP or SCP server’s host name is not known to the switch.

 Verify with your network administrator that the switch has access to the FTP server.

 Verify the path to the FTP or SCP server is accessible from the switch. For more information on checking your FTP or SCP server, refer to Chapter 4, “Configuration”.

- The USB path is not correct.

 If your platform supports a USB memory device, verify that it is connected and running. Verify that the path name is correct by using the `usbStorage -l` command.

Example of `usbStorage -l` command

```
switch:admin> usbstorage -l
firmware\  1585MB   2012 Oct 22 17:46
  v7.2.0_main_bld14\  1585MB 2013 Apr 22 14:16
  config\  0B 2012 Oct 22 17:46
  support\  0B 2012 Oct 22 17:46
  firmwarekey\  0B 2012 Oct 22 17:46
Available space on USB storage 16%
```

Example of error message

```
switch:admin> firmwareDownload
Download from USB [No]: y
Firmware filename: v7.2.0_main_bld24
Server IP: 127.1.1.7, Protocol IPv4
Checking system settings for firmwareDownload...
Failed to access
usb://127.1.1.7//usb/usbstorage/brocade/firmware/v7.2.0_main_bld24/release.plist
Cannot access the firmware on USB device. Please check the firmware path.
```
Symptom: Cannot download the requested firmware.

Probable cause and recommended action

The firmware you are trying to download on the switch is incompatible. Check the firmware version against the switch type. If the firmware is incompatible, retrieve the correct firmware version and try again.

Example of error message

```
SW3900:admin> firmwaredownload
Server Name or IP Address: 192.168.126.115
User Name: userFoo
File Name: /users/home/userFoo/firmware/v7.1.0
Network Protocol(1-auto-select, 2-FTP, 3-SCP) [1]: 2
Password: <hidden>
Checking system settings for firmwaredownload...
Cannot download the requested firmware because the firmware doesn't support this platform. Please enter another firmware path.
```

Symptom: Cannot download on a switch with Interop mode turned on.

Probable cause and recommended action

On single CP system, the Interop fabric does not support Coordinated HotCode Load.

Perform a firmwaredownload -o command. The operand bypasses the checking of Coordinated HotCode Load (HCL). On single CP systems in interop fabrics, the HCL protocol is used to ensure data traffic is not disrupted during firmware upgrades. This option allows a firmware download to continue even if HCL is not supported in the fabric or the protocol fails. Using this option may cause traffic disruption for some switches in the fabric.

Symptom: You receive a “firmwaredownload is already in progress” message.

Probable cause and recommended action

The firmware download process has already been started and it is in progress. Wait until it completes. You can use the firmwareDownloadStatus and firmwareShow commands to monitor its progress. If the problem persists, contact your switch support provider.

Example of a firmwaredownload already in progress

```
switch:admin> firmwaredownload
Server Name or IP Address: 192.168.126.115
User Name: userFoo
File Name: /users/home/userFoo/firmware/v7.1.0
Network Protocol(1-auto-select, 2-FTP, 3-SCP) [1]: 2
Password: <hidden>
Checking system settings for firmwaredownload...
Sanity check failed because firmwaredownload is already in progress.
```
Troubleshooting with the firmwareDownload command

A network diagnostic script and preinstallation check is a part of the firmware download procedure. The script and preinstallation check performs troubleshooting and automatically checks for any blocking conditions. If the firmware download fails, refer to the Fabric OS Message Reference for details about error messages. Also refer to, “Considerations for downgrading firmware” on page 56.

ATTENTION
Do not run mixed firmware versions on CPs.

If a firmware download fails in a director, the firmwareDownload command synchronizes the firmware on the two partitions of each CP by starting a firmware commit operation. Wait at least 15 minutes for this commit operation to complete before attempting another firmware download.

If the firmware download fails in a director or enterprise-class platform, the CPs may end up with different versions of firmware and are unable to achieve HA synchronization between the two blades. In such cases, issue the firmwareDownload -s command on the standby CP; the single mode (-s) option allows you to upgrade the firmware on the standby CP to match the firmware version running on the active CP. This situation can also occur during a CP replacement in which the replacement CP has a lower firmware version. HA should be disabled and the firmware should be updated on the replacement CP before any other operations are considered.

Then reissue the firmwareDownload command to download the desired firmware version to both CPs. For example, if CP0 is running Fabric OS v7.1.0 on the primary and secondary partitions, and CP1 is running Fabric OS v7.2.0 on the primary and secondary partitions, then synchronize them by issuing the firmwareDownload command.

NOTE
Some of the messages include error codes (as shown in the following example). These error codes are for internal use only and you can disregard them.

Port configuration with EX ports enabled along with trunking for port(s) 63, use the portCfgEXPort, portCfgVEXPort, and portCfgTrunkPort commands to remedy this. Verify blade is ENABLED. (error 3)

Gathering additional information

You should follow these best practices for firmware download before you start the procedure:

- Keep all session logs.
- Enter the supportSave or the supportShow command before and after entering the firmwareDownload command.
- If a problem persists, package together all of the information (the Telnet session logs and serial console logs, output from the supportSave command) for your switch support provider. Make sure you identify what information was gathered before and after issuing the firmwareDownload command.
USB error handling

Table 11 outlines how the USB device handles errors under specific scenarios and details what actions you should take after the error occurs.

<table>
<thead>
<tr>
<th>Scenario under which download fails</th>
<th>Error handling</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>An access error occurs during firmware download because the removal of the USB device, or USB device hardware failure, and so on.</td>
<td>Firmware download times out and commit is started to repair the partitions of the CPUs that are affected.</td>
<td>None.</td>
</tr>
<tr>
<td>USB device is not enabled.</td>
<td>Firmware download fails with an error message</td>
<td>Enable the USB device using the <code>usbStorage -e</code> command and retry firmware download.</td>
</tr>
</tbody>
</table>

Considerations for downgrading firmware

The pre-installation check of the `firmwareDownload` command detects all of the blocking conditions that can prevent a successful downgrade, and warns you about all these conditions. The error messages displayed by the `firmwareDownload` command states the blocking conditions and the corresponding commands to correct them. You must address all of these blocking conditions before proceeding. Refer to the Fabric OS Administrator’s Guide for more information regarding individual features and commands.

To avoid failure of a firmware downgrade, verify the firmware you are downgrading to supports all the blades in the chassis, and that the switch, blades, or chassis supports all the features you are currently using. If not, you must disable or remove those features that are not supported.

Preinstallation messages

The system messages in this section are displayed if an exception is encountered during firmware download. The following examples show feature-related messages that you may see if you were upgrading from Fabric OS v7.1.0 to v7.2.0:

NOTE
The system messages in this section are for illustration purposes only. They do not represent the entire range of possible error messages appropriate to a wide variety of installation scenarios.

Upgrade to 7.2 will set default QoS port configuration from AE to OFF.

Cannot upgrade directly to 7.2. Please upgrade to 7.0 first and then upgrade to 7.2.

Upgrade to 7.2 is not allowed because FC Fastwrite is not supported on this version. Please use "fastwritecfg" to deconfigure FC Fastwrite for all slots and try again.

Upgrade to 7.2 is not allowed due to the presence of ioddelay configuration. Please reset the feature with "ioddelayreset" before upgrading to v7.1.
Upgrade to 7.2 is not allowed since base switch has R_RDY enabled ports. Please disable the R_RDY enabled ports in base switch using portcfgislmode command.

Firmware upgrade to Fabric OS 7.2.0 or higher is not allowed when there are more than 4 chassis connected through Inter-Chassis Links (ICLs) and the Enterprise ICL (EICL) license is not installed in the system. Note that even with an EICL license installed, only 9 chassis are allowed to connect through ICLs. You can either install an EICL license, or you must disable the additional ICL links before performing a firmware upgrade.

The following example shows hardware-related messages for a downgrade:

cp:admin> firmwaredownload
Type of Firmware (FOS, SAS, or any application) [FOS]:
Server Name or IP Address: 10.1.2.3
User Name: userfoo
File Name: /home/userfoo/v6.3.0
Network Protocol (1-auto-select, 2-FTP, 3-SCP) [1]:
Password: <hidden>

Checking System Settings...
Version compatibility check passed.

Checking version compatibility...
Version compatibility check passed.

The following items must be addressed before downloading the specified firmware:

FC8-32E and FC8-48E are not supported by the targeted firmware. Please use slotshow to determine which of these are installed and remove them before continuing.

The following messages are displayed if an exception case is encountered during firmware downgrade. The following example shows feature-related messages that you may see if you were downgrading from Fabric OS v7.2.0 to v7.1.0:

Downgrade is not allowed as QoS mode is enabled (ON) on some of the ports (other than E_Port(s) and F_Port with AoQ feature) and there is no Adaptive Networking license installed on the switch. To proceed further with downgrade either install Adaptive Networking license, or set QoS mode to OFF/AE. Please use "portcfgqos --disable [slot/]port" to set QoS mode on these ports to OFF or use "portcfgqos --default [slot/]port" to set QoS mode on these ports to AE.

Downgrade is not allowed as some of the E_Port(s) are using QoS feature and there is no Adaptive Networking license installed on the switch. To proceed further with downgrade either install Adaptive Networking license, or set QoS mode on these ports to OFF. Please use "islshow" to view list of E_Port with QoS feature enabled and use "portcfgqos --disable [slot/]port" to set QoS mode on these ports to OFF.

Downgrade to selected version is not allowed. Please remove E-Port Credit configuration using "portcfgdefault" or "portcfggeportcredits --disable" CLI on these ports.

Downgrade is not allowed because Flow Vision is configured. Please delete all the flows using "flow" CLI.
Considerations for downgrading firmware

Downgrade is not allowed because there are few ports other than the first octet of the blade/switch configured for 10G/N10 speeds. Please change the octet speed combo of those ports to 1 using "portcfgoctetspeedcombo" CLI and change their speeds using "portcfgspeed" CLI.

Downgrade is not allowed because Monitoring and Alerting Policy Suite (MAPS) is enabled. Please disable MAPS using "mapsconfig --disable" before proceeding.

Downgrade to pre-7.2 Fabric OS versions is not allowed. Please configure TACACS+ keys of length in the range (8-40) characters using aacconfig CLI (Usage: aacconfig --change <server> -conf tacacs+ [-s <secret>], before performing a firmware downgrade.

Downgrade is not allowed because ICL ports are configured as EX-ports. Please use "portcfgshow" to view the ICL EX ports and use "portcfgexport" to disable the EX feature on those ports before downgrading.

The following example shows feature-related messages that you may see if you were downgrading from Fabric OS v7.1.0 to v7.0.x:

- Downgrade to selected version is not allowed because few ports are configured with Longdistance -buffers option. Please remove the configuration using "portcfglongdistance L0" CLI or change the configuration with -distance option.

- Downgrade is not allowed because Location ID is configured. Please use "configure" command to clear Location ID.

- Downgrade is not allowed because switch is in AG mode and D-Ports are configured. Please use "switchshow" to view the D-port list and use "portcfgdport --disable <port_no>" to disable it before downgrading.

- Downgrade is not allowed because R-RDY flow control ports are configured as D-Ports. Please use "portdporttest --show all" to view the port list and "portcfgdport --disable" to disable before downgrading.

- Downgrade is not allowed because D-Port is configured with DWDM mode. Please use "portcfgshow" to view the port list and "portcfgdport --enable" to reset DWDM mode before downgrading.

- Downgrade is not allowed because ICL ports are configured as D-Ports. Please use "switchshow" to view the D-port list and use "portcfgdport --disable <port_no>" to disable it before downgrading.

- Downgrade is not allowed because one or more ports have credit recovery enabled. Please use "portcfgcreditrecovery --disable" command to disabled credit recovery.

- Downgrade is not allowed because one or more ports have FEC enabled. Please use "portcfgfec --disable" command to disabled FEC.
Blade types

Where blades are incompatible with a firmware download, they must be removed or powered off before a firmware download begins, as noted in the following message.

Message

The FC10-6 (type 39) blade is not supported by the target firmware. Please use slotshow to find out which slot it is in and remove it first.

Probable cause and recommended action

The firmware download operation was attempting to upgrade a system to Fabric OS v7.2.0 with one or more of the Brocade FC10-6 blades (blade ID 39) in the system. The Brocade FC10-6 blades are not supported on firmware v7.2.0, so the firmware download operation failed.

Use the `slotShow` command to display which slots the Brocade FC10-6 blades occupy. Physically remove the blades from the chassis, or use the micro-switch to turn the blade off. Retry the firmware download operation.

Firmware versions

The system messages in this section refer to differences between the current firmware and the firmware you are applying to the switch.

ATTENTION

Brocade does not support upgrades from more than one previous release. For example, upgrading from Fabric OS v7.1.0 to v7.2.0 is supported, but upgrading from Fabric OS v7.0.0 or a previous release directly to v7.2.0 is not. In other words, upgrading a switch from Fabric OS v7.0.0 to v7.2.0 is a two-step process: first upgrade to v7.1.0, and then upgrade to v7.2.0. If you are running a pre-Fabric OS v6.2.0 version, first you must upgrade to v6.2.0, then to v6.3.0, then to v6.4.0, then to v7.0.0, then to v7.1.0, and finally to v7.2.0.

Message

Cannot upgrade directly to v7.2.0. Upgrade your switch to v7.1.0 first before upgrading to the requested version.

Probable cause and recommended action

If the switch is running v7.0.0 or earlier, you are not allowed to upgrade directly to v7.2.0 because of the “two-version” rule.

Upgrade your switch to Fabric OS version v7.1.0 before upgrading to v7.2.0

Message

Non-disruptive firmware download is not supported when downgrading to 7.0. Please use firmwareDownload -s to download the 7.0 firmware.

Probable cause and recommended action

If the switch is running v7.2.0, you are not allowed to downgrade directly to v7.0.x without causing disruption to your fabric.

Downgrade using the `firmwareDownload -s` command.
Considerations for downgrading firmware

Platform

The following system message pertains to switch features or fabric-wide settings that must be removed or disabled before downgrading the firmware.

Message Downgrade is not allowed because VF is enabled. Please run "lsconf -config" and "lsconf -delete" commands to remove the non-default LS first, then run "fosconfig -disable vf" to disable VF before proceeding.

Probable cause and recommended action

You cannot downgrade because Virtual Fabrics is enabled. Delete the logical switches, delete the base switch, and disable Virtual Fabrics prior to downgrading the firmware.

Routing

The following system message refers to any route settings that must be changed prior to downgrading the switch’s firmware.

Message Please use "configure" to clear the location ID.

Probable cause and recommended action

If the switch is running v7.1.0 or later, and Location-Oriented Link Aggregation is configured, you cannot downgrade the switch to v7.0.0 or earlier.

Use the configure command to clear the location ID.
Chapter 6

Security

In this chapter

- Passwords ... 61
- Device authentication .. 62
- Protocol and certificate management 63
- SNMP ... 64
- FIPS. ... 64

Passwords

The following section describes various ways to recover forgotten passwords.

Symptom
user forgot password.

Probable cause and recommended action

If you know the root password, you can use this procedure to recover the password for the default accounts of user, admin, and factory. If you do not know the root password, you must contact your service support provider to recover admin passwords.

Recovering passwords

1. Open a CLI connection (serial or Telnet) to the switch.
2. Log in as root.
3. Enter the command for the type of password that was lost:

   ```
   passwd user
   passwd admin
   passwd factory
   ```

4. Enter the requested information at the prompts.

Symptom
unable to log in as root password.

Probable cause and recommended action

To recover your root password, contact your switch service provider.

Symptom
unable to log into the boot PROM.

Probable cause and recommended action

To recover a lost boot PROM password, contact your switch service provider. You must have previously set a recovery string to recover the boot PROM password.

This does not work on lost or forgotten passwords in the account database.
Device authentication

Password recovery options

Table 12 describes the options available when one or more types of passwords are lost.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>If all the passwords are forgotten, what is the password recovery mechanism? Are these procedures non-disruptive recovery procedures?</td>
<td>Contact your switch service provider. A non-disruptive procedure is available.</td>
</tr>
<tr>
<td>If a user has only the root password, what is the password recovery mechanism?</td>
<td>Use the <code>passwd</code> command to set other passwords. Use the <code>passwdDefault</code> command to set all passwords to default.</td>
</tr>
<tr>
<td>How to recover boot PROM password?</td>
<td>Contact your switch service provider and provide the recovery string.</td>
</tr>
<tr>
<td>How to recover a user, admin, or factory password?</td>
<td>Refer to “Passwords” on page 61 for more information on recovering these passwords.</td>
</tr>
</tbody>
</table>

Symptom User is unable to modify switch settings.

Probable cause and recommended action

The most common error when managing user accounts is not setting up the default Admin Domain and access control list or Role-Based Access Control (RBAC).

Errors such as a user not being able to run a command or modify switch settings are usually related to what role the user has been assigned.

Device authentication

Symptom Switch is unable to authenticate device.

Probable cause and recommended action

When the device authentication policy is set to ON, the switch expects a FLOGI with the FC-SP bit set. If this bit is not set, the switch rejects the FLOGI with reason LS_LOGICAL_ERROR (0x03), in the switch log with the explanation of “Authentication Required”(0x48), and disables the port. Set the device authentication policy mode on the switch to ON.

Symptom Switch is unable to form an F_Port.

Probable cause and recommended action

Regardless of the device authentication policy mode on the switch, the F_Port is disabled if the DH-CHAP protocol fails to authenticate. If the HBA sets the FC-SP bit during FLOGI and the switch sends a FLOGI accept with FC-SP bit set, then the switch expects the HBA to start the AUTH_NEGOTIATE. From this point on until the AUTH_NEGOTIATE is completed, all ELS and CT frames, except the AUTH_NEGOTIATE ELS frame, are blocked by the switch. During this time, the Fibre Channel driver rejects all other ELS frames. The F_Port does not form until the AUTH_NEGOTIATE is completed. It is the HBA's responsibility to send an Authentication Negotiation ELS frame after receiving the FLOGI accept frame with the FC-SP bit set.
Protocol and certificate management

This section provides information and procedures for troubleshooting standard Fabric OS security features such as protocol and certificate management.

Symptom Troubleshooting certificates.

Probable cause and recommended action

If you receive messages in the browser or in a pop-up window when logging in to the target switch using HTTPS, refer to Table 13 for recommended actions you can take to correct the problem.

<table>
<thead>
<tr>
<th>Message</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The page cannot be displayed</td>
<td>The SSL certificate is not installed correctly or HTTPS is not enabled correctly. Make sure that the certificate has not expired, that HTTPS is enabled, and that certificate file names are configured correctly.</td>
</tr>
<tr>
<td>The security certificate was issued by a company you have not chosen to trust.</td>
<td>The certificate is not installed in the browser. Install it as described in the Fabric OS Administrator’s Guide.</td>
</tr>
<tr>
<td>The security certificate has expired or is not yet valid</td>
<td>Either the certificate file is corrupted or it needs to be updated. Click View Certificate to verify the certificate content. If it is corrupted or out of date, obtain and install a new certificate.</td>
</tr>
<tr>
<td>The name on the security certificate is invalid or does not match the name of the site file</td>
<td>The certificate is not installed correctly in the Java Plug-in. Install it as described in the Fabric OS Administrator’s Guide.</td>
</tr>
<tr>
<td>This page contains both secure and nonsecure items. Do you want to display the nonsecure items?</td>
<td>Click No in this pop-up window. The session opens with a closed lock icon on the lower-right corner of the browser, indicating an encrypted connection.</td>
</tr>
</tbody>
</table>

Gathering additional information

For security-related issues, use the following guidelines to gather additional data for your switch support provider.

- Use the supportSave -n command.
- If not sure about the problem area, use the supportSave -n to collect data from all switches in the fabric.
- If you think it may be related to E_Port authentication, use the supportSave -n command to collect data from both switches of the affected E_Port.
- If you think this is a policy-related issue, FCS switch, or other security server-related issue, then use supportSave -n to collect data from the Primary FCS switch and all affected switches.
- If login-related, then also include the following information:
 - Does login problem appear on a Serial, CP IP, or Switch IP address connection?
 - Is it CP0 or CP1?
 - Is the CP in active or standby?
 - Is it the first time login after firmwareDownload and reboot?
SNMP

This section describes symptoms with associated causes and recommended actions for SNMP-related issues.

Symptom
SNMP management station server is unable to receive traps from fabric.

Probable cause and recommended action
There are several causes related to this generic issue. You must verify the following:

• There are no port filters in the firewalls between the fabric and the SNMP management station.
• If your SNMP management station is a dual-homed server, check that the routing tables are set up correctly for your network.

If you continue to have problems, collect the data in the next section and contact your switch support provider.

Gathering additional information
In addition to supportSave, gather the MIB browser snapshot with the problem (like Adventnet screen snapshot) for an MIB variable.

FIPS

This section describes symptoms with associated causes and recommended actions for problems related to FIPS.

Symptom
When FIPS is turned on, the switch constantly reboots.

Probable cause and recommended action
When FIPS is turned on, the switch runs conditional tests each time it is rebooted. These tests run random number generators and are executed to verify the randomness of the random number generator. The conditional tests are executed each time prior to using the random number provided by the random number generator.

The results of all self-tests, for both power-up and conditional, are recorded in the system log or are output to the local console. This includes logging both passing and failing results. If the tests fail on your switch, it constantly reboots. Because boot PROM access is disabled, you are not able to exit out of the reboot. You must send the switch back to your switch service provider for repair.
General Virtual Fabrics troubleshooting

All of the following constraints apply when the Virtual Fabrics feature is enabled:

- The base fabric works only in Brocade native mode, not in an interoperable mode.
- The base switch does not have any devices. The base fabric can have devices in remote Layer 2 switches; traffic between those devices is supported.
- A non-base switch in a Virtual Fabrics-capable chassis must not be part of a fabric that serves as a base fabric for some other logical fabric traffic. Although software does not detect or prevent users from deploying such a configuration, such a configuration is not supported.
- ICL ports can only be in the base or default switch. If the XISL is turned off, you can connect ICLs to other logical switches.
- A default switch can be configured as a base switch in the fixed-port switches, but not in a Brocade Backbone. Fabric IDs of default switches cannot be manually changed.
- The default switch is able to participate in a logical fabric using extended ISLs (XISLs). In the Brocade Backbones, the default switch does not participate in a logical fabric and is a purely Layer 2 logical switch.
- EX_Ports and VEX_Ports are supported in the base switch. EX_Ports cannot be part of any other switch other than the base switch.
- EX_Ports and VEX_Ports cannot connect to a fabric that has a logical switch with the Allow XISL use mode on. The port is disabled with the reason “Conflict: XISL capability domain”.
- External device sharing is supported through EX_Ports. Internal device sharing (sharing a device in a logical fabric with other fabrics, without having an EX_Port) is not supported.
- A logical fabric cannot have EX_Ports using XISLs and cannot serve as a backbone to any EX_Port traffic. Similarly, the default switch cannot be part of a fabric that serves as a backbone to any EX_Port traffic.
Fabric identification issues

Symptom
E_Ports directly connecting two logical switches do not form, or are disabled.

Probable cause and recommended action
The FIDs on each of the logical switches must be the same.
Use the `lsCfg --show` command to view the current FIDs on the chassis and then the `lsCfg --change FID -newfid FID` command to change the FID.

Symptom
Invalid FID.

Probable cause and recommended action
FIDs for switches may be from 1 through 128 as long as they are not already in use, except for EX_Ports, which are only assigned FIDs from 1 through 127.
Use the `lsCfg --show` command to verify whether the FID is in use. If it is, use another FID.

Symptom
The FID is currently in use.

Probable cause and recommended action
You may not create two (2) or more logical switches with the same FID.
Use the `lsCfg --show` and `fcrFabricShow` commands to view FIDs in use.

Logical Fabric issues

Symptom
Logical port <port_number> disabled.

Probable cause and recommended action
This message indicates an LISL was disabled because of some protocol conflict or security or policy violation. This can result in possible traffic issues. You should resolve the cause of the conflict and re-enable the LISL by using the `ifCfg --lisenable` command.
Symptom The switch with domain <domain> with firmware version <fw version> has joined the FID <fid> fabric and may not be compatible with XISL use.

Probable cause and recommended action
This message indicates the specified switch in the logical fabric that is using XISLs is running an incompatible firmware version and must be upgraded to Fabric OS v6.2.0 or later.

Base switch issues
All logical switches in a fabric should have the same base switch attribute. If a base switch is connected to a non-base switch, then you must take the appropriate action to resolve the conflict.

Symptom EX_Port is disabled with reason “Export in non base switch”.

Probable cause and recommended action
An EX_Port must be in the base switch.
Use the lsCfg --create FID -b base command to create a base switch. Then use the lsCfg --config FID -slot [slot | slot_range] -port [port | port_range] [-force] command and move the port to the base switch. If the port is not intended to be used as an EX_Port, use the portCfgDefault command to reset the port to its default configuration.

Symptom An EX_ or VEX_Port is disabled with reason “Conflict: XISL capability domain”.

Probable cause and recommended action
Use the configure command to set the value on the Allow XISL use to OFF on all logical switches of the connecting edge fabric.

Symptom E_Ports connecting two logical switches are disabled.

Probable cause and recommended action
If a base switch is directly connected to a non-base switch, all E_Ports to that logical switch are disabled.

Symptom Fabric ID and base switch are conflicted.

Probable cause and recommended action
If there is a Fabric ID conflict and a base switch conflict that exists between two switches, the Fabric ID conflict is detected first.
Use the lsCfg --change FID -newfid FID command to change the FID.

Symptom A base switch already exists on this system.

Probable cause and recommended action
Only one base switch is allowed on a platform. Use the lsCfg --delete FID command, then the lsCfg --create FID -b base command to remove the current base switch, and then create a new one.
Logical switch issues

CAUTION
When a logical switch is created, all configuration for the logical switch is set to factory defaults. When a logical switch is deleted, all configuration for the logical switch is deleted permanently and is not recoverable.

Symptom The indicated slot is empty.
Probable cause and recommended action
You used the lsCfg command and an empty slot was specified.
Re-issue the command with the appropriate slot number.

Symptom Validation of switch configuration changes is not supported on this platform.
Probable cause and recommended action
This platform is unknown to the logical switch subsystem.

Symptom Given slot number is not valid on this platform.
Probable cause and recommended action
You are specifying a slot number that is not valid on the platform, for example, slot 0 on a Brocade DCX or slot 12 on a Brocade DCX-4S.

Symptom Slot must be enabled to configure ports.
Probable cause and recommended action
You may only attempt to configure ports on enabled blades (blades may be faulted).

Symptom Unable to determine slot type.
Probable cause and recommended action
The slot type is not known to the logical switch. Verify the slot and try again.

Symptom There are no ports on this slot.
Probable cause and recommended action
There are no configurable ports on the slot indicated by the lsCfg command. Verify the ports and try again.

Symptom Unable to remove ports from their current switch.
Probable cause and recommended action
When moving ports to a switch, you must first remove them from the switch in which they reside. This error message is displayed if this step fails.
Symptom A non-GE blade is within the slot range.

Probable cause and recommended action
You are attempting to configure a GE port on a slot that does not contain GE ports.

Symptom A port or ports is already in the current switch.

Probable cause and recommended action
You may not move a port to the same switch.

Symptom The maximum number of switches for this platform has been reached.

Probable cause and recommended action
Each platform that supports Virtual Fabrics has a maximum number of logical switches that may be supported. The platform has reached this limit.

Symptom Unable to create the switch.

Probable cause and recommended action
There was an error while creating the switch.

Symptom A port or ports cannot be moved to the requested switch because it would exceed the 256 area limit for this switch.

Probable cause and recommended action
The area limit would be exceeded if the IsCf g command were allowed.

Symptom A port or ports cannot be moved to the requested switch because it may only exist in a base or default switch.

Probable cause and recommended action
You are attempting to move ports on a core blade into a non-default or non-base switch.

Switch configuration blade compatibility

Symptom A slot in the chassis displays a FAULTY(91) in the output of the slotShow command.

Probable cause and recommended action
When an enterprise-class platform is coming up or when a blade is inserted, the switch configuration is checked based on the blade type. If the configuration does not match with the blade type, the blade is faulted. This is displayed as FAULTY(91) in the output of the slotShow command.
Gathering additional information

Use the `lsCfg -restore_slot_to_default` command to correct the problem. Once the configuration discrepancy has been fixed, you may use `slotPowerOff` followed by `slotPowerOn` to recover.

```
>lsCfg -restore_slot_to_default 1
>slotpoweroff 1
>slotpoweron 1
```

<table>
<thead>
<tr>
<th>Slot</th>
<th>Blade Type</th>
<th>ID</th>
<th>Model Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SW BLADE</td>
<td>77</td>
<td>FC8-64</td>
<td>ENABLED</td>
</tr>
<tr>
<td>2</td>
<td>SW BLADE</td>
<td>97</td>
<td>FC16-32</td>
<td>ENABLED</td>
</tr>
<tr>
<td>3</td>
<td>SW BLADE</td>
<td>96</td>
<td>FC16-48</td>
<td>ENABLED</td>
</tr>
<tr>
<td>4</td>
<td>SW BLADE</td>
<td>96</td>
<td>FC16-48</td>
<td>ENABLED</td>
</tr>
<tr>
<td>5</td>
<td>CORE BLADE</td>
<td>98</td>
<td>CR16-8</td>
<td>ENABLED</td>
</tr>
<tr>
<td>6</td>
<td>CP BLADE</td>
<td>50</td>
<td>CP8</td>
<td>ENABLED</td>
</tr>
<tr>
<td>7</td>
<td>CP BLADE</td>
<td>50</td>
<td>CP8</td>
<td>ENABLED</td>
</tr>
<tr>
<td>8</td>
<td>CORE BLADE</td>
<td>98</td>
<td>CR16-8</td>
<td>ENABLED</td>
</tr>
<tr>
<td>9</td>
<td>SW BLADE</td>
<td>55</td>
<td>FC8-32</td>
<td>ENABLED</td>
</tr>
<tr>
<td>10</td>
<td>SW BLADE</td>
<td>96</td>
<td>FC16-48</td>
<td>ENABLED</td>
</tr>
<tr>
<td>11</td>
<td>AP BLADE</td>
<td>75</td>
<td>FX8-24</td>
<td>ENABLED</td>
</tr>
<tr>
<td>12</td>
<td>SW BLADE</td>
<td>97</td>
<td>FC16-32</td>
<td>ENABLED</td>
</tr>
</tbody>
</table>

Gathering additional information

For Virtual Fabrics-related issues, use the following guidelines to gather additional data for your switch support provider:

- Use the `supportSave` command.
- If not sure about the problem area, use the `supportSave` command on all chassis and logical switches in the fabric.
- If you think it may be related to E_Port authentication, then use the `supportSave -n` command on both switches or logical switches of the affected E_Port.
Chapter 8

ISL Trunking

In this chapter

• Link issues ... 71
• Buffer credit issues .. 72

Link issues

This section describes trunking link issues that can come up and recommended actions to take to correct the problems.

Symptom

A link that is part of an ISL trunk failed.

Probable cause and recommended action

Use the `trunkDebug port1 port2` command to troubleshoot the problem, as shown in the following procedure.

1. Connect to the switch and log in as admin.
2. Enter the `trunkDebug port1 port2` command:

 In the `trunkDebug` command, the following operands are used:

 `port1` Specify the area number or index of port 1. Use the `switchShow` command to view the area or index numbers for a port. This operand is required.

 `port2` Specify the area number or index of port 2. Use the `switchShow` command to view the area or index numbers for a port. This operand is required.

Example of an unformed E_Port

This example shows that port 3 is not configured as an E_Port:

```
ecp:admin> trunkdebug 126, 127
port 126 is not E/EX port
port 127 is not E/EX port
```

Example of a formed E_Port

```
ecp:admin> trunkdebug 100, 101
port 100 and 101 connect to the switch 10:00:00:05:1e:34:02:45
```

The `trunkDebug` command displays the possible reason that two ports cannot be trunked. Possible reasons are:

• The switch does not support trunking.
• A trunking license is required.
Buffer credit issues

This section describes a trunk going online and offline or hosts not being able to talk to a storage device.

Symptom
Trunk goes offline and online (bounces).

Probable cause and recommended action

A port disabled at one end because of buffer underallocation causes all the disabled ports at the other end to become enabled. Some of these enabled ports become disabled because of a lack of buffers, which in turn triggers ports to be enabled once again at the other end.

While the system is stabilizing the buffer allocation, it warns that ports are disabled because of a lack of buffers, but it does not send a message to the console when buffers are enabled. The system requires a few passes to stabilize the buffer allocation. Ultimately, the number of ports for which buffers are available come up and stabilize. You should wait for stabilization, and then proceed with correcting the buffer allocation situation.

Getting out of buffer-limited mode

Occurs on LD_Ports.

1. Change the LD port speed to a lower speed (of non-buffer limited ports).
2. Change the LD port’s estimated distance to a shorter distance (of non-buffer limited ports).
3. Change LD back to L0 (of non-buffer limited ports).
4. If you are in buffer-limited mode on the LD port, then increase the estimated distance.
5. Enable any of these changes on the buffer-limited port or switch by issuing the commands `portDisable` and `portEnable`.

- Trunking is not supported in switch interoperability mode.
- Port trunking is disabled.
- The port is not an E_Port.
- The port is not 2 Gbps, 4 Gbps, or 8 Gbps.
- The port connects to a switch other than the one you want.

To correct this issue, connect additional ISLs to the switch with which you want to communicate.

- The ports are not the same speed or they are not set to an invalid speed.

Manually set port speeds to a speed supported on both sides of the trunk.

- The ports are not set to the same long distance mode.

Set the long distance mode to the same setting on all ports on both sides of the trunk.

- Local or remote ports are not in the same port group.

Move all ISLs to the same port group. The port groups begin at port 0 and are in groups of 4 or 8, depending on the switch model. Until this is done, the ISLs do not trunk.

- The difference in the cable length among trunked links is greater than the allowed difference.
In this chapter

- Overview of corrective action .. 73
- Segmented fabrics .. 74
- Zone conflicts .. 75
- Gathering additional information 80

Overview of corrective action

The following overview provides a basic starting point for you to troubleshoot your zoning problem.

1. Verify that you have a zone problem.
2. Determine the nature of the zone conflict.
3. Take the appropriate steps to correct zone conflict.

To correct a merge conflict without disrupting the fabric, first verify that it was a fabric merge problem, then edit zone configuration members, and then reorder the zone member list if necessary.

The newly changed zone configuration are not effective until you issue the `cfgEnable` command. This should be done during a maintenance window because this may cause disruption in large fabrics.

Verifying a fabric merge problem

1. Enter the `switchShow` command to validate that the segmentation is because of a zone issue.
2. Review “Segmented fabrics,” to view the different types of zone discrepancies and determine what might be causing the conflict.

Verifying a TI zone problem

Use the `zone --show` command to display information about TI zones. This command displays the following information for each zone:

- Zone name
- E_Port members
- N_Port members
- Configured status (the latest status, which may or may not have been activated by `cfgEnable`)
- Enabled status (the status that has been activated by `cfgEnable`)
Segmented fabrics

If you enter the `cfgShow` command to display information about all zones, the TI zones appear in the defined zone configuration only and do not appear in the effective zone configuration.

1. Connect to the switch and log in as admin.
2. Enter the `zone --show` command where `name` is the name of the zone to be displayed. If the name is omitted, the command displays information about all TI zones in the defined configuration.

   ```
   zone --show [name]
   ```

 To display information about the TI zone purplezone, use the following command:

   ```
   switch:admin> zone --show purplezone
   Defined TI zone configuration:
   TI Zone Name: redzone:
   Port List: 1,2; 1,3; 3,3; 4,5
   Configured Status: Activated / Failover-Enabled
   Enabled Status: Activated / Failover-Enabled
   ```

 To display information about all TI zones in the defined configuration, use the following command:

   ```
   switch:admin> zone --show
   Defined TI zone configuration:
   TI Zone Name: greenzone:
   Port List: 2,2; 3,3; 5,3; 4,11;
   Configured Status: Activated / Failover-Enabled
   Enabled Status: Activated / Failover-Enabled
   ```

   ```
   TI Zone Name: purplezone:
   Port List: 1,2; 1,3; 3,3; 4,5;
   Configured Status: Activated / Failover-Enabled
   Enabled Status: Deactivated / Failover-Enabled
   ```

   ```
   TI Zone Name: bluezone:
   Port List: 9,2; 9,3; 8,3; 8,5;
   Configured Status: Deactivated / Failover-Disabled
   Enabled Status: Activated / Failover-Enabled
   ```

Segmented fabrics

This section discusses fabric segmentation. Fabric segmentation occurs when two or more switches are joined together by ISLs and do not communicate to each other. Each switch appears as a separate fabric when you use the `fabricShow` command.
Zone conflicts

Zone conflicts can be resolved by saving a configuration file with the `configUpload` command, examining the zoning information in the file, and performing a cut and paste operation so that the configuration information matches in the fabrics being merged.

After examining the configuration file, you can choose to resolve zone conflicts by using the `cfgDisable` command followed by the `cfgClear` command on the incorrectly configured segmented fabric, then enter the `cfgSave` command followed by the `portDisable` and `portEnable` commands on one of the ISL ports that connects the fabrics. This causes a merge, making the fabric consistent with the correct configuration.

ATTENTION
Be careful using the `cfgClear` command because it deletes the defined configuration.

Table 14 summarizes commands that are useful for debugging zoning issues.

TABLE 14 Commands for debugging zoning

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>aliCreate</td>
<td>Use to create a zone alias.</td>
</tr>
<tr>
<td>aliDelete</td>
<td>Use to delete a zone alias.</td>
</tr>
<tr>
<td>cfgCreate</td>
<td>Use to create a zone configuration.</td>
</tr>
<tr>
<td>cfgShow</td>
<td>Displays zoning configuration.</td>
</tr>
</tbody>
</table>
Zone conflicts

For more information about setting up zoning on your switch, refer to the Fabric OS Administrator’s Guide.

You can correct zone conflicts by using the `cfgClear` command to clear the zoning database.

ATTENTION

The `cfgClear` command is a disruptive procedure.

Resolving zoning conflicts

When merging two fabrics, multiple zoning CLI sessions can be launched on the same switch, or on different switches. This section describes these situations and how they are automatically resolved.

- **Dual-CLI sessions from the same switch**: If you start a zone transaction from CLI-Session1 and then try to perform a zone modification from CLI-Session2, the CLI-Session2 zone transaction is not allowed due to CLI-Session2 not being the owner of the open transaction. If CLI-Session1 logs out, this ends the open transaction and aborts any current zone modifications. CLI-Session2 is then able to perform zone modifications. Therefore, the zone transaction locking mechanism works on a single switch from the CLI perspective and there is no dangling transaction.

- **Dual-CLI sessions from different switches**: If you start a CLI zone transaction on Switch1 and start another CLI zone transaction on Switch2, when committing the zone transaction from Switch1, the open zone transaction from Switch2 is aborted by Switch1. The following message is posted on Switch2 at the time of zone commit from Switch1:

 2012/03/09-21:45:26, [ZONE-1027], 3285, FID 128, INFO, sw0, Zoning transaction aborted Zone Config update Received

TABLE 14 Commands for debugging zoning (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cfgDisable</code></td>
<td>Disables the active (effective) configuration</td>
</tr>
<tr>
<td><code>cfgEnable</code></td>
<td>Use to enable and activate (make effective) the specified configuration.</td>
</tr>
<tr>
<td><code>cfgSave</code></td>
<td>Use to save changes to the zone configuration database.</td>
</tr>
<tr>
<td><code>cfgTransAbort</code></td>
<td>Use to abort the current zoning transaction without committing it.</td>
</tr>
<tr>
<td><code>cfgTransShow</code></td>
<td>Use to display the ID of the current zoning transaction.</td>
</tr>
<tr>
<td><code>defZone</code></td>
<td>Sets the default zone access mode to No Access, initializes a zoning transaction (if one is not already in progress), and creates the reserved zoning objects.</td>
</tr>
<tr>
<td><code>licenseShow</code></td>
<td>Displays current license keys and associated (licensed) products.</td>
</tr>
<tr>
<td><code>switchShow</code></td>
<td>Displays currently enabled configuration and any E_Port segmentations resulting from zone conflicts.</td>
</tr>
<tr>
<td><code>zoneAdd</code></td>
<td>Use to add a member to an existing zone.</td>
</tr>
<tr>
<td><code>zoneCreate</code></td>
<td>Use to create a zone. Before a zone becomes active, the <code>cfgSave</code> and <code>cfgEnable</code> commands must be used.</td>
</tr>
<tr>
<td><code>zoneHelp</code></td>
<td>Displays help information for zone commands.</td>
</tr>
<tr>
<td><code>zoneShow</code></td>
<td>Displays zone information.</td>
</tr>
</tbody>
</table>

For more information about setting up zoning on your switch, refer to the Fabric OS Administrator’s Guide.

You can correct zone conflicts by using the `cfgClear` command to clear the zoning database.

ATTENTION

The `cfgClear` command is a disruptive procedure.
Correcting a fabric merge problem quickly

1. Determine which switches have the incorrect zoning configuration; then, log in to the switches as admin.
2. Enter the `switchDisable` command on all problem switches.
3. Enter the `cfgDisable` command on each switch.
4. Enter the `cfgClear` command on each switch.
5. Enter the `cfgSave` command on each switch to commit the change.

ATTENTION
The `cfgClear` command clears the zoning database on the switch where the command is run.

6. Enter the `switchEnable` command on each switch once the zoning configuration has been cleared.

 This forces the zones to merge and populates the switches with the correct zoning database. The fabrics then merge.

Changing the default zone access

A switch is not allowed to merge with another switch that has an active effective configuration if the default zone is set to “no access”. Before the switch can join, the default zone setting must be set to “all access”. When the default zone no access option is enabled and the active configuration is disabled by using the `cfgDisable` command, a special hidden configuration with no members is activated. This configuration does not allow the switch to merge with switches that have an active effective configuration.

1. Connect to the switch and log in using an account with admin permissions.
2. Display the current setting with the `defZone -show` command.
3. If your default zone is set to “no access”, use the `defZone -allaccess` command to change the default zone.
4. Enter the `cfgSave` command to save the current configuration.

Editing zone configuration members

1. Log in to one of the switches in a segmented fabric as admin.
2. Enter the `cfgShow` command and print the output.
3. Start another Telnet session and connect to the next fabric as an admin.
4. Enter the `cfgShow` command and print the output.
5. Compare the two fabric zone configurations line by line and look for an incompatible configuration.
6. Connect to one of the fabrics.
7. Run zone configure edit commands to edit the fabric zone configuration for the segmented switch (refer to Table 14 on page 75 for specific commands).
If the zoneset members between two switches are not listed in the same order in both configurations, the configurations are considered a mismatch; this results in the switches being segmented in the fabric.

For example:

\([\text{cfg1 = z1; z2}]\) is different from \([\text{cfg1 = z2; z1}],\) even though the members of the configuration are the same.

One simple approach to making sure that the zoneset members are in the same order is to keep the members in alphabetical order.

Reordering the zone member list

1. Obtain the output from the `cfgShow` command for both switches.
2. Compare the order in which the zone members are listed. Members must be listed in the same order.
3. Rearrange zone members so the configuration for both switches is the same. Arrange zone members in alphabetical order, if possible.

Checking for Fibre Channel connectivity problems

Enter the `fcPing` command to:

- Generate an Extended Link Service (ELS) frame ECHO request to the source port specified and validate the response.
- Generate an ELS ECHO request to the destination port specified and validate the response.

Regardless of the device’s zoning, the `fcPing` command sends the ELS frame to the destination port. A device can take any of the following actions:

- Send an ELS Accept to the ELS request.
- Send an ELS Reject to the ELS request.
- Ignore the ELS request.

There are some devices that do not support the ELS ECHO request. In these cases, the device either does not respond to the request or send an ELS reject. When a device does not respond to the ELS request, further debugging is required; however, do not assume that the device is not connected to the Fibre Channel.

The following example is sample output from the `fcPing` command in which one device accepts the request and another device rejects the request:

```
switch:admin> fcping 10:00:00:00:c9:29:0e:c4 21:00:00:20:37:25:ad:05
Source: 10:00:00:00:c9:29:0e:c4
Destination: 21:00:00:20:37:25:ad:05
Zone Check: Not Zoned

Pinging 10:00:00:00:c9:29:0e:c4 [0x20800] with 12 bytes of date:
 received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1162 usec
 received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1013 usec
 received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1442 usec
 received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1052 usec
 received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1012 usec
 5 frames sent, 5 frames received, 0 frames rejected, 0 frames timeout
```
The following example is sample output from the `fcPing` command in which one device accepts the request and another device does not respond to the request:

```
switch:admin> fcPing 0x020800 22:00:00:04:cf:75:63:85
Source: 0x20800
Destination: 22:00:00:04:cf:75:63:85
Zone Check: Zoned

Pinging 0x020800 with 12 bytes of data:
received reply from 0x020800: 12 bytes time:1159 usec
received reply from 0x020800: 12 bytes time:1006 usec
received reply from 0x020800: 12 bytes time:1008 usec
received reply from 0x020800: 12 bytes time:1038 usec
received reply from 0x020800: 12 bytes time:1010 usec
5 frames sent, 5 frames received, 0 frames rejected, 0 frames timeout
Round-trip min/avg/max = 1006/1044/1159 usec
```

Checking for zoning problems

1. Enter the `cfgActvShow` command to determine if zoning is enabled.
 - If zoning is enabled, it is possible that the problem is being caused by zoning enforcement (for example, two devices in different zones cannot detect each other).
 - If zoning is disabled, check the default zone mode by entering the `defZone --show` command. If it is no access, change it to all access. To modify default zone mode from no access to all access, enter the `defZone --all` command, and then the `cfgSave` command.

2. Confirm that the specific edge devices that must communicate with each other are in the same zone.
 - If they are not in the same zone and zoning is enabled, proceed to step 3.
Gathering additional information

- If they are in the same zone, perform the following tasks:
 - Enter the `portCamShow` command on the host port to verify that the target is present.
 - Enter the `portCamShow` command on the target.
 - Enter the `nsZoneMember` command with the port ID for the zoned devices on the host and target to determine whether the name server is aware that these devices are zoned together.

3. Resolve zoning conflicts by putting the devices into the same zoning configuration.

4. Verify that no configuration is active by using the `cfgActvShow` command. Enter the `defZone --show` command to display the current state of the zone access mode and the access level. The `defZone` command sets the default zone access mode to No Access.

```
switch:admin> defzone --show
Default Zone Access Mode
committed - No Access
transaction - No Transaction
```

Refer to “Zone conflicts” on page 75 for additional information.

Gathering additional information

Collect the data from a `supportSave -n` command. Then collect the data from the `cfgTransShow` command. For the port having the problem, collect the data from the `filterPortShow port` command.
In this chapter

- Fabric OS diagnostics ... 81
- Diagnostic information ... 81
- Power-on self-test .. 82
- Switch status ... 84
- Using the spinFab and portTest commands 87
- Port information ... 90
- Equipment status .. 93
- System message log ... 95
- Port log ... 96
- Syslogd configuration ... 98
- Automatic trace dump transfers .. 100

Fabric OS diagnostics

The purpose of the diagnostic subsystem is to evaluate the integrity of the system hardware.
Diagnostics are invoked in the one of the following ways:
- Automatically during the power-on self-test (POST).
- Automatically on an individual blade whenever it is installed into a director chassis.
- Manually using Fabric OS CLI commands.

The error messages generated during these test activities are sent to the serial console and system message logs (output formats may differ slightly).

Use the `diagHelp` command to receive a list of all available diagnostic commands.

Diagnostic information

On the switch, you can enter the `supportShow` command to dump important diagnostic and status information to the session screen, where you can review it or capture its data. If you are using a Telnet client, you may have to set up the client to capture the data prior to opening the session.

Most information can be captured using the `supportSave` command and downloaded by FTP off the switch, but when you are collecting information from specialized commands, such as `supportShow`, this information must be captured using a Telnet client.
To save a set of files that customer support technicians can use to further diagnose the switch condition, enter the `supportSave` command. The command prompts for an FTP server, packages the following files, and sends them to the specified server:

- The output of the `supportShow` command.
- Any core files, panic dumps or FFDC files that may have been generated.
- System message (RAS) logs.
- Other special feature logs.

Refer to “Automatic trace dump transfers” on page 100.

Power-on self-test

By default, when you power on the system, the boot loader automatically performs power-on self-tests and loads a Fabric OS kernel image. Likewise, if you issue the `slotPower` command, or insert a new blade, a power-on self test is run on that blade.

The POST tests provide a quick indication of hardware readiness when hardware is powered up. These tests do not require user input to function. They typically operate within several minutes, and support minimal validation because of the restriction on test duration. Their purpose is to give a basic health check before a new switch joins a fabric.

These tests are divided into two groups: POST1 and POST2. POST1 validates the hardware interconnect of the device, and POST2 validates the ability of the device to pass data frames between the ports. The specific set of diagnostic and test commands run during POST depends on the switch model.

NOTE

When POST2 is running portloopbacktest mode 8 and if the peer blades are powered off while the test is running, the POST is expected to fail in the core blades as the mode 8 tests the peer links and the peer end is no longer active.

You can use the `diagDisablePost` command to disable both POST1 and POST2, and you can re-enable POST1 and POST2 using the `diagEnablePost` command.

The following example shows a typical boot sequence, including POST messages:

```
The system is coming up, please wait...

Read board ID of 0x80 from addr 0x23
Read extended model ID of 0x16 from addr 0x22
Matched board/model ID to platform index 4
PCI Bus scan at bus 0
: : :
: : :
Checking system RAM - press any key to stop test

Checking memory address: 00100000

System RAM test using Default POST RAM Test succeeded.

Press escape within 4 seconds to enter boot interface.
Booting "Fabric Operating System" image.

Linux/PPC load:
```

BootROM command line: quiet
Uncompressing Linux...done.
Now booting the kernel
Attempting to find a root file system on hda2...
modprobe: modprobe: Can't open dependencies file /lib/modules/2.4.19/modules.dep
(No such file or directory)
INIT: version 2.78 booting
INIT: Entering runlevel: 3
eth0: Link status change: Link Up. 100 Mbps Full duplex Auto (autonegotiation complete).

INITCP: CPLD Vers: 0x95 Image ID: 0x19
uptime: 2008; sysc_qid: 0
Fabric OS (Paulsa45)
Paulsa45 console login: 2005/03/31-20:12:42, [TRCE-5000], 0,, INFO, ?, trace:, trace_buffer.c, line: 1170
2005/03/31-20:12:42, [LOG-5000], 0,, INFO, SW4100_P45, Previous message repeat 1 time(s), trace_ulib.c, line: 540
2005/03/31-20:12:43, [HAM-1004], 219,, INFO, SW4100_P45, Processor rebooted - Unknown
SNMP Research SNMP Agent Resident Module Version 15.3.1.4
sysctrld: all services Standby
FSSK 2: chassis0(0): state not synchronized
FSSK 2: Services starting a COLD recovery
2005/03/31-20:12:48, [FSS-5002], 0,, INFO, SW4100_P45, chassis0(0): state not synchronized, svc.c, line: 318
2005/03/31-20:12:48, [FSS-5002], 0,, INFO, SW4100_P45, Services starting a COLD recovery, mdev.c, line: 638
2005/03/31-20:12:49, [MFIC-1002], 220,, INFO, Paulsa45, Chassis FRU header not programmed for switch NID, using defaults (applies only to FICON environments).
sysctrld: all services Active
2005/03/31-20:12:50, [DGD-5001], 0,, INFO, SW4100_P45, Slot 0 has started POST., main.c, line: 1189
POST1: Started running Thu Mar 31 20:12:51 GMT 2005
POST1: Test #1 - Running turboramtest
POST1: Test #2 - Running portregtest
POST1: Script PASSED with exit status of 0 Thu Mar 31 20:12:54 GMT 2005 took (0:0:3)
POST2: Started running Thu Mar 31 20:12:55 GMT 2005
POST2: Test #1 - Running portloopbacktest (SERDES)
POST2: Test #2 - Running minicycle (SERDES)
POST2: Running diagshow
POST2: Script PASSED with exit status of 0 Thu Mar 31 20:13:12 GMT 2005 took (0:0:17)
2005/03/31-20:13:13, [BL-1000], 221,, INFO, Paulsa45, Initializing Ports... Enabling switch...
2005/03/31-20:13:13, [BL-1001], 222,, INFO, Paulsa45, Port Initialization Completed
2005/03/31-20:13:13, [EM-5012], 0,, INFO, SW4100_P45, EM: sent dumpready to ME., em.c, line: 2152
2005/03/31-20:13:13, [DGD-5002], 0,, INFO, SW4100_P45, Slot 0 has passed the POST tests., main.c, line: 936

If you choose to bypass POST or after POST completes, various system services are started and the boot process displays additional console status and progress messages.
Disabling POST

A reboot is not required for `diagDisablePost` to take effect.

NOTE
Disabling POST is not recommended and should only be done on the advice of your customer support technician.

1. Connect to the switch and log in with a user account that has admin privileges with the chassis-role permission.
2. Enter the `diagDisablePost` command.
 This disables POST1 and POST2.

Enabling POST

A reboot is not required for `diagEnablePost` to take effect.

1. Connect to the switch and log in with a user account that has admin privileges with the chassis-role permission.
2. Enter the `diagEnablePost` command to enable POST without rebooting the switch.

```
switch:admin> diagenablepost
Config update Succeeded
Diagnostic POST is now enabled.
```

Switch status

Use the `switchStatusShow` command to display the overall status of the switch, including its power supplies, fans, and temperature. If the status of any one of these components is either marginal or down, the overall status of the switch is also displayed as marginal or down. If all components have a healthy status, the switch displays a healthy status.

To modify the rules used to classify the health of each component, use the `switchStatusPolicySet` command. To view the rules, use the `switchStatusPolicyShow` command.

NOTE
In Fabric OS v7.2.0, the `switchStatusShow` command does work when Flow Vision is enabled. Refer to *Fabric OS Command Reference* and the *Flow Vision Administrator’s Guide* for more information.
Viewing the overall status of the switch

1. Connect to the switch and log in as admin.
2. Enter the `switchStatusShow` command.

```bash
ecp:admin> switchstatusshow
```

Switch Health Report Report time: 02/20/2008 06:02:51 PM
Switch Name: brcdDCXbb
IP address:192.168.234.63
SwitchState:DOWN
Duration:00:37

Power supplies monitorDOWN
Temperatures monitor HEALTHY
Fans monitor DOWN
WWN servers monitor HEALTHY
Standby CP monitor HEALTHY
Blades monitor HEALTHY
Core Blades monitorHEALTHY
Flash monitor HEALTHY
Marginal ports monitorHEALTHY
Faulty ports monitor HEALTHY
Missing SFPs monitor HEALTHY

All ports are healthy

For more information on how the overall switch status is determined, refer to the `switchStatusPolicySet` command in the *Fabric OS Command Reference*. If Flow Vision is enabled the following message appears:

```bash
ras225:FID128:admin> switchstatusshow
MAPS is enabled, Fabric Watch is disabled. Please use MAPS for monitoring and execute mapsHelp command for available MAPS commands.
```

Displaying switch information

To display the switch information, perform the following task.

1. Connect to the switch and log in as admin.
2. Enter the `switchShow` command.

Table 15 lists the switch summary information.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>switchType</td>
<td>Switch model and revision numbers</td>
</tr>
<tr>
<td>switchName</td>
<td>Switch name</td>
</tr>
<tr>
<td>switchState</td>
<td>Switch state: Online, Offline, Testing, or Faulty</td>
</tr>
<tr>
<td>switchMode</td>
<td>Switch operation mode: Native, Interop, or Access Gateway</td>
</tr>
<tr>
<td>switchRole</td>
<td>Principal, Subordinate, or Disabled</td>
</tr>
<tr>
<td>switchDomain</td>
<td>ID: 0–31 or 1–23</td>
</tr>
<tr>
<td>switchId</td>
<td>Switch embedded port D_ID</td>
</tr>
</tbody>
</table>
Table 16 lists the following additional properties displayed in the switch summary for Virtual Fabrics-enabled switches.

TABLE 16 VF output values

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS Attributes</td>
<td>Displays logical switch attributes, including the fabric ID (FID) associated with the logical switch and the switch role (default switch or base switch).</td>
</tr>
<tr>
<td>Allow XISL Use</td>
<td>Allows the switch to use extended interswitch links (XISLs) in the base fabric to carry traffic to this logical switch. Values are ON or OFF.</td>
</tr>
</tbody>
</table>

Table 17 lists the `switchShow` command output information for ports on the specified switch:

TABLE 17 switchShow command output

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Index follows Area up to 255. Then it continues to the maximum port of the platform. Index identifies the port number relative to the switch. Index column is only displayed on enterprise-class platforms.</td>
</tr>
<tr>
<td>Slot</td>
<td>Slot number 1–4 and 7–10.</td>
</tr>
<tr>
<td>Port</td>
<td>Port number 0–15, 0–31, or 0–47.</td>
</tr>
<tr>
<td>Address</td>
<td>The 24-bit Address Identifier. Address column is only displayed on enterprise-class platforms.</td>
</tr>
<tr>
<td>Media</td>
<td>SFP types used.</td>
</tr>
<tr>
<td>Speed</td>
<td>The speed of the Port (1G, 2G, 4G, 8G, 10G, N1, N2, N4, N8, AN, UN). The speed can be fixed, negotiated, or auto-negotiated.</td>
</tr>
<tr>
<td>State</td>
<td>The port status.</td>
</tr>
<tr>
<td>Proto</td>
<td>Protocol support by GbE port.</td>
</tr>
</tbody>
</table>

The details displayed for each switch differ on different switch models. For more information refer to the `switchShow` command in the Fabric OS Command Reference.
Displaying the uptime for a switch

1. Connect to the switch and log in as admin.
2. Enter the `uptime` command.

```
ecp:admin> uptime
10:50:19 up 11 days, 6:28, 1 user, load average: 0.49, 0.53, 0.54
```

The `uptime` command displays the length of time the system has been in operation, the total cumulative amount of uptime since the system was first powered on, and the load average over the past one minute. The reason for the last switch reboot is also recorded in the system message log.

Using the spinFab and portTest commands

The `spinFab` command is an online diagnostics command to verify the ISLs between switches at the maximum speed. The routing functionality in the hardware must be set up so that the test frames received by the E_Port are retransmitted on the same E_Port. Several frames are then sent to the port attached to each active E_Port specified. These frames are special frames that never occur during normal traffic, and the default action for such frames is to route them back to the sender. These frames are circulated between switches until the test stops them.

CAUTION

During the spinFab testing, the switch remains in normal operation. However, some performance degradation occurs due to the ISL links being saturated with the test frames. This test should be run with caution on a live fabric.

Table 18 lists the supported ports for the specified version of Fabric OS when using the `spinFab` command.

<table>
<thead>
<tr>
<th>Port type</th>
<th>Supported in v6.3.0</th>
<th>Supported in v6.4.0</th>
<th>Supported in v7.2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loopback</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>D_Ports</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>D_Ports to AG switch ports</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>E_Ports</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Trunk Master ports</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ports beyond index 255</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ports with swapped areas</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Shared-area ports</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ports in logical switches</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ports in base switches</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Trunk slave ports</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Long distance ports</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Using the spinFab and portTest commands

Debugging spinFab errors

Link errors and transmit or receive errors are seen when the spinFab test fails.

Link errors

Once the frame is sent out of the port, the spinFab command monitors the link errors in the ASIC. If any of the error counters are non-zero, spinFab reports an error and the test fails on the port.

```plaintext
ERROR: DIAG ERRSTAT spinfab, pass 6,
Pt0/17(7) Ch0/7 CRC_err Error Counter is 109738997 sb 0,

ERROR: DIAG ERRSTAT spinfab, pass 1,
Pt0/3(33) Ch0/33 Enc_in Error Counter is 32 sb 0,

ERROR: DIAG ERRSTAT spinfab, pass 1,
Pt0/3(33) Ch0/33 Enc_out Error Counter is 187725412 sb 0,

ERROR: DIAG ERRSTAT spinfab, pass 1,
Pt0/3(33) Ch0/33 TruncFrm Error Counter is 32 sb 0,

ERROR: DIAG ERRSTAT spinfab, pass 1,
Pt0/3(33) Ch0/33 FrmTooLong Error Counter is 32 sb 0,

ERROR: DIAG ERRSTAT spinfab, pass 1,
Pt0/3(33) Ch0/33 BadOrdSet Error Counter is 32 sb 0,

ERROR: DIAG ERRSTAT spinfab, pass 1,
Pt0/3(33) Ch0/33 BadEOF Error Counter is 1 sb 0,

ERROR: DIAG ERRSTAT spinfab, pass 1,
Pt0/3(33) Ch0/33 DiscC3 Error Counter is 32 sb 0,
```

If you receive any of the link errors, follow the suggested debugging procedures:

- The spinFab command does not clear any existing error counters before running the test. You should first clear all error counters and rerun the spinFab command.
- Verify that the link comes up by enabling and disabling the local or remote ports.
- Verify that the source of the error is either the local port or the remote port. This can be done by monitoring the port statistics on both ends simultaneously. Refer to “Displaying the port statistics” on page 91 for more information on how to display the statistics for a port.
Using the spinFab and portTest commands

- Verify that the cables and SFPs are inserted properly. Remove and insert them again on both ends.
- Verify that the failing local port is working when connected to another remote port. Similarly, check whether the failing remote port is working when connected to another local port.
- Once the fault is isolated on either the local port or the remote port, replace the cable and SFPs connected to the local port and the remote ports.
- In case of loopback ports, change the loopback plug. Refer to “Marginal links” on page 30 for more information on changing the loopback plug.
- Further isolation can be done by running the portLoopbackTest command (Offline test) on the failing port to check whether the blade internal ports are having some problems.
 - The -lb_mode 1 operand verifies that the SFP is working within normal operating parameters. The use of this operand requires that loopback cables are connected.
 - The -lb_mode 2 verifies that the ASIC port is working within normal operating parameters. The use of this operand does not require any loopback cables.

Tx/Rx errors

The following errors are seen when the port fails to transmit or receive the frames.

```plaintext
ERROR: DIAG PORTSTOPPED spinfab:spinfab, 0 nMgs,
Pt7/2(2) Ch0/2 No Longer Transmitting, FTX Counter Stuck at 116295726,

ERROR: DIAG TIMEOUT spinfab:spinfab, pass 2,
Pt0/17(7) Ch0/7 Receive Error/Timeout
```

If you receive any of the Tx/Rx errors, follow the suggest debugging procedures:

- Check whether the same port is reporting link errors as discussed in “Link errors” on page 88. If yes, follow the same set of debugging procedures as discussed in “Link errors” on page 88.
- Check whether the local port or the remote port is beyond port 255. If yes, try connecting to the lower number of ports. This behavior is found in Fabric OS v6.2.0 and earlier versions only.
- Check whether the local port or the remote port part of a shared-area region. If yes, try connecting to the non-shared area ports. This behavior is found in Fabric OS v6.2.0 and earlier versions only.
- Check whether the local port or the remote port is having its area swapped. If yes, try connecting to the normal area ports. This behavior is found in Fabric OS v6.2.0 and earlier versions only.

Clearing the error counters

This procedure clears the port hardware statistics, including ALPA-based CRC monitor, End-to-End monitor, and filter-based performance monitor statistics.

1. Connect to the switch and log in as admin.
2. Enter the `portStatsClear` `slot/port` command.
Enabling a port

1. Connect to the switch and log in using an account with admin permissions.
2. Enter the appropriate command based on the current state of the port and whether it is necessary to specify a slot number:
 - To enable a port that is disabled, enter the command `portEnable portnumber` or `portEnable slotnumber/portnumber`.
 - To enable a port that is persistently disabled, enter the command `portCfgPersistentEnable portnumber` or `portCfgPersistentEnable slotnumber/portnumber`.

If you change port configurations during a switch failover, the ports may become disabled. To bring the ports online, re-issue the `portEnable` command after the failover is complete.

Disabling a port

1. Connect to the switch and log in using an account with admin permissions.
2. Enter the appropriate command based on the current state of the port and on whether it is necessary to specify a slot number:
 - To disable a port that is enabled, enter the command `portDisable portnumber` or `portDisable slotnumber/portnumber`.
 - To disable a port that is persistently enabled, enter the command `portCfgPersistentDisable portnumber` or `portCfgPersistentDisable slotnumber/portnumber`.

Port information

Use the following instructions to view information about ports and to help diagnose if your switch is experiencing port problems.

Viewing the status of a port

1. Connect to the switch and log in as admin.
2. Enter the `portShow [slot/] port` command, specifying the number that corresponds to the port you are troubleshooting. In this example, the status of port 10 is shown:

```
switch:admin> portshow 10
portName: 
portHealth: HEALTHY
Authentication: None
portDisableReason: None
portCFlags: 0x1
portFlags: 0x20b03 PRESENT ACTIVE F_PORT G_PORT U_PORT LOGICAL_ONLINE LOGIN NOELP ACCEPT FLOGI
portType: 18.0
POD Port: Port is licensed
portState: Online
portPhys: In_Sync
portScn: 32F_Port
```
Port information

- Port generation number: 14
- portId: 020a00
- portIfId: 4302000b
- portWwn: 20:0a:00:05:1e:41:4a:a5
- portWwn of device(s) connected: 21:00:00:e0:8b:05:e0:b1
- Distance: normal
- portSpeed: N2Gbps
- LE domain: 0
- FC Fastwrite: OFF
- Interrupts: 0 Link_failure: 0 Frjt: 0
- Unknown: 0 Loss_of_sync: 3 Pbsy: 0
- Proc_rqrd: 161 Protocol_err: 0
- Timed_out: 0 Invalid_word: 563851
- Rx_flushed: 0 Invalid_crc: 0
- Tx_unavail: 0 Delim_err: 0
- Free_buffer: 0 Address_err: 0
- Overrun: 0 Lr_in: 3
- Suspended: 0 Lr_out: 0
- Parity_err: 0 Ols_in: 0
- 2_parity_err: 0 Ols_out: 3
- CMI_bus_err: 0

Port part of other ADs: No

Refer to the Fabric OS Command Reference for additional portShow command information, such as the syntax for slot or port numbering, displaying IP interfaces on a GbE port, or displaying FCIP tunnel connection or configuration information.

Displaying the port statistics

1. Connect to the switch and log in as admin.
2. At the command line, enter the portStatsShow command.

Port statistics include information such as the number of frames received, number of frames sent, number of encoding errors received, and number of class 2 and class 3 frames received.

Refer to the Fabric OS Command Reference for additional portStatsShow command information, such as the syntax for slot or port numbering.

switch:admin> portstatsshow 68
stat_wtx 113535 4-byte words transmitted
stat_wrx 22813 4-byte words received
stat_frx 9259 Frames transmitted
stat_c2_frx 821 Frames received
stat_c3_frx 821 Class 2 frames received
stat_lc_rx 0 Link control frames received
stat_mc_rx 0 Multicast frames received
stat_mc_to 0 Multicast timeouts
stat_mc_tx 0 Multicast frames transmitted
tim_rdy_prx 0 Time R_RDY high priority
tim_txcrd_z 0 Time TX Credit Zero (2.5Us ticks)
time_txcrd_z_vc 0-3: 0 0 0 0
time_txcrd_z_vc 4-7: 0 0 0 0
time_txcrd_z_vc 8-11: 0 0 0 0
Port information

Displaying a summary of port errors for a switch

1. Connect to the switch and log in as admin.
2. Enter the `portErrShow` command.

```bash
switch:admin> porterrshow
```

```
frames  enc  crc  crc  too  too bad  enc  disc  link  loss  loss  frjt  fbsy
     tx  rx  in  err  g_eof  shrt  long  eof  out  c3  fail  sync  sig
============================================================================
0: 665k  7.0k  0  0  0  0  0  0  6  0  0  1  2  0  0
1:  0  0  0  0  0  0  0  0  0  0  0  0  2  0  0
2:  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0
3:  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0
4:  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0
5:  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0
6:  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0
7:  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0
8:  78  60  0  0  0  0  7  0  0  3  6  0  0
9:  12  4  0  0  0  0  3  0  0  1  2  0  0
10:  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0
11:  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0
12:  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0
13:  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0
14:  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0
15:  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0
16: 665k  7.4k  0  0  0  0  6  0  0  1  2  0  0
17:  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0
18:  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0
19:  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0
```
The `portErrShow` command output provides one output line per port. Refer to **Table 19** for a description of the error types.

TABLE 19 Error summary description

<table>
<thead>
<tr>
<th>Error type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>frames tx</td>
<td>Frames transmitted</td>
</tr>
<tr>
<td>frames rx</td>
<td>Frames received</td>
</tr>
<tr>
<td>enc in</td>
<td>Encoding errors inside frames</td>
</tr>
<tr>
<td>crc err</td>
<td>Frames with CRC errors</td>
</tr>
<tr>
<td>crc g_eof</td>
<td>CRC errors that occur on frames with good end-of-frame delimiters</td>
</tr>
<tr>
<td>too shrt</td>
<td>Frames shorter than minimum</td>
</tr>
<tr>
<td>too long</td>
<td>Frames longer than maximum</td>
</tr>
<tr>
<td>bad eof</td>
<td>Frames with bad end-of-frame delimiters</td>
</tr>
<tr>
<td>enc out</td>
<td>Encoding error outside of frames</td>
</tr>
<tr>
<td>disc c3</td>
<td>Class 3 frames discarded</td>
</tr>
<tr>
<td>link fail</td>
<td>Link failures (LF1 or LF2 states)</td>
</tr>
<tr>
<td>loss sync</td>
<td>Loss of synchronization</td>
</tr>
<tr>
<td>loss sig</td>
<td>Loss of signal</td>
</tr>
<tr>
<td>frjt</td>
<td>Frames rejected with F_RJT</td>
</tr>
<tr>
<td>fbsy</td>
<td>Frames busied with F_BSY</td>
</tr>
</tbody>
</table>

Equipment status

You can display status for fans, power supplies, and temperature.

NOTE

The number of fans, power supplies, and temperature sensors depends on the switch type. For detailed specifications on these components, refer to the switch hardware reference manual. The specific output from the status commands varies depending on the switch type.
Checking the temperature, fan, and power supply

1. Log in to the switch as admin.
2. Enter the sensorShow command. Refer to the Fabric OS Command Reference for details regarding the sensor numbers.
3. Check the temperature output.
 Look for indications of high or low temperatures.
4. Check the fan speed output.
 If any of the fan speeds display abnormal RPMs, replace the fan FRU.
5. Check the power supply status.
 If any power supplies show a status other than OK, consider replacing the power supply as soon as possible.

Checking the status of the fans

1. Connect to the switch and log in as admin.
2. Enter the fanShow command:

 switch:admin> fanshow
 Fan 1 is Absent
 Fan 2 is Ok, speed is 6553 RPM
 Fan 3 is Ok, speed is 6367 RPM

 The possible status values are:
 • OK—Fan is functioning correctly.
 • Absent—Fan is not present.
 • Below minimum—Fan is present but rotating too slowly or stopped.
 • Above minimum—Fan is rotating too quickly.
 • Unknown—Unknown fan unit installed.
 • FAULTY—Fan has exceeded hardware tolerance or is not be seated properly.

 The output from this command varies depending on switch type and number of fans present. Refer to the appropriate hardware reference manual for details regarding the fan status. You may first consider re-seating the fan (unplug it and plug it back in).

Checking the status of a power supply

1. Connect to the switch and log in as admin.
2. Enter the psShow command:

 switch:admin> psshow

 Power Supply #1 is OK
 V10645,TQ2Z6452916 ,60-0300031-02, B, QCS,DCJ3001-02P , A,TQ2Z64529
 Power Supply #2 is faulty
 V10704, TQ2J7040124 ,60-0300031-02, B,CHRKE,SP640-Y01A ,C ,TQ2J7040
The possible status values are:

- OK—Power supply functioning correctly.
- Absent—Power supply not present.
- Unknown—Unknown power supply unit installed.
- Predicting failure—Power supply is present but predicting failure.
- FAULTY—Power supply is present but faulty (no power cable, power switch turned off, fuse blown, or other internal error).

If any of the power supplies show a status other than OK, consider replacing the power supply as soon as possible. For certain switch models, the OEM serial ID data displays after each power supply status line.

Checking temperature status

1. Connect to the switch and log in as admin.
2. Enter the `tempShow` command:

```
switch:admin> tempShow
Sensor State Centigrade Fahrenheit
ID

******************************************************
1  Ok     28     82
2  Ok     16     60
3  Ok     18     64

```

Information displays for each temperature sensor in the switch.

The possible temperature status values are:

- OK—Temperature is within acceptable range.
- FAIL—Temperature is outside of acceptable range. Damage might occur.

Refer to the hardware reference manual for your switch to determine the normal temperature range.

System message log

The system message log, or RASlog, feature enables messages to be saved across power cycles and reboots.

The Brocade DCX, DCX-4S, and DCX 8510 family enterprise-class platforms maintain independent and separate RASlogs for each of the two CP blades. Because all RASlog messages are routed to the Active CP, the message CPU ID is added as part of the RASlog message attribute. RASlog message attribute `SLOT` is defined to identify the CPU that generated the message.

For example, in the following message, the identifier `SLOT 6` means the message was generated from the slot 6 blade main CPU:

```
2001/01/07-04:03:00, [SEC-1203], 2,SLOT 6 | FFDC | CHASSIS, INFO, C08_1, Login information: Login successful via TELNET/SSH/RSH. IP Addr: 192.168.38.2050
```
In the following message the identifier SLOT 6/1 means the message was generated from the slot 6 blade co-CPU.

2001/01/07-04:03:00, [SEC-1203], 2, SLOT 6/1 , | FFDC | CHASSIS, INFO, C08_1, Login information: Login successful via TELNET/SSH/RSH. IP Addr: 192.168.38.2050

Because RASlog supports Virtual Fabrics and logical switches, the FID (Fabric ID) displays on every RASlog message to identify the source of the logical switch that generates the message.

The FID can be a number from 0 to 128, and the identifier CHASSIS depends on the instance that generates the message and that it was generated by a chassis instance. The identifier FID 128 means the message was generated by the default switch instance.

2008/08/01-00:19:44, [LOG-1003], 1, SLOT 6 | CHASSIS, INFO, Silkworm12000, The log has been cleared.
2008/09/08-06:52:50, [FW-1424], 187, SLOT 6 | FID 128, WARNING, Switch10, Switch status changed from HEALTHY to DOWN.

For details on error messages, refer to the Fabric OS Message Reference.

Displaying the system message log with no page breaks

1. Connect to the switch and log in as admin.
2. Enter the errDump command.

Displaying the system message log one message at a time

1. Connect to the switch and log in as admin.
2. Enter the errShow command.

Clearing the system message log

1. Connect to the switch and log in as admin.
2. Enter the errClear command.
3. Repeat step 2 on the standby CP for a complete erasure of the message log.

All switch and chassis events are removed from both CPs.

Port log

Fabric OS maintains an internal log of all port activity. The port log stores entries for each port as a circular buffer. For all other switches, the number of lines range from 8192 to 16384. These ranges are for all ports on the switch, not just for one port. When the log is full, the newest log entries overwrite the oldest log entries. The port log is not persistent and is lost over power-cycles and reboots. If the port log is disabled, an error message displays.

NOTE
Port log functionality is separate from the system message log. The port log is typically used to troubleshoot device connections.
Viewing the port log

1. Connect to the switch and log in as admin.
2. Enter the portLogShow command:

   ```
   switch:admin> portlogshow
   time       task       event   port cmd  args
   -------------------------------
   Fri Feb 22 16:48:45 2008
   16:48:45.208 SPEE       sn       67   NM  00000009,00000000,00000000
   16:48:46.783 PORT       Rx       64   40  02fffffd,00fffffd,02e2ffff,14000000
   16:48:46.783 PORT       Tx       64    0  c0fffffd,00fffffd,02e201bf,00000001
   16:48:46.783 FCPH       read     64   40  02fffffd,00fffffd,be000000,00000000,02e201bf
   16:48:46.853 PORT       Rx       76   40  02fffffd,00fffffd,02e3ffff,14000000
   16:48:46.853 PORT       Tx       76    0  c0fffffd,00fffffd,02e301c1,00000001
   16:48:46.853 FCPH       read     76   40  02fffffd,00fffffd,bf000000,00000000,02e301c1
   16:48:46.853 FCPH       seq      76   28  22380000,02e301c1,00000000,02e301c1
   16:48:46.853 FCPH       read     76   40  02fffffd,00fffffd,be000000,00000000,02e301c1
   16:48:46.853 FCPH       seq      76   28  22380000,02e301c1,00000000,02e301c1
   Fri Feb 22 20:29:12 2008
   16:48:45.211 SPEE       sn       67   NM  00000009,00000000,00000000
   16:48:46.783 PORT       Rx       64   40  02fffffd,00fffffd,02e2ffff,14000000
   16:48:46.783 PORT       Tx       64    0  c0fffffd,00fffffd,02e201bf,00000001
   <output truncated>
   ```

Use the commands summarized in Table 20 to view and manage port logs. Refer to the Fabric OS Command Reference for additional information about these commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>portLogClear</td>
<td>Clear port logs for all or particular ports.</td>
</tr>
<tr>
<td>portLogDisable</td>
<td>Disable port logs for all or particular ports.</td>
</tr>
<tr>
<td>portLogDump</td>
<td>Display port logs for all or particular ports, without page breaks.</td>
</tr>
<tr>
<td>portLogEnable</td>
<td>Enable port logs for all or particular ports.</td>
</tr>
<tr>
<td>portLogShow</td>
<td>Display port logs for all or particular ports, with page breaks.</td>
</tr>
</tbody>
</table>

The portLogDump command output (trace) is a powerful tool that is used to troubleshoot fabric issues. The portLogDump output provides detailed information about the actions and communications within a fabric. By understanding the processes that are taking place in the fabric, issues can be identified and located.

The portLogDump command displays the port log, showing a portion of the Fibre Channel payload and header (FC-PH). The header contains control and addressing information associated with the frame. The payload contains the information being transported by the frame and is determined by the higher-level service or FC_4 upper level protocol. There are many different payload formats based on the protocol.

Because a portLogDump output is long, a truncated example is presented:

   ```
   switch:admin> portlogdump
   time       task       event   port cmd  args
   -------------------------------
   Fri Feb 22 20:29:12 2008
   ```
Syslogd configuration

The system logging daemon (syslogd) is an IP-based service for logging system messages made available by default on UNIX and Linux operating systems. It is available as a third-party application for Windows operating systems.

Fabric OS can be configured to use a UNIX-style syslogd process to forward system events and error messages to log files on a remote host system. The host system can be running UNIX, Linux, or any other operating system that supports the standard syslogd functionality.

Fabric OS supports UNIX local7 facilities (the default facility level is 7). Configuring for syslogd involves configuring the host, enabling syslogd on the switch, and, optionally, setting the facility level.
Configuring the host

Fabric OS supports a subset of UNIX-style message severities that default to the UNIX local7 facility. To configure the host, edit the `/etc/syslog.conf` file to map Fabric OS message severities to UNIX severities, as shown in Table 21.

TABLE 21 Fabric OS to UNIX message severities

<table>
<thead>
<tr>
<th>Fabric OS message severity</th>
<th>UNIX message severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical (1)</td>
<td>Emergency (0)</td>
</tr>
<tr>
<td>Error (2)</td>
<td>Error (3)</td>
</tr>
<tr>
<td>Warning (3)</td>
<td>Warning (4)</td>
</tr>
<tr>
<td>Info (4)</td>
<td>Info (6)</td>
</tr>
</tbody>
</table>

In this example, Fabric OS messages map to local7 facility level 7 in the `/etc/syslog.conf` file:

```
l7.emerg /var/adm/swcritical
l7.alert /var/adm/alert7
l7.crit /var/adm/crit7
l7.err /var/adm/swerror
l7.warning /var/adm/swarning
l7.notice /var/adm/notice7
l7.info /var/adm/swinfo
l7.debug /var/adm/debug7
```

If you prefer to map Fabric OS severities to a different UNIX local7 facility level, refer to “Setting the facility level” on page 100.

Configuring the switch

Configuring the switch involves specifying syslogd hosts and, optionally, setting the facility level. You can also remove a host from the list of syslogd hosts.

Specifying syslogd hosts

1. Connect to the switch and log in as admin.
2. Enter the `syslogdipAdd` command and specify an IP address.
3. Verify that the IP address was entered correctly using the `syslogdipShow` command.

The `syslogdipAdd` command accepts IPv4 and IPv6 addresses. You can specify up to six host IP addresses for storing syslog messages, as shown in this example:

```
switch:admin> syslogdipadd 1080::8:800:200C:417A
switch:admin> syslogdipadd 1081::8:800:200C:417A
switch:admin> syslogdipadd 1082::8:800:200C:417A
switch:admin> syslogdipadd 10.1.2.4
switch:admin> syslogdipadd 10.1.2.5
switch:admin> syslogdipadd 10.1.2.6
```
switch:admin> syslogdipshow
syslog.IP.address.1080::8:800:200C:417A
syslog.IP.address.1081::8:800:200C:417A
syslog.IP.address.1082::8:800:200C:417A
syslog.IP.address.4 10.1.2.4
syslog.IP.address.5 10.1.2.5
syslog.IP.address.6 10.1.2.6

Setting the facility level

1. Connect to the switch and log in as admin.
2. Enter the following command:

 switch:admin> syslogdfacility -l n

 The n variable is a number from 0 through 7, indicating a UNIX local7 facility. The default is 7. It is necessary to set the facility level only if you specified a facility other than local7 in the host /etc/syslog.conf file.

Removing a syslogd host from the list

1. Connect to the switch and log in as admin.
2. Enter the syslogdipRemove command:

 switch:admin> syslogdipremove 10.1.2.1

3. Verify the IP address was deleted using the syslogdipShow command.

Automatic trace dump transfers

You can set up a switch so that diagnostic information is transferred automatically to a remote server. If a problem occurs, you can then provide your customer support representative with the most detailed information possible. To ensure the best service, you should set up for automatic transfer as part of standard switch configuration, before a problem occurs.

Setting up for automatic transfer of diagnostic files involves the following tasks:

- Specifying a remote server to store the files.
- Enabling the automatic transfer of trace dumps to the server. (Trace dumps overwrite each other by default; sending them to a server preserves information that would otherwise be lost.)
- Setting up a periodic checking of the remote server so that you are alerted if the server becomes unavailable and you can correct the problem.
After the setup is complete, you can run the `supportSave -c` command to save RASlog, TRACE, supportShow, core file, FFDC data and other diagnostic support information to the server without specifying server details.

The following procedures describe the tasks for setting up automatic transfer.

Specifying a remote server

1. Verify that the FTP service is running on the remote server.
2. Connect to the switch and log in as admin.
3. Enter the `supportFtp -s` command and respond to the prompts.

Enabling the automatic transfer of trace dumps

1. Connect to the switch and log in as admin.
2. Enter the `supportFtp -e` command.

Setting up periodic checking of the remote server

1. Connect to the switch and log in as admin.
2. Enter the `supportFtp -t` command.

 Example of setting the interval in hours

   ```
   switch:admin> supportftp -t 4
   supportftp: ftp check period changed
   ```

 The minimum interval is 1 hour. Specify 0 hours to disable the checking feature.

Saving comprehensive diagnostic files to the server

1. Connect to the switch and log in as admin.
2. Enter the `supportSave -c` command and respond to the prompts.

   ```
   switch:admin> supportsave -c
   This command will collect RASLOG, TRACE, supportShow, core file, FFDC data
   and other support information and then transfer them to a FTP/SCP server
   or a USB device. This operation can take several minutes.
   NOTE: supportsave will transfer existing trace dump file first, then
   automatically generate and transfer latest one. There will be two trace dump
   files transfered after this command.
   OK to proceed? (yes, y, no, n): [no] y
   ```
Switch Type and Blade ID

The switchType is a displayed field listed when you run the switchShow command. When you are gathering information to give to your switch support provider, you may be asked the switch model. If you do not know the model, refer to Table 22 to convert the switchType to a B-Series model number.

```shell
switch:admin> switchshow
switchName:Sprint5100
switchType:66.1  <=== convert this number using Table 22
switchState:Online
switchMode:Native
switchRole:Principal
switchDomain:1
switchId:fffc01
switchWwn:10:00:00:05:1e:82:3c:2a
zoning:OFF
switchBeacon:OFF
FC Router:OFF
FC Router BB Fabric ID:128
```

The number 66 is the switchType and .1 is the revision of the motherboard of the switch. The revision number is not necessary when converting the number. Convert the value using Table 22.

<table>
<thead>
<tr>
<th>switchType</th>
<th>B-Series switch model</th>
<th>Base switch speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>3900</td>
<td>2 Gb 32-port switch</td>
</tr>
<tr>
<td>16</td>
<td>3200</td>
<td>2 Gb 8-port value line switch</td>
</tr>
<tr>
<td>21</td>
<td>24000</td>
<td>2 Gb 128-port core fabric switch</td>
</tr>
<tr>
<td>26</td>
<td>3850</td>
<td>2 Gb 16-port switch with switch limit</td>
</tr>
<tr>
<td>27</td>
<td>3250</td>
<td>2 Gb 8-port switch with switch limit</td>
</tr>
<tr>
<td>29</td>
<td>4012</td>
<td>2 Gb 12-port embedded switch</td>
</tr>
<tr>
<td>34</td>
<td>200E</td>
<td>2 Gb 16-port switch with switch limit</td>
</tr>
<tr>
<td>37</td>
<td>4020</td>
<td>2 Gb 20-port embedded switch</td>
</tr>
<tr>
<td>43</td>
<td>4024</td>
<td>2 Gb 24-port embedded switch</td>
</tr>
<tr>
<td>44</td>
<td>4900</td>
<td>4 Gb 64-port switch</td>
</tr>
<tr>
<td>45</td>
<td>4016</td>
<td>2 Gb 16-port embedded switch</td>
</tr>
<tr>
<td>51</td>
<td>4018</td>
<td>2 Gb 16/18-port embedded switch</td>
</tr>
<tr>
<td>61</td>
<td>4424</td>
<td>2 Gb 24-port embedded switch</td>
</tr>
<tr>
<td>62</td>
<td>Brocade DCX</td>
<td>8 Gb 798-port core fabric backbone</td>
</tr>
<tr>
<td>64</td>
<td>5300</td>
<td>8 Gb 80-port switch</td>
</tr>
<tr>
<td>66</td>
<td>5100</td>
<td>8 Gb 40-port switch</td>
</tr>
</tbody>
</table>
You can use Table 23 to find the description of the blade model displayed in the output from the `slotShow` command.

```
switch:admin> slotshow
```

<table>
<thead>
<tr>
<th>Slot</th>
<th>Blade Type</th>
<th>ID</th>
<th>Model Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SW BLADE</td>
<td>77</td>
<td>FC8-64</td>
<td>ENABLED</td>
</tr>
<tr>
<td>2</td>
<td>AP BLADE</td>
<td>75</td>
<td>FX8-24</td>
<td>ENABLED</td>
</tr>
<tr>
<td>3</td>
<td>AP BLADE</td>
<td>33</td>
<td>FA4-18</td>
<td>ENABLED</td>
</tr>
<tr>
<td>4</td>
<td>SW BLADE</td>
<td>39</td>
<td>FC8-64</td>
<td>ENABLED</td>
</tr>
<tr>
<td>5</td>
<td>CORE BLADE</td>
<td>52</td>
<td>CORE8</td>
<td>ENABLED</td>
</tr>
<tr>
<td>6</td>
<td>CP BLADE</td>
<td>50</td>
<td>CP8</td>
<td>ENABLED</td>
</tr>
<tr>
<td>7</td>
<td>CP BLADE</td>
<td>50</td>
<td>CP8</td>
<td>ENABLED</td>
</tr>
<tr>
<td>Blade ID</td>
<td>B-series blade model</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>FC8-16</td>
<td>8 Gb 16-FC ports blade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>FC8-48</td>
<td>8 Gb 48-FC ports blade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>FC8-32</td>
<td>8 Gb 32-FC ports blade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>FS8-18</td>
<td>8 Gb 16-port encryption blade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>FCOE10-24</td>
<td>24-FC ports on an application blade that provides DCB to bridge a Fibre Channel and Ethernet SAN.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>FX8-24</td>
<td>24-FC port with 10 1-GbE and two 10-GbE ports Fibre Channel routing and FCIP blade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>FC8-64</td>
<td>8 Gb 64-FC ports blade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>FC16-48</td>
<td>16 Gb 48-FC ports blade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>FC16-32</td>
<td>16 Gb 32-FC ports blade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>FC8-32E</td>
<td>8 Gb 32-FC ports blade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>FC8-48E</td>
<td>8 Gb 48-FC ports blade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>FC16-64</td>
<td>16 Gb 64-FC ports blade</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Switch Type and Blade ID
Hexadecimal Conversion

Hexadecimal overview

Hexadecimal, also known as hex, is a numeral system with a base of 16, usually written by means of symbols 0–9 and A–F (or a–f). Its primary purpose is to represent the binary code that computers interpret in a format easier for humans to remember. It acts as a form of shorthand, in which one hexadecimal digit takes the place of four binary bits. For example, the decimal numeral 79, with the binary representation of 01001111, is 4F (or 4f) in hexadecimal, where 4 = 0100 and F = 1111.

Hexadecimal numbers can have either an 0x prefix or an h suffix. The address 0xFFFFFA is the same address as FFFFFAh. This type of address with 6 digits representing 3 bytes, is called a hex triplet. Fibre Channel uses hexadecimal notation in hex triplets to specify well-known addresses and port IDs.

Example conversion of the hexadecimal triplet 0x616000

Notice the PID (610600 - in bold) in the nsShow output is in hexadecimal.

switch:admin> nsShow
{
 Type Pid COS PortName NodeName TTL(sec)
 N 610600; 2,3;10:00:00:00:c9:29:b3:84;20:00:00:00:c9:29:b3:84; na
 FC4s: FCP
 NodeSymb: [36] "Emulex LP9002 FV3.90A7 DV5-5.10A10 "
 Fabric Port Name: 20:08:00:05:1e:01:23:e0
 Permanent Port Name: 10:00:00:00:c9:29:b3:84
 Port Index: 6
 Share Area: No
 Device Shared in Other AD: No
 Redirect: No
 LSAN: Yes
 The Local Name Server has 1 entry }

1. Separate the 6 digits into triplets by inserting a space after every 2 digits: 61 06 00.
2. Convert each hexadecimal value to a decimal representation:

 61 = Domain ID = 97
 06 = Area (port number) = 06
 00 = Port (ALPA) = 0 (not used in this instance, but is used in loop, shared areas in PID assignments on blades, NPIV, and Access Gateway devices)

 Result: hexadecimal triplet 610600 = decimal triplet 97,06,00

 Refer to when Table 24 converting hexadecimal values to a decimal representation.
Decimal-to-hexadecimal conversion table

<table>
<thead>
<tr>
<th>Decimal</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>0a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>0b</td>
<td>0c</td>
<td>0d</td>
<td>0e</td>
<td>0f</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>1a</td>
<td>1b</td>
<td>1c</td>
<td>1d</td>
<td>1e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>1f</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
<th>46</th>
<th>47</th>
<th>48</th>
<th>49</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>29</td>
<td>2a</td>
<td>2b</td>
<td>2c</td>
<td>2d</td>
<td>2e</td>
<td>2f</td>
<td>30</td>
<td>31</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>51</th>
<th>52</th>
<th>53</th>
<th>54</th>
<th>55</th>
<th>56</th>
<th>57</th>
<th>58</th>
<th>59</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>3a</td>
<td>3b</td>
<td>3c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>61</th>
<th>62</th>
<th>63</th>
<th>64</th>
<th>65</th>
<th>66</th>
<th>67</th>
<th>68</th>
<th>69</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>3d</td>
<td>3e</td>
<td>3f</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>71</th>
<th>72</th>
<th>73</th>
<th>74</th>
<th>75</th>
<th>76</th>
<th>77</th>
<th>78</th>
<th>79</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>4a</td>
<td>4b</td>
<td>4c</td>
<td>4d</td>
<td>4e</td>
<td>4f</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>81</th>
<th>82</th>
<th>83</th>
<th>84</th>
<th>85</th>
<th>86</th>
<th>87</th>
<th>88</th>
<th>89</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>5a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>91</th>
<th>92</th>
<th>93</th>
<th>94</th>
<th>95</th>
<th>96</th>
<th>97</th>
<th>98</th>
<th>99</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>5b</td>
<td>5c</td>
<td>5d</td>
<td>5e</td>
<td>5f</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>101</th>
<th>102</th>
<th>103</th>
<th>104</th>
<th>105</th>
<th>106</th>
<th>107</th>
<th>108</th>
<th>109</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>6a</td>
<td>6b</td>
<td>6c</td>
<td>6d</td>
<td>6e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>111</th>
<th>112</th>
<th>113</th>
<th>114</th>
<th>115</th>
<th>116</th>
<th>117</th>
<th>118</th>
<th>119</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>6f</td>
<td>70</td>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>121</th>
<th>122</th>
<th>123</th>
<th>124</th>
<th>125</th>
<th>126</th>
<th>127</th>
<th>128</th>
<th>129</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>79</td>
<td>7a</td>
<td>7b</td>
<td>7c</td>
<td>7d</td>
<td>7e</td>
<td>7f</td>
<td>80</td>
<td>81</td>
<td>82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>131</th>
<th>132</th>
<th>133</th>
<th>134</th>
<th>135</th>
<th>136</th>
<th>137</th>
<th>138</th>
<th>139</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>8a</td>
<td>8b</td>
<td>8c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>141</th>
<th>142</th>
<th>143</th>
<th>144</th>
<th>145</th>
<th>146</th>
<th>147</th>
<th>148</th>
<th>149</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>8d</td>
<td>8e</td>
<td>8f</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>151</th>
<th>152</th>
<th>153</th>
<th>154</th>
<th>155</th>
<th>156</th>
<th>157</th>
<th>158</th>
<th>159</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>9a</td>
<td>9b</td>
<td>9c</td>
<td>9d</td>
<td>9e</td>
<td>9f</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>161</th>
<th>162</th>
<th>163</th>
<th>164</th>
<th>165</th>
<th>166</th>
<th>167</th>
<th>168</th>
<th>169</th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>a1</td>
<td>a2</td>
<td>a3</td>
<td>a4</td>
<td>a5</td>
<td>a6</td>
<td>a7</td>
<td>a8</td>
<td>a9</td>
<td>aa</td>
</tr>
<tr>
<td>Decimal</td>
<td>171</td>
<td>172</td>
<td>173</td>
<td>174</td>
<td>175</td>
<td>176</td>
<td>177</td>
<td>178</td>
<td>179</td>
<td>180</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td>Hex</td>
<td>ab</td>
<td>ac</td>
<td>ad</td>
<td>ae</td>
<td>af</td>
<td>b0</td>
<td>b1</td>
<td>b2</td>
<td>b3</td>
<td>b4</td>
</tr>
<tr>
<td>Decimal</td>
<td>181</td>
<td>182</td>
<td>183</td>
<td>184</td>
<td>185</td>
<td>186</td>
<td>187</td>
<td>188</td>
<td>189</td>
<td>190</td>
</tr>
<tr>
<td>Hex</td>
<td>b5</td>
<td>b6</td>
<td>b7</td>
<td>b8</td>
<td>b9</td>
<td>ba</td>
<td>bb</td>
<td>bc</td>
<td>bd</td>
<td>be</td>
</tr>
<tr>
<td>Decimal</td>
<td>191</td>
<td>192</td>
<td>193</td>
<td>194</td>
<td>195</td>
<td>196</td>
<td>197</td>
<td>198</td>
<td>199</td>
<td>200</td>
</tr>
<tr>
<td>Hex</td>
<td>bf</td>
<td>c0</td>
<td>c1</td>
<td>c2</td>
<td>c3</td>
<td>c4</td>
<td>c5</td>
<td>c6</td>
<td>c7</td>
<td>c8</td>
</tr>
<tr>
<td>Decimal</td>
<td>201</td>
<td>202</td>
<td>203</td>
<td>204</td>
<td>205</td>
<td>206</td>
<td>207</td>
<td>208</td>
<td>209</td>
<td>210</td>
</tr>
<tr>
<td>Hex</td>
<td>c9</td>
<td>ca</td>
<td>cb</td>
<td>cc</td>
<td>cd</td>
<td>ce</td>
<td>cf</td>
<td>d0</td>
<td>d1</td>
<td>d2</td>
</tr>
<tr>
<td>Decimal</td>
<td>211</td>
<td>212</td>
<td>213</td>
<td>214</td>
<td>215</td>
<td>216</td>
<td>217</td>
<td>218</td>
<td>219</td>
<td>220</td>
</tr>
<tr>
<td>Hex</td>
<td>d3</td>
<td>d4</td>
<td>d5</td>
<td>d6</td>
<td>d7</td>
<td>d8</td>
<td>d9</td>
<td>da</td>
<td>db</td>
<td>dc</td>
</tr>
<tr>
<td>Decimal</td>
<td>221</td>
<td>222</td>
<td>223</td>
<td>224</td>
<td>225</td>
<td>226</td>
<td>227</td>
<td>228</td>
<td>229</td>
<td>230</td>
</tr>
<tr>
<td>Hex</td>
<td>dd</td>
<td>de</td>
<td>df</td>
<td>e0</td>
<td>e1</td>
<td>e2</td>
<td>e3</td>
<td>e4</td>
<td>e5</td>
<td>e6</td>
</tr>
<tr>
<td>Decimal</td>
<td>231</td>
<td>232</td>
<td>233</td>
<td>234</td>
<td>235</td>
<td>236</td>
<td>237</td>
<td>238</td>
<td>239</td>
<td>240</td>
</tr>
<tr>
<td>Hex</td>
<td>e7</td>
<td>e8</td>
<td>e9</td>
<td>ea</td>
<td>eb</td>
<td>ec</td>
<td>ed</td>
<td>ef</td>
<td>ee</td>
<td>f0</td>
</tr>
<tr>
<td>Decimal</td>
<td>241</td>
<td>242</td>
<td>243</td>
<td>244</td>
<td>245</td>
<td>246</td>
<td>247</td>
<td>248</td>
<td>249</td>
<td>250</td>
</tr>
<tr>
<td>Hex</td>
<td>f1</td>
<td>f2</td>
<td>f3</td>
<td>f4</td>
<td>f5</td>
<td>f6</td>
<td>f7</td>
<td>f8</td>
<td>f9</td>
<td>fa</td>
</tr>
<tr>
<td>Decimal</td>
<td>251</td>
<td>252</td>
<td>253</td>
<td>254</td>
<td>255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hex</td>
<td>fb</td>
<td>fc</td>
<td>fd</td>
<td>fe</td>
<td>ff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decimal</td>
<td>Hexadecimal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Decimal-to-hexadecimal conversion table
Index

A
account management
- lost password recovery options, 62
- recovering forgotten passwords, 61
- unable to modify switch settings, 62
- user forgot password, 4
- user unable to change switch settings, 5

B
blade errors
- AP blade type 24 is inserted, 69
- faulty, 3, 52
- stuck in the ‘LOADING’ state, 3, 52
browser troubleshooting certificates, 63

C
certificates
- corrupt, 63
- invalid, 63
- not installed, 63
- troubleshooting, 63
command output, 7
common
- problem areas, 2
- symptoms, 2
configdownload fails, 3
configupload fails, 3
configuration
- download fails, 47
- save to a host, 45
- switch reboots during the download, 47, 48
- upload fails, 45
connectivity
- no connectivity between host and storage, 4
- no connectivity between switches, 4
- contacting your switch support provider, 5
converting hexadecimal numbers, 107–109
core file warning messages, 13
correcting
- device login issues, 33
- link failures, 28
- marginal links, 30
crc_err counter, 31
crc_g_eof counter, 31

decimal to hexadecimal conversion table, 108
devices
- login issues, 33
- missing, 2
diagnostics, 81
- configuring syslogd, 98
- configuring the host, 99
- equipment status, 93
- fan status, 94
- port log, 96
- POST, 82
- power supply status, 94
- supportSave, 82
- switch status, 84
- system message log, RASlog, 95
- temperature status, 95
- trace dump auto-transfer, 100
disabling, 90
- port, 90
disc_c3 errors, 31
E
E_Port, 23, 30
- failed to come online, 3
- failed to form, 3
enabling
- port, 90
enc_out errors, 31
equipment status, viewing, 93
EX_Ports, 3, 23
F

F_Port, 23, 30
fabric
issues, 2
merge fails, 3
parameters, 37
parameters, reconcile, 37
segments, 3
fabric merge problem, 73
fabric segmentation
configuration mismatch, 75
content mismatch, 75
default zone access, 77
cPing, 78
Fibre Channel connectivity, 78
type mismatch, 75
zone configuration members, 77
zone conflict, 75
zoning problems, 79
fans, status of, 94
FCIP
tunnel bounces, 3
tunnel does not come online, 3
tunnel does not form, 3
tunnel is sluggish, 3
cPing, 16
FCR is slowing down, 3
feature is not working, 3, 11, 12
FFDC warning messages, 13
Fibre Channel protocol auto discovery process, 24
FICON, switch does not talk to hosts, 3
FIPS, switch boots continuously, 64
firmwareDownload errors, 55
AP blade type 24 is inserted, 69
blade is faulty, 52
blade is stuck in the ‘LOADING’ state, 52
cannot download the requested firmware, 54
cannot download with interop mode turned on, 54
cannot upgrade directly to v6.0, 59
command fails, 3
firmware path is invalid, 53
firmwareDownload is already in progress, 54
gathering additional information, 55
non-disruptive firmwareDownload, 59
port mirroring, 41
server is inaccessible, 53
USB error handling, 56
Virtual Fabrics is enabled, 60
FL_Port, 23
FLOGI, 24
frames tx and rx, 31
functional tests, 35
G

G_Port, 23, 30
gathering
basic switch information, 7
detailed information, 8
information for technical support, 5
H

hexadecimal conversion, 107–109
hexadecimal to decimal conversion table, 108
host application times out, 22
hosts, 2
HTTPS, 63
I

I2C bus errors, 13
identifying media-related issues, 35
inaccurate information in the system message log, 12, 22
intermittent connectivity, 3
ISL trunk failed, 71
L

L_Port, 30
LEDs
flashing, 3
no light, 4
steady, 3
license issues, 4, 11
link
intermittent connectivity, 3
marginal, 4
no port LED light, 25
port LEDs flashing, 25
port LEDs steady, 25
logical connection, 26
loop initialization failure, 29
LSAN is slow or times-out, 4
M_Portal, 23
marginal links, 2, 4
media-related issues
 functional tests, 35
 structural tests, 35
message logs, 1
missing devices, 2

Name Server, 27
Network Time Protocol, See NTP, 1
no connectivity between host and storage, 4
no connectivity between switches, 4
no light on LEDs, 4
NS, 27
NTP, 1

output from a console, 7

passwords, recovering forgotten, 61
pathinfo, 21
performance problems, 4
PLOGI, 24
POD
 enabling ports, 90
point-to-point initialization failure, 29
port, 90
 bypassed, 30
 disabled, 30
 enabling, 90
 in wrong mode, 30
 initialization, 23
 loopback, 30
port cannot be moved, 4
port mirroring, 23
 adding port connections, 43
 considerations, 40
 deleting port connections, 43
 port type
 E_Port, 23, 30
 EX_Port, 23
 F_Port, 23, 30
 FL_Port, 23
 G_Port, 23, 30
 L_Port, 30
 M_Port, 23
 U_Port, 23
 VE_Port, 23
 VEX_Port, 24
portErrShow, 34
 crc_err counter errors, 31
 crc_g_eof counter errors, 31
 disc_c3 errors, 31
 enc_out errors, 31
 frames tx and rx errors, 31
portFlagsShow, 34
portLogDumpPort, 35
portloopbacktest, 36
POST, 82
power-on self-test, See POST, 82
PRLI, 24

RAS logs, 12
recovering forgotten passwords, 61
resolving zone conflicts, 75
Rolling Reboot Detection, 14

SCSI
 retry errors, 4
 timeout errors, 4
security, gathering additional information, 63
segmentation, 3
segmented fabrics, 37, 74
setting up automatic trace dump transfers, 100
slow-down in FCR performance, 22
SNMP
 gathering additional information, 64
 management server unable to receive traps, 64
SSL, 63
storage
 devices, 2
 management applications, 2
structural tests, 35
superping tool, 18
supportSave, 5
supportSave timeout value, 6
switch
 configuration, 2
 constantly reboots, 4
 disabling port, 90
 panic, 4
 reboots during configup/download, 4
 system status, 84
 unable to join fabric, 4
switch message logs, 12
switch panic, 64
switch reboots during the configuration download, 47
switch status, viewing, 84
switchType, 103
symptoms, 2
synchronize switches, 1
syslog messages, 4

T

targets, 2
temperature, fan, and power supply, 94
temperature, status of, 95
test
 a port, 36
 a switch, 36
TI zone problem, 73
time is not in-sync, 11
troubleshooting
certificates, 63
corrupt certificate, 63
invalid certificate, 63
trunk
 bounces, 4
 failed to form, 4
 trunk goes offline and online (bounces), 72

U

U_Port, 23
user forgot password, 4
user is unable to change switch settings, 5
using fcPing, 16

V

VE_Port, 23
VEX_Port, 24
viewing
 and saving diagnostic information, 100
 equipment status, 93
 fan status, 94
 port log, 96
 port status, 90
 power supply status, 94
 power-on self test, 82
 switch status, 84
 temperature status, 95
 the system message log, 95
Virtual Fabric does not form, 5
Virtual Fabrics
 E_Ports directly connecting two logical switches does not form, 66
 FID is currently in use, 66
 firmwaredownload errors, 60
general troubleshooting, 65
 invalid FID, 66
 logical port, 66
 slot displays FAULTY(91), 69

Z

zone
 configuration, 2
 configuration mismatch, 5
 content mismatch, 5
 resolving conflicts, 75
troubleshooting, 75
type mismatch, 5