
Dell EMC Reference Architecture

Dell EMC Ready Solutions for AI Deep Learning
with NVIDIA

Deep Learning with NVIDIA Architecture Guide

Authors: Rengan Xu, Frank Han, Nishanth Dandapanthula

Abstract
There has been an explosion of interest in Deep Learning and the plethora
of choices makes designing a solution complex and time consuming. Dell

s for AI Deep Learning with NVIDIA is a complete
solution, designed to support all phases of Deep Learning, incorporates
the latest CPU, GPU, memory, network, storage, and software
technologies with impressive performance for both training and inference
phases. The architecture of this Deep Learning solution is presented in
this document.

August 2018

Dell EMC Reference Architecture

Revisions

Date Description

August 2018 Initial release

publication, and specifically disclaims implied warranties of merchantability or fitness for a particular purpose.

Use, copying, and distribution of any software described in this publication requires an applicable software license.

© August 2018 v1.0 Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC, Dell EMC and other trademarks are trademarks of Dell Inc. or its
subsidiaries. Other trademarks may be trademarks of their respective owners.

Dell believes the information in this document is accurate as of its publication date. The information is subject to change without notice.

Dell EMC Ready Solutions for AI - Deep Learning with NVIDIA an Architecture Guide | v1.0

Table of Contents

Revisions... 2

Table of Contents .. 3

Executive summary ... 4

1 Solution Overview .. 5

2 Solution Architecture .. 7

2.1 Head Node Configuration ... 7

2.1.1 Shared Storage via NFS over InfiniBand ... 8

2.2 Compute Node Configuration ... 8

2.2.1 GPU .. 9

2.3 Processor recommendation for Head Node and Compute Nodes ... 10

2.4 Memory recommendation for Head Node and Compute Nodes .. 10

2.5 Isilon Storage .. 11

2.6 Network ... 12

2.7 Software .. 13

3 Deep Learning Training and Inference Performance and Analysis ... 14

3.1 Deep Learning Training .. 14

3.1.1 FP16 vs FP32 ... 15

3.1.2 V100 vs P100 ... 16

3.1.3 V100-SXM2 vs V100-PCIe ... 17

3.1.4 Scaling Performance with Multi-GPU ... 18

3.1.5 Storage Performance ... 21

3.2 Deep Learning Inference .. 28

3.3 NVIDIA DIGITS Tool and the Deep Learning Solution ... 30

4 Containers for Deep Learning .. 32

4.1 Singularity Containers .. 32

4.2 Running NVIDIA GPU Cloud with the Ready Solutions for AI - Deep Learning .. 34

5 The Data Scientist Portal .. 38

5.1 Creating and Running a Notebook ... 38

5.2 Tensorboard Integration ... 42

5.3 Slurm Scheduler ... 43

6 Conclusions and Future Work .. 46

4 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

Executive summary

Deep Learning techniques has enabled great success in many fields such as computer vision, natural language
processing (NLP), gaming and autonomous driving by enabling a model to learn from existing data and then to
make corresponding predictions. The success is due to a combination of improved algorithms, access to large
datasets and increased computational power. To be effective at enterprise scale, the computational intensity of
Deep Learning neural network training requires highly powerful and efficient parallel architectures. The choice
and design of the system components, carefully selected and tuned for Deep Learning use-cases, can make
the difference in the business outcomes of applying Deep Learning techniques. In addition to several options
for processors, accelerators and storage technologies, there are multiple Deep Learning software frameworks
and libraries that must be considered. These software components are under active development, updated
frequently and cumbersome to manage. It is complicated to simply build and run Deep Learning applications
successfully, leaving little time for focus on the actual business problem.

To resolve this complexity challenge, Dell EMC has developed an architecture for Deep Learning that provides
a complete, supported solution. This solution includes carefully selected technologies across all aspects of
Deep Learning, processing capabilities, memory, storage and network technologies as well as the software
ecosystem. This document presents the architecture of this Deep Learning solution including details on the
design choice for each component. The performance aspects of this complete solution have also been
characterized and are also described here.

AUDIENCE

This document is intended for organizations interested in accelerating Deep Learning with advanced computing
and data management solutions. Solution architects, system administrators and others interested readers within
those organizations constitute the target audience.

5 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

1 Solution Overview
Dell EMC has developed an architecture for Deep Learning that provides a complete, supported solution. This
solution includes carefully selected technologies across all aspects of Deep Learning, processing capabilities,
memory, storage and network technologies as well as the software ecosystem. This complete solution is
provided as s for AI Deep Learning with NVIDIA. The solution includes fully
integrated and optimized hardware, software, and services including deployment, integration and support
making it easier for organizations to start and grow their Deep Learning practice.

The high level overview of Dell EMC Ready Solutions for AI - Deep Learning is shown in Figure 1.

Figure 1: Overview of Dell EMC Ready Solutions for AI - Deep Learning

Data Scientist Portal: This is a new portal for data scientists created for this solution. It enables data scientists,
who should not need to be experts in cluster technologies, to use a simple web portal to take advantage of the
underlying technology. The scientists can write, train and do inference for different Deep Learning models within
Jupyter Notebook which includes Python 2, Python 3, R and other kernels.

Bright Cluster Manager and Bright Machine Learning: Bright Cluster Manager is used for the monitoring,
deployment, management, and maintenance of the cluster. The Bright Machine Learning (ML) includes the
deep learning frameworks, libraries, and compilers and so on.

Deep Learning Frameworks and Libraries: This category includes TensorFlow, MXNet, Caffe2, CUDA,
cuDNN, and NCCL. The latest version of these frameworks and libraries are integrated into the solution.

Infrastructure: The infrastructure comprises of a cluster with a master node, compute nodes, shared storage
and networks. In this instance of the solution, the master node is a Dell EMC PowerEdge R740xd, each compute
node is PowerEdge C4140 with NVIDIA Tesla GPUs, the storage includes Network File System (NFS) and
Isilon, and the networks include Ethernet and Mellanox InfiniBand.

6 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

Section 2 describes each of these solution components in more detail, covering the compute, network, storage
and software configurations. Extensive performance analysis on this solution was conducted in the HPC and
AI Innovation Lab and those results are presented in Section 3. These includes tests with training and inference
workloads, conducted on different types of GPUs, using different floating point and integer precision arithmetic,
and with different storage sub-systems for Deep Learning workloads. That is followed by Section 4 that
describes containerization techniques for Deep Learning. Section 5 has details on the Data Scientist Portal
developed by Dell EMC. Conclusion and future direction completes the document in Section 6.

7 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

2 Solution Architecture
The hardware comprises of a cluster with a master node, compute nodes, shared storage and networks. The
master node or head node roles can include deploying the cluster of compute nodes, managing the compute
nodes, user logins and access, providing a compilation environment, and job submissions to compute nodes.
The compute nodes are the work horse and execute the submitted jobs. Software from Bright Computing called
Bright Cluster Manager is used to deploy and manage the whole cluster.

Figure 2 shows the high-level overview of the cluster which includes one head node, n compute nodes, the
local disks on the cluster head node exported over NFS, Isilon storage, and two networks. All compute nodes
are interconnected through an InfiniBand switch. The head node is also connected to the InfiniBand switch as
it uses IPoIB to export the NFS share to the compute nodes. All compute nodes and the head node are also
connected to a 1 Gigabit Ethernet management switch which is used by Bright Cluster Manager to administer
the cluster. An Isilon storage solution is connected to the FDR-40GigE Gateway switch so that it can be
accessed by the head node and all compute nodes.

Figure 2: The overview of the cluster

2.1 Head Node Configuration
The Dell EMC PowerEdge R740xd is recommended for the role of the head node. This
socket, 2U rack server that can support the memory capacities, I/O needs and network options required of the
head node. The head node will perform the cluster administration, cluster management, NFS server, user login
node and compilation node roles.

The suggested configuration of the PowerEdge R740xd is listed in Table 1. It includes 12 x 12TB NL SAS local
disks that are formatted as an XFS file system and exported via NFS to the compute nodes over IPoIB. RAID
50 is used instead of RAID6/RAID60 to take into consideration faster rebuild time and capacity advantages
provided by the former. Details of each configuration choice are described in the following sections. For more
information on this server model please refer to PowerEdge R740/740xd Technical Guide.

8 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

Table 1: PowerEdge R740xd configurations

Component Details

Server Model PowerEdge R740xd

Processor 2 x Intel Xeon Gold 6148 CPU @ 2.40GHz

Memory 24 x 16GB DDR4 2666MT/s DIMMs - 384GB

Disks 12 x 12TB NL SAS RAID 50 (Recommended 10+ drives)

I/O & Ports Network daughter card with

2 x 10GE + 2 x 1GE

Network Adapter 1x InfiniBand EDR adapter

Out of Band Management iDRAC9 Enterprise with Lifecycle Controller

Power Supplies Titanium 1100W, Platinum

Storage Controllers PowerEdge RAID Controller (PERC) H730p

2.1.1 Shared Storage via NFS over InfiniBand
The default shared storage system for the cluster is provided over NFS. It is built using 12x 12 TB NL SAS disks
that are local to the head node configured in RAID 50 with two parity check disks. This provides usable capacity
of 120TB (109TiB). RAID 50 was chosen because it has balanced performance and shorter rebuild time
compared to RAID 6 or RAID 60 (since RAID 50 has fewer parity disks than RAID 6 or RAID 60). This 120TB
volume is formatted as an XFS file system and exported to the compute nodes via NFS over IPoIB.

In the default configuration, both home directories and shared application and library install locations are hosted
on this NFS share. In addition to this, for solutions which require a larger capacity shared storage solution, the
Isilon F800 is as an alternative option and is described in Section 2.5. A comparison between various storage
subsystems is provided in Section 3.1.5, including this NL SAS NFS, the Isilon, and smaller test configurations
using SSDs and NVMe devices.

2.2 Compute Node Configuration
Deep Learning methods would not have gained success without the computational power to drive the iterative
training process. Therefore, a key component of Deep Learning solutions is highly capable nodes that can
support compute intensive workloads. The state-of-art neural network models in Deep Learning have more than
100 layers which require the computation to be able to scale across many compute nodes in order for any timely
results. The Dell EMC PowerEdge C4140, an accelerator-optimized, high density 1U rack server, is used as
the compute node unit in this solution. The PowerEdge C4140 can support four NVIDIA Volta SMX2 GPUs,
both the V100-SXM2 as well as the V100-PCIe models. Figure 3 shows the CPU-GPU and GPU-GPU
connection topology of a compute node.

The detailed configuration of each PowerEdge C4140 compute node is listed in Table 2.

9 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

Figure 3: The topology of a compute node

Table 2: PowerEdge C4140 Configurations

Component Details

Server Model PowerEdge C4140

Processor 2 x Intel Xeon Gold 6148 CPU @ 2.40GHz

Memory 24 x 16GB DDR4 2666MT/s DIMMs - 384GB

Local Disks 120GB SSD, 1.6TB NVMe

I/O & Ports Network daughter card with

2 x 10GE + 2 x 1GE

Network Adapter 1 x InfiniBand EDR adapter

GPU 4 x V100-SXM2 16GB

Out of Band Management iDRAC9 Enterprise with Lifecycle Controller

Power Supplies 2000W hot-plug Redundant Power Supply Unit (PSU)

2.2.1 GPU
The NVIDIA Tesla V100 is the latest data center GPU available to accelerate Deep Learning. Powered by

engineers to tackle challenges that were once difficult. With 640 Tensor Cores, Tesla V100 is the first GPU to
break the 100 teraflops (TFLOPS) barrier of Deep Learning performance.

Table 3: V100-SXM2 vs V100-PCIe

Description V100-PCIe V100-SXM2

CUDA Cores 5120 5120

GPU Max Clock Rate (MHz) 1380 1530

10 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

Tensor Cores 640 640

Memory Bandwidth (GB/s) 900 900

NVLink Bandwidth (GB/s) (uni-direction) N/A 300

Deep Learning (Tensor OPS) 112 120

TDP (Watts) 250 300

Tesla V100 product line includes two variations, V100-PCIe and V100-SXM2. The comparison of two variants
is shown in Table 3. In the V100-PCIe, all GPUs communicate with each other over PCIe buses. With the V100-
SXM2 model, all GPUs are connected by NVIDIA NVLink. In use-cases where multiple GPUs are required, the
V100-SXM2 models provide the advantage of faster GPU-to-GPU communication over the NVLINK
interconnect when compared to PCIe. V100-SXM2 GPUs provide six NVLinks per GPU for bi-directional
communication. The bandwidth of each NVLink is 25GB/s in uni-direction and all four GPUs within a
node can communicate at the same time, therefore the theoretical peak bandwidth is 6*25*4=600GB/s
in bi-direction. However, the theoretical peak bandwidth using PCIe is only 16*2=32GB/s as the GPUs can only
communicate in order, which means the communication cannot be done in parallel. So in theory the data
communication with NVLink could be up to 600/32=18x faster than PCIe. The evaluation of this
performance advantage in real models will be discussed in Section 3.1.3. Because of this advantage, the
PowerEdge C4140 compute node in the Deep Learning solution uses V100-SXM2 instead of V100-PCIe GPUs.

2.3 Processor recommendation for Head Node and Compute Nodes
The processor chosen for the head node and compute nodes is Intel® Xeon® Gold 6148 CPU. This is the latest
Intel® Xeon® Scalable processor with 20 physical cores which support 40 threads. Previous studies, as
described in Section 3.1, have concluded that 16 threads are sufficient to feed the I/O pipeline for the state-of-
the-art convolutional neural network, so the Gold 6148 CPU is a reasonable choice. Additionally this CPU model
is recommended for the compute nodes as well, making this a consistent choice across the cluster.

2.4 Memory recommendation for Head Node and Compute Nodes
The recommended memory for the head node is 24x 16GB 2666MT/s DIMMs. Therefore the total size of
memory is 384GB. This is chosen based on the following facts:

 Capacity: An ideal configuration must support system memory capacity that is larger than the total size
of GPU memory. Each compute node has 4 GPUs and each GPU has 16GB memory, so the system
memory must be at least 16GBx4=64GB. The head node memory also affects I/O performance. For
NFS service, larger memory will reduce disk read operations since NFS service needs to send out data
from memory. 16GB DIMMs demonstrate the best performance/dollar value.

 DIMM configuration: Choices like 24x 16GB or 12x 32GB will provide the same capacity of 384GB
system memory, but according to our studies as shown in Figure 4, the combination of 24x 16GB
DIMMs provides 11% better performance than using 12x 32GB. The results shown here was on the
Intel Xeon Platinum 8180 processor, but the same trends will apply across other models in the Intel
Scalable Processor Family including the Gold 6148, although the actual percentage differences across
configurations may vary. More details can be found in our Skylake memory study.

 Serviceability: The head node and compute nodes memory configurations are designed to be similar
to reduce parts complexity while satisfying performance and capacity needs. Fewer parts need to be
stocked for replacement, and in urgent cases if a memory module in the head node needs to be

11 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

replaced immediately, a DIMM module from a compute node can be temporarily considered to restore
the head node until replacement modules arrive.

Figure 4: Relative memory bandwidth for different system capacities

2.5 Isilon Storage
Dell EMC Isilon is a proven scale-out network attached storage (NAS) solution that can handle the unstructured
data prevalent in many different workflows. The Isilon storage architecture automatically aligns application
needs with performance, capacity, and economics. As performance and capacity demands increase, both can
be scaled simply and non-disruptively, allowing applications and users to continue working.

Dell EMC Isilon OneFS operating system powers all Dell EMC Isilon scale-out NAS storage solutions and has
the following features.

 A high degree of scalability, with grow-as-you-go flexibility

 High efficiency to reduce costs

 Multi-protocol support such as SMB, NFS, HTTP and HDFS to maximize operational flexibility
 Enterprise data protection and resiliency

 Robust security options

The recommended Isilon storage is Isilon F800 all-flash scale-out NAS storage. Dell EMC Isilon F800 all-flash
Scale-out NAS storage is uniquely suited for modern Deep Learning applications delivering the flexibility to deal
with any data type, scalability for data sets ranging in the PBs, and concurrency to support the massive

-out architecture eliminates the I/O bottleneck between

can scale-out up to 68 PB with up to 540 GB/s of performance in a single cluster. This allows Isilon to accelerate
AI innovation with faster model training, provide more accurate insights with deeper data sets, and deliver a

The Isilon storage can be used if the local NFS storage capacity is insufficient for the environment. If the Isilon
is used in conjunction with the local NFS storage, user home directories and project results can be stored on

12 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

the Isilon with applications installed on the local NFS. The performance comparison between Isilon and other
storage solutions are shown in Section 3.1.6. The specifications of the Isilon F800 are listed in Table 4.

Table 4: Specification of Isilon F800

Storage

External storage

Bandwidth

IOPS

Chassis Capacity

(4 RU)

Cluster Capacity

Network

Before doing deep learning model training, if a user wants to move very large data outside the cluster described
in Section 2 to Isilon, the user can connect the server which stores the data to the FDR-40GigE gateway in
Figure 2, so that the data can be moved onto Isilon without having to route it through the head node.

To monitor and analyze the performance and file system of Isilon storage, the tool InsightIQ can be used.
InsightIQ allows a user to monitor and analyze Isilon storage cluster activity using standard reports in the
InsightIQ web-based application. The user can customize these reports to provide information about storage
cluster hardware, software, and protocol operations. InsightIQ transforms data into visual information that
highlights performance outliers, and helps users diagnose bottlenecks and optimize workflows. In Section 3.1.5,
InsightIQ was used to collect the average disk operation size, disk read IOPS, and file system throughput when
running deep learning models. For more details about InsightIQ, refer to Isilon InsightIQ User Guide.

2.6 Network
The solution comprises of three network fabrics. The head node and all compute nodes are connected with a
1 Gigabit Ethernet fabric. The Ethernet switch recommended for this is the Dell Networking S3048-ON which
has 48 ports. This connection is primarily used by Bright Cluster Manager for deployment, maintenance and
monitoring the solution.

The second fabric connects the head node and all compute nodes are through 100 Gb/s EDR InfiniBand. The
EDR InfiniBand switch is Mellanox SB7800 which has 36 ports. This fabric is used for IPC by the applications
as well as to serve NFS from the head node (IPoIB) and Isilon. GPU-to-GPU communication across servers
can use a technique called GPUDirect Remote Direct Memory Access (RDMA) which is enabled by InfiniBand.
This enables GPUs to communicate directly without the involvement of CPUs. Without GPUDirect, when GPUs
across servers need to communicate, the GPU in one node has to copy data from its GPU memory to system
memory, then that data is sent to the system memory of another node over the network, and finally the data is
copied from the system memory of the second node to the receiving GPU memory. With GPUDirect however,
the GPU on one node can send the data directly from its GPU memory to the GPU memory in another node,
without going through the system memory in both nodes. Therefore GPUDirect decreases the GPU-GPU
communication latency significantly.

13 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

The third switch in the solution is called a gateway switch in Figure 2 and connects the Isilon F800 to the head
nal interfaces are 40 Gigabit Ethernet. Hence, a switch which can serve

as the gateway between the 40GbE Ethernet and InfiniBand networks is needed for connectivity to the head
and compute nodes. The Mellanox SX6036 is used for this purpose. The gateway is connected to the InfiniBand
EDR switch and the Isilon as shown in Figure 2.

2.7 Software
The software portion of the solution is provided by Dell EMC and Bright Computing. The software includes
several pieces.

The first piece is Bright Cluster Manager which is used to easily deploy and manage the clustered infrastructure
and provides all cluster software including the operating system, GPU drivers and libraries, InfiniBand drivers
and libraries, MPI middleware, the Slurm schedule, etc.

The second piece is the Bright machine learning (ML) which includes any deep learning library dependencies
to the base operating system, deep learning frameworks including Caffe/Caffe2, Pytorch, Torch7, Theano,
Tensorflow, Horovod, Keras, DIGITS, CNTK and MXNet, and deep learning libraries including cuDNN, NCCL,
and the CUDA toolkit.

The third piece is the Data Scientist Portal which was developed by Dell EMC. The portal was created to abstract
the complexity of the deep learning ecosystems by providing a single pane of glass which provides users with
an interface to get started with their models. The portal includes spawner for Jupyterhub and integrates with

 Resource managers and schedulers (Slurm)

 LDAP for user management
 Deep Learning framework environments (Tensor Flow, Keras, MXNet, Pytorch etc.

module environment, Python2, Python3 and R kernel support

 Tensorboard

 Terminal CLI environments.

It also provides templates to get started with for various DL environments and adds support for singularity
containers. For more details about how to use the Data Scientist Portal, refer to Section 5.

14 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

3 Deep Learning Training and Inference Performance and
Analysis
In this section, the performance of Deep Learning training as well as inference is measured using three open
source Deep Learning frameworks: TensorFlow , MXNet and Caffe2 . The experiments were conducted on an
instance of the solution architecture described in Section 2. The experiment test cluster used a PowerEdge
R740xd head node, and PowerEdge C4140 compute nodes, different storage sub-systems including Isilon and
InfiniBand EDR network. A detailed test bed description is provided in the following section.

3.1 Deep Learning Training
The well-known ILSVRC2012 dataset was used for benchmarking performance. This dataset contains
1,281,167 training images and 50,000 validation images in 140GB. All images are grouped into 1000 categories
or classes. The overall size of ILSVRC 2012 leads to non-trivial training times and thus makes it more interesting
for analysis. Additionally this dataset is commonly used by Deep Learning researchers for benchmarking and
comparison studies. Resnet50 is a computationally intensive network and was selected to stress the solution
to its maximum capability. For the batch size parameter in Deep Learning, the maximum batch size that does
not cause memory errors was selected; this translated to a batch size of 64 per GPU for MXNet and Caffe2,
and 128 per GPU for TensorFlow. Horovod, a distributed TensorFlow framework, was used to scale the training
across multiple compute nodes. Throughput this document, performance was measured using a metric of
images/sec which is a measure of throughput of how fast the system can complete training the dataset.

The images/sec result was averaged across all iterations to take into account the deviations. The total number
of iterations is equal to num_epochs*num_images/(batch_size*num_gpus), where num_epochs means the
number of passes to all images of a dataset, num_images means the total number of images in the dataset,
batch_size means the number of images that are processed in parallel by one GPU, and num_gpus means the
total number of GPUs involved in the training.

Before running any benchmark, the cache on the head node and compute node(s) were cleared with the
The training tests were run for a single epoch, or

one pass through the entire dataset, since the throughput is consistent through epochs for MXNet and
TensorFlow tests. Consistent throughput means that the performance variation was not significant across
iterations, the tests measured less than 2% variation in performance.

However, two epochs were used for Caffe2 as it needs two epochs to stabilize the performance. This is because
 (throughput or

images/sec) is not stable (the performance variation between iterations is large) when the dataset is not fully
loaded in memory.

For MXNet framework, 16 CPU threads were used for dataset decoding and the reason was explained in the
Deep Learning on V100 . Caffe2 does not provide a parameter for users to set the number of CPU threads.

For TensorFlow, the number of CPU threads used for dataset decoding is calculated by subtracting four threads
per GPU from the total physical core count of the system. The four threads per GPU are used for GPU compute,
memory copies, event monitoring, and sending/receiving tensors. The processor used in these tests has 20
cores, with 40 cores per server. Hence 24 (40 threads 4 threads/GPU * 4 GPUs) threads were used for data
decoding per compute node for the TensorFlow tests. Table 5 lists the hardware and software details of the
testbed used for the results presented in the following sections.

15 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

Table 5: The hardware and software in the testbed

Hardware Head node

Cluster head node PowerEdge R740xd

CPU 2 x Intel Xeon 6148 @ 2.4GHz

Memory 384GB DDR4 @ 2667MT/s

Disks on head node 12 x12 TB Near-line SAS drives in a RAID 50 volume.
120TB volume formatted as XFS, exported via NFS

Hardware Compute node

Cluster compute node PowerEdge C4140

Number of compute nodes 8 nodes with V100-PCIe and 2 nodes with V100-SXM2

CPU 2 x Intel Xeon 6148 @ 2.4GHz

Memory 384GB DDR4 @ 2667MT/s

Disks 2x M.2, 240GB in Raid1

GPU V100-SXM2, V100-PCIe

Software and Firmware

Operating System Red Hat Enterprise Linux 7.4

Linux Kernel 3.10.0-693.el7.x86_64

BIOS 1.1.6

CUDA compiler and GPU driver CUDA 9.1.85 (390.46)

Python 2.7.5

Deep Learning Datasets

Dataset for training ILSVRC2012 training dataset, 1,281,167 images

Dataset for inference ILSVRC2012 validation dataset, 50,000 images

Deep Learning Libraries and Frameworks

CUDNN 7.0

NCCL 2.1.15

Horovod 0.12.1

TensorFlow 1.8

MXNet 0.11.1

Caffe2 0.8.1+

TensorRT 4.0.0.3

3.1.1 FP16 vs FP32
The V100 GPUs contains a new type of processing core called Tensor Cores which support mixed precision
training. Although many High Performance Computing (HPC) applications require high precision computation
with FP32 (32-bit floating point) or FP64 (64-bit floating point), Deep Learning researchers have found they are
able to achieve the same inference accuracy with FP16 (16-bit floating point) as can be had with FP32. In this

16 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

training. This section compares the performance of using FP16 for training versus FP32.

In experiments where training tests were executed using FP16 precision, the batch size was doubled since
FP16 consumes only half the memory for floating points as FP32. Doubling the batch size with FP16 ensures
that GPU memory is utilized equally for both types of tests. The performance comparison of FP16 versus FP32
is shown in Figure 5 for all three frameworks used in this study. Tests were conducted on up to two PowerEdge
C4140 compute nodes. Overall FP16 is 65% to 91% faster than FP32.

Although FP16 makes training faster, it requires extra work in the neural network model implementation to
match the accuracy achieved with FP32. This is because some neural networks require their gradient values
to be shifted into FP16 representable range, and may do some scaling and normalization to use FP16 during
training. For more details, please refer to NVIDIA mixed precision training. In the future work, the image
classification accuracy of applying FP16 will be compared to that of applying FP32.

Figure 5: Performance improvement of FP16 over FP32 for Resnet50 with ILSVRC2012

3.1.2 V100 vs P100
Table 6 compares V100-SXM2 and its previous generation GPU, the P100-SXM2. To demonstrate the
performance advantages of the V100 GPU over its previous generation P100 GPU, the performance of one
node with four V100-SXM2 was compared to that of a node with four P100-SXM2. Figure 6 shows this
performance comparison. The result shows that in FP32 mode, V100 is 26 % faster than P100 when using
TensorFlow, and 52% faster with MXNet. This is because V100-SXM2 has more CUDA cores, higher clock rate
and higher memory bandwidth than P100-SXM2. In FP16 mode, V100 is 103% faster than P100 with
TensorFlow, and 124% faster with MXNet. The reason that V100 is much faster than P100 in FP16 mode is
because P100 does not have Tensor Cores.

Table 6: Comparison between P100-SXM2 and V100-SXM2

 P100-SXM2 V100-SXM2

CUDA Cores 3584 5120

17 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

GPU Max Clock rate (MHz) 1481 1530

Tensor Cores N/A 640

Memory Bandwidth (GB/s) 732 900

NVLink Uni-direction Bandwidth (GB/s) 80 150

Double Precision (TFLOPS) 5.1 7.5

Deep Learning (Tensor OPS) 0 120

TDP (Watts) 300 300

Figure 6: Performance comparison between V100-SXM2 and P100-SXM2 for Resnet50 with
ILSVRC2012 within one node (four GPUs)

3.1.3 V100-SXM2 vs V100-PCIe
V100-SXM2 GPUs are recommended over V100-PCIe GPUs in the Deep Learning solution described in this
document. When multi-GPU are used, V100-SXM2 has the advantage of using the faster NVLink for GPU to
GPU communication over V100-PCIe which uses PCIe for GPU communication. As described in Section 2.2.1,
each V100-SXM2 GPU has 6 NVLinks for bi-directional communication. The bandwidth of each NVLink is
25GB/s in uni-direction and all 4 GPUs within a node can communicate at the same time, therefore the
theoretical peak bandwidth is 6*25*4=600GB/s in bi-direction. However, the theoretical peak bandwidth using
PCIe is only 16*2=32GB/s as the GPUs can only communicate in order. So in theory the data communication
with NVLink could be up to 600/32=18x faster than PCIe.

To evaluate the performance advantage of using NVLink over PCIe, the Peer-to-Peer (P2P, which is GPU-to-
GPU within the same compute node) memory access time when running three Deep Learning frameworks was

nvprof. It was found that TensorFlow implements P2P without an
explicit call to the cudaMemcpyPeer () API but nvprof profiles P2P communication based on this API, therefore
there is no way to profile the P2P speedup for TensorFlow with nvprof.

18 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

The P2P memory access time speedup with MXNet and Caffe2 was measured to be 3.7x and 3.2x, respectively,
when using NVLink over PCIe across four GPUs in FP32 mode. However, the P2P memory accesses make up
only a small portion of the whole application time, the overall application performance improvement with V100-
SMX2 is a more modest 5-20% over V100-PCIe as shown in Figure 7. In Figure 7, up to four GPUs are within
one node, and 8 GPUs are in two nodes. The performance improvement percentage is higher with increasing
number of GPUs within one node. As we cross past a single node, the performance improvement may drop
since the GPU to GPU communication in some instances has to go past the PCIe and the EDR InfiniBand link
apart from the NVLINK traffic. Hence the GPU communication time overall would be higher. This performance
delta between PCIe and SXM2 is expected to increase if the GPU-GPU communication in a neural network
model implementation increases (Ex: model parallel instead of data parallel), and as software implementations
take further advantage of the P2P architecture. Given the performance advantage of the SMX2 modules today,
and the potential for further improvements with SMX2, this solution recommends the SMX2 GPUs over PCIe.

Figure 7: Performance improvement of V100-SXM2 over V100-PCIe for Resnet50 with ILSVRC2012

3.1.4 Scaling Performance with Multi-GPU
Figure 8 shows the scaling performance and speedup of one to eight V100-SXM2 GPUs. The multiple GPUs
are either in single compute node (up to four GPUs) or across two compute nodes. Two PowerEdge C4140
nodes were used with 8 GPUs in total.

As discussed in Section 3.1.1, there are two popular modes in Deep Learning training, FP32 and FP16, and
both modes were examined in this test. The time consuming part of the training phase are the matrix operations.
In FP32 mode, all floating point numbers use the standard 32-bit representation. In FP16 mode, however, some
floating point numbers are represented with only 16-bit. It can be seen that, across the three frameworks and
when using 8 GPUs, MXNet scales the best with 7.8x speedup in FP32 mode and 7.1x speedup in FP16 mode.
The speedup of TensorFlow is 7.1x in FP32 and 6.8x in FP16, respectively. For Caffe2, the speedup is 7.4x in
FP32 and 6.9x in FP16, respectively. The results indicate that the Deep Learning training performance scales
well across more than one compute node with this solution. The next test examines a multi-node solution.

19 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

(a) Horovod+TensorFlow across 8 GPUs using the ILSVRC2012 dataset with Resnet50

(b) MXNet across 8 GPUs using the ILSVRC2012 dataset with Resnet50

20 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

(c) Caffe2 across 8 GPUs using the ILSVRC2012 dataset with Resnet50

Figure 8: The scaling performance of Deep Learning training on V100-SXM2

To demonstrate the scalability with more than two compute nodes, the same Deep Learning training
benchmarks were executed on a solution with eight PowerEdge C4140 nodes with four V100-PCIe GPUs per
server. The multi-node test bed available at the time of writing provided PCIe based GPUs. Given that the
performance difference between PCIe and SMX2 GPUs is well understood (between 5-20% as presented in
Section 3.1.3), the PCIe GPUs were considered a reasonable test to understand the scalability of the
frameworks. It is expected that the SMX2 GPUs will demonstrate similar scalability patterns.

The results are presented in Figure 9. Since eight compute node are used, there are 32 GPUs in total. It can
be seen that among the three frameworks, with two nodes and eight GPUs, the speedup in all three frameworks
are similar to the speedup with V100-SXM2 GPUs (presented in Figure 8). When using 32 GPUs, MXNet scales
the best with 29.4x speedup in FP32 mode and 25.8x in FP16 mode. TensorFlow also scales well with 22.0x
speedup in FP32 mode and 23.7x in FP16 mode. For Caffe2, the speedup is 26.5x in FP32 and 27.3x in FP16.

21 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

(a) Horovod+TensorFlow across 32 GPUs using the ILSVRC2012 dataset with Resnet50

(b) MXNet across 32 GPUs using the ILSVRC2012 dataset with Resnet50

(c) Caffe2 across 32 GPUs for Resnet50 using the ILSVRC2012 dataset

Figure 9: The scaling performance of Deep Learning training on V100-PCIe

3.1.5 Storage Performance
The impact of different storage sub-system options for the Deep Learning Solution was evaluated next.
Experiments were designed to measure the performance of three different convolutional neural networks on
four types of storage systems. The TensorFlow framework was used and the three neural networks used were
AlexNet, ResNet50, and VGG16. The batch size used for benchmarking was 128 for VGG16, and 256 for both
AlexNet and ResNet50. All experiments were running in FP16 mode to stress the I/O operations in neural
network training. The four systems are described below.

 Isilon F800

22 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

NFS on Near-Line SAS drives hosted by the head node and exported over NFS via IPoIB

 NFS on SSD drives hosted by the head node and exported over NFS via IPoIB

 NVMe

The Isilon F800 evaluated in this experiment has the same configuration as described in Section 2.5. Before

clear the cache on all four Isilon F800 nodes.

The NFS file share hosted on Near-Line SAS drives local to the head node (NL SAS NFS) consists of 12 TB
NL SAS drives on the head node in a RAID 50 volume, formatted as an XFS file system and exported via NFS
to the compute nodes over IPoIB.

The third storage system that was evaluated includes an NFS file share hosted on SATA SSDs local to the
This

configuration was included in the experiment to evaluate the performance an SSD based storage solution. Four
SATA SSD disks local to the head node were configured in a RAID 0 volume since the goal was to test the
maximum performance. The SSDs were 1.92TB read-intensive drives. Since most disk operation in Deep
Learning training are read-intensive, 1 Drive Writes Per Day (DWPD) drives were selected. The RAID 0 volume
was formatted as an XFS file system and exported to the compute nodes via IPoIB. The goal of this configuration
was to understand the benefit of SSD drives to the read operations in Deep Learning training and to determine
if this could be a viable option for a storage solution or as a scratch space for temporary files. For the purpose
of this experiment, an 8TB SSD solution was deemed sufficient. For environments that chose such an SSD
solution for a production NFS system, RAID 6 or RAID 50 is recommended to protect data against disk failures.
The quantity and capacity of the SSDs should also be increased to accommodate user and project storage
needs.

The final storage subsystem evaluated used NVMe drives. The compute nodes have an option for local NVMe
devices in addition to SAS or SATA, and these devices can be used as local scratch space. In a typical Deep
Learning training cycle, the same dataset is used multiple times. If the dataset is large and cannot fit in the
compute node system memory, a larger capacity local NVMe drive can be used to provide much faster disk-to-
memory I/O than SSD drives. The PowerEdge C4140 can support up to two NVMe devices in PCI-e card form
factor in the rear PCIe slots in the server chassis. 1x 1.6 TB NVMe device was tested in this study as the other
PCIe slot was populated by the Mellanox InfiniBand EDR adapter. The random read performance of the single
NVMe device is 1080,000 IOPS and the sequential read performance is 6,400 MB/s. This option is called

Since the entire ILSVRC2012 benchmark dataset is only ~140 GB and can easily fit into system memory, the
size of the dataset was increased 10x by applying 10 different data augmentation techniques to each JPEG
image in the dataset. The augmented images were then converted to a TensorFlow TFRecords database.
TFRecords file format is a binary format that combines multiple raw image files together with their metadata
information into one binary file. It maintains the image compression offered by the JPEG format and the total
size of the dataset remained the same. Training performance was measured with the TensorFlow framework
using both TFRecords database as well as the raw augmented JPEG images, and the results are presented in
Figure 10. The program did not run to completion with Resnet50 and JPEG images for all storage options, so
there is no corresponding values in Figure 10 (b). This issue will be studied as part of future work.

The performance studies in the Figure 10 below have been conducted with the 1 and 2 nodes of the PowerEdge
C4140 with V100 SXM2 GPUs interconnected with EDR InfiniBand as listed in Table 5.

The results show that for each of the three neural networks, there is no perceptible difference with respect to
the type of storage subsystem that was used. The conclusion is that the frameworks tested do not significantly

23 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

stress the I/O to be able to demonstrate notable difference in performance between the storage options. But, it
turns out that the performance with the TFRecrods database is much better than using raw JPEG images. The
performance delta between these two different image formats is much larger in the less complicated neural
networks like AlexNet. For instance, the performance advantage when using TFRecords over raw JPEG images
is ~23%-40% for VGG16, but around 5x (500%!) for AlexNet. This is because the TFRecords format packs
many raw JPEG images together making the data access more efficient, and additionally, TensorFlow includes
input pipeline optimization for TFRecords format but no corresponding optimization API for raw images.
Because of this reason, the performance variation with JPEG images in different storages is quite large,
especially in VGG16. Profiling and further exploration is ongoing to understand the variation with JPEG images.
The recommended format to use would be TFRecords.

(a) AlexNet

(b) Resnet50

24 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

(c) VGG16

Figure 10: Neural network training performance with different storages systems and image database
options. The batch size is 256, 256 and 128 for AlexNet, Resnet50 and VGG16, respectively. All training

are in FP16 mode.

The training performance of the tested neural networks are affected by different flags in the benchmark. It was
found that the training performance of Resnet50 -
- four. There was no obvious performance improvement for VGG16 and
AlexNet. The performance comparison between the baseline version and the tuned version for Resnet50 is
shown in Figure 11. The baseline performance is the performance presented in Figure 10(b). With one node,
the performance was improved from 2,657 images/sec to 2,940 images/sec. With two nodes, the performance
was improved from 4,560 images/sec to 5,590 images/sec.

Figure 11: The performance comparison of Resnet50 between the baseline and tuned versions

25 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

Figure 12: The profiled disk throughput with InsightIQ when running Resnet50 with Isilon

To better understand the underlying storage system, the Isilon storage I/O performance was profiled using Isilon
InsightIQ while training the model. The Isilon InsightIQ was described in 2.5. Only the Isilon storage with
TFRecords dataset was profiled since all storage systems displayed similar performance and the lessons from
one profiling exercise should be broadly applicable for this use case. Figure 12 shows an example of InsightIQ
snapshot of the disk throughput when running Resnet50. The disk throughput in the figure is decreasing
because more data were cached in Isilon memory. The full disk profiling data for AlexNet, Resnet50, and
VGG16 are shown in Table 7. The training performances are also added in the table for validation. Take
Resnet50 for example, the training performance is 2,940 images/sec. The average size of each image is 0.113
MB (the total training images size is 1,448,283,629,516 bytes, divided by 12811670 image files), so the
expected disk throughput is 2,940 images/sec * 0.113 MB * 8 b/B = 2,658 Mb/s which matches the actual disk
throughput 2,680 Mb/s. The same conclusion also applies to AlexNet and VGG16 neural networks.

Table 7: The disk metrics in Isilon F800 with single compute node

 AlexNet Resnet50 VGG16

Average Disk Operation Size (MB) 8.61 9.17 8.81

Disk Read IOPS (K/s) 344 212 111

Disk Throughput (Mb/s) 6370 2680 1440

Training Performance (Images/sec) 7095 2940 1590

Figure 13 illustrates the CPU utilization, memory usage and GPU utilization on one compute node, and the
network and disk throughput on Isilon F800 when running Resnet50 FP16 training with 10 times ILSVRC2012
TFRecords dataset. The training speed keeps 2,940 images/sec throughout the whole training time.

The CPU utilization is around 33% out of 40 cores, which are used for I/O, TFRecords parsing and JPEG
decoding. This verifies that the CPUs are not the bottleneck in Deep Learning training of Resnet50. For memory,
only around 19% of 384GB memory are used. The buffer usage is increasing to cache the data in memory until
the whole memory is used. But the whole dataset cannot be all fitted into memory. This is because 10x
ILSVRC2012 dataset was used by intention, the total size of the dataset is around 1.35TB which cannot be fully

26 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

cached into the system memory on one compute node. The cache was not cleared after the benchmark
stopped, that is why the used memory is closed to zero but cache still does not decrease. Although the memory
cannot cache the whole dataset, the network and file system are fast enough to feed data to GPUs to keep
them stay at high utilization and to keep the training speed at 2,940 images/sec. The average GPU utilization
was around 380% across four GPUs. This high utilization indicates that other parts (CPU, memory, network,
etc.) of one compute node are not the performance bottleneck.

Figure 13: The CPU utilization, memory usage and GPU utilization on one compute node, and network
and disk throughput on Isilon when running Resnet50 with 10x ILSVRC2012 TFRecords dataset

27 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

On Isilon F800, the network throughput is around 300 MB/s to maintain high GPU utilization. This is the data
transfer throughput of Resnet50 training and it almost does not change during the whole training. The network
bandwidth is 56 Gb/s (7 GB/s) between the IB EDR Switch and the FDR-40 GigE Gateway as shown in Figure
2. Two more InfiniBand network connections can be added (three connections in total) to match the bandwidth
of four Isilon nodes, which is 4 x 40 Gb/s. This supports up to 70 ((7 GB/s)*3/(300 MB/s)) compute nodes. This
number is far more than the total number of 36 ports in IB EDR Switch. This leaves more room for scaling the
cluster with more compute nodes.

When no data cached in Isilon F800, the disk throughput is the same as network throughput at the beginning
of training. As more data are cached into Isilon memory, the disk throughput is decreasing. Since the dataset
is too large to fit into system memory on compute and Isilon node, the system has to fetch the data from SSDs
on Isilon. That is the reason of consistent disk read throughout Resnet50 training.

(a) Resnet50

(b) AlexNet

Figure 14: Scaling results with Isilon F800. In FP32 mode, the batch size is 128 and 512 for Resnet50
and AlexNet, respectively. In FP16 mode, the batch size is 256 and 1024 for Resnet50 and AlexNet,

respectively.

Figure 14 summaries the scaling results on up to four compute nodes (16 GPUs) for Resnet50 and AlexNet
with Isilon F800. To stress the I/O, the batch size for AlexNet is changed to 512 in FP32 mode and 1024 in
FP16 mode.

28 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

There are ongoing studies to further stress the storage subsystems with other models (model parallelism like
seq2seq) and datasets to understand the performance implications of deep learning workloads at scale.

3.2 Deep Learning Inference
Inference is the end goal of Deep Learning. The inference performance tends to be either latency-focused or
throughput-focused. On one hand, latency-focused scenarios are time sensitive (e.g. face recognition), with
time to solution taking priority over efficient hardware utilization. In such case, the batch size can be as small
as one. On the other hand, in cases where delayed batch processing is acceptable large batch sizes can be
used to increase throughput.

This section quantifies the performance of Deep Learning inference using NVIDIA's TensorRT library.
TensorRT, previously called GIE (GPU Inference Engine), is a Deep Learning inference engine for production
deployment of Deep Learning applications which aims to maximize inference throughput and efficiency.
TensorRT provides users the ability to take advantage of fast reduced precision instructions provided in the
P100 and V100 GPUs.

In the experiments conducted in this study, TensorRT 4.0.0.3 was used. As described in Section 3.1.1, deep
learning researchers have found they are able to achieve the same inference accuracy with FP16 (16-bit floating
point) as can be had with FP32. Many applications require only INT8 (8-bit integer) or lower precision to keep
an acceptable inference accuracy. TensorRT included support for INT8 operations in version 2 of the software.
All inference experiments were performed on a single V100 GPU. Multi-GPU results were not included since
most inference jobs are large embarrassingly parallel batch jobs and there is not much communication between
the GPU. Therefore for most use cases linear scalability can be expected when using multi-GPUs for
inferencing.

Figure 15 shows the inference performance with TensorRT on Resnet50 model with different batch sizes. At
the time of writing, there is a known issue on V100 GPUs where running a model with INT8 works only if the
batch size is evenly divisible by 4, so there is no resultant performance value when the batch size is 1. The
results show that the INT8 mode is 2.5x 3.5x faster than using FP32 when the batch size is less than 64, and
~3.7x faster when the batch size is greater than 64. This is expected since the theoretical speedup of INT8 is
4x compared to FP32 if only multiplications are performed and no other overhead is incurred. However, there
are kernel launches, occupancy limits, data movement and mathematical operations other than multiplications,
so the speedup is reduced to about 3x faster.

29 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

Figure 15: Inference performance with INT8 vs FP32 for Resnet50 model

Figure 15 also illustrates the performance difference when using different batch sizes. It can be seen that
without batch processing the inference throughput is much lower. This is because the GPU is not assigned
enough work in each iteration to keep it busy. The larger the batch size, the higher the inference throughput,
although this advantage begins to flatten as batch size increases. The largest batch size is limited by GPU
memory.

The accuracy of using INT8 versus FP32 was compared to confirm that the inference performance gains with
INT8 do not incur a penalty with inaccurate results. To ensure INT8 data encodes the same information as
FP32 data, a calibration method is applied in TensorRT to convert FP32 to INT8 in a way that minimizes the
loss of information. More details of this calibration method can be found in the presentation 8-bit Inference with
TensorRT from the GTC 2017 conference. The ILSVRC2012 validation dataset was used for both calibration
and benchmarking. The validation dataset has 50,000 images and was divided into batches where each batch
has 25 images. The first 50 batches were used for calibration purpose and the rest of the images were used for
accuracy measurement. Several pre-trained neural network models were used in our experiments, including
ResNet-50, ResNet-101, ResNet-152 , VGG-16, VGG-19 , GoogLeNet and AlexNet. Both top-1 and top-5
image classification accuracy were recorded using FP32 and INT8 and the accuracy difference between FP32
and INT8 was calculated. The top-1 accuracy means the percentage of the total number of matches from the
validation set where the first predicted output (highest confidence result) from the model is the same as the
ground truth. The top-5 accuracy means the percentage of the total matches from the validation set where the
ground truth falls in the first five of the highest confidence predictions by the model. The result is shown in Table
8. It is clear from the results that the accuracy difference between FP32 and INT8 is not significant, between
0.02% - 0.18% for all test cases. This means very little accuracy is lost with INT8, while achieving a 3x speed
up over FP32.

Table 8: The accuracy comparison between FP32 and INT8

Neural
Network Model

FP32 INT8 Difference

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ResNet-50 72.90% 91.14% 72.84% 91.08% 0.07% 0.06%

ResNet-101 74.33% 91.95% 74.31% 91.88% 0.02% 0.07%

30 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

ResNet-152 74.90% 92.21% 74.84% 92.16% 0.06% 0.05%

VGG-16 68.35% 88.45% 68.30% 88.42% 0.05% 0.03%

VGG-19 68.47% 88.46% 68.38% 88.42% 0.09% 0.03%

GoogLeNet 68.95% 89.12% 68.77% 89.00% 0.18% 0.12%

AlexNet 56.82% 79.99% 56.79% 79.94% 0.03% 0.06%

Figure 16: Resnet50 inference performance on V100 vs P100 (V100 is 3.7x faster than P100)

To demonstrate the inference advantage of V100 over P100, tests in FP16 mode were performed on both V100
and P100 and the result is shown in Figure 16. Batch size of 39 was used for V100 and 10 for P100. Different
batch sizes were chosen for the two GPU generations such that the inference latencies were almost identical
(~7ms in the figure). The result shows that when inference latency is held constant, the inference throughput of
the V100 is 3.7x faster when compared to the P100.

3.3 NVIDIA DIGITS Tool and the Deep Learning Solution
DIGITS is a web frontend to Caffe, Torch and TensorFlow, developed by NVIDIA. The user can use the DIGITS
graphical user interface for Deep Learning training and inference. The Deep Learning Solution presented in this
paper integrates the DIGITS software with the cluster software making it trivial for the system administrator to
deploy DIGITS for the users, and easy for the user to use DIGITS.

In order to use DIGITS, the user first needs to allocate the resource, load the DIGITS module and start DIGITS
Figure 17.

31 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

Figure 17: How to initialize DIGITS on the Deep Learning Solution

Once the DIGITS server is up and running, a web browser can be used to navigate to the home page of DIGITS.
As shown in Figure 18, the DIGITS home page can be accessed from . To know how to
use DIGITS in more details, refer to Chapter 2 which includes an
example on handwritten digits recognition using a Caffe backend.

Figure 18: DIGITS home page

32 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

4 Containers for Deep Learning
Deep Learning frameworks tend to be complex to install and build with a myriad of library dependencies. These
frameworks and their requisite libraries are under constant development, which makes test environment and
test result reproducibility a challenge for researchers. Another layer of complexity is that most enterprise data
centers use Red Hat Enterprise Linux (or its derivatives) whereas Ubuntu is the default target for most Deep
Learning frameworks.

Containerization technology has surged in popularity as it is a powerful tool for handling the three issues just
described portable test environment, reduced dependency on the underlying operating system and better test
result reproducibility. A container packs all the environment and libraries an application needs into an image file
and this container can be deployed without any additional changes. It also allows users to easily create,
distribute and destroy a container image. Compared to Virtual Machines, containers are lightweight with less
overhead. In this study, Singularity, a container designed specifically for use in HPC environments, is used to
containerize different Deep Learning frameworks. The results presented in this section demonstrate that the
containerized version can achieve the same performance as a bare-metal install while simplifying the build and
deployment of Deep Learning frameworks.

4.1 Singularity Containers
Singularity is developed by Lawrence Berkeley National Laboratory to provide container technology specifically
for HPC. It enables applications to be encapsulated in an isolated virtual environment to simplify application
deployment. Unlike virtual machines, the container does not have a virtual hardware layer and its own Linux
kernel inside the host operating system (OS), therefore the overhead and the performance loss are minimal.
The main goal of the container is reproducibility. The container has all environment and libraries an application
needs to run, and it is portable so that other users can reproduce the results the container creator generated
for that application. To use Singularity container, the user only needs to load its module using the command

 inside a Slurm script which will be described in Section 5.3.

Many HPC applications, especially Deep Learning applications, have extensive library dependencies and it is
time consuming to solve these dependencies and debug build issues. Most Deep Learning frameworks are
developed in Ubuntu but they need to be deployed to Red Hat Enterprise Linux (RHEL). It is therefore beneficial
to build those applications once in a container and then deploy them anywhere. The most important goal of
Singularity is portability which means once a Singularity container is created, the container should be able to
run on any system. However, there may be kernel dependencies to consider if a user needs to leverage any
kernel specific functionality (e.g. OFED). Usually a user would build a container on a laptop or a server, a cluster
or a cloud, and then deploy that container on a server, a cluster or a cloud.

When building a container, one challenge is when using GPU-based systems. If GPU drivers are installed inside
the container, and the driver version does not match the host GPU driver, then an error will occur. Hence the
container should always use the host GPU driver. The next option is to bind the paths of the GPU driver binary
file and libraries to the container so that these paths are visible to the container. However, if the container OS
is different than the host OS, such binding may have problems. For instance, assume the container OS is
Ubuntu while the host OS is RHEL, and on the host the GPU driver binaries are installed in and the
driver libraries are installed in . Note that the container OS also has and ;
therefore, if we bind those paths from the host to the container, the other binaries and libraries inside the
container may not work anymore because they may not be compatible across different Linux distributions. One
workaround is to move all those driver related files to a new central directory location that does not exist in the
container and then bind that central location.

33 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

The second solution is to implement the above workaround inside the container so that the container can use
the driver related files automatically. This feature has already been implemented in the development branch of
Singularity repository. A user simply ne -- owever, a
cluster environment typically installs GPU driver in a shared file system instead of the default local path on all
nodes, and in this case, Singularity is unable to find the GPU driver path since the driver is not installed in the
default or common paths (e.g. , , , etc.). Even if the container is able to find the

GPU driver and the corresponding driver libraries and the container is built successfully, the host driver version
on the target system must be updated enough to support the GPU libraries which were linked to the application
when building the container, else an error will occur due to outdated and incompatible versions between the
host system and the container. Given the backward compatibility of GPU drivers, the burden is on the cluster
system administrators to keep GPU drivers up to date to ensure the cluster GPU libraries are equal to or newer
than the versions of the GPU libraries used when building the container.

Another challenge is when using InfiniBand with the containers because the InfiniBand driver is kernel
dependent. There should be no issues if the container OS and host OS are similar or compatible. For instance,
RHEL and Centos are compatible, and Debian and Ubuntu are compatible. But if these two OSs are not
compatible, then there will be library compatibility issues if the container attempts to use the host InfiniBand
driver and libraries. If the InfiniBand driver is installed inside the container, then the drivers in the container and
the host might not be compatible since the InfiniBand driver is kernel dependent and the container and the host
share the same kernel. If the container and host have different InfiniBand drivers, then a conflict will occur. The
Singularity community is working to solve this InfiniBand issue. The current solution is to ensure the container
OS and host OS are compatible and allow the container to reuse the InfiniBand driver and libraries on the host.
These are only workarounds. The container community is still pushing hard to make containers portable with
ease across platforms.

Figure 19 shows the performance comparison between runs inside Singularity and directly on bare-metal for
Horovod+TensorFlow, MXNet and Caffe2 frameworks. All the hardware and software used in this benchmarking
are the same as used in Section 3.1.4 and described in Table 5. The percentage number in the figure denotes
the percentage difference between performance using Singularity and bare-metal ((singularity performance
bare metal performance) / bare metal performance). It can be seen that the maximum performance difference
between Singularity and bare-metal is within 1.9% which is in a reasonable run-to-run variation range.

(a) Horovod+TensorFlow

34 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

(b) MXNet

(c) Caffe2

Figure 19: Singularity container vs bare-metal for Resnet50 using ILSVRC2012 dataset

4.2 Running NVIDIA GPU Cloud with the Ready Solutions for AI - Deep
Learning
NVIDIA GPU Cloud (NGC) is a cloud that hosts the Docker container images of many Deep Learning
frameworks and HPC applications. The Deep Learning frameworks include Caffe, Caffe2, CNTK, TensorFlow,
MXNet, Theano, and so on. These frameworks are optimized for NVIDIA GPUs.

35 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

Docker is a very prominent containerization technology used avidly in the context of deep learning frameworks.
There are several pros and cons of Docker and a comparison between Docker and Singularity containers is
shown Singularity Containers for HPC & Deep Learning NVIDIA added the GPU support in Docker.

Docker is not installed by default in this solution. However, the administrator is expected to simply run
 utility provided by Bright Cluster Manager. After installing Docker, the user is able to use the

Docker images provide by NVIDIA GPU Cloud which will be discussed next.

To use NGC, a user needs to first register in the cloud and get an API key that is specific to that user. Figure
20 shows the registration page. The user can create an account based on the instructions on the screen.

Figure 20: NVIDIA GPU Cloud register page

After creating the account, the user will be forwarded to the registry page which lists the available repositories
(Figure 21).

36 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

Figure 21: NVIDIA GPU Cloud registry page

In Figure 21, clicking on the top right will take the user to the configuration page as
shown in Figure 22. will generate an API key that is specific to the registered user.

Figure 22: NVIDIA GPU Cloud configuration page

37 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

A user can download the Docker image of a framework directly with the command in Figure 23.

Figure 23: Steps to download a Docker image from NGC

If the user wants to use Singularity container instead of Docker containers, Figure 24 shows how to create a
Singularity image from the Docker image downloaded from NGC. The user must provide a set of environment

 to convert a Docker image to
Singularity image.
execute the script within the created Singularity container. For more Singularity commands,
please refer to Singularity User Guide.

Figure 24: The commands of creating Singularity image from NGC

38 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

5 The Data Scientist Portal
The data scientist portal was developed by Dell EMC and it simplifies the users allowing model
implementation, training and inference tests to be run in Jupyter Notebook or directly from the Linux terminal.
The Jupyter Notebook allows a user to write explanatory text and intersperse it with raw codes and the tables
and figures that those codes generate. It allows a user to directly execute the codes that are embedded in the
document that is being created or has been created. The portal also allows multiple users to share the same
resources in the cluster. In the current version, the resources allocated by the portal is limited to only one node.
If the user needs to use resources that span across two or more nodes, the Slurm job scheduler as described
in Section 5.3 can be used instead. A deeper dive into the portal and its components is listed in Section 2.7.

5.1 Creating and Running a Notebook
A user can access the portal via a web browser on port 8000 (Figure 25). The user can specify the address

without logging into the cluster. The username and password are the same as those for logging to the cluster.

Figure 25: Portal login screen

After logging in, the page is forwarded to the server page (Figure 26). It lists the available server.

Figure 26: Portal server page

39 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

After clicki the user is forwarded to a list of instance options (Figure 27). The user
is given options to choose how many GPUs to be shared. For each allocated GPU, 8 CPU cores and 48GB
system memory are allocated. And by default the session time is allocated to 8 hours.

Figure 27: Portal instance screen

After the resources are allocated, the portal goes to the landing screen (Figure 28). It includes the folder
 which contains a set of template files of running different Deep Learning frameworks and libraries,

which is the mount point where Isilon storage is mounted.

Figure 28: Portal landing screen

Figure 29: The list of available framework Jupyter Notebook templates

Clicki Figure 28 displays a list of kernels (Figure 30). A user can choose Python 2 or
Python 3 kernel depending on th The portal also provides R kernel so that
the user can use R package.

40 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

launch a Tensorboard. Figure 31 is a screenshot after launching a terminal. How to use Tensorboard is shown
in Section 5.2.

Figure 30: Portal kernel list

Figure 31: Portal terminal kernel

classification example shown in Figure 32
shown in Figure 33, the training of the handwritten digits classification will start. An example output is shown in
Figure 34.

Figure 32: TensorFlow notebook

41 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

Figure 33: TensorFlow notebook handwritten digits classification

Figure 34: TensorFlow notebook handwritten digits classification output

After a user starts a kernel, the kernel will keep running until being stopped. To stop a kernel, the user needs
to click Figure 30, then the page will go to the page in Figure 35

42 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

Figure 35: Stop the server

5.2 Tensorboard Integration
Besides the TensorFlow framework, the portal also provides the Tensorboard visualization tool. The
Tensorboard is used to visualize the TensorFlow computation graph, plot quantitative metrics about the
execution of a graph, and show some other additional data. To use Tensorboard, the user needs to use
TensorFlow FileWriter API to serialize the wanted data into a directory. Figure 36 shows an example in which

Figure 36: An example of using Tensorboard

button will be shown up. Tensorboard will output all information in a

separate tab as shown in Figure 37. The output result in Figure 37 is only an example. A user may get a different
result depending on what information are written to the logs.

43 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

Figure 37: An example Tensorboard output

5.3 Slurm Scheduler
Section 5.1 describes the data scientist portal, but the current portal version can allocate resources only within
one node. To use resources on multiple nodes, the user can use Slurm job scheduler. The Slurm scheduler is
used to manage the resource allocation and job submissions for all users in a cluster. To use Slurm, the user
needs to submit a script on the cluster head node that specifies what resources are required and what job
should be executed on those resources once allocated.

Figure 38 shows an example Slurm script. In this example, the user asks for 2 nodes () and 4 tasks per node
), resulting in 8 tasks in total (). One task implies one CPU process. Nodes that include

four GPUs are requested using the
).

The job itself the CUDA SDK. Since
running this job requires CUDA toolkit, the user also needs to load the module files for

 that set the path and environment variables needed to execute the
test.

Figure 39

shows an example output before running sample.job. After checking enough resources are available, the script
to query the status

of running jobs. Figure 40
jobs. Note the output script name includes the Slurm job number that was visible in the squeue command
output. An example output file name for Figure 38 is slurm-27325.out where 27325 is an example job id. Figure
41 shows an example content of this file. The output file displays the and the output of

Note that although the script in Figure 38 allocated 8 processes, it only used one

process in the execution command. To use all processes, the user can use MPI or other multi-process
programming model.

Figure 38: An example Slurm job script named sample.job

44 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

Figure 39: An example output of the command sinfo before running sample.job

Figure 40: An example output of the command squeue showing the job status

45 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

Figure 41: An example output for the after running sample.job. The file name is slurm-27325.out.

46 Dell EMC Ready Solutions for AI Deep Learning with NVIDIA | v1.0

6 Conclusions and Future Work
This document describes the first integrated Dell EMC Ready Solutions for AI - Deep Learning with NVIDIA.
The goal of this solution is to provide a complete, tuned and supported solution for Deep Learning training and
inference use cases. The solution takes into account the ideal compute, storage, network, and software
configuration for this workload. It includes tools that improve the usability of the system for data scientists, like
the Data Scientist Portal that makes it easy for users to develop, train and run inferencing for Deep Learning
models. The solution pre-installs a set of frameworks and libraries that are necessary for Deep Learning in
addition to all other the software (operating system, drivers, libraries, management utilities, resource manager)
required on a cluster.

This white paper provides comprehensive benchmark performance results and analysis that demonstrate the
potential and usefulness of the proposed solution.

In the future work, the new 32GB V100 GPUs will be evaluated. Also more types of datasets and neural network
models will be benchmarked and analyzed.

