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Deep Learning Inference with Intel PAC on 

Dell EMC Infrastructure – Part II 
 

Recap 
 

Before we dive into the details, let’s briefly go over what is deep 
learning inference and why we may use a field-programmable 
gate-array (FPGA) accelerator like the Intel Programmable 
Accelerator Card (PAC) to speed up the process. 
 
Deep learning is a class of machine learning that learns a neural 
network model from sample data sets over a series of training 
iterations and loss function [1]. The output of this phase, the 
learned model, is then used to make predictions on new data. 
While this model-learning process lends itself well to single-
instruction multiple data (SIMD) type computing with coarse-
grain architectures like many-core CPUs and GPUs, the 
inferencing process is much more amenable to irregular, fine-
grain architectures like FPGAs, which allow for greater 
architectural flexibility to meet specific application requirements: 
latency, throughput, power, etc. Inferencing is the stage where 
most enterprises realize the business value of their AI 
investments.     

 
To accelerate inferencing in resource-constrained servers, the 
PCIe-based Intel PAC with Arria 10 GX FPGA supports up to 1.5 
teraFLOPS (1 trillion floating-point instructions per second) 
performance within a thermal dissipation power of only 60 Watts. 
This makes the Intel PAC particularly suited for datacenters and 
edge computing environments. Combined with the Intel 
Acceleration Stack and the Intel distribution of OpenVINO, 
developers can deploy models on the Intel PAC while leveraging 
unique, built-in hardware features of the Intel PAC including 
direct I/O and networking.  

 

 

 

 

 

 

           
        
   Figure 1a: Intel PAC with Arria 10 GX FPGA                 
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Summary 

 
This is the second part of a 
three-part series on deep 
learning inferencing on 
FPGAs. In part 1, we 
presented the Intel PAC 
with Intel Acceleration 
Stack integrated with a Dell 
EMC PowerEdge server 
running image classification 

 
 
Here, in part 2, we 
demonstrate the 
performance of the newly 
improved ResNet-50 image 
classification model. 
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            Figure 1b: Dell EMC R740 PowerEdge server 

 

Recent Optimizations 
 
In part 1 of this blog, we presented the Intel 
Acceleration Stack and the Intel distribution of 
OpenVINO both of which are part of the system 
stack for the Intel PAC. Within the PAC, the Deep 
Learning Accelerator (DLA), part of the PAC 
hardware stack, accelerates specific deep learning 
models, e.g., AlexNet, GoogleNet, ResNet, etc. 
 
Intel has released an updated ResNet-50 binary [2], 
and also released new versions of OPAE and 
OpenVINO. With these new improvements, 
developers can derive increased acceleration in 
their deep-learning inference workloads with minimal changes to the system stack (Fig 2).  

New ResNet-50 Binary   

 
ResNet-50 is a deep learning model for image classification, allowing applications to describe an 
image with only 3.57% error. Like any other deep neural network, ResNet-50 has input, output, 
and hidden layers which describe its underlying algorithm through a network of interconnected 
neurons that propagate information from one layer to the next (Fig 3.)  
 
As new research in deep learning architectures and models continue to evolve, FPGAs are 
uniquely positioned to incorporate these research advancements down into the hardware without 
necessitating a new silicon spin. Intel has further optimized the ResNet-50 model for low-bit 
(FP11) precision inferencing, enabling increased performance of vision applications. Further, this 
new model optimization at the hardware level, combined with the many software optimizations, 
provides seamless application integration while significantly increasing performance.  

 

 
 

Figure 3: ResNet-50 model architecture. 

 

 
 

Figure 2: System stack 
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The ResNet-50 model has 150,528 input neurons; 1,000 output neurons and 50 layers, totaling 
3.8 billion operations. With recent improvements in the OpenVINO SDK, the Intel PAC with Arria 
10 FPGA can comfortably run this ResNet-50 model at increased performance compared to 
previously published performance numbers.  

 

Results  
 
We setup the Intel PAC on a Dell EMC R740 PowerEdge server with 2 Intel Xeon Gold 6130 CPU 
@ 2.10 GHz running CentOS Linux (release 7.6). We present the FPGA performance in 
comparison with the CPUs, noting the throughput, latency, and energy efficiency achieved across 
both devices.  
 

Throughput  

 
Throughput is a measure of how fast sets of images are processed every second. Here, we 
denote this measure as frames per second (FPS). Images can be processed in sets of 1 image 
or more, also referred to as batch size.  
 
Fig 4 shows the throughput of the FPGA and CPU for batch sizes 1, 16, and 64 respectively, 
across different CPU configurations, i.e., number of threads. As indicated, the FPGA performance 
is consistent for a given batch size regardless of the thread count, indicating the FPGA provides 
deterministic performance. In practice, only 1 CPU thread (off-load) is necessary to achieve 
maximum throughput with the FPGA; the rest of the CPU threads are freed to perform other tasks. 
Conversely, as indicated by the dotted horizonal lines, only when the batch size is as large as 64 
and the thread count is as much as 64 does the CPU surpass the FPGA in FPS. In short, doubling 
the CPU threads (from 32 to 64) drives throughput by a mere 11% increase. For brevity, we have 
considered thread counts in increasing power of 2. Curious readers are encouraged to try out 
finer thread counts to reach equivalency in CPU vs FPGA performance.  
 

 

 
 

Figure 4: Throughput. In dynamic systems, where the number of available cores may be 
unknown, the FPGA will provide deterministic performance since only 1 thread is necessary. 
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Latency  

 
Latency is the time it takes to process a 
request, i.e., inferencing. Here, a request 
has a batch size of 1, 16, or 64 as shown in 
Fig 5. A batch size of 1 is applicable to 
streaming applications where data must be 
processed on-the-fly as it is generated. In 
such a scenario, latency is more important 
than throughput.  
 
At batch size 1, the latency with the FPGA 
is 4 ms compared to 21 ms with the CPU. 
For this comparison, we note that the CPU 
is configured to execute in single-thread 
mode, utilizing a single CPU core. 
             
    

 

CPU-onload  

 
In this scenario, the CPU runs inference at a batch size that yields maximum throughput possible 
(from Fig 4, this batch size is 64). Here, we are interested in understanding the performance of 
an inference-dedicated CPU (in single-socket and dual-socket configurations) in comparison with 
the FPGA - the offload accelerator - with respect to the system power.  

 
To begin, we consider “half-socket” CPU, full 
/ single-socket CPU, and dual-socket CPU 
configurations –denoted as HS, SS, and DS 
respectively – with the number of active 
threads equal to, respectively, the number of 
physical CPU cores (16 threads), number of 
virtual CPU cores (32 threads, in the case of 
hyperthreading), and 64 threads, and the 
total number of virtual threads on our dual-
socket Skylake-based server. As indicated in 
Fig 6, our single PAC-based FPGA achieves 
the same performance as the dedicated 
dual-socket server. Next, we examine their 
performance efficiency with respect to 
power. 

 
 
 
 
 

 
 

Figure 5: Latency. Compared to the 
CPU, the FPGA shows lower latency 

across different batch sizes.  
 

Figure 6: CPU-onload on inference-
dedicated CPU(s) with half-socket, 
full/single-socket and dual-socket 

configurations. 
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Efficiency  

 
Performance efficiency is the throughput 
achieved, normalized by power consumed. 
As we saw in Fig 4, doubling the number of 
threads from 32 (i.e., SS) to 64 (i.e., DS) 
does not have as much impact as going 
from HS to SS and results in throughput 
increase by only 11%. The price of this 
rather sublinear performance increase is 
reduced performance efficiency: by a factor 
of 0.4 (Fig 7). The measured system power 
of the CPU execution reached a maximum 
416 W. With a measured board power of 
50W on the PAC, the FPGA achieves a 
much higher performance efficiency - a 
factor of 6x - compared to the CPU, with 
only 20% increase to the server’ power 
budget.  
 

Scale-up 

 
We scaled up the number of PACs from 1 to 4. As shown in Fig 8, the FPGAs achieve a linear 
speedup of 1,251 FPS with a consistent Perf/Watt. Although increasing the thread count beyond 
64 would cause little bump in the FPS (as we saw in Fig 4) we were curious to see the CPU 
performance at the same scale factor as the FPGA. In this scenario, we migrated our experiment 
from the dual-socket PowerEdge R740 server to a quad-socket (QS) PowerEdge R840 server 
with 4 CPUs. The QS configuration achieved a mere 330 FPS at 60% reduction in Perf/Watt 
efficiency. The aggregate system power for the QS and 4xFPGA (with SS) configurations were 
615W and 405W respectively, indicating the FPGAs yield best performance both in terms of 
Perf/Watt and overall system-power budget. 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Performance efficiency  

 

Figure 8: The FPGAs scale linearly with a consistent Perf/Watt.     
*In QS, batch size was increased to 96 to commensurate with the 

increased core count. 
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Conclusions 
 
We presented the Intel Programmable Accelerator Card (PAC) with Arria 10 FPGA for deep-
learning inference.  
 
We showed that, using the Intel PAC on an x86-based Dell EMC PowerEdge server, we achieved 
improved performance of ResNet-50 compared to previously released ResNet-50 model. 
Specifically, we examined the throughput, latency, as well as CPU-onload performance with half-
socket, full-socket, dual-socket, and quad-socket configurations, and scaled up the number of 
PACs to 4. While the full-fledged, quad-socket CPU configuration achieved 330 FPS at 0.79 
FPS/Watt (a 60% efficiency reduction compared to the dual-socket counterpart), the FPGAs 
achieved 1,251 FPS at 6 FPS/Watt with 20% power increase per PAC to the server power budget. 
These performance numbers are expected to continue to improve with ongoing optimizations to 
the hardware and software system stacks.  
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