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1 Overview 

This paper talks about Deep Learning Inference using NVIDIA T4-16GB GPU and TensorRT™. The 

NVIDIA T4-16GB GPU is based on their latest Turing architecture which significantly boosts 

graphic performance using a new GPU processor (streaming multiprocessor) with improved 

shader execution efficiency and new memory system architecture that supports GDDR6 memory 

technology. Turing’s Tensor cores provide higher throughput and lower latency for AI Inference 

applications. 

Dell EMC PowerEdge R7425 is based on AMD’s EPYC™ architecture and since EPYC™ architecture 

supports higher number of PCIe Gen3 x16 lanes, it allows the server to be used as a scale-up 

inference server. It becomes a perfect solution when running large production-based AI 

workloads where both throughput and latency are important. 

In this paper we tested the inference optimization tool Nvidia TensorRT™ 5 on the Dell EMC 

PowerEdge R7425 server to accelerate CNN image classification applications and demonstrate its 

capability to provide higher throughput & lower latency for neural models like ResNet50. During 

the tests, we ran inferences of image classification models in different precision modes on the 

server R7425 using NVDIA T4-16GB GPU, with both implementation of TensorRT™ i.e. the native 

TensorRT™ C++ API and the integrated TensorFlow-TensorRT™ integration library. TensorFlow 

was used as the primary framework for the pre-trained models to compare the optimized 

performance in terms of throughput (images/sec) and latency (milliseconds). 

2 Introduction 

2.1 Deep Learning  

Deep Learning consists of two phases: Training and inference. As illustrated in Figure 1, training 

involves learning a neural network model from a given training dataset over a certain number of 

training iterations and loss function. The output of this phase, the learned model, is then used in 

the inference phase to speculate on new data [1].  

The major difference between training and inference is training employs forward propagation 

and backward propagation (two classes of the deep learning process) whereas inference mostly 

consists of forward propagation. To generate models with good accuracy, the training phase 

involves several training iterations and substantial training data samples, thus requiring many-

core CPUs or GPUs to accelerate performance.     
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Figure 1. Deep Learning Phases 

2.2 Deep Learning Inferencing  

After a model is trained, the generated model may be deployed (forward propagation only) e.g., 

on FPGAs, CPUs or GPUs to perform a specific business-logic function or task such as 

identification, classification, recognition and segmentation. See Figure 2.  

1. The focus of this  whitepaper will be on the power of Dell EMC PowerEdge R7425 using 
NVIDIA T4-16GB GPUs to accelerate image classification and deliver high-performance 
inference throughput and low latency using various implementations of TensorRT™ an 
excellent tool to speed up inference.  

 

Figure 2. Inference Workflow 
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2.3 What is TensorRT™? 

The core of TensorRT™ is a C++ library that facilitates high performance inference on NVIDIA 

graphics processing units (GPUs). It is designed to work in a complementary fashion with training 

frameworks such as TensorFlow, Caffe, PyTorch, MXNet, etc. It focuses specifically on running an 

already trained network quickly and efficiently on a GPU for generating a result (a process that is 

referred to in various places as scoring, detecting, regression, or inference).  

Some training frameworks such as TensorFlow have integrated TensorRT™ so that it can be used 

to accelerate inference within the framework. Alternatively, TensorRT™ can be used as a library 

within a user application. It includes parsers for importing existing models from Caffe, ONNX, or 

TensorFlow, and C++ and Python APIs for building models programmatically.  

Figure 3. TensorRT Scheme. Source: NvidiaFigure 3. TensorRT™ is a high performance neural 

network inference optimizer and runtime engine for production deployment.  

 

 

Figure 3. TensorRT Scheme. Source: Nvidia 

TensorRT™ optimizes the network by combining layers and optimizing kernel selection for 

improved latency, throughput, power efficiency and memory consumption. If the application 

specifies, it will additionally optimize the network to run in lower precision, further increasing 

performance and reducing memory requirements.  

The following figure shows TensorRT™ defined as part high-performance inference optimizer and 

part runtime engine. It can take in neural networks trained on these popular frameworks, 

optimize the neural network computation, generate a light-weight runtime engine (which is the 

only thing you need to deploy to your production environment), and it will then maximize the 

throughput, latency, and performance on these GPU platforms.  

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
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Figure 4. TensorRT™ is a Programmable Inference Accelerator 

 

Nvidia TensorRT™ 5 is a high performance deep learning inference and run-time optimizer 

delivering low latency and high throughput for production deployment. TensorRT™ has been 

successfully used in a wide range of applications including autonomous vehicles, robotics, video 

analytics, automatic speech recognition among others. NVIDIA TensorRT™ 5 supports the newest 

NVIDIA Turing Tensor Core architecture and expands the set of neural network optimizations for 

a broader array of mixed-precision workloads [1]. 

2.4 Dell EMC PowerEdge R7425 Server  

Dell EMC PowerEdge R7425-T4-16GB server supports the latest GPU accelerator to speed results 

in data analytics and AI applications, it enables fast workload performance on more cores for 

cutting edge applications such Artificial Intelligence (AI), High Performance Computing (HPC), and 

scale up software defined deployments. See Figure 5. 

 
Figure 5. DELL EMC PowerEdge R7425 
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The Dell™ PowerEdge™ R7425 is Dell’s latest 2-socket, 2U rack server designed to run complex 

workloads using highly scalable memory, I/O, and network options The systems feature bases on 

AMD high performance processor, which named AMD SP3, supports up to 32 AMD “Zen” x86 

cores (AMD Naples Zeppelin SP3), up to 16 DIMMs, PCI Express® (PCIe) 3.0 enabled expansion 

slots, and a choice of OCP technologies. 

The PowerEdge R7425 is a general-purpose platform capable of handling demanding workloads 

and applications, such as VDI cloud client computing, database/in-line analytics, scale up 

software defined environments, and high-performance computing (HPC).  

The PowerEdge R7425 adds extraordinary storage capacity options, making it well-suited for data 

intensive applications that require greater storage, while not sacrificing I/O performance.  

3 TensorRT Implementations 

TensorRT provides three tools to optimize the models for inference: TensorFlow-TensorRT 

Integration (TF-TRT), TensorRT C++ API, and TensorRT Python API. The last two tools include 

parsers for importing existing models from Caffe, ONNX, or TensorFlow. Also, C++ and Python 

APIs include methods for building models programmatically.  Below is the brief description of 

each method, the assumption is that all of them start with a trained model. 

3.1 TensorFlow-TensorRT 5 Integration (TF-TRT) 

TensorRT™ works with training frameworks such as TensorFlow, Caffe, PyTorch, and MXNet. In 

this case, we used TensorFlow which has integrated TensorRT™ so that it can be used to 

accelerate inference within the framework. This is a contribution library that offers performance 

as well as robustness, built on top off. The command line to import TF-TRT integration into 

TensorFlow is:  

# import tensorflow.contrib.tensorrt as trt 

 

 

Figure 6. Workflow working with TensorRT using TensorFlow-TensorRT Integration [2] 

Figure 6 shows the workflow on how TF-TRT works: a trained model in TensorFlow is converted 

to a frozen graph; after freezing the TensorFlow graph for inference, TensorRT™ is used to create 
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the TensorRT™ optimized inference graph, then the optimized graph is replaced as the default 

graph to run the inference. 

The optimization graph process consists of parsing the model and applying optimization to 

portions of the graph as much as possible, the remaining portion of the graphs that are not 

subject to optimization are executed by TensorFlow. See Supported operations in TensorFlow for 

more information [3]. 

To run the inference using INT8 precision, it is required to calibrate the trained TensorFlow model 

first and then apply the TensorRT™ optimization, see Figure 7. The Calibration process consists 

in calculating the weights of the model at the optimal scaling factor from FP32 to INT8: 

• Run inference in FP32 on calibration dataset 

• Collect required statistics 

• Run calibration algorithm → optimal scaling factors 

• Quantize FP32 weights → INT8 

• Generate “Calibration Table” and INT8 execution engine 

 

 

Figure 7. Workflow TensorFlow-TensorRT Integration using INT8 precision [1] 

Using TF-TRT with precision modes lower than FP32, that is, FP16 and INT8, improves the 

performance of inference. The FP16 precision mode uses Tensor cores and half-precision 

hardware instructions, if possible, while the INT8 precision mode uses Tensor cores and integer 

hardware instructions [4]. 

3.2 TensorRT™ Python API 

Different from TF-TRT, the Python API doesn’t use any framework. TensorRT™ Python API is 

available for the x86_64 platform only. The command line to import the TensorRT™ Python API 

is:  

# import tensorrt as trt 

According to the technical documentation, the main benefit of the Python API is that data 

preprocessing and postprocessing is easy to use because it has a variety of libraries like NumPy 

and SciPy. For more information please see Deep Learning SDK Documentation [5]. 
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3.3 TensorRT™ C++ API 

TensorRT™ provides a C++ implementation on all supported platforms. C++ API includes similar 

steps to the Python API implementation and doesn’t use any framework either. According to 

Nvidia’s documentation, the C++ API should be used in any performance critical scenarios, as well 

as in situations where safety is important, for example, automotive or real time inferences [6]. 

 

 

In Figure 8, the workflow shows the steps to work directly with the TensorRT™ C++ API: 

• The trained TensorFlow model needs to be frozen for inference and converted to UFF 

format 

• Invoke the TensorRT™ builder to create an optimized runtime engine from the network 

• Serialize and deserialize the engine to be recreated at runtime 

• Feed the optimize engine with data to perform inference 

4 Test Methodology 

In this paper, we tested the inference performance of several pre-trained neural models using 

different precision settings. We compared throughput and latency and looked at the benefits of 

using Nvidia TensorRT™. As optimizer implementations, we used TF-TRT integration and 

TensorRT™ C++ API. 

4.1 Criteria 

1. In terms of server, we selected Dell EMC PowerEdge R7425 which includes the Nvidia 

Tesla T4-16GB GPU, the most advanced accelerator for AI inference workloads. According 

to Nvidia, T4-16GB’s new Turing Tensor Cores accelerates INT8 precision more than 2x 

faster than the previous generation low-power offering [7]. 

2. For the framework and inference optimizer tools, we selected TensorFlow, TF-TRT 

integration and TensorRT™ C++ API since these have better technical support and a wide 

variety of pre-trained models readily available. 

3. Most of the tests were run in INT8 precision mode, since it has significantly lower 

precision and dynamic range than FP32, as well as lower memory requirements; 

therefore, it allows higher throughput at lower latency. 

Figure 8. Workflow working with TensorRT Using the TensorRT C++ API 
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4.2 Test Design 

The tests were conducted in 4 phases as shown in Figure 9 

 

Figure 9. TensorRT Test Design 

 

Phase 1 the image classifications were run using TF-TRT 5.0 integrated. In this step we tested the 

inference with several pre-trained models in TensorFlow with ImageNet. 

Phase 2, the image classifications were run using native TensorRT™ 5.0 C++ API without the 

framework, but still using pre-trained models. 

Phase 3, we compared the results running the image classifications using TF-TRT Integration 

versus TRT 5.0 C++ API.  

Phase 4 several inference modes were tested to highlight the benefit of running inference on 

GPU as well as native precision modes in TensorFlow versus optimized precision modes with 

TensorRT™. 

Once the optimized models are generated for inference, they can be deployed in production 

environments such as datacenter, cloud and edge node like autonomous vehicles smart cameras. 

This paper does not focus on how these models are deployed or the optimal way to deploy them. 

Here is a high-level summary of the steps involved when running inference workloads: 

• Use Case: Optimized Image Classification on CNNs with TensorFlow and TensorRT™ 

• Models: The pre-trained models included vg116, vgg19, inception_v3, inception_v4, 

resnet_v1_50, and resnet_v2_50 

• Framework: TensorFlow for pre-trained models, TensorRT version: TensorRT 5  

• TensorRT™ implementations: TensorFlow-TensorRT integration and TensorRT C++ API 

• Server: Dell EMC PowerEdge R7425 
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• GPU: NVIDIA T4-16GB  

• Performance: The performance metrics used for comparison across inference precision 

modes were throughput (images per second) and the latency (ms) 

• Datasets – IMAGENET (ILSVRC2012) for pre-trained models 

• Samples code: TensorRT™ samples provided by Nvidia included in its container images 

• Software stack configuration: The tests were conducted using the docker container 

environment 

• Precision Mode: Inference with TensorRT in INT8 

The below Table 1 lists the tests conducted in different precision modes and TensorRT 

implementations. The script samples can be found in within the Nvidia container image. 

Table 1. Tests Conducted 

Inference Mode TensorRT™ Implementation Test script 

TensorFlow CPU FP32 n/a tensorrt_only_cpu.py 

TensorFlow GPU FP32 n/a tensorrt.py 

Integration TF-TRT5 FP32 TF-TRT Integration tensorrt.py 

Integration TF-TRT5 INT8 TF-TRT Integration tensorrt.py 

Integration TF-TRT5 INT8 TF-TRT Integration inference.py 

Native TRT5 INT8 – C++ API C++ API trtexec.cpp 

4.3 Environment Setup 

The below Table 2 shows the software stack configuration for server R7425 using NVIDIA T4-

16GB. 

Table 2. OS and Software Stack Configuration 

Software  Version 

OS Ubuntu 16.04.5 LTS  

Kernel GNU/Linux 4.4.0-133-generic x86_64 

Nvidia-driver 410-72 - 410.79 

CUDA 10.0 

TensorFlow TensorFlow 1.10 

TensorRT TensorRT™ 5.0 
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Software  Version 

Docker Image for TensorFlow CPU only tensorflow/tensorflow:1.10.0-py3 

Docker Image for TensorFlow GPU only nvcr.io/nvidia/tensorflow:18.10-py3 

Docker Image for TF-TRT integration nvcr.io/nvidia/tensorflow:18.10-py3 

Docker Image for TensorRT C++ API nvcr.io/nvidia/tensorrt:18.11-py3 

Script samples source Samples included within the docker images 

Test Date December 2018 

5 Performance Results 

5.1 Phase 1: Inference with TF-TRT 5 Integration 

In Phase 1 we ran inference tests using TF-TRT integrated. ResNet50 model was used to run 

inference on each GPU and we also tested other models to compare performance, finally, we ran 

comparative testing with other servers. 

5.1.1 ResNet-50 Inference performance: Throughput vs Batch size 

The throughput tests with pre-trained model ResNet50 was run on each GPU using different 

batch sizes (from 1 to 32).  

Figure 10 shows the results for throughput (images/sec). The results were consistent across the 

GPUs as well as the latency (expressed in the right vertical axes). 
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Figure 10.  Figure 10. Resnet_50 Inference on each GPU. Server with 6 GPU’s 

 

The plots above show that we can achieve latency of 7ms using batch sizes 1-8 and looking at the 

y-axis, it shows that with batch size of 4 we get 670 images/sec within 7ms latency window. 

When running the test, we realized the inference was conducted by default at the device 0, which 

means currently the TensorRT™ inference engine doesn’t work with GPU-GPU communications 

to maximize the utilization of the GPUs available in the server. If the goal is to run the same graph 

in multiple GPU’s to increase the throughput, Nvidia suggested that for now use the native 

TensorFlow. 

On the other hand, TensorRT Inference Server (TRTIS) supports multiple GPU’s but it does not 

support running a single inference distributed across multiple GPU’s. TRTIS can run multiple 

models (and/or multiple instances of the same model) on multiple GPUs to increase throughput. 

We will be studying how to implement TRTIS in our next paper related to GPU inferencing. 
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5.1.2 All Models: Images/sec vs batch size vs Neural models 

 
Figure 11. Throughput Inference Performance with Several Neural Models and Batch Sizes 

Here inference tests were conducted using different neural models in different batch sizes.  

Figure 11 and Figure 12Error! Reference source not found. show the throughput and latency 

running inference in batch sizes 1, 2, 4, 8, 26, and 32. ResNet50 produced the highest throughput 

(images/sec) with the lowest latency. 
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Figure 12. Latency Inference Performance with Several Neural Models and Batch Sizes 

 

5.1.3 All Models - R7425-T4-16GB versus Other servers and NVIDIA GPU 

 

 
  

Figure 13. Throughput Inference Performance on R7425-T4-16GB Server versus Other Servers 

Using TF-TRT 
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Figure 14. Latency Inference performance on R7425-T4-16GB Server versus other servers 

 

In this section, the inference tests using several models were conducted on the servers R740-P4 

and R7245-P4 and their results were compared against the R7425-T4-16GB results. The server 

R7425-T4-16GB performed around 1.8X faster versus the other servers on the model ResNet50 

at half the latency. See Figure 13 and Figure 14. 

5.2 Phase 2: Inference Image Classification with TensorRT™ 5 C++ API 

Due the highest inference performance shown by the model ResNet50 in Phase 1, we used 

ResNet50 in Phase 2.  

In Phase 2, ResNet50 was tested with TensorRT C++ API with different batch sizes. We also ran a 

competitive test using Caffe pre-trained models to see if there are any performance differences. 

Finally, we ran a comparison with pre-trained models with other servers. 

5.2.1 ResNet50 – TensorFlow 

When running tests with TensorRT C++ API, ResNet50 optimized inference engine produces 

higher throughput at a lower latency.  

For instance, the highest throughput of 4,000 images/sec for batch size 64 and the lowest latency 

of 0.95 milliseconds for batch size 1. This could be useful in different application areas where 

throughput is more important e.g. image classification vs applications which require low latency 
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like fraud prevention or theft monitoring.  Figure 15 and Figure 16 shows the performance of 

ResNet50 for PowerEdge R7425 using NVIDIA T4 GPU using different batch sizes with C++ API 

implementation. 

 

 

 

Figure 15. Resnet_50 Throughput Inference Performance Using TensorRT C++ API 

Figure 16. Resnet_50 Latency Inference Performance Using TensorRT C++ API 
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Figure 16 shows also that the target latency ~8ms can be reached with batch sizes below 32. 

5.2.2 ResNet-50 – TensorFlow vs Caffe 

Another test was comparing the optimized pre-trained models in TensorFlow and Caffe 

frameworks, and there was no difference in performance using both the models. 

 

 

 

 

Figure 17. Throughput TensorFlow versus Caffe Optimized Models 

Figure 18. Latency TensorFlow versus Caffe Optimized Models 
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5.2.3 Resnet-50 - R7425-T4-16GB versus Other Servers 

The ResNet50 inference engines with TensorRT C++ API were generated and tested on other 

servers and compared the results against R7425-T4-16GB. The results show that R7425-T4-16GB 

is around 2.2x better over servers with NVIDIA P4 GPU. See Figure 19 and Figure 20.  

 

 

 

 

 

Figure 19. Inference Performance on R7425-T4-16GB vs P4 GPU Servers using TensorRT C++ API 

Figure 20. Inference Performance on R7425-T4-16GB vs P4 GPU Servers using TensorRT C++ API 
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In Figure 20, we can see that the server R7425 produces the higher throughput (images/sec) at 

lower latency for several batch sizes. 

5.3 Phase 3: Inference Performance using ResNet50 – TF-TRT versus TRT 5 C++ API 

When comparing the results of the optimized inference using TF-TRT integrated vs TensorRT C++ 

API across the different batch sizes, we observed that the C++ API performance 2.7X faster than 

the TF-TRT integration at lower latency **. See Figure 21 and Figure 22 

** We are working both with NVIDIA and TensorFlow team to look closely into this performance 

difference between integrated TensorFlow with TensorRT vs native TensorRT. 

 

 
 Figure 21. Performance with TensorFlow-TensorRT Integrated vs TensorRT C++ API 
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5.4 Phase 4: Inference Image Classification on Neural Models – Other Aspects 

To look at the benefits of running inference with TensorRT™ using lower precision INT8, we 

compared it with other precision methods. Below are the configurations used to look at the 

performance: 

• Native TensorFlow-FP32 on CPU-only:  test conducted using the TensorFlow with GPU 

disabled, to do so we used the docker image with CPU-only support, the trace log showed 

the operations were executed at the device: CPU:0  

• Native TensorFlow-FP32 on GPU: test conducted using the Nvidia docker image for 

TensorFlow with GPU enabled. 

• TensorFlow-TRT5-FP32: test conducted using the TF-TRT integration and the Nvidia 

docker image for TensorFlow with GPU enabled. 

• TensorFlow-TRT5-INT8: test conducted in precision mode INT8, using the TF-TRT 

integration, and the Nvidia docker image for TensorFlow with GPU enabled 

• TensorRT™ Python API-FP32: test conducted in precision mode INT8, using the TensorRT™ 

C++ API and the Nvidia docker image for TensorFlow with GPU enabled. 

 

Figure 22. Latency performance with TensorFlow-TensorRT Integrated vs TensorRT C++ API 
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Figure 23. Throughput inference performance - Several Inference Modes 

Figure 23, we observe that the native TensorFlow-FP32 inference on GPU is ~12X faster than the 

same inference run on AMD CPU-only *** (273 vs 22). On the other hand, TensorRT C++ API INT8 

inference was ~142X faster than the inference run with native TensorFlow-FP32 on CPU only 

(3127 vs 22), and ~11X faster than TensorFlow-FP32 on GPU only (3127 vs 273).  

*** Note this AMD EPYC 7551 32-Core Processor is not using any CPU optimized libraries. Its only 
used as a baseline comparison. 
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Figure 24. Latency performance comparison 

Running the optimized inference of the model in native TensorFlow-FP32 on CPU-only took 

around 382 milliseconds, in contrast running the model with GPU enabled took around 30 

milliseconds.  Finally, the lowest latency was obtained running the inference with the optimizer 

TensorRT C++ API implementation with 2.6 milliseconds. Figure 24 shows latency performance 

using different precision modes.      

6 Hardware metrics  

In this section, we demonstrate how to extract some GPU metrics while running the optimized 

inference in INT8 using the nvidia-smi command with query options provided by NVIDIA [8]. 

Some of the metrics monitored are listed and described below: 

• GPU utilization: Percent of time over the past sample period during which one or more 

kernels was executing on the GPU. 

• Memory Utilization: Percent of time over the past sample period during which global 

(device) memory was being read or written. 

• GPU temperature: Core GPU temperature in degrees C. 

• Power Draw: Power consumption. 

The following sections show the plots of each metric performance extracted with this nvidia-smi 

query: 
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$nvidia-smi -query 

gpu=timestamp,index,pstate,utilization.gpu,utilization.memory,memory.total,memory.free,me

mory.used,power.draw,temperature.gpu,pcie.link.gen.max,pcie.link.gen.current, --format=csv -

l -f <filename>  

6.1 Percentage of GPU Utilization vs GPU Memory Utilization 

 

 

 

The Calibration process consists in calculating the weights of the model at the optimal scaling 

factor from FP32 to INT8, this is a long process that could take around 1 hour, in the Figure 

25Error! Reference source not found. we can see the percentage of the GPU (green color) and 

memory (gray color) consumption during the first hour corresponding to the calibration process; 

once the inference graph is calibrated and optimized, it is used to generate the inference. In this 

test, we wanted to show how the calibration process was conducted only one time at the GPU 0, 

then the optimized inference graph was saved at the cache and reused for inference in the rest 

of the GPU’s.  

Figure 25. GPU Utilization versus Memory Utilization 
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6.2 Core GPU Temperature 

 

Figure 26. NVIDIA T4 GPU Temperature 

In Figure 26, we can see the GPU temperature during the calibration process at the GPU 0, and 

later see how it increases gradually when running the inference, there were sleep time periods 

before initiating the inference in the next GPU, so we can appreciate how the temperature 

decreases during that period. The same pattern happens with the power drawn. 

6.3 Power Draw 

 

Figure 27. NVIDIA T4 GPU Power Consumption 
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7 Conclusion and Future Work 

1. TensorRT™ is an excellent tool to speed up inference, and the results obtained in this 
project demonstrated the power of Dell EMC PowerEdge R7425 using T4-16GB GPU to 
accelerate image classification and deliver high-performance inference throughput and 
low latency production level environments. 

 

2. Comparing TensorRT™ versus native TensorFlow (GPU enabled), TensorRT™ C++ API in 
INT8 speeds up ResNet50 inference to ~11X over the TensorFlow-FP32 inference on GPU. 

 

3. When comparing the performance of different TensorRT™ implementations, the 

optimized inference using TensorRT™ C++ API produces around 2.7X more than the TF-

TRT integration at lower latency. Due to the better performance of native TensorRT™ C++ 

API implementation, its highly suitable for production environments where throughput & 

latency need to be considered. 

 

 

4. DELL EMC PowerEdge R7425 with NVIDIA T4-16GB GPU performed ~1.8X faster when 

comparing it to NVIDIA P4-8GB GPU. 

 

5. After the optimized inference model is generated, it can be deployed into the production 

environment. For deployment of models in production environment we are exploring 

TensorRT Inference Server (TRTIS), which can run multiple models (and/or multiple 

instances of the same model) on multiple GPUs. 
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9 Annex A - PowerEdge R7425-T4-16GB Server – GPU Features  
Server   R7425-T4 

CPU   

 CPU model AMD EPYC 7551        32-Core Processor 

GPU     

  GPU model Tesla T4-16GB 

 GPU Architecture NVIDIA Turing 

 Attached GPUs 6 

Features per GPU  

  Driver Version 410.79 

  Compute Capability 7.5 

Multiprocessor  

  Multiprocessors (MP) 40 

  CUDA Cores/MP 64 

  CUDA Cores 2,560 

  Clock Rate (GHz) 1.59 

Memory    

  Global Memory Bandwidth (GB/s) 300 

  Global Memory Size (GB) 16 

  Constant Memory Size (KB) 65 

  L2 Cache Size (MB) 4 

Bus Interface PCle  

  Generation 3 

  Link Width 16 

Peak Performance Floating Point Operations (FLOP) and TOPS  

 Single-Precision - FP32 (TeraFLOP/s) 8.1 

  Mixed Precision - FP16/FP32 (TeraFLOP/s) 65 

  Integer 8 - INT8 (Tera Operations /s) 130 

 Integer 4 – INT4-16GB (Tera Operations /s) 260 

Power    

  Min Power Limit (W) 60 

  Max Power Limit (W) 70 

 


