

Dell EMC Technical White Paper

Deep Learning Inference on PowerEdge R7425

Abstract

This whitepaper looks at the performance and efficiency of Deep learning

inference when using the Dell EMC PowerEdge R7425 server with NVIDIA

T4-16GB GPU. The objective is to show how PowerEdge R7425 can be

used as a scale-up inferencing server to run production level deep learning

inference workloads.

Mar-19

Dell EMC Technical White Paper

Revisions

Date Description

Mar-19 Initial release

Acknowledgements

This paper was produced by the following persons:

Authors:

Bhavesh Patel, Dell EMC Server Advanced Engineering

Vilmara Sanchez, Dell EMC Server Advanced Engineering

Contributor: Josh Anderson, Dell EMC Server System Engineering

The information in this publication is provided “as is.” Dell Inc. makes no representations or warranties of any kind with respect to the

information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular purpose.

Use, copying, and distribution of any software described in this publication requires an applicable software license.

© Mar-19 Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC, Dell EMC and other trademarks are trademarks of Dell Inc. or

its subsidiaries. Other trademarks may be trademarks of their respective owners.

Dell believes the information in this document is accurate as of its publication date. The information is subject to change without notice.

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

1

Table of Contents

1 Overview .. 4

2 Introduction ... 4

2.1 Deep Learning .. 4

2.2 Deep Learning Inferencing ... 5

2.3 What is TensorRT™? ... 6

2.4 Dell EMC PowerEdge R7425 Server ... 7

3 TensorRT Implementations ... 8

3.1 TensorFlow-TensorRT 5 Integration (TF-TRT) .. 8

3.2 TensorRT™ Python API ... 9

3.3 TensorRT™ C++ API .. 10

4 Test Methodology .. 10

4.1 Criteria .. 10

4.2 Test Design ... 11

4.3 Environment Setup ... 12

5 Performance Results .. 13

5.1 Phase 1: Inference with TF-TRT 5 Integration .. 13

5.1.1 ResNet-50 Inference performance: Throughput vs Batch size 13

5.1.2 All Models: Images/sec vs batch size vs Neural models ... 15

5.1.3 All Models - R7425-T4-16GB versus Other servers and NVIDIA GPU 16

5.2 Phase 2: Inference Image Classification with TensorRT™ 5 C++ API 17

5.2.1 ResNet50 – TensorFlow .. 17

5.2.2 ResNet-50 – TensorFlow vs Caffe ... 19

5.2.3 Resnet-50 - R7425-T4-16GB versus Other Servers ... 20

5.3 Phase 3: Inference Performance using ResNet50 – TF-TRT versus TRT 5 C++ API 21

5.4 Phase 4: Inference Image Classification on Neural Models – Other Aspects 22

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

2

6 Hardware metrics .. 24

6.1 Percentage of GPU Utilization vs GPU Memory Utilization ... 25

6.2 Core GPU Temperature .. 26

6.3 Power Draw .. 26

7 Conclusion and Future Work ... 27

8 References ... 28

9 Annex A - PowerEdge R7425-T4-16GB Server – GPU Features ... 29

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

3

Acknowledgements

We would like to acknowledge the following individuals, Jaime Edwards (Director of PowerEdge

Advanced Engineering) for setting the direction of this project, April Berman (PowerEdge

Acceleration Product Manager), Pallavi Arora (PowerEdge R7425 Product Manager) for providing

us the resources for this paper.

We would also like to acknowledge:

❖ Nvidia TensorRT™ support team & Nvidia account team for their expedited support.

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

4

1 Overview

This paper talks about Deep Learning Inference using NVIDIA T4-16GB GPU and TensorRT™. The

NVIDIA T4-16GB GPU is based on their latest Turing architecture which significantly boosts

graphic performance using a new GPU processor (streaming multiprocessor) with improved

shader execution efficiency and new memory system architecture that supports GDDR6 memory

technology. Turing’s Tensor cores provide higher throughput and lower latency for AI Inference

applications.

Dell EMC PowerEdge R7425 is based on AMD’s EPYC™ architecture and since EPYC™ architecture

supports higher number of PCIe Gen3 x16 lanes, it allows the server to be used as a scale-up

inference server. It becomes a perfect solution when running large production-based AI

workloads where both throughput and latency are important.

In this paper we tested the inference optimization tool Nvidia TensorRT™ 5 on the Dell EMC

PowerEdge R7425 server to accelerate CNN image classification applications and demonstrate its

capability to provide higher throughput & lower latency for neural models like ResNet50. During

the tests, we ran inferences of image classification models in different precision modes on the

server R7425 using NVDIA T4-16GB GPU, with both implementation of TensorRT™ i.e. the native

TensorRT™ C++ API and the integrated TensorFlow-TensorRT™ integration library. TensorFlow

was used as the primary framework for the pre-trained models to compare the optimized

performance in terms of throughput (images/sec) and latency (milliseconds).

2 Introduction

2.1 Deep Learning

Deep Learning consists of two phases: Training and inference. As illustrated in Figure 1, training

involves learning a neural network model from a given training dataset over a certain number of

training iterations and loss function. The output of this phase, the learned model, is then used in

the inference phase to speculate on new data [1].

The major difference between training and inference is training employs forward propagation

and backward propagation (two classes of the deep learning process) whereas inference mostly

consists of forward propagation. To generate models with good accuracy, the training phase

involves several training iterations and substantial training data samples, thus requiring many-

core CPUs or GPUs to accelerate performance.

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

5

Figure 1. Deep Learning Phases

2.2 Deep Learning Inferencing

After a model is trained, the generated model may be deployed (forward propagation only) e.g.,

on FPGAs, CPUs or GPUs to perform a specific business-logic function or task such as

identification, classification, recognition and segmentation. See Figure 2.

1. The focus of this whitepaper will be on the power of Dell EMC PowerEdge R7425 using
NVIDIA T4-16GB GPUs to accelerate image classification and deliver high-performance
inference throughput and low latency using various implementations of TensorRT™ an
excellent tool to speed up inference.

Figure 2. Inference Workflow

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

6

2.3 What is TensorRT™?

The core of TensorRT™ is a C++ library that facilitates high performance inference on NVIDIA

graphics processing units (GPUs). It is designed to work in a complementary fashion with training

frameworks such as TensorFlow, Caffe, PyTorch, MXNet, etc. It focuses specifically on running an

already trained network quickly and efficiently on a GPU for generating a result (a process that is

referred to in various places as scoring, detecting, regression, or inference).

Some training frameworks such as TensorFlow have integrated TensorRT™ so that it can be used

to accelerate inference within the framework. Alternatively, TensorRT™ can be used as a library

within a user application. It includes parsers for importing existing models from Caffe, ONNX, or

TensorFlow, and C++ and Python APIs for building models programmatically.

Figure 3. TensorRT Scheme. Source: NvidiaFigure 3. TensorRT™ is a high performance neural

network inference optimizer and runtime engine for production deployment.

Figure 3. TensorRT Scheme. Source: Nvidia

TensorRT™ optimizes the network by combining layers and optimizing kernel selection for

improved latency, throughput, power efficiency and memory consumption. If the application

specifies, it will additionally optimize the network to run in lower precision, further increasing

performance and reducing memory requirements.

The following figure shows TensorRT™ defined as part high-performance inference optimizer and

part runtime engine. It can take in neural networks trained on these popular frameworks,

optimize the neural network computation, generate a light-weight runtime engine (which is the

only thing you need to deploy to your production environment), and it will then maximize the

throughput, latency, and performance on these GPU platforms.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

7

Figure 4. TensorRT™ is a Programmable Inference Accelerator

Nvidia TensorRT™ 5 is a high performance deep learning inference and run-time optimizer

delivering low latency and high throughput for production deployment. TensorRT™ has been

successfully used in a wide range of applications including autonomous vehicles, robotics, video

analytics, automatic speech recognition among others. NVIDIA TensorRT™ 5 supports the newest

NVIDIA Turing Tensor Core architecture and expands the set of neural network optimizations for

a broader array of mixed-precision workloads [1].

2.4 Dell EMC PowerEdge R7425 Server

Dell EMC PowerEdge R7425-T4-16GB server supports the latest GPU accelerator to speed results

in data analytics and AI applications, it enables fast workload performance on more cores for

cutting edge applications such Artificial Intelligence (AI), High Performance Computing (HPC), and

scale up software defined deployments. See Figure 5.

Figure 5. DELL EMC PowerEdge R7425

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

8

The Dell™ PowerEdge™ R7425 is Dell’s latest 2-socket, 2U rack server designed to run complex

workloads using highly scalable memory, I/O, and network options The systems feature bases on

AMD high performance processor, which named AMD SP3, supports up to 32 AMD “Zen” x86

cores (AMD Naples Zeppelin SP3), up to 16 DIMMs, PCI Express® (PCIe) 3.0 enabled expansion

slots, and a choice of OCP technologies.

The PowerEdge R7425 is a general-purpose platform capable of handling demanding workloads

and applications, such as VDI cloud client computing, database/in-line analytics, scale up

software defined environments, and high-performance computing (HPC).

The PowerEdge R7425 adds extraordinary storage capacity options, making it well-suited for data

intensive applications that require greater storage, while not sacrificing I/O performance.

3 TensorRT Implementations

TensorRT provides three tools to optimize the models for inference: TensorFlow-TensorRT

Integration (TF-TRT), TensorRT C++ API, and TensorRT Python API. The last two tools include

parsers for importing existing models from Caffe, ONNX, or TensorFlow. Also, C++ and Python

APIs include methods for building models programmatically. Below is the brief description of

each method, the assumption is that all of them start with a trained model.

3.1 TensorFlow-TensorRT 5 Integration (TF-TRT)

TensorRT™ works with training frameworks such as TensorFlow, Caffe, PyTorch, and MXNet. In

this case, we used TensorFlow which has integrated TensorRT™ so that it can be used to

accelerate inference within the framework. This is a contribution library that offers performance

as well as robustness, built on top off. The command line to import TF-TRT integration into

TensorFlow is:

import tensorflow.contrib.tensorrt as trt

Figure 6. Workflow working with TensorRT using TensorFlow-TensorRT Integration [2]

Figure 6 shows the workflow on how TF-TRT works: a trained model in TensorFlow is converted

to a frozen graph; after freezing the TensorFlow graph for inference, TensorRT™ is used to create

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

9

the TensorRT™ optimized inference graph, then the optimized graph is replaced as the default

graph to run the inference.

The optimization graph process consists of parsing the model and applying optimization to

portions of the graph as much as possible, the remaining portion of the graphs that are not

subject to optimization are executed by TensorFlow. See Supported operations in TensorFlow for

more information [3].

To run the inference using INT8 precision, it is required to calibrate the trained TensorFlow model

first and then apply the TensorRT™ optimization, see Figure 7. The Calibration process consists

in calculating the weights of the model at the optimal scaling factor from FP32 to INT8:

• Run inference in FP32 on calibration dataset

• Collect required statistics

• Run calibration algorithm → optimal scaling factors

• Quantize FP32 weights → INT8

• Generate “Calibration Table” and INT8 execution engine

Figure 7. Workflow TensorFlow-TensorRT Integration using INT8 precision [1]

Using TF-TRT with precision modes lower than FP32, that is, FP16 and INT8, improves the

performance of inference. The FP16 precision mode uses Tensor cores and half-precision

hardware instructions, if possible, while the INT8 precision mode uses Tensor cores and integer

hardware instructions [4].

3.2 TensorRT™ Python API

Different from TF-TRT, the Python API doesn’t use any framework. TensorRT™ Python API is

available for the x86_64 platform only. The command line to import the TensorRT™ Python API

is:

import tensorrt as trt

According to the technical documentation, the main benefit of the Python API is that data

preprocessing and postprocessing is easy to use because it has a variety of libraries like NumPy

and SciPy. For more information please see Deep Learning SDK Documentation [5].

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

10

3.3 TensorRT™ C++ API

TensorRT™ provides a C++ implementation on all supported platforms. C++ API includes similar

steps to the Python API implementation and doesn’t use any framework either. According to

Nvidia’s documentation, the C++ API should be used in any performance critical scenarios, as well

as in situations where safety is important, for example, automotive or real time inferences [6].

In Figure 8, the workflow shows the steps to work directly with the TensorRT™ C++ API:

• The trained TensorFlow model needs to be frozen for inference and converted to UFF

format

• Invoke the TensorRT™ builder to create an optimized runtime engine from the network

• Serialize and deserialize the engine to be recreated at runtime

• Feed the optimize engine with data to perform inference

4 Test Methodology

In this paper, we tested the inference performance of several pre-trained neural models using

different precision settings. We compared throughput and latency and looked at the benefits of

using Nvidia TensorRT™. As optimizer implementations, we used TF-TRT integration and

TensorRT™ C++ API.

4.1 Criteria

1. In terms of server, we selected Dell EMC PowerEdge R7425 which includes the Nvidia

Tesla T4-16GB GPU, the most advanced accelerator for AI inference workloads. According

to Nvidia, T4-16GB’s new Turing Tensor Cores accelerates INT8 precision more than 2x

faster than the previous generation low-power offering [7].

2. For the framework and inference optimizer tools, we selected TensorFlow, TF-TRT

integration and TensorRT™ C++ API since these have better technical support and a wide

variety of pre-trained models readily available.

3. Most of the tests were run in INT8 precision mode, since it has significantly lower

precision and dynamic range than FP32, as well as lower memory requirements;

therefore, it allows higher throughput at lower latency.

Figure 8. Workflow working with TensorRT Using the TensorRT C++ API

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

11

4.2 Test Design

The tests were conducted in 4 phases as shown in Figure 9

Figure 9. TensorRT Test Design

Phase 1 the image classifications were run using TF-TRT 5.0 integrated. In this step we tested the

inference with several pre-trained models in TensorFlow with ImageNet.

Phase 2, the image classifications were run using native TensorRT™ 5.0 C++ API without the

framework, but still using pre-trained models.

Phase 3, we compared the results running the image classifications using TF-TRT Integration

versus TRT 5.0 C++ API.

Phase 4 several inference modes were tested to highlight the benefit of running inference on

GPU as well as native precision modes in TensorFlow versus optimized precision modes with

TensorRT™.

Once the optimized models are generated for inference, they can be deployed in production

environments such as datacenter, cloud and edge node like autonomous vehicles smart cameras.

This paper does not focus on how these models are deployed or the optimal way to deploy them.

Here is a high-level summary of the steps involved when running inference workloads:

• Use Case: Optimized Image Classification on CNNs with TensorFlow and TensorRT™

• Models: The pre-trained models included vg116, vgg19, inception_v3, inception_v4,

resnet_v1_50, and resnet_v2_50

• Framework: TensorFlow for pre-trained models, TensorRT version: TensorRT 5

• TensorRT™ implementations: TensorFlow-TensorRT integration and TensorRT C++ API

• Server: Dell EMC PowerEdge R7425

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

12

• GPU: NVIDIA T4-16GB

• Performance: The performance metrics used for comparison across inference precision

modes were throughput (images per second) and the latency (ms)

• Datasets – IMAGENET (ILSVRC2012) for pre-trained models

• Samples code: TensorRT™ samples provided by Nvidia included in its container images

• Software stack configuration: The tests were conducted using the docker container

environment

• Precision Mode: Inference with TensorRT in INT8

The below Table 1 lists the tests conducted in different precision modes and TensorRT

implementations. The script samples can be found in within the Nvidia container image.

Table 1. Tests Conducted

Inference Mode TensorRT™ Implementation Test script

TensorFlow CPU FP32 n/a tensorrt_only_cpu.py

TensorFlow GPU FP32 n/a tensorrt.py

Integration TF-TRT5 FP32 TF-TRT Integration tensorrt.py

Integration TF-TRT5 INT8 TF-TRT Integration tensorrt.py

Integration TF-TRT5 INT8 TF-TRT Integration inference.py

Native TRT5 INT8 – C++ API C++ API trtexec.cpp

4.3 Environment Setup

The below Table 2 shows the software stack configuration for server R7425 using NVIDIA T4-

16GB.

Table 2. OS and Software Stack Configuration

Software Version

OS Ubuntu 16.04.5 LTS

Kernel GNU/Linux 4.4.0-133-generic x86_64

Nvidia-driver 410-72 - 410.79

CUDA 10.0

TensorFlow TensorFlow 1.10

TensorRT TensorRT™ 5.0

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

13

Software Version

Docker Image for TensorFlow CPU only tensorflow/tensorflow:1.10.0-py3

Docker Image for TensorFlow GPU only nvcr.io/nvidia/tensorflow:18.10-py3

Docker Image for TF-TRT integration nvcr.io/nvidia/tensorflow:18.10-py3

Docker Image for TensorRT C++ API nvcr.io/nvidia/tensorrt:18.11-py3

Script samples source Samples included within the docker images

Test Date December 2018

5 Performance Results

5.1 Phase 1: Inference with TF-TRT 5 Integration

In Phase 1 we ran inference tests using TF-TRT integrated. ResNet50 model was used to run

inference on each GPU and we also tested other models to compare performance, finally, we ran

comparative testing with other servers.

5.1.1 ResNet-50 Inference performance: Throughput vs Batch size

The throughput tests with pre-trained model ResNet50 was run on each GPU using different

batch sizes (from 1 to 32).

Figure 10 shows the results for throughput (images/sec). The results were consistent across the

GPUs as well as the latency (expressed in the right vertical axes).

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

14

Figure 10. Figure 10. Resnet_50 Inference on each GPU. Server with 6 GPU’s

The plots above show that we can achieve latency of 7ms using batch sizes 1-8 and looking at the

y-axis, it shows that with batch size of 4 we get 670 images/sec within 7ms latency window.

When running the test, we realized the inference was conducted by default at the device 0, which

means currently the TensorRT™ inference engine doesn’t work with GPU-GPU communications

to maximize the utilization of the GPUs available in the server. If the goal is to run the same graph

in multiple GPU’s to increase the throughput, Nvidia suggested that for now use the native

TensorFlow.

On the other hand, TensorRT Inference Server (TRTIS) supports multiple GPU’s but it does not

support running a single inference distributed across multiple GPU’s. TRTIS can run multiple

models (and/or multiple instances of the same model) on multiple GPUs to increase throughput.

We will be studying how to implement TRTIS in our next paper related to GPU inferencing.

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

15

5.1.2 All Models: Images/sec vs batch size vs Neural models

Figure 11. Throughput Inference Performance with Several Neural Models and Batch Sizes

Here inference tests were conducted using different neural models in different batch sizes.

Figure 11 and Figure 12Error! Reference source not found. show the throughput and latency

running inference in batch sizes 1, 2, 4, 8, 26, and 32. ResNet50 produced the highest throughput

(images/sec) with the lowest latency.

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

16

Figure 12. Latency Inference Performance with Several Neural Models and Batch Sizes

5.1.3 All Models - R7425-T4-16GB versus Other servers and NVIDIA GPU

Figure 13. Throughput Inference Performance on R7425-T4-16GB Server versus Other Servers

Using TF-TRT

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

17

Figure 14. Latency Inference performance on R7425-T4-16GB Server versus other servers

In this section, the inference tests using several models were conducted on the servers R740-P4

and R7245-P4 and their results were compared against the R7425-T4-16GB results. The server

R7425-T4-16GB performed around 1.8X faster versus the other servers on the model ResNet50

at half the latency. See Figure 13 and Figure 14.

5.2 Phase 2: Inference Image Classification with TensorRT™ 5 C++ API

Due the highest inference performance shown by the model ResNet50 in Phase 1, we used

ResNet50 in Phase 2.

In Phase 2, ResNet50 was tested with TensorRT C++ API with different batch sizes. We also ran a

competitive test using Caffe pre-trained models to see if there are any performance differences.

Finally, we ran a comparison with pre-trained models with other servers.

5.2.1 ResNet50 – TensorFlow

When running tests with TensorRT C++ API, ResNet50 optimized inference engine produces

higher throughput at a lower latency.

For instance, the highest throughput of 4,000 images/sec for batch size 64 and the lowest latency

of 0.95 milliseconds for batch size 1. This could be useful in different application areas where

throughput is more important e.g. image classification vs applications which require low latency

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

18

like fraud prevention or theft monitoring. Figure 15 and Figure 16 shows the performance of

ResNet50 for PowerEdge R7425 using NVIDIA T4 GPU using different batch sizes with C++ API

implementation.

Figure 15. Resnet_50 Throughput Inference Performance Using TensorRT C++ API

Figure 16. Resnet_50 Latency Inference Performance Using TensorRT C++ API

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

19

Figure 16 shows also that the target latency ~8ms can be reached with batch sizes below 32.

5.2.2 ResNet-50 – TensorFlow vs Caffe

Another test was comparing the optimized pre-trained models in TensorFlow and Caffe

frameworks, and there was no difference in performance using both the models.

Figure 17. Throughput TensorFlow versus Caffe Optimized Models

Figure 18. Latency TensorFlow versus Caffe Optimized Models

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

20

5.2.3 Resnet-50 - R7425-T4-16GB versus Other Servers

The ResNet50 inference engines with TensorRT C++ API were generated and tested on other

servers and compared the results against R7425-T4-16GB. The results show that R7425-T4-16GB

is around 2.2x better over servers with NVIDIA P4 GPU. See Figure 19 and Figure 20.

Figure 19. Inference Performance on R7425-T4-16GB vs P4 GPU Servers using TensorRT C++ API

Figure 20. Inference Performance on R7425-T4-16GB vs P4 GPU Servers using TensorRT C++ API

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

21

In Figure 20, we can see that the server R7425 produces the higher throughput (images/sec) at

lower latency for several batch sizes.

5.3 Phase 3: Inference Performance using ResNet50 – TF-TRT versus TRT 5 C++ API

When comparing the results of the optimized inference using TF-TRT integrated vs TensorRT C++

API across the different batch sizes, we observed that the C++ API performance 2.7X faster than

the TF-TRT integration at lower latency **. See Figure 21 and Figure 22

** We are working both with NVIDIA and TensorFlow team to look closely into this performance

difference between integrated TensorFlow with TensorRT vs native TensorRT.

 Figure 21. Performance with TensorFlow-TensorRT Integrated vs TensorRT C++ API

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

22

5.4 Phase 4: Inference Image Classification on Neural Models – Other Aspects

To look at the benefits of running inference with TensorRT™ using lower precision INT8, we

compared it with other precision methods. Below are the configurations used to look at the

performance:

• Native TensorFlow-FP32 on CPU-only: test conducted using the TensorFlow with GPU

disabled, to do so we used the docker image with CPU-only support, the trace log showed

the operations were executed at the device: CPU:0

• Native TensorFlow-FP32 on GPU: test conducted using the Nvidia docker image for

TensorFlow with GPU enabled.

• TensorFlow-TRT5-FP32: test conducted using the TF-TRT integration and the Nvidia

docker image for TensorFlow with GPU enabled.

• TensorFlow-TRT5-INT8: test conducted in precision mode INT8, using the TF-TRT

integration, and the Nvidia docker image for TensorFlow with GPU enabled

• TensorRT™ Python API-FP32: test conducted in precision mode INT8, using the TensorRT™

C++ API and the Nvidia docker image for TensorFlow with GPU enabled.

Figure 22. Latency performance with TensorFlow-TensorRT Integrated vs TensorRT C++ API

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

23

Figure 23. Throughput inference performance - Several Inference Modes

Figure 23, we observe that the native TensorFlow-FP32 inference on GPU is ~12X faster than the

same inference run on AMD CPU-only *** (273 vs 22). On the other hand, TensorRT C++ API INT8

inference was ~142X faster than the inference run with native TensorFlow-FP32 on CPU only

(3127 vs 22), and ~11X faster than TensorFlow-FP32 on GPU only (3127 vs 273).

*** Note this AMD EPYC 7551 32-Core Processor is not using any CPU optimized libraries. Its only
used as a baseline comparison.

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

24

Figure 24. Latency performance comparison

Running the optimized inference of the model in native TensorFlow-FP32 on CPU-only took

around 382 milliseconds, in contrast running the model with GPU enabled took around 30

milliseconds. Finally, the lowest latency was obtained running the inference with the optimizer

TensorRT C++ API implementation with 2.6 milliseconds. Figure 24 shows latency performance

using different precision modes.

6 Hardware metrics

In this section, we demonstrate how to extract some GPU metrics while running the optimized

inference in INT8 using the nvidia-smi command with query options provided by NVIDIA [8].

Some of the metrics monitored are listed and described below:

• GPU utilization: Percent of time over the past sample period during which one or more

kernels was executing on the GPU.

• Memory Utilization: Percent of time over the past sample period during which global

(device) memory was being read or written.

• GPU temperature: Core GPU temperature in degrees C.

• Power Draw: Power consumption.

The following sections show the plots of each metric performance extracted with this nvidia-smi

query:

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

25

$nvidia-smi -query

gpu=timestamp,index,pstate,utilization.gpu,utilization.memory,memory.total,memory.free,me

mory.used,power.draw,temperature.gpu,pcie.link.gen.max,pcie.link.gen.current, --format=csv -

l -f <filename>

6.1 Percentage of GPU Utilization vs GPU Memory Utilization

The Calibration process consists in calculating the weights of the model at the optimal scaling

factor from FP32 to INT8, this is a long process that could take around 1 hour, in the Figure

25Error! Reference source not found. we can see the percentage of the GPU (green color) and

memory (gray color) consumption during the first hour corresponding to the calibration process;

once the inference graph is calibrated and optimized, it is used to generate the inference. In this

test, we wanted to show how the calibration process was conducted only one time at the GPU 0,

then the optimized inference graph was saved at the cache and reused for inference in the rest

of the GPU’s.

Figure 25. GPU Utilization versus Memory Utilization

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

26

6.2 Core GPU Temperature

Figure 26. NVIDIA T4 GPU Temperature

In Figure 26, we can see the GPU temperature during the calibration process at the GPU 0, and

later see how it increases gradually when running the inference, there were sleep time periods

before initiating the inference in the next GPU, so we can appreciate how the temperature

decreases during that period. The same pattern happens with the power drawn.

6.3 Power Draw

Figure 27. NVIDIA T4 GPU Power Consumption

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

27

7 Conclusion and Future Work

1. TensorRT™ is an excellent tool to speed up inference, and the results obtained in this
project demonstrated the power of Dell EMC PowerEdge R7425 using T4-16GB GPU to
accelerate image classification and deliver high-performance inference throughput and
low latency production level environments.

2. Comparing TensorRT™ versus native TensorFlow (GPU enabled), TensorRT™ C++ API in
INT8 speeds up ResNet50 inference to ~11X over the TensorFlow-FP32 inference on GPU.

3. When comparing the performance of different TensorRT™ implementations, the

optimized inference using TensorRT™ C++ API produces around 2.7X more than the TF-

TRT integration at lower latency. Due to the better performance of native TensorRT™ C++

API implementation, its highly suitable for production environments where throughput &

latency need to be considered.

4. DELL EMC PowerEdge R7425 with NVIDIA T4-16GB GPU performed ~1.8X faster when

comparing it to NVIDIA P4-8GB GPU.

5. After the optimized inference model is generated, it can be deployed into the production

environment. For deployment of models in production environment we are exploring

TensorRT Inference Server (TRTIS), which can run multiple models (and/or multiple

instances of the same model) on multiple GPUs.

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

28

8 References

• [1] Nvidia Developer, “NVIDIA TensorRT™ Programmable Inference Accelerator” [Online].

Available: https://developer.nvidia.com/TensorRT™

• [2] Speed up TensorFlow Inference on GPUs with TensorRT . [Online]. Available:

https://medium.com/tensorflow/speed-up-tensorflow-inference-on-gpus-with-tensorrt-

13b49f3db3fa

• [3] TensorRT™ Developer Guide, “Supported Operations By Framework” [Online].

Available:

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#usingtftrt

• [4] Nvidia, “Accelerating Inference In TensorFlow With TensorRT™ User Guide” [Online].

Available: https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html

• [5] Nvidia TensorRT™ Developer Guide, “Working with TensorRT™ Using The Python API”

[Online]. Available: https://docs.nvidia.com/deeplearning/sdk/TensorRT-developer-

guide/index.html#python_topics

• [6] Nvidia TensorRT™ Developer Guide, “Working with TensorRT™ Using the C++ API”

[Online]. Available: https://docs.nvidia.com/deeplearning/sdk/TensorRT-developer-

guide/index.html#c_topics

• [7] Nvidia News Center,” NVIDIA AI Inference Performance Milestones: Delivering

Leading Throughput, Latency and Efficiency” [Online]. Available:

https://news.developer.nvidia.com/nvidia-ai-inference-performance-milestones-

delivering-leading-throughput-latency-and-efficiency/

• [8] Nvidia Support, “Useful nvidia-smi Queries” [Online]. Available:

https://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-nvidia-smi-queries

https://developer.nvidia.com/tensorrt
https://medium.com/tensorflow/speed-up-tensorflow-inference-on-gpus-with-tensorrt-13b49f3db3fa
https://medium.com/tensorflow/speed-up-tensorflow-inference-on-gpus-with-tensorrt-13b49f3db3fa
https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#usingtftrt
https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html
https://docs.nvidia.com/deeplearning/sdk/TensorRT-developer-guide/index.html#python_topics
https://docs.nvidia.com/deeplearning/sdk/TensorRT-developer-guide/index.html#python_topics
https://docs.nvidia.com/deeplearning/sdk/TensorRT-developer-guide/index.html#c_topics
https://docs.nvidia.com/deeplearning/sdk/TensorRT-developer-guide/index.html#c_topics
https://news.developer.nvidia.com/nvidia-ai-inference-performance-milestones-delivering-leading-throughput-latency-and-efficiency/
https://news.developer.nvidia.com/nvidia-ai-inference-performance-milestones-delivering-leading-throughput-latency-and-efficiency/
https://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-nvidia-smi-queries

Deep Learning Inference on PowerEdge R7425

Architectures & Technologies Dell EMC | Infrastructure Solutions Group

29

9 Annex A - PowerEdge R7425-T4-16GB Server – GPU Features
Server R7425-T4

CPU

 CPU model AMD EPYC 7551 32-Core Processor

GPU

 GPU model Tesla T4-16GB

 GPU Architecture NVIDIA Turing

 Attached GPUs 6

Features per GPU

 Driver Version 410.79

 Compute Capability 7.5

Multiprocessor

 Multiprocessors (MP) 40

 CUDA Cores/MP 64

 CUDA Cores 2,560

 Clock Rate (GHz) 1.59

Memory

 Global Memory Bandwidth (GB/s) 300

 Global Memory Size (GB) 16

 Constant Memory Size (KB) 65

 L2 Cache Size (MB) 4

Bus Interface PCle

 Generation 3

 Link Width 16

Peak Performance Floating Point Operations (FLOP) and TOPS

 Single-Precision - FP32 (TeraFLOP/s) 8.1

 Mixed Precision - FP16/FP32 (TeraFLOP/s) 65

 Integer 8 - INT8 (Tera Operations /s) 130

 Integer 4 – INT4-16GB (Tera Operations /s) 260

Power

 Min Power Limit (W) 60

 Max Power Limit (W) 70

