

Dell EMC Technical White Paper

CheXNet – Inference with Nvidia T4 on Dell EMC
PowerEdge R7425

Abstract

This whitepaper looks at how to implement inferencing using GPUs. This

work is based on CheXNet model developed by Stanford University to

detect pneumonia. This paper describes the utilization of trained model

and TensorRT™ to perform inferencing using Nvidia T4 GPUs.

June 2019

Revisions

Dell EMC Technical White Paper

Revisions

Date Description

June 2019 Initial release

Acknowledgements

This paper was produced by the following members of the Dell EMC SIS team:

Authors: Bhavesh Patel, Vilmara Sanchez [Dell EMC Advanced Engineering]

Support: Josh Anderson [Dell EMC System Engineer]

Others:

Nvidia account team for their expedited support

Nvidia Developer forum

TensorFlow -TensorRT Integration Forum

Dell EMC HPC Engineering team {Lucas A. Wilson, Srinivas Varadharajan, Alex Filby and Quy Ta}

The information in this publication is provided “as is.” Dell Inc. makes no representations or warranties of any kind with respect to the information in this

publication, and specifically disclaims implied warranties of merchantability or fitness for a particular purpose.

Use, copying, and distribution of any software described in this publication requires an applicable software license.

© June 19 Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC, Dell EMC and other trademarks are trademarks of Dell Inc. or its subsidiaries.

Other trademarks may be trademarks of their respective owners.

Dell believes the information in this document is accurate as of its publication date. The information is subject to change without notice.

3 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425

Table of contents

Revisions... 2

Acknowledgements ... 2

Executive summary ... 4

1 Background & Definitions ... 5

1.1 Dell EMC PowerEdge R7425 ... 7

2 Test Methodology ... 8

2.1 Test Design ... 8

2.2 Test Setup .. 10

3 Development Methodology ... 11

3.1 Build a CheXNet Model with TensorFlow Framework .. 11

3.2 Train the model for Inference with Estimator .. 16

3.3 Save the Trained Model with TensorFlow Serving for Inference ... 17

3.4 Freeze the Saved Model (optional) .. 17

4 Inference with TensorRT™ .. 19

4.1 TensorRT™ using TensorFlow-TensorRT (TF-TRT) Integrated .. 19

4.1.1 TF-TRT Workflow with a Frozen Graph.. 19

4.2 TensorRT™ using TensorRT C++ API ... 24

5 Results .. 30

5.1 CheXNet Inference - Native TensorFlow FP32fp32 with CPU Only .. 30

5.2 CheXNet Inference - Native TensorFlow fp32 with GPU ... 31

5.3 CheXNet Inference –TF-TRT 5.0 Integration in INT8int8 Precision Mode ... 32

5.4 Benchmarking CheXNet Model Inference with Official ResnetV2_50.. 34

5.5 CheXNet Inference - Native TensorFlow FP32fp32 with GPU versus TF-TRT 5.0 INT8 35

5.6 CheXNet Inference - TF-TRT 5.0 Integration vs Native TRT5 C++ API .. 39

5.7 CheXNet Inference – Throughput with TensorRT™ at ~7ms Latency Target ... 41

6 Conclusion and Future Work .. 44

A Troubleshooting .. 45

B References ... 47

C Appendix - PowerEdge R7425 – GPU Features .. 49

Executive summary

4 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425

Executive summary

The Healthcare industry has been one of the leading-edge industries to adopt techniques

related to machine learning and deep learning to improve diagnosis, provide higher level of

accuracies in term of detection and reduce overall cost related to mis-diagnosis. Deep

Learning consists of two phases: training and inference. Training involves learning a neural

network model from a given training dataset over a certain number of training iterations and

loss function. The output of this phase, the learned model, is then used in the inference phase

to speculate on new data. For the training phase, we leveraged the CheXNet model

developed by Stanford University ML Group to detect pneumonia which outperformed a

panel of radiologists [1]. We used National Institutes of Health (NIH) Chest X-ray dataset

which consist of 112,120 images labeled with 14 different thoracic diseases including

pneumonia. All images are labeled with either single or multiple pathologies, making it a

multi-label classification problem. Images in the Chest X-ray dataset are 3 channel (RGB)

with dimensions 1024x1024.

We trained CheXNet model on (NIH) Chest X-ray dataset using Dell EMC PowerEdge C4140

with NVIDIA V100-SXM2 GPU server. For inference we used Nvidia TensorRT™, a high-

performance deep learning inference optimizer and runtime that delivers low latency and

high-throughput. In this project, we have used the CheXNet model as reference to train a

custom model from scratch and classify 14 different thoracic deceases, and the TensorRT™

tool to optimize the model and accelerate its inference.

The objective is to show how PowerEdge R7425 can be used as a scale-up inferencing

server to run production-level deep learning inference workloads. Here we will show how to

train a CheXNet model and run optimized inference with Nvidia TensorRT™ on Dell EMC

PowerEdge R7425 server.

The topics explained here are presented from development perspective, explaining the

different TensorRT™ implementation tools at the coding level to optimize the inference

CheXNet model. During the tests, we ran inference workloads on PowerEdge R7425 with

several configurations. TensorFlow was used as the primary framework to train the model

and run the inferences, the performance was measured in terms of throughput (images/sec)

and latency (milliseconds).

5 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425

1 Background & Definitions
Deploying AI applications into production sometimes requires high throughput at the lowest

latency. The models generally are trained in 32-bit floating point (fp32) precision mode but

need to be deployed for inference at lower precision mode without losing significant accuracy.

Using lower bit precision like 8-bit integer (int8) gives higher throughput because of low

memory requirements. As a solution, Nvidia has developed the TensorRT™ Inference

optimization tool, it minimizes loss of accuracy when quantizing trained model weights to int8

and during int8 computation of activations it generates inference graphs with optimal scaling

factor from fp32 to int8. We will walk through the inference optimization process with a custom

model, covering the key components involved in this project and described in the sections

below. See Figure 1

 Figure 1:Inference Implementation

Deep learning

Deep Learning (DL) is a subfield of Artificial Intelligent and Machine Learning (ML), based on

methods to learn data representations; deep learning architectures like convolutional neural

networks (CNN) and Recurrent Neural Networks (RNN) among others have been

successfully applied to applications such as computer vision, speech recognition, and

machine language translation producing results comparable to human experts.

TensorFlow

Nvidia TensorRT

CheXNet Model

Dell EMC PowerEdge

R7425

6 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425 | Document ID

TensorFlow™ is an open source software library for high performance numerical

computation. Its flexible architecture allows easy deployment of computation across a variety

of platforms (CPUs, GPUs, TPUs), and from desktops to clusters of servers to mobile and

edge devices. Originally developed by researchers and engineers from the Google Brain

team within Google’s AI organization, it comes with strong support for machine learning and

deep learning libraries and the flexible numerical computation core is used across many other

scientific domains.

Transfer Learning

Transfer Learning is a technique that shortcuts the training process by taking portion of a

model and reusing it in a new neural model. The pre-trained model is used to initialize a

training process and start from there. Transfer Learning is useful when training on small

datasets.

TensorRT™

Nvidia TensorRT™ is a high-performance deep learning inference and run-time optimizer

delivering low latency and high throughput for production model deployment. TensorRT™

has been successfully used in a wide range of applications including autonomous vehicles,

robotics, video analytics, automatic speech recognition among others. TensorRT™ supports

Turing Tensor Cores and expands the set of neural network optimizations for multi-precision

workloads. With the TensorRT™ 5, DL applications can be optimized and calibrated for lower

precision with high throughout and accuracy for production deployment.

 Figure 2:TensorRT™ scheme. Source: Nvidia

In Figure 2 we present the general scheme of how TensorRT™ works. TensorRT™

optimizes an already trained neural network by combining layers, fusing tensors, and

optimizing kernel selection for improved latency, throughput, power efficiency and memory

consumption. It also optimizes the network and generate runtime engines in lower precision

to increase performance.

CheXNet

7 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425

CheXNet is a Deep Learning based model for Radiologist-Level Pneumonia Detection on

Chest X-Rays, developed by the Stanford University ML Group and trained on the Chest X-

Ray dataset. For the pneumonia detection, the ML group have labeled the images that have

pneumonia as the positive examples and labeled all other images with other pathologies as

negative examples.

NIH Chest X-ray Dataset

The National Institutes of Health released the NIH Chest X-ray Dataset, which includes
112,120 X-ray images from 30,805 unique patients, and labeled with 14 different thoracic
deceases through the application of Natural Language Processing algorithm to text-mine
disease classification from the original radiological reports.

1.1 Dell EMC PowerEdge R7425
Dell EMC PowerEdge R7425 server supports the latest GPU accelerators to speed results

in data analytics and AI applications. It enables fast workload performance on more cores

for cutting edge applications such Artificial Intelligence (AI), High Performance Computing

(HPC), and scale up software defined deployments. See Figure 3

 Figure 3:DELL EMC PowerEdge R7425

The Dell™ PowerEdge™ R7425 is Dell EMC’s 2-socket, 2U rack server designed to run

complex workloads using highly scalable memory, I/O, and network options The systems

feature AMD high performance processors, named AMD SP3, which support up to 32 AMD

“Zen” x86 cores (AMD Naples Zeppelin SP3), up to 16 DIMMs, PCI Express® (PCIe) 3.0

enabled expansion slots, and a choice of OCP technologies.

The PowerEdge R7425 is a general-purpose platform capable of handling demanding

workloads and applications, such as VDI cloud client computing, database/in-line analytics,

scale up software defined environments, and high-performance computing (HPC).

The PowerEdge R7425 adds extraordinary storage capacity options, making it well-suited

for data intensive applications that require greater storage, while not sacrificing I/O

performance.

8 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425 | Document ID

2 Test Methodology
In this project we ran image classification inference for the custom model CheXNet on the

PowerEdge R7425 server in different precision modes and software configurations: with

TensorFlow-CPU support only, TensorFlow-GPU support, TensorFlow with TensorRT™,

and native TensorRT™. Using different settings, we were able to compare the throughput

and latency and expose the capacity of PowerEdge R7425 server when running inference

with Nvidia TensorRT™. See Figure 4

Figure 4:Test Methodology for Inference

2.1 Test Design
The workflow pipeline started with the training of the custom model from scratch until running
the optimized inference graphs in multi-precision modes and configurations. To do so, we
followed the below the steps:

a) Building the CheXNet model with TensorFlow, transfer learning & estimator.
b) Training the Model for Inference
c) Saving Trained Model with TensorFlow Serving for Inference
d) Freezing the Saved Model
e) Running the Inference with Native TensorFlow CPU Only
f) Running the Inference with Native TensorFlow GPU Support
g) Converting the Custom Model to Run Inference with TensorRT™
h) Running Inference using TensorFlow-TensorRT (TF-TRT) Integration
i) Running Inference using TensorRT™ C++ API
j) Comparing Inferences in multi-mode configurations

9 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425

Table 1 shows the summary of the project design below:

Table 1:Project Design Summary

Element Description

Use Case: Optimized Inference Image Classification with
TensorFlow and TensorRT™

Models: Custom Model CheXNet and base model ResnetV2_50

Framework: TensorFlow 1.0

TensorRT™
version:

TensorRT™ 5.0

TensorRT™
implementations:

TensorFlow-TensorRT Integration (TF-TRT) and
TensorRT C++ API (TRT)

Precision
Modes:

▪ Native TensorFlow FP32 – CPU Only
▪ Native TensorFlow FP32 - GPU
▪ TF-TRT-FP32
▪ TF-TRT-FP16
▪ TF-TRT-INT8
▪ TRT-INT8

Performance: Throughput (images per second) and the Latency (msec)

Dataset: NIH Chest X-ray Dataset from the National Institutes of
Health

Samples code: TensorRT™ samples provided by Nvidia included on its
container images, and adapted to run the optimized
inference of the custom model

Software stack
configuration:

Tests conducted using the docker container
environment

Server: Dell EMC PowerEdge R7425

Table 2 lists the tests conducted to train the model, and inferences in different precision
modes with the TensorRT™ implementations. The script samples can be found within the
Nvidia container image.

Table 2. Tests Conducted

Model/Inference Mode TensorRT™ Implementation Test script

Custom Model n/a chexnet.py

Native TensorFlow CPU FP32 n/a tensorrt_chexnet.py

Native TensorFlow GPU

FP32

n/a tensorrt_chexnet.py

Integration TF-TRT5 FP32 TF-TRT Integration tensorrt_chexnet.py

Integration TF-TRT5 FP16 TF-TRT Integration tensorrt_chexnet.py

Integration TF-TRT5 INT8 TF-TRT Integration tensorrt_chexnet.py

Native TRT5 INT8 – C++ API C++ API trtexec.cpp

10 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425 | Document ID

2.2 Test Setup
a) For the hardware, we selected PowerEdge 7425 which includes the Nvidia Tesla T4 GPU, the

most advanced accelerator for AI inference workloads. According to Nvidia, T4’s new Turing
Tensor cores accelerate int8 precision more than 2x faster than the previous generation low-
power offering [2].

b) For the framework and inference optimizer tools, we selected TensorFlow, TF-TRT integrated
and TensorRT C++ API, since they have better technical support and a wide variety of pre-
trained models are readily available.

c) Most of the tests were run in int8 precision mode, since it has significantly lower precision and

dynamic range than fp32, as well as lower memory requirements; therefore, it allows higher

throughput at lower latency.

Table 3 shows the software stack configuration on PowerEdge R7425

Table 3. OS and Software Stack Configuration

Software Version

OS Ubuntu 16.04.5 LTS

Kernel GNU/Linux 4.4.0-133-generic x86_64

Nvidia-driver 410.79

CUDA™ 10.0

TensorFlow version 1.10

TensorRT™ version 5.0

Docker Image for TensorFlow CPU only tensorflow:1.10.0-py3

Docker Image for TensorFlow GPU only nvcr.io/nvidia/tensorflow:18.10-py3

Docker Image for TF-TRT integration nvcr.io/nvidia/tensorflow:18.10-py3

Docker Image for TensorRT™ C++ API nvcr.io/nvidia/tensorrt:18.11-py3

Script samples source Samples included within the docker images

Test Date February 2019

11 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425

3 Development Methodology
In this section we explain the general instructions on how we trained the custom model

CheXNet from scratch with TensorFlow framework using transfer Learning, and how the

trained model was optimized then with TensorRT™ to run accelerated inferencing.

3.1 Build a CheXNet Model with TensorFlow Framework

The CheXNet model was developed using transfer Learning based on resnet_v2_50, it

means we built the model using the TensorFlow official pre-trained resnetV2_50 checkpoints

downloaded from its website. The model was trained with 14 output classes representing the

thoracic deceases.

In the next paragraphs and snippet codes we will explain the steps and the APIs used to

build the model. Figure 5 shows the general workflow pipeline followed:

Figure 5: Training workload of the custom model CheXNet

Define the Classes:

Below is listed the 14 distinct categories of thoracic diseases to be predicted for the multiclass

classification model

classes = ['Cardiomegaly',

 'Emphysema',

12 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425 | Document ID

 'Effussion',

 'Hernia',

 'Nodule',

 'Pneumonia',

 'Atelectasis',

 'PT',

 'Mass',

 'Edema',

 'Consolidation',

 'Infiltration',

 'Fibrosis',

 'Pneumothorax']

Build a Convolutional Neural Network using Estimators:

Here we describe the building process of the CheXNet model with Transfer Learning using

Custom Estimator. We used the high-level TensorFlow API tf.estimator and its class

Estimator to build the model, it handles the high-level model training, evaluation, and

inference of our model much easier than with the low-level TensorFlow APIs; it builds the

graph for us and simplifies sharing the implementation of the model on a distributed multi-

server environment, among other advantages.[3].

There are pre-made estimators and custom estimators [4], in our case we used the last one

since it allows to customize our model through the model_fn function. Also, we defined the

input_fn function which provides batches for training, evaluation, and prediction. When the

tf. estimator class is called, it returns an initialized estimator, that at the same time calls the.

train, eval, and predict functions, handling graphs and sessions for us.

See Figure 6 with the overview of the estimator.

https://www.tensorflow.org/api_docs/python/tf/estimator

13 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425

Figure 6: Overview of the Estimator Interface [5]

See the Table 4 with the Estimator’s methods and modes to call train, evaluate, or predict. The

Estimator framework invokes the model function with the mode parameter set as follows:

Table 4. Implement training, evaluation, and prediction. Source [4]

Create the Estimator:

Chexnet_classifier = tf.estimator.Estimator(

 model_fn=model_function, model_dir=FLAGS.model_dir, config=run_config,

 params={

 'densenet_depth': FLAGS.densenet_depth,

 'data_format': FLAGS.data_format,

 'batch_size': FLAGS.batch_size,

 'lr': lr})

Define the model function for training using transfer Learning:

https://medium.com/element-ai-research-lab/multithreaded-predictions-with-tensorflow-estimators-eb041861da07

14 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425 | Document ID

In this case, the architecture of an existing official network was used as base model

(resnet_v2_50). The output of the model is defined by a layer with 14 neurons to predict each

class. Since X-ray images can show more than one pathology, the model should also detect

multiple classifications; to do so, we used the sigmoid activation function. See the snippet

code below:

def model_fn(features, labels, mode, params):

 tf.summary.image('images', features, max_outputs=6)

 model = resnet_model.imagenet_resnet_v2(50, _NUM_CLASSES, params['data_format'])

 logits = model(features, mode == tf.estimator.ModeKeys.TRAIN)

 probs = tf.sigmoid(logits)

 predictions = tf.argmax(logits, axis=1)

Restoring checkpoints from pre-trained model:
The variable checkpoint file holds the os.path with the directory where the pretrained model

with the ImageNet dataset ResNet-50_v2 (fp32) was stored, which was previously

downloaded from the official TensorFlow repository to the local host [6]. The model was

downloaded in the form of checkpoints produced by estimator during official training, then

the estimator initializes the weights from there.

if not tf.train.latest_checkpoint(FLAGS.model_dir):

 vars_to_restore = [var for var in tf.global_variables() if 'dense' not in var.name]

 checkpoint_file = os.path.join(FLAGS.pretrained_model_dir,

 tf.train.latest_checkpoint(FLAGS.pretrained_model_dir))

 latest_ckp = tf.train.latest_checkpoint(checkpoint_file)

 tf.train.init_from_checkpoint(checkpoint_file,

 {var.name.split(':')[0]: var for var in vars_to_restore})

Each subsequent call to the Estimator's train, evaluate, or predict method causes TensorFlow

rebuilds the model. See the Figure 7

15 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425

Figure 7. Subsequent calls to train(), evaluate(), or predict(). Source [7]

Variable Scope: When building the custom model, it’s important to create it placing the

variables under the same variable scope as the checkpoints; otherwise, the system will

output errors similar to “tensorbatch_normalization/beta is not found in

resnet_v2_imagenet_checkpoint”. Variable scopes allow you to control variable reuse when

calling functions which implicitly create and use variables. They also allow to name the

variables in a hierarchical and understandable way [8].

For evaluation mode:

if mode == tf.estimator.ModeKeys.EVAL:

 for i in range(14):

 metrics.update({classes[i]: tf.metrics.auc(labels[: i], probs[:, i])})

return tf.estimator.EstimatorSpec(

 mode=mode,

 loss=loss,

 predictions=predictions,

 train_op=train_op,

 eval_metric_ops=metrics)

For predict mode:

16 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425 | Document ID

We need to provide the export_output argument to the EstimatorSpec, it defines signatures

for TensorFlow serving

prediction = {

 'categories': tf.argmax(logits, axis=1, name='categories'),

 'scores': tf.sigmoid(logits, name='chexnet_sigmoid_tensor')

 }

if mode == tf.estimator.ModeKeys.PREDICT:

Return the predictions and the specification for serving a SavedModel

return tf.estimator.EstimatorSpec(

 mode=mode,

 predictions=prediction,

 export_outputs={

 'predict': tf.estimator.export.PredictOutput(prediction)

3.2 Train the model for Inference with Estimator
Load training and evaluation data (part omitted) and Create the Custom CheXNet Estimator

Chexnet_classifier = tf.estimator.Estimator(

 model_fn=model_function, model_dir=FLAGS.model_dir, config=run_config,

 params={

 'densenet_depth': FLAGS.densenet_depth,

 'data_format': FLAGS.data_format,

 'batch_size': FLAGS.batch_size,

 'lr': lr

 })

Train the model:

Chexnet_classifier.train(

17 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425

 input_fn=lambda: input_fn(

 True, FLAGS.data_dir, FLAGS.batch_size, FLAGS.epochs_per_eval))

Evaluate the model and print results:

eval_results = chexnet_classifier.evaluate(

 input_fn=lambda: input_fn(False, FLAGS.data_dir, FLAGS.batch_size))

 lr = reduce_lr_hook.update_lr(eval_results['loss'])

print (eval_results)

3.3 Save the Trained Model with TensorFlow Serving for Inference
Export the trained model as SavedModel with the Estimator function

export_savedmodel

Exports inference graph as a SavedModel into the given directory [9][10]

def export_saved_model(chexnet_classifier):

 shape=[_DEFAULT_IMAGE_SIZE, _DEFAULT_IMAGE_SIZE, _NUM_CHANNELS]

 input_receiver_fn = export.build_tensor_serving_input_receiver_fn(shape,

 batch_size=FLAGS.batch_size)

 Chexnet_classifier.export_savedmodel(FLAGS.export_dir, input_receiver_fn)

3.4 Freeze the Saved Model (optional)
Convert Saved Model to a Frozen Graph:

def convert_savedmodel_to_frozen_graph(savedmodel_dir, output_dir):

 meta_graph = get_serving_meta_graph_def(savedmodel_dir)

 signature_def = tf.contrib.saved_model.get_signature_def_by_key(

 output=return_tensors[0].outputs[0]

 with tf.Session(graph=g, config=get_gpu_config()) as sess:

 result = sess.run([output])

 meta_graph, tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY)

18 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425 | Document ID

 graph = tf.Graph()

 with tf.Session(graph=graph) as sess:

 tf.saved_model.loader.load(sess, meta_graph.meta_info_def.tags,

 savedmodel_dir)

 frozen_graph_def = tf.graph_util.convert_variables_to_constants(sess,

 graph.as_graph_def(),

 output_node_names= ["chexnet_sigmoid_tensor", "categories"])

 #remove the unnecessary training nodes

 cleaned_frozen_graph = tf.graph_util.remove_training_nodes(frozen_graph_def)

 write_graph_to_file(_GRAPH_FILE, cleaned_frozen_graph, output_dir)

 return cleaned_frozen_graph

Command line example to execute the chexnet.py file:

python3 chexnet.py \

 --train_epochs=15 \

 --learning_rate=0.001 \

 --batch_size=128 \

 --data_dir='/home/chexnet_tfrecords’ \

 --pretrained_model_dir='/home/resnet_v2_imagenet_checkpoint/ \

 --model_dir='/home/chest-x-ray/chexnet_checkpoints' \

 --export_dir='/home/chest-x-ray/chexnet_saved_model/ \

 --frozen_graph_dir='/home/chest-x-ray/chexnet_frozen_graph/

Files used for development:

Script: chexnet.py

Base model

script:

TensorFlow official
ResnetV2_50
resnet_model.py

19 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425

4 Inference with TensorRT™
NVIDIA TensorRT™ is a C++ based library aimed to perform high performance inference on

GPUs. After a model is trained and saved, TensorRT™ transforms it by applying graph

optimization and layer fusion for a faster implementation, so it can be deployed in an

inference context.

TensorRT™ provides three tools to optimize the models for inference: TensorFlow-TensorRT

integrated (TF-TRT), TensorRT C++ API, and TensorRT Python API. The last two tools

include parsers for importing existing models from Caffe, ONNX, or TensorFlow. Also, C++

and Python API’s include methods for building models programmatically. It is important to

note that TF-TRT is the Nvidia’s preferred method for importing TensorFlow models to

TensorRT™ [11].

In this project we will show how to implement using TensorRT™ C++ API, as well as TF-TRT

integrated with the parser (UFF for TensorFlow). Below is a brief description of each method

applied to CheXNet model.

4.1 TensorRT™ using TensorFlow-TensorRT (TF-TRT) Integrated
With TF-TRT integrated, TensorRT™ will parse the model and apply optimizations to the

portions of the graph wherever possible, allowing TensorFlow to execute the remaining graph

that couldn’t be optimized. TF-TRT integration workflow includes importing a TensorFlow

model, creating an optimized graph with TensorRT™, importing it back as the default graph,

and running inference. After importing the model TensorRT™ optimizes the TensorFlow's

subgraphs, then replaces each supported subgraph with a TensorRT™ optimized node,

producing a frozen graph that runs in TensorFlow for inference. TensorFlow executes the

graph for all supported areas and calls TensorRT™ to execute TensorRT™ optimized nodes.

In this section we present the general steps to work with the custom model CheXNet and TF-

TRT integration. For step-by-step instructions on how to use TensorRT™ with the

TensorFlow framework, see “Accelerating Inference In TensorFlow With TensorRT™-User

Guide”[11].

4.1.1 TF-TRT Workflow with a Frozen Graph

There are three workflows for creating a TensorRT™ inference graph from a TensorFlow

model depending of the format: for saved model, frozen graph, and separate MetaGraph with

checkpoint files.

In this project we will focus on the workflow using a frozen graph file. Figure 8. shows the

specific workflow for creating a TensorRT™ inference graph from a TensorFlow model in

frozen graph format file as an input. For more information about the other two methods, refer

to the following Nvidia documentation: “Accelerating Inference in TensorFlow With

TensorRT™ - User Guide” [12].

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html
https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html
https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#using-frozengraph

20 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425 | Document ID

Further, the model needs to be built with supported operations by TF-TRT integrated,
otherwise the system will output errors for unsupported operations. See the reference list for
further description [13].

Figure 8: Workflow for Creating a TensorRT Inference Graph from a TensorFlow Model in Frozen

Graph Format

Import the library TensorFlow-TensorRT Integration:
import tensorflow.contrib.TensorRT as trt

Convert a SavedModel to a Frozen Graph and save it in the disk:

If not converted already, the trained model needs to be frozen before use TensorRT™

through the frozen graph method, below is the function to do the conversion

def convert_savedmodel_to_frozen_graph(savedmodel_dir, output_dir):

 meta_graph = get_serving_meta_graph_def(savedmodel_dir)

 signature_def = tf.contrib.saved_model.get_signature_def_by_key(

 meta_graph,

 tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY)

 outputs = [v.name for v in signature_def.outputs.values()]

21 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425

 output_names = [node.split(":")[0] for node in outputs]

 graph = tf.Graph()

 with tf.Session(graph=graph) as sess:

 tf.saved_model.loader.load(

 sess, meta_graph.meta_info_def.tags, savedmodel_dir)

 frozen_graph_def = tf.graph_util.convert_variables_to_constants(

 sess, graph.as_graph_def(), output_names)

 write_graph_to_file(_GRAPH_FILE, frozen_graph_def, output_dir)

 return frozen_graph_def

Freezing a model means pulling the values for all the variables from the latest model file, and then
replace each variable op with a constant that has the numerical data for the weights stored in its
attributes. It then strips away all the extraneous nodes that aren't used for forward inference, and saves
out the resulting GraphDef into a just single output file, which is easily deployable for production[14].

Load the frozen graph file from disk:

def get_frozen_graph(graph_file):

 with tf.gfile.FastGFile(graph_file, "rb") as f:

 graph_def = tf.GraphDef()

 graph_def.ParseFromString(f.read())

Create and save GraphDef for the TensorRT™ inference using TensorRT™ library:

def get_trt_graph(graph_name, graph_def, precision_mode, output_dir,

 output_node, batch_size=128, workspace_size=2<<10):

 trt_graph = trt.create_inference_graph(

 input_graph_def=graph_def,

 outputs=[output_node],

22 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425 | Document ID

 max_batch_size=batch_size,

 max_workspace_size_bytes=workspace_size<<20,

 precision_mode=precision_mode)

 write_graph_to_file(graph_name, trt_graph, output_dir)

 return trt_graph

Create and save GraphDef for the TensorRT™ inference using TensorRT™ library

(optional INT8):

 “Convert a TensorRT™ graph used for calibration to an inference graph “

def get_trt_graph_from_calib(graph_name, calib_graph_def, output_dir):

 trt_graph = trt.calib_graph_to_infer_graph(calib_graph_def)

 write_graph_to_file(graph_name, trt_graph, output_dir)

 return trt_graph

Import the TensorRT™ graph into a new graph:

output_node = tf.import_graph_def(

 trt_graph,

 return_elements=[“chexnet_sigmoid_tensor”])

Run the Optimized Inference in all desired modes:

output = return_tensors[0].outputs[0]

with tf.Session(graph=g, config=get_gpu_config()) as sess:

 result = sess.run([output])

Command line example to execute the tensorrt_chexnet.py file

To evaluate the inference with TF-TRT integration using the trained CheXNet model:

python3 tensorrt_chexnet.py \

--savedmodel_dir=/home/chest-x-ray/chexnet_saved_model/1541777429/ \

23 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425

--image_file=image.jpg \

--int8 \

--output_dir=/home/chest-x-ray/output_tensorrt_chexnet_1541777429/ \

--batch_size=1 \

--input_node="input_tensor” \

--output_node="chexnet_sigmoid_tensor"

Where:

 --savedmodel_dir: The location of a saved model directory to be converted into a Frozen Graph

--image_file: The location of a JPEG image that will be passed in for inference

--int8: Benchmark the model with TensorRT™ using int8 precision

--output_dir: The location where output files will be saved

--batch_size: Batch size for inference

--input_node: The name of the graph input node where the float image array should be fed for
prediction

--output_node: The names of the graph output node

Script Output sample:

On completion, the script prints overall metrics and timing information over the inference

session

==========================

network: tftrt_int8_frozen_graph.pb, batchsize 1, steps 100

 fps median: 284.6, mean: 304.3, uncertainty: 5.5, jitter: 4.4

 latency median: 0.00351, mean: 0.00337, 99th_p: 0.00383, 99th_uncertainty: 0.00053

==========================

• Throughput (images/sec): 304

• Latency (sec): 3.37

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#image-class-output

24 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425 | Document ID

Files used for development:

Script: tensorrt_chexnet.py

Base model script: tensorrt.py

Labels file labellist_chest_x_ray.json

4.2 TensorRT™ using TensorRT C++ API
In this section, we present how to run optimized inferences with an existing TensorFlow

model using TensorRT C++ API. The first step is to convert the frozen graph model to uff

file format with the C++ UFF parser API which supports TensorFlow models, then follow the

workflow in the Figure 9 to create the TensorRT™ engine for optimized inferences:

• Create a TensorRT™ network definition from the existing trained model

• Invoke the TensorRT™ builder to create an optimized runtime engine from the network

• Serialize and deserialize the engine so that it can be rapidly recreated at runtime

• Feed the engine with data to perform inference

For the current implementation, we are using Nvidia script trtexec.cpp and referenced the

TensorRT™ Developer Guide to document the steps described below [15].

Figure 9: Workflow for Creating a TensorRT Inference Graph using the TensorRT C++ API

25 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425

Converting A Frozen Graph To UFF:
An existing model built with TensorFlow can be used to build a TensorRT™ engine.
Importing from the TensorFlow framework requires to convert the TensorFlow model into the
intermediate format UFF file. To do so, we used the tool convert_to_uff.py located at the
directory /usr/lib/python3.5/dist-packages/uff/bin, which uses as an input a frozen model,
below the command to convert .pb TensorFlow frozen graph to .uff format file:

python3 convert_to_uff.py \

 input_file /home/chest-x-ray/chexnet_frozen_graph_1541777429.pb

Create the builder, network, and UFF parser

//1-Create the builder and network:

IBuilder* builder = createInferBuilder(gLogger);

INetworkDefinition* network = builder->createNetwork();

//2-Create the UFF parser:

IUFFParser* parser = createUffParser();

//3-Declare the network inputs and outputs to the UFF parser:

parser->registerInput("input_tensor", DimsCHW(3,256,256), UffInputOrder::kNCHW);

parser->registerOutput("chexnet_sigmoid_tensor");

//Parse the imported model to populate the network:

parser->parse(uffFile, *network, nvinfer1::DataType::kFLOAT);

For the network definition, it is important to directly specify to TensorRT™ which tensors are

inputs and their dimensions, as well as specify which tensors are outputs for inference (inputs

and output tensors must also be given names); the rest of the tensors are transient values

that may be optimized by the builder.

UFF Parser is used to parse a network in UFF format. For more details on the C++ UFF

Parser, see NvUffParser or the Python UFF Parser [16].

TensorRT™ C++ API expects the input tensor to be in channel first order (CHW). When

importing from TensorFlow, the input tensor is required to be in this format in order to achieve

26 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425 | Document ID

the best possible performance; and if not, it is recommended to convert it to CHW. Overall,

CHW is generally better for GPUs, while HWC is generally better for CPUs. [6]

Build the Optimized Runtime Engine in fp16 or iInt8 mode (calibration optional for

INT8int8 inference) [15]:

//Configure the builder

builder->setMaxBatchSize(gParams.batchSize);

builder->setMaxWorkspaceSize(gParams.workspaceSize << 20);

//To run in fp16 mode

if (gParams.fp16)

{

 builder->setFp16Mode(gParams.fp16);

}

//To run in Int8 mod (calibration optional for int8 inference)

if (gParams.int8)

{

 builder->setInt8Mode(true);

 builder->setInt8Calibrator(&calibrator);

}

//Build the engine

ICudaEngine* engine = builder->buildCudaEngine(*network);

Highlights:

• After the network has been built, it can be used as default in FP32fp32 precision mode, for

example, inputs and outputs remain in 32-bit floating point.

• Setting the builder’s fp16 mode flag enables 16-bit precision inference mode

Setting the builder flag to int8 enables int8 precision inference mode. Calibration is an additional

step required when building networks for int8. The application must provide TensorRT™ with

27 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425

sample input. TensorRT™ will then perform inference in fp32 and gather statistics about

intermediate activation layers that it will use to build the reduce precision int8 engine. When the

engine is built, TensorRT™ makes copies of the weights. The TensorRT™ network definition

contains pointers to model weights, the builder copies the weights into the optimized engine, and

the parser will own the memory occupied by the weights; the parser object is then deleted after

the builder has run for inference.

Serialize and Deserialize the model

//1-Run the builder as a prior offline step and then serialize:

HostMemory *serializedModel = engine->serialize();

//Store model to disk

assert(serializedModel);

p.write(reinterpret_cast<const char*>(serializedModel->data()), serializedModel->size());

serializedModel->destroy();

//2-Create a runtime object to deserialize:

IRuntime* runtime = createInferRuntime(gLogger);

ICudaEngine* engine = runtime->deserializeCudaEngine(modelData, modelSize, nullptr);

It is not mandatory to serialize and deserialize a model before using it for inference, if

desirable, the engine object can be used for inference directly. Since creating an engine from

the network definition can be time consuming, we can avoid rebuilding the engine every time

the application reruns by serializing it once and deserializing it while inferencing. Therefore,

after the engine is built, it is common to serialize it for later use [17].

Perform Inference feeding the engine

//1-Create the execution context to hold the network definition, trained parameters, necessary space:

IExecutionContext *context = engine->createExecutionContext();

//2-Use the input and output tensor names to get the corresponding input and output index:

int inputIndex = engine.getBindingIndex(“input_tensor”);

28 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425 | Document ID

int outputIndex = engine.getBindingIndex(“CheXNet_sigmoid_tensor”);

//3-Set up a buffer array pointing to the input and output buffers on the GPU, using the indexes:

void* buffers[2];

buffers[inputIndex] = inputbuffer;

buffers[outputIndex] = outputBuffer;

//4-TensorRT™ execution is typically asynchronous, so enqueue the kernels on a CUDA stream:

context.enqueue(batchSize, buffers, stream, nullptr):

Command line to execute the trtexec file:

./trtexec

--uff=/home/chest-x-ray/output_convert_to_uff/chexnet_frozen_graph_1541777429.uff \

--output=chexnet_sigmoid_tensor \

--uffInput=input_tensor,3,256,256 \

--iterations=40 \

--int8 \

--batch=1 \

--device=0 \

--avgRuns=100

Docker image used for native TRT: nvcr.io/nvidia/tensorrt:18.11-py3

Where:
--uff=: UFF file location

--output: output tensor name

--uffInput: Input tensor name and its dimensions for UFF parser (in CHW format)

--iterations: Run N iterations

--int8: Run in int8 precision mode

--batch: Set batch size

--device: Set specific cuda device to N

--avgRuns: Set avgRuns to N - perf is measured as an average of avgRuns

29 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425

Script Output sample:

On completion, the script prints overall metrics and timing information over the inference

session

Average over 100 runs is 1.44041 ms (host walltime is 1.56217 ms, 99% percentile time is 1.52326).
Average over 100 runs is 1.43143 ms (host walltime is 1.54826 ms, 99% percentile time is 1.50819).
Average over 100 runs is 1.44583 ms (host walltime is 1.56766 ms, 99% percentile time is 1.54211).
Average over 100 runs is 1.43773 ms (host walltime is 1.55612 ms, 99% percentile time is 1.53363).
Average over 100 runs is 1.44332 ms (host walltime is 1.55968 ms, 99% percentile time is 1.51658).
Average over 100 runs is 1.43861 ms (host walltime is 1.56039 ms, 99% percentile time is 1.50253).
Average over 100 runs is 1.43901 ms (host walltime is 1.56038 ms, 99% percentile time is 1.55898).
Average over 100 runs is 1.43517 ms (host walltime is 1.55967 ms, 99% percentile time is 1.51555).
Average over 100 runs is 1.45124 ms (host walltime is 1.57128 ms, 99% percentile time is 1.57366).
Average over 100 runs is 1.4332 ms (host walltime is 1.55241 ms, 99% percentile time is 1.51955).
Average over 100 runs is 1.43537 ms (host walltime is 1.55512 ms, 99% percentile time is 1.50966).

• Throughput (
imgs

sec
) = (

𝐵𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒

𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝑚𝑠)
) ∗ 1000 = (

1

1.43537
) ∗ 1000 = 697

• Latency (msec): 1.43537

Description of files and parameters used for development:

 Description

Script: trtexec.cpp Nvidia sample code showing the
optimized inference using
TensorRT C++ API

TensorFlow Frozen Graph: chexnet_frozen_graph_154177
7429.pb

existing TensorFlow model

TensorFlow UFF file: chexnet_frozen_graph_154177
7429.uff

existing TensorFlow model
converted to uff format

Input tensor name: “input_tensor” Input tensor name

Input tensor dimension
(NCHW):

(3,256,256) input tensor dimensions for UFF
parser

Output tensor name: “chexnet_sigmoid_tensor” Output tensor name for
inference

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#image-class-output

30 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425 | Document ID

5 Results

5.1 CheXNet Inference - Native TensorFlow FP32fp32 with CPU Only

Benchmarks ran with batch sizes 1-32 using native TensorFlow FP32fp32 with CPU-Only
(AMD EPYC 7551 32-Core Processor). Tests conducted using the docker image
TensorFlow:1.10.0-py3

Figure 10: CheXNet Inference - Native TensorFlow FP32 with CPU-Only. AMD EPYC 7551 32-Core

Command line to execute the benchmark:

python3 tensorrt_chest.py

--savedmodel_dir=/home/dell/chest-x-ray/chexnet_saved_model/1541777429/ \

--image_file=image.jpg \

--native \

--output_dir=/home/dell/chest-x-ray/output_tensorrt_chest_only_cpu/ \

--batch_size=1

Docker image for TensorFlow-CPU Only: tensorflow/tensorflow:1.10.0-py3

31 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425

Where: --native: Benchmark model with it's native precision FP32 and without TensorRT™.

Script Output sample:

==========================

network: native_frozen_graph.pb, batchsize 1, steps 100

 fps median: 9.2, mean: 9.1, uncertainty: 0.1, jitter: 0.3

 latency median: 0.10912, mean: 0.11459, 99th_p: 0.23157, 99th_uncertainty: 0.18079

==========================

• Throughput (images/sec): ~9

• Latency (sec): 0.11459*1000 = ~115

5.2 CheXNet Inference - Native TensorFlow fp32 with GPU

Benchmarks ran with batch sizes 1-32 using native TensorFlow FP32 GPU without
TensorRT™. We ran the benchmarks within the docker image
nvcr.io/nvidia/tensorflow:18.10-py3, which supports TensorFlow with GPU support.

Figure 11. CheXNet Inference - Native TensorFlow FP32 with GPU

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#image-class-output

32 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425 | Document ID

Command line to execute the benchmark:

python3 tensorrt_chest.py

--savedmodel_dir=/home/dell/chest-x-ray/chexnet_saved_model/1541777429/ \

--image_file=image.jpg \

--native \

--output_dir=/home/dell/chest-x-ray/output_tensorrt_chexnet_1541777429/

--batch_size=1

Docker image for TensorFlow-GPU: nvcr.io/nvidia/tensorflow:18.10-py3

Where: --native: Benchmark model with it's native precision FP32 and without TensorRT™.

Script Output sample:

==========================

network: native_frozen_graph.pb, batchsize 1, steps 100

 fps median: 141.8, mean: 142.1, uncertainty: 0.3, jitter: 2.3

 latency median: 0.00705, mean: 0.00704, 99th_p: 0.00740, 99th_uncertainty: 0.00010

==========================

• Throughput (images/sec): ~142

• Latency (sec): 0.00704*1000 = ~7

5.3 CheXNet Inference –TF-TRT 5.0 Integration in INT8int8 Precision

Mode

Benchmarks ran with batch sizes 1-32 using native TensorFlow FP32fp32 TensorRT™. We
ran the benchmarks within the docker image nvcr.io/nvidia/tensorflow:18.10-py3, which
supports TensorFlow with GPU as well as TensorRT™ 5.0.

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#image-class-output

33 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425

Figure 12. CheXNet Inference –TF-TRT 5.0 Integration in INT8int8 Precision Mode

Command line to execute the benchmark:

python3 tensorrt_chest.py

--savedmodel_dir=/home/dell/chest-x-ray/chexnet_saved_model/1541777429/ \

--image_file=image.jpg \

--int8 \

--output_dir=/home/dell/chest-x-ray/output_tensorrt_chexnet_1541777429/

--batch_size=1

Docker image for TensorFlow-GPU: nvcr.io/nvidia/tensorflow:18.10-py3

Where: --int8: Benchmark the model with TensorRT™ using int8 precision
Script Output sample:

==========================

network: tftrt_int8_frozen_graph.pb, batchsize 1, steps 100

 fps median: 282.2, mean: 315.2, uncertainty: 6.8, jitter: 5.6

 latency median: 0.00354, mean: 0.00329, 99th_p: 0.00371, 99th_uncertainty: 0.00008

==========================

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#image-class-output

34 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425 | Document ID

• Throughput (images/sec): ~315

• Latency (sec): 0.00704*1000 = ~3

5.4 Benchmarking CheXNet Model Inference with Official ResnetV2_50

To benchmark our custom model CheXNet with a well-known model, we replicated the same

inference tests TF-TRT-INT8 Integration using the official pre-trained version of the ResNet-

50 v2 model (fp32, Accuracy 76.47%) [6]. The model was downloaded as SavedModel format

produced with Estimator during the training in FP32 precision mode, this version also accepts

input tensors with channel first format (CHW). See the TensorFlow performance guide for

more details[18].

Figure 13. Throughput CheXNet TF-TRT-INT8int8 versus ResnetV2_50 TF-TRT-INT8int8 Inference

In the Figure 13 we can appreciate that our custom model CheXNet and the official model

ResnetV2_50 performed closely when running optimized inferences with TF-TRT INT8int8

integration. It is a good practice to benchmark our custom models with official models, so we

can decide whether going back and retrain it or move forward with the optimized model.

We see also in Figure 14 that the latency of both models was similar too across

different batch sizes. Lower latency is better, mainly for critical real time applications where

milliseconds matter.

https://www.tensorflow.org/performance/performance_guide#data_formats

35 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425

 Figure 14. Latency CheXNet TF-TRT-INT8int8 versus ResnetV2_50 TF-TRT-INT8int8

Inference

5.5 CheXNet Inference - Native TensorFlow FP32fp32 with GPU versus

TF-TRT 5.0 INT8
After confirming that our custom model performed well compared to the optimized inference
TF-TRT of an official model, we proceeded in this section to compare the CheXNet inference
model itself in different configurations. In the Error! Reference source not found. we have
gathered the previous results obtained when we ran the inference in three modes:

a) Native TensorFlow fpFP32-CPU Only (CPU)
b) Native TensorFlow fpFP32-GPU (GPU)
c) TF-TRT Integration in INT8int8 (GPU)

 Figure 15 shows the CheXNet inference throughput (img/sec) ran in different

configuration modes and batch sizes. As we can appreciate the TF-TRT_INT8 precision

mode outperformed the two other configurations consistently across several batch sizes. In

the next sections we analyzed in detail this performance improvement.

36 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425 | Document ID

 Figure 15. Throughput Native TensorFlow FP32 versus TF-TRT 5.0 Integration INT8

Figure 16 shows the latency curve for each inference configuration, the lower is the latency
better is the performance, and in this case TF-TRT-INT8 implementation reached the lowest
inference time for all the batch sizes.

37 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425

Figure 16. Latency Native TensorFlow FP32fp32 (CPU / GPU) versus TF-TRT 5.0 Integration

INT8int8

38 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425 | Document ID

See the Table 5 with the consolidated results of the CheXNet Inference in Native TensorFlow
FP32 mode versus TF-TRT 5.0 Integration INT8int8, in terms of throughput and latency. We
observed the huge different when running the test in different configurations. For speedup
factors see the next tables.

Table 5. Throughput and Latency Native TensorFlow FP32 versus TF-TRT 5.0 Integration INT8

Batch
Size

TF-TRT INT8 Native TensorFlow FP32-GPU Native TensorFlow FP32- CPU Only
Throughput

(img/sec)
Latency

(ms)
Throughput

(img/sec)
Latency

(ms)
Throughput

(img/sec)
Latency

(ms)

1 315 3 142 7 9 115

2 544 4 198 10 11 195

4 901 5 251 16 14 292

8 1281 7 284 28 19 431

16 1456 11 307 55 22 755

32 1549 21 329 98 25 1356

In Table 6 we have calculated the speedup factor of TF-TRT 5.0 Integration INT8 versus
Native TensorFlow FP32-GPU. The server PowerEdge R7425-T4 performed in average up
to 4X faster than native TensorFlow-GPU when accelerating the workloads with TF-TRT
Integration.

Table 6. PowerEdge R7425-T4 Speedup Factor with TF-TRT versus native TensorFlow-GPU

Batch Size
TF-TRT INT8

Native TensorFlow FP32-
GPU Speedup Factor X

Throughput (img/sec) Throughput (img/sec)

1 315 142 2X

2 544 198 3X

4 901 251 4X

8 1281 284 5X

16 1456 307 5X

32 1549 329 5X

Average 4X

In Table 7 we have calculated the speedup factor of TF-TRT 5.0 Integration INT8 versus

Native TensorFlow FP32-CPU Only. The server PowerEdge R7425-T4 performed in average

up to 58X faster than native TensorFlow-CPU Only when accelerating the workloads with

TF-TRT Integration

Table 7. PowerEdge R7425-T4 Speedup Factor with TF-TRT versus native TensorFlow-CPU Only

Batch Size
TF-TRT INT8

Native TensorFlow FP32-
CPU Only Speedup Factor X

Throughput (img/sec) Throughput (img/sec)

1 315 9 35X

2 544 11 51X

4 901 14 63X

8 1281 19 67X

16 1456 22 66X

32 1549 25 63X

Average 58X

39 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425

See Figure 17 the R7425-T4-16GB speedup Factor with TF-TRT versus Native

TensorFlow

Figure 17: Speedup Factor with TF-TRT versus Native TensorFlow

5.6 CheXNet Inference - TF-TRT 5.0 Integration vs Native TRT5 C++

API

We wanted to explore further and optimized the CheXNet inference using the TensorRT C++

API with the sample tool trtexec provided by Nvidia. This sample is very useful for generating

serialized engines and can be used as a template to work with our custom models.

40 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425 | Document ID

Figure 18:Throughput TF-TRT 5.0 Integration vs Native TRT5 C++ API

Figure 19: Latency TF-TRT 5.0 Integration vs Native TRT5 C++ API

41 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425

Command line to execute the Native TensorRT™ C++ API benchmark:

./trtexec

 --uff=/home/dell/chest-x-ray/output_convert_to_uff/chexnet_frozen_graph_1541777429.uff

 --output= chexnet_sigmoid_tensor

 --uffInput=input_tensor,3,256,256

 --iterations=40 --int8 --batch=1

 --device=0

 --avgRuns=100

Where:
--uff=: UFF file location

--output: output tensor name

--uffInput: Input tensor name and its dimensions for UFF parser (in CHW format)

--iterations: Run N iterations

--int8: Run in int8 precision mode

--batch: Set batch size

--device: Set specific cuda device to N

--avgRuns: Set avgRuns to N - perf is measured as an average of avgRuns

Script Output sample:
Average over 100 runs is 1.4675 ms (host walltime is 1.57855 ms, 99% percentile time is 1.54624).
Average over 100 runs is 1.48153 ms (host walltime is 1.59364 ms, 99% percentile time is 1.5831).
Average over 100 runs is 1.4899 ms (host walltime is 1.6021 ms, 99% percentile time is 1.58061).
Average over 100 runs is 1.47487 ms (host walltime is 1.58658 ms, 99% percentile time is 1.56506).
Average over 100 runs is 1.47848 ms (host walltime is 1.59125 ms, 99% percentile time is 1.56266).
Average over 100 runs is 1.48204 ms (host walltime is 1.59392 ms, 99% percentile time is 1.57078).
Average over 100 runs is 1.48219 ms (host walltime is 1.59398 ms, 99% percentile time is 1.5673).

• Throughput (
imgs

sec
) = (

𝐵𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒

𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝑚𝑠)
) ∗ 1000 = (

1

1.48219
) ∗ 1000 = 675

• Latency (msec): 1.48219

In Figure 18 we observed that CheXNet inference optimized with Native TRT5 C++ API
performed ~2X faster than with TF-TRT Integration API optimization, this factor was exposed
only with batch size 1 and 2; the outperform of TRT5 C++ API over TF-TRT API gradually
decreased in the way the batch size increases. We are still working with the Nvidia Developer
group to find out what should be the performance of both APIs implementations.

Further, in the Figure 19 we showed the latency curves of TRT5 C++ API versus TF-TRT
API, lower latency is better, as shown by the TRT5 C++ API.

5.7 CheXNet Inference – Throughput with TensorRT™ at ~7ms Latency

Target

The ~7ms Latency Target is critical, mainly for real time applications. In this section we have
selected all those configurations that performed at that latency target, see below Table 8 with
the selected tests we have included the inference TensorFlow-FP32-CPU Only as reference
since its latency was ~115ms.

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#image-class-output

42 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425 | Document ID

Table 8. Throughput with TensorRT™ at ~7ms Latency Target

Inference Mode Batch Size
Thoughput
(img/sec)

Latency (ms)

TensorFlow-FP32-CPU Only 1 9 114.9*

TensorFlow-FP32-GPU 1 142 7.1

TF-TRT5 Integration FP32 2 272 7.6

TF-TRT5 Integration FP16 4 656 6.3

TF-TRT5 Integration INT8 8 1281 6.6

TensorRT™ C++ API INT8 8 1371 5.8

Figure 20. Throughput with TensorRT™ at ~7ms Latency Target

From Table 8 and Figure 20 above, we can observe:

• Native TensorFlow FP32 without TensorRT™ (batch size=1) inference ran on CPU-Only

(AMD EPYC 7551 32-Core Processor) performed 9 img/sec with the minimal latency of ~115

ms. It is a referenceable measurement that shows the different using CPU Only based systems

versus GPU based systems.

• The same Native TensorFlow FP32 without TensorRT™ (batch size=1) inference ran on

GPU performed 142 img/sec at ~7ms latency target. It means ~16X faster than CPU Only (142

vs 9). Now let us use this configuration as a landmark to benchmark the optimized inferences

with TensorRT™.

43 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425

• Using TF-TRT-FP32 with TensorRT™ (batch size=2) instead of Native TensorFlow FP32

without TensorRT™, improved throughput by ~92% (272 vs 142) at ~7ms latency target.

• Using TF-TRT-FP16 with TensorRT™ (batch size=4) improved throughput by ~362% (656 vs

142). Also, it decreases latency by ~11%, making it in 6.3ms versus 7.1ms.

• Now, when using TF-TRT-INT8 (batch size=8) we can appreciate a huge improvement in terms

of throughput keeping the ~7ms latency target, we observed a speedup of ~802% (from 1281

vs 142). This is a significant boost in performance.

• On the other hand, comparing TF-TRT-INT8 Integration versus Native TensorRT-INT8 C++

API (batch size=8) we found that there was a slightly improvement of 7% (1371 vs 1281).

It is important to highlight that there are other implementation factors that could affect the end to

end inference’s speed when deploying these models into production, so model optimization is just

one of those factors and we have demonstrated here how to do it.

44 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425 | Document ID

6 Conclusion and Future Work

• Dell EMC offers an excellent solution with its PowerEdge R7425 server based on Nvidia T4

GPU to accelerate Artificial Intelligent workloads, including high-performance Deep learning

inference boosted with the Nvidia TensorRT™ library.

• The Native TensorFlow fp32 (without TensorRT™) inference on PowerEdge R7425-T4-16GB

server speedup ~16X faster than CPU Only (AMD EPYC 7551 32-Core Processor). It is a

referenceable measurement that shows the benefit of using GPU based systems versus CPU

only based systems.

• When accelerating the custom model CheXNet with TensorFlow-TensorRT Integration, the

PowerEdge R7425-T4-16GB server performed on average up to 58X faster than native

TensorFlow-CPU Only.

• When accelerating the custom model CheXNet with TensorFlow-TensorRT Integration, the

PowerEdge R7425-T4-16GB server performed on average up to 4X faster than native

TensorFlow-GPU.

• The CheXNet inference using TF-TRT-INT8 precision mode speedup of ~802% versus Native

TensorFlow FP32 on GPU, at a ~7ms latency target.

• CheXNet inference optimized with Native TRT5 C++ API performed ~2X faster than with TF-

TRT Integration API optimization, this factor was exposed only with batch size 1 and 2; the

outperform of TRT5 C++ API over TF-TRT API gradually decreased in the way the batch size

was bigger. We are still working with the Nvidia Developer group to find how out what should be

the performance of both APIs implementations.

• Optimized models with Nvidia TensorRT™ 5 can be deployed in several environments

depending of the target application such as scale-out data centers, embedded systems, or

automotive product platforms. There are other implementation factors that could affect the end

to end inference’s speed when deploying the optimized models into these production

environments, so model optimization is just one of factors and we have demonstrated in these

projects some methods on how to approach it.

45 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425

A Troubleshooting

In this section we describe the main issues we faced implementing the custom model CheXNet with

Nvidia TensorRT™ and how we solved these:

• TensorRT™ installation. For TF-TRT integration, recommended to work with the docker image

nvcr.io/nvidia/tensorflow:<tag version>-py3. For Native TRT, recommended to work with the

docker image nvcr.io/nvidia/TensorRT™:<tag version>-py3.

• Python path to TF models. If using TensorFlow official model as based model, and working

within the docker environment, make sure to include the python path to official models once

inside the docker: export PYTHONPATH="$PYTHONPATH:/home/models/“.

• ImageNet TFRecords. If using TensorFlow official model as based model, make sure that

there are not missing tfrecords in the dataset. If this is the case, update the file

/home/models/official/resnet/imagenet_main.py.

• Non-supported Layer Error. Before building the custom model, double check that the selected

framework supports operations by TensorRT™; otherwise, the network subgraph conversion will

fail. In our case, we started with Keras-TensorFlow backend framework and the TensorRT™

script failed converting most of the nodes. Then, we switched the model to TensorFlow

framework version and resolved the issues. See Supported operations for TF-TRT Integration

[13].

• Unimplemented: Not supported constant type at Const_1/Const_5 Error. Error related with

the same issue above. By the time the tests were conducted, it looks like some Keras layers

were not supported by TF-TRT Integration.

• Not conversion function registered for layer IteratortoGetNet Error. This error was thrown

by the system because the input function was not configurated in the model. When building the

custom model, make sure to define the input_function properly, and when exporting the model

with export_savedmodel make sure assure to configure the input_receiver_fn for serving as

input_receiver_fn=export.build_tensor_serving_input_receiver_fn(shape,

batch_size=FLAGS.batch_size)

• Cuda Error in allocate:2. Subgraph conversion error for subgraph_index 1 due to:

“Internal: Engine building failure” SKIPPING (437 nodes)”. Sometimes this error is related

to the GPU memory capacity; so, try to run the tests with lower batch size and one precision

mode at the time.

• Tensor batch_normalization/beta is not found in resnet_v2_imagenet_checkpoint error.

In our case we built the custom model CheXNet using transfer learning and the TensorFlow

official pre-trained ResnetV2_50 checkpoints downloaded from its website. This error was

produced because by the time the model was trained we didn’t place our variables in the same

46 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425 | Document ID

variable scope as it was in the restored checkpoints. Solution: we customized official TensorFlow

base script resnet_model.py and placed the variables in the same variable scope name

“resnet_model” as it was in the official checkpoints downloaded previously. So, we added this

code line in the model function with tf.variable_scope("resnet_model"):. For more information

see What's the difference of name scope and a variable scope in TensorFlow [8].

• TensorFlow Serving for Inference. When building and training the custom model, save the

trained model with TensorFlow Serving for Inference. To do so, export the trained model as

SavedModel with the Estimator function export_savedmodel. Also include the PREDICT

Estimator’s method to enable the inferences mode. For predict mode, it is required to provide

the export_output argument to the EstimatorSpec, it defines signatures for tensorflow serving

when Serving a SavedModel. Specify the inputs and outputs node manes, which will be needed

later on by the TensorRT™ library. See Serving Pre-Modeled and Custom TensorFlow Estimator

with Tensorflow Serving [10].

• ValueError: Negative dimension size caused by subtracting 8 from 7 for

'import/resnet_model/average_pooling2d/AvgPool' (op: 'AvgPool') with input shapes:

[128,7,7,2048]. Problem solved updating the base model script resnet_model.py , in the model

function section, changing from padding=‘VALID’ to padding='SAME’ : inputs =

tf.layers.average_pooling2d(inputs=inputs, pool_size=pool_size, strides=1, padding='SAME’,

data_format=data_format)

47 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425

B References

[1] P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. Langlotz, K.

Shpanskaya et al., “CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with

Deep Learning,” arXiv preprint arXiv:1711.05225, 2017 [Online]. Available:

https://arxiv.org/abs/1711.05225

[2] Nvidia News Center, ”NVIDIA AI Inference Performance Milestones: Delivering Leading

Throughput, Latency and Efficiency” [Online]. Available: https://news.developer.nvidia.com/nvidia-

ai-inference-performance-milestones-delivering-leading-throughput-latency-and-efficiency/

 [3] TensorFlow Guide “tf.estimator.Estimator, Estimator”[Online]. Available:

https://www.tensorflow.org/guide/estimators

[4] TensorFlow Guide, “Creating Custom Estimators” [Online]. Available:

https://www.tensorflow.org/guide/custom_estimators

[5] “Multithreaded predictions with TensorFlow Estimators.” [Online]. Available:

https://medium.com/element-ai-research-lab/multithreaded-predictions-with-tensorflow-estimators-

eb041861da07

[6] TensorFlow Official Models, “ResNet in TensorFlow“ [Online]. Available:

https://github.com/tensorflow/models/tree/master/official/resnet

[7] TensorFlow Guide, “Checkpoints. Restoring your model”. [Online]. Available:

https://www.tensorflow.org/guide/checkpoints#checkpointing_frequency

[8] Stackoverflow, “Variables. What's the difference of name scope and a variable scope in

tensorflow?” [Online]. Available: https://stackoverflow.com/questions/35919020/whats-the-

difference-of-name-scope-and-a-variable-scope-in-tensorflow . TensorFlow Guide “Sharing

variables” [Online]. Available: https://www.tensorflow.org/guide/variables#sharing_variables

[9] TensorFlow API , “Exports inference graph as a SavedModel” . [Online]. Available:

https://www.tensorflow.org/api_docs/python/tf/estimator/Estimator#export_savedmodel

[10] Medium, “Serving Pre-Modeled and Custom Tensorflow Estimator with Tensorflow Serving“.

[Online]. Available: https://medium.com/@yuu.ishikawa/serving-pre-modeled-and-custom-

tensorflow-estimator-with-tensorflow-serving-12833b4be421

[11] Nvidia, “Accelerating Inference In TensorFlow With TensorRT™ User Guide”. [Online].

Available: https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html

[12] Nvidia, “Using TF-TRT. Accelerating Inference In TensorFlow With TensorRT™ User Guide” .

[Online]. Available: https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#usingtftrt

[13] Nvidia, “Accelerating Inference In TensorFlow With TensorRT™ User Guide”, “Supported

Ops” [Online]. Available: https://docs.nvidia.com/deeplearning/dgx/integrate-tf-

trt/index.html#support-ops . “Working With Deep Learning Frameworks” [Online].Available:

https://docs.nvidia.com/deeplearning/sdk/TensorRT™-developer-guide/index.html#build_model

https://arxiv.org/abs/1711.05225
https://news.developer.nvidia.com/nvidia-ai-inference-performance-milestones-delivering-leading-throughput-latency-and-efficiency/
https://news.developer.nvidia.com/nvidia-ai-inference-performance-milestones-delivering-leading-throughput-latency-and-efficiency/
https://www.tensorflow.org/guide/estimators
https://www.tensorflow.org/guide/custom_estimators
https://medium.com/element-ai-research-lab/multithreaded-predictions-with-tensorflow-estimators-eb041861da07
https://medium.com/element-ai-research-lab/multithreaded-predictions-with-tensorflow-estimators-eb041861da07
https://github.com/tensorflow/models/tree/master/official/resnet
https://www.tensorflow.org/guide/checkpoints#checkpointing_frequency
https://stackoverflow.com/questions/35919020/whats-the-difference-of-name-scope-and-a-variable-scope-in-tensorflow
https://stackoverflow.com/questions/35919020/whats-the-difference-of-name-scope-and-a-variable-scope-in-tensorflow
https://stackoverflow.com/questions/35919020/whats-the-difference-of-name-scope-and-a-variable-scope-in-tensorflow
https://stackoverflow.com/questions/35919020/whats-the-difference-of-name-scope-and-a-variable-scope-in-tensorflow
https://www.tensorflow.org/guide/variables#sharing_variables
https://www.tensorflow.org/api_docs/python/tf/estimator/Estimator#export_savedmodel
https://medium.com/@yuu.ishikawa/serving-pre-modeled-and-custom-tensorflow-estimator-with-tensorflow-serving-12833b4be421
https://medium.com/@yuu.ishikawa/serving-pre-modeled-and-custom-tensorflow-estimator-with-tensorflow-serving-12833b4be421
https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html
https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html
https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#usingtftrt
https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#support-ops
https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#support-ops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html

48 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425 | Document ID

[14] TensorFlow Guide, “A Tool Developer's Guide to TensorFlow Model Files”. [Online].

Available: https://www.tensorflow.org/guide/extend/model_files#freezing

[15] Nvidia, “Working with TensorRT™ Using The C++ API, TensorRT™ Developer Guide”.

[Online]. Available: https://docs.nvidia.com/deeplearning/sdk/TensorRT™-developer-

guide/index.html#c_topics

[16] Nvidia, “Importing a TensorFlow Model Using The C++ UFF Parser API”. [Online]. Available:

https://docs.nvidia.com/deeplearning/sdk/TensorRT™-developer-guide/index.html#import_tf_c

[17] Nvidia, “Serializing A Model In C++. [Online]”. Available:

https://docs.nvidia.com/deeplearning/sdk/TensorRT™-developer-guide/index.html#serial_model_c

[18] TensorFlow Guide , “TensorFlow Data Formats”. [Online]. Available:

https://www.tensorflow.org/guide/performance/overview#data_formats

https://www.tensorflow.org/guide/extend/model_files#freezing
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#c_topics
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#c_topics
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import_tf_c
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#serial_model_c
https://www.tensorflow.org/guide/performance/overview#data_formats

49 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425

C Appendix - PowerEdge R7425 – GPU Features

Server R7425-T4

CPU

 CPU model AMD EPYC 7551
32-Core Processor

GPU

 GPU model Tesla T4-16GB

 GPU Architecture NVIDIA Turing

 Attached GPUs 6

Features per GPU

 Driver Version 410.79

 Compute Capability 7.5

Multiprocessor

 Multiprocessors (MP) 40

 CUDA Cores/MP 64

 CUDA Cores 2,560

 Clock Rate (GHz) 1.59

Memory

 Global Memory Bandwidth (GB/s) 300

 Global Memory Size (GB) 16

 Constant Memory Size (KB) 65

 L2 Cache Size (MB) 4

Bus Interface PCIe

 Generation 3

 Link Width 16

Peak Performance Floating Point Operations (FLOP) and
TOPS

 Single-Precision - FP32 (Teraflop/s) 8.1

 Mixed Precision - FP16/FP32
(TeraFLOP/s)

65

