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Executive summary 

The Healthcare industry has been one of the leading-edge industries to adopt techniques 

related to machine learning and deep learning to improve diagnosis, provide higher level of 

accuracies in term of detection and reduce overall cost related to mis-diagnosis. Deep 

Learning consists of two phases: training and inference. Training involves learning a neural 

network model from a given training dataset over a certain number of training iterations and 

loss function. The output of this phase, the learned model, is then used in the inference phase 

to speculate on new data. For the training phase, we leveraged the CheXNet model 

developed by Stanford University ML Group to detect pneumonia which outperformed a 

panel of radiologists [1]. We used National Institutes of Health (NIH) Chest X-ray dataset 

which consist of 112,120 images labeled with 14 different thoracic diseases including 

pneumonia. All images are labeled with either single or multiple pathologies, making it a 

multi-label classification problem. Images in the Chest X-ray dataset are 3 channel (RGB) 

with dimensions 1024x1024. 

We trained CheXNet model on (NIH) Chest X-ray dataset using Dell EMC PowerEdge C4140 

with NVIDIA V100-SXM2 GPU server. For inference we used Nvidia TensorRT™, a high-

performance deep learning inference optimizer and runtime that delivers low latency and 

high-throughput. In this project, we have used the CheXNet model as reference to train a 

custom model from scratch and classify 14 different thoracic deceases, and the TensorRT™ 

tool to optimize the model and accelerate its inference. 

The objective is to show how PowerEdge R7425 can be used as a scale-up inferencing 

server to run production-level deep learning inference workloads. Here we will show how to 

train a CheXNet model and run optimized inference with Nvidia TensorRT™ on Dell EMC 

PowerEdge R7425 server.  

The topics explained here are presented from development perspective, explaining the 

different TensorRT™ implementation tools at the coding level to optimize the inference 

CheXNet model. During the tests, we ran inference workloads on PowerEdge R7425 with 

several configurations. TensorFlow was used as the primary framework to train the model 

and run the inferences, the performance was measured in terms of throughput (images/sec) 

and latency (milliseconds).
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1 Background & Definitions 
Deploying AI applications into production sometimes requires high throughput at the lowest 

latency. The models generally are trained in 32-bit floating point (fp32) precision mode but 

need to be deployed for inference at lower precision mode without losing significant accuracy. 

Using lower bit precision like 8-bit integer (int8) gives higher throughput because of low 

memory requirements. As a solution, Nvidia has developed the TensorRT™ Inference 

optimization tool, it minimizes loss of accuracy when quantizing trained model weights to int8 

and during int8 computation of activations it generates inference graphs with optimal scaling 

factor from fp32 to int8. We will walk through the inference optimization process with a custom 

model, covering the key components involved in this project and described in the sections 

below. See                             Figure 1 

 

                            Figure 1:Inference Implementation 
 

Deep learning 

Deep Learning (DL) is a subfield of Artificial Intelligent and Machine Learning (ML), based on 

methods to learn data representations; deep learning architectures like convolutional neural 

networks (CNN) and Recurrent Neural Networks (RNN) among others have been 

successfully applied to applications such as computer vision, speech recognition, and 

machine language translation producing results comparable to human experts. 

TensorFlow 

Nvidia TensorRT

CheXNet Model

Dell EMC PowerEdge

R7425
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TensorFlow™ is an open source software library for high performance numerical 

computation. Its flexible architecture allows easy deployment of computation across a variety 

of platforms (CPUs, GPUs, TPUs), and from desktops to clusters of servers to mobile and 

edge devices. Originally developed by researchers and engineers from the Google Brain 

team within Google’s AI organization, it comes with strong support for machine learning and 

deep learning libraries and the flexible numerical computation core is used across many other 

scientific domains. 

Transfer Learning  

Transfer Learning is a technique that shortcuts the training process by taking portion of a 

model and reusing it in a new neural model. The pre-trained model is used to initialize a 

training process and start from there. Transfer Learning is useful when training on small 

datasets.  

TensorRT™ 

Nvidia TensorRT™ is a high-performance deep learning inference and run-time optimizer 

delivering low latency and high throughput for production model deployment. TensorRT™ 

has been successfully used in a wide range of applications including autonomous vehicles, 

robotics, video analytics, automatic speech recognition among others. TensorRT™ supports 

Turing Tensor Cores and expands the set of neural network optimizations for multi-precision 

workloads. With the TensorRT™ 5, DL applications can be optimized and calibrated for lower 

precision with high throughout and accuracy for production deployment.  

 

                   Figure 2:TensorRT™ scheme. Source: Nvidia 
 

In                    Figure 2 we present the general scheme of how TensorRT™ works. TensorRT™ 

optimizes an already trained neural network by combining layers, fusing tensors, and 

optimizing kernel selection for improved latency, throughput, power efficiency and memory 

consumption. It also optimizes the network and generate runtime engines in lower precision 

to increase performance. 

CheXNet 
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CheXNet is a Deep Learning based model for Radiologist-Level Pneumonia Detection on 

Chest X-Rays, developed by the Stanford University ML Group and trained on the Chest X-

Ray dataset. For the pneumonia detection, the ML group have labeled the images that have 

pneumonia as the positive examples and labeled all other images with other pathologies as 

negative examples. 

 

NIH Chest X-ray Dataset 

The National Institutes of Health released the NIH Chest X-ray Dataset, which includes 
112,120 X-ray images from 30,805 unique patients, and labeled with 14 different thoracic 
deceases through the application of Natural Language Processing algorithm to text-mine 
disease classification from the original radiological reports.  

 

1.1 Dell EMC PowerEdge R7425 
Dell EMC PowerEdge R7425 server supports the latest GPU accelerators to speed results 

in data analytics and AI applications. It enables fast workload performance on more cores 

for cutting edge applications such Artificial Intelligence (AI), High Performance Computing 

(HPC), and scale up software defined deployments. See                       Figure 3 

 

                      Figure 3:DELL EMC PowerEdge R7425 

The Dell™ PowerEdge™ R7425 is Dell EMC’s 2-socket, 2U rack server designed to run 

complex workloads using highly scalable memory, I/O, and network options The systems 

feature AMD high performance processors, named AMD SP3, which support up to 32 AMD 

“Zen” x86 cores (AMD Naples Zeppelin SP3), up to 16 DIMMs, PCI Express® (PCIe) 3.0 

enabled expansion slots, and a choice of OCP technologies. 

The PowerEdge R7425 is a general-purpose platform capable of handling demanding 

workloads and applications, such as VDI cloud client computing, database/in-line analytics, 

scale up software defined environments, and high-performance computing (HPC).  

The PowerEdge R7425 adds extraordinary storage capacity options, making it well-suited 

for data intensive applications that require greater storage, while not sacrificing I/O 

performance.  
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2 Test Methodology 
In this project we ran image classification inference for the custom model CheXNet on the 

PowerEdge R7425 server in different precision modes and software configurations: with 

TensorFlow-CPU support only, TensorFlow-GPU support, TensorFlow with TensorRT™, 

and native TensorRT™. Using different settings, we were able to compare the throughput 

and latency and expose the capacity of PowerEdge R7425 server when running inference 

with Nvidia TensorRT™.  See Figure 4 

 

 

Figure 4:Test Methodology for Inference 

2.1 Test Design 
The workflow pipeline started with the training of the custom model from scratch until running 
the optimized inference graphs in multi-precision modes and configurations. To do so, we 
followed the below the steps: 

a) Building the CheXNet model with TensorFlow, transfer learning & estimator. 
b) Training the Model for Inference 
c) Saving Trained Model with TensorFlow Serving for Inference 
d) Freezing the Saved Model 
e) Running the Inference with Native TensorFlow CPU Only 
f) Running the Inference with Native TensorFlow GPU Support   
g) Converting the Custom Model to Run Inference with TensorRT™ 
h) Running Inference using TensorFlow-TensorRT (TF-TRT) Integration 
i) Running Inference using TensorRT™ C++ API 
j) Comparing Inferences in multi-mode configurations 
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Table 1 shows the summary of the project design below: 
 

Table 1:Project Design Summary 

Element Description 

Use Case: Optimized Inference Image Classification with 
TensorFlow and TensorRT™ 

Models: Custom Model CheXNet and base model ResnetV2_50 

Framework: TensorFlow 1.0 

TensorRT™ 
version: 

TensorRT™ 5.0 

TensorRT™ 
implementations: 

TensorFlow-TensorRT Integration (TF-TRT) and 
TensorRT C++ API (TRT) 

Precision 
Modes: 

▪ Native TensorFlow FP32 – CPU Only 
▪ Native TensorFlow FP32 - GPU 
▪ TF-TRT-FP32 
▪ TF-TRT-FP16 
▪ TF-TRT-INT8 
▪ TRT-INT8 

Performance: Throughput (images per second) and the Latency (msec) 

Dataset: NIH Chest X-ray Dataset from the National Institutes of 
Health 

Samples code: TensorRT™ samples provided by Nvidia included on its 
container images, and adapted to run the optimized 
inference of the custom model 

Software stack 
configuration: 

Tests conducted using the docker container 
environment 

Server: Dell EMC PowerEdge R7425 
 

 

Table 2 lists the tests conducted to train the model, and inferences in different precision 
modes with the TensorRT™ implementations. The script samples can be found within the 
Nvidia container image. 
 

Table 2. Tests Conducted 

Model/Inference Mode TensorRT™ Implementation Test script 

Custom Model n/a chexnet.py 

Native TensorFlow CPU FP32 n/a tensorrt_chexnet.py 

Native TensorFlow GPU 

FP32 

n/a tensorrt_chexnet.py 

Integration TF-TRT5 FP32 TF-TRT Integration tensorrt_chexnet.py 

Integration TF-TRT5 FP16 TF-TRT Integration tensorrt_chexnet.py 

Integration TF-TRT5 INT8 TF-TRT Integration tensorrt_chexnet.py 

Native TRT5 INT8 – C++ API C++ API trtexec.cpp 
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2.2 Test Setup 
a) For the hardware, we selected PowerEdge 7425 which includes the Nvidia Tesla T4 GPU, the 

most advanced accelerator for AI inference workloads. According to Nvidia, T4’s new Turing 
Tensor cores accelerate int8 precision more than 2x faster than the previous generation low-
power offering [2]. 

b) For the framework and inference optimizer tools, we selected TensorFlow, TF-TRT integrated 
and TensorRT C++ API, since they have better technical support and a wide variety of pre-
trained models are readily available. 

c) Most of the tests were run in int8 precision mode, since it has significantly lower precision and 

dynamic range than fp32, as well as lower memory requirements; therefore, it allows higher 

throughput at lower latency. 

Table 3 shows the software stack configuration on PowerEdge R7425 

Table 3. OS and Software Stack Configuration 

Software  Version 

OS Ubuntu 16.04.5 LTS  

Kernel GNU/Linux 4.4.0-133-generic x86_64 

Nvidia-driver 410.79 

CUDA™ 10.0 

TensorFlow version 1.10 

TensorRT™ version 5.0 

Docker Image for TensorFlow CPU only tensorflow:1.10.0-py3 

Docker Image for TensorFlow GPU only nvcr.io/nvidia/tensorflow:18.10-py3 

Docker Image for TF-TRT integration nvcr.io/nvidia/tensorflow:18.10-py3 

Docker Image for TensorRT™ C++ API nvcr.io/nvidia/tensorrt:18.11-py3 

Script samples source Samples included within the docker images 

Test Date February 2019 
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3 Development Methodology 
In this section we explain the general instructions on how we trained the custom model 

CheXNet from scratch with TensorFlow framework using transfer Learning, and how the 

trained model was optimized then with TensorRT™ to run accelerated inferencing.  

3.1 Build a CheXNet Model with TensorFlow Framework 

The CheXNet model was developed using transfer Learning based on resnet_v2_50, it 

means we built the model using the TensorFlow official pre-trained resnetV2_50 checkpoints 

downloaded from its website. The model was trained with 14 output classes representing the 

thoracic deceases.  

In the next paragraphs and snippet codes we will explain the steps and the APIs used to 

build the model. Figure 5 shows the general workflow pipeline followed: 

 

Figure 5: Training workload of the custom model CheXNet 
 

Define the Classes: 

Below is listed the 14 distinct categories of thoracic diseases to be predicted for the multiclass 

classification model 

classes = ['Cardiomegaly',   

           'Emphysema',   
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           'Effussion',   

           'Hernia',   

           'Nodule',   

           'Pneumonia',   

           'Atelectasis',   

           'PT',   

           'Mass',   

           'Edema',   

           'Consolidation',   

           'Infiltration',   

           'Fibrosis',   

           'Pneumothorax']   

Build a Convolutional Neural Network using Estimators: 

Here we describe the building process of the CheXNet model with Transfer Learning using 

Custom Estimator.  We used the high-level TensorFlow API tf.estimator  and its class 

Estimator to build the model, it handles the high-level model training, evaluation, and 

inference of our model much easier than with the low-level TensorFlow APIs; it builds the 

graph for us and simplifies sharing the implementation of the model on a distributed multi-

server environment, among other advantages.[3]. 

There are pre-made estimators and custom estimators [4], in our case we used the last one 

since it allows to customize our model through the model_fn function. Also, we defined the 

input_fn function which provides batches for training, evaluation, and prediction. When the 

tf. estimator class is called, it returns an initialized estimator, that at the same time calls the. 

train, eval, and predict functions, handling graphs and sessions for us.  

See Figure 6 with the overview of the estimator. 

 
 

https://www.tensorflow.org/api_docs/python/tf/estimator
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Figure 6: Overview of the Estimator Interface [5] 

 

See the Table 4 with the Estimator’s methods and modes to call train, evaluate, or predict. The 

Estimator framework invokes the model function with the mode parameter set as follows: 

 

Table 4. Implement training, evaluation, and prediction. Source [4] 

 

Create the Estimator:  

Chexnet_classifier = tf.estimator.Estimator(   

    model_fn=model_function, model_dir=FLAGS.model_dir, config=run_config,   

    params={   

        'densenet_depth': FLAGS.densenet_depth,   

        'data_format': FLAGS.data_format,   

        'batch_size': FLAGS.batch_size,   

        'lr': lr})   

Define the model function for training using transfer Learning: 

https://medium.com/element-ai-research-lab/multithreaded-predictions-with-tensorflow-estimators-eb041861da07
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In this case, the architecture of an existing official network was used as base model 

(resnet_v2_50). The output of the model is defined by a layer with 14 neurons to predict each 

class. Since X-ray images can show more than one pathology, the model should also detect 

multiple classifications; to do so, we used the sigmoid activation function. See the snippet 

code below:   

def model_fn(features, labels, mode, params):   

    tf.summary.image('images', features, max_outputs=6)   

    model = resnet_model.imagenet_resnet_v2(50, _NUM_CLASSES, params['data_format'])   

    logits = model(features, mode == tf.estimator.ModeKeys.TRAIN)   

    probs = tf.sigmoid(logits)   

        predictions = tf.argmax(logits, axis=1)   

 

Restoring checkpoints from pre-trained model: 
The variable checkpoint file holds the os.path with the directory where the pretrained model 

with the ImageNet dataset ResNet-50_v2 (fp32) was stored, which was previously 

downloaded from the official TensorFlow repository to the local host [6]. The model was 

downloaded in the form of checkpoints produced by estimator during official training, then 

the estimator initializes the weights from there.  

if not tf.train.latest_checkpoint(FLAGS.model_dir):   

    vars_to_restore = [var for var in tf.global_variables() if 'dense' not in var.name]   

    checkpoint_file = os.path.join(FLAGS.pretrained_model_dir,   

                                   tf.train.latest_checkpoint(FLAGS.pretrained_model_dir))   

    latest_ckp = tf.train.latest_checkpoint(checkpoint_file)   

    tf.train.init_from_checkpoint(checkpoint_file,   

                                 {var.name.split(':')[0]: var for var in vars_to_restore}) 

 

Each subsequent call to the Estimator's train, evaluate, or predict method causes TensorFlow 

rebuilds the model. See the Figure 7 
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Figure 7. Subsequent calls to train(), evaluate(), or predict(). Source [7] 

 

Variable Scope: When building the custom model, it’s important to create it placing the 

variables under the same variable scope as the checkpoints; otherwise, the system will 

output errors similar to “tensorbatch_normalization/beta is not found in 

resnet_v2_imagenet_checkpoint”.  Variable scopes allow you to control variable reuse when 

calling functions which implicitly create and use variables. They also allow to name the 

variables in a hierarchical and understandable way [8]. 

 

For evaluation mode: 

if mode == tf.estimator.ModeKeys.EVAL:   

    for i in range(14):   

        metrics.update({classes[i]: tf.metrics.auc(labels[: i], probs[:, i])})   

   

return tf.estimator.EstimatorSpec(   

    mode=mode,   

    loss=loss,   

    predictions=predictions,   

    train_op=train_op,   

    eval_metric_ops=metrics)   

 

For predict mode: 
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We need to provide the export_output argument to the EstimatorSpec, it defines signatures 

for TensorFlow serving 

prediction = {   

    'categories': tf.argmax(logits, axis=1, name='categories'), 

    'scores': tf.sigmoid(logits, name='chexnet_sigmoid_tensor')   

    }   

   

if mode == tf.estimator.ModeKeys.PREDICT:   

# Return the predictions and the specification for serving a SavedModel   

return tf.estimator.EstimatorSpec(   

    mode=mode,   

    predictions=prediction,   

    export_outputs={   

        'predict': tf.estimator.export.PredictOutput(prediction)   

3.2 Train the model for Inference with Estimator 
Load training and evaluation data (part omitted) and Create the Custom CheXNet Estimator 

Chexnet_classifier = tf.estimator.Estimator(   

            model_fn=model_function, model_dir=FLAGS.model_dir, config=run_config,   

            params={   

                'densenet_depth': FLAGS.densenet_depth,   

                'data_format': FLAGS.data_format,   

                'batch_size': FLAGS.batch_size,   

                'lr': lr   

            })   

 

Train the model: 

Chexnet_classifier.train(   
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    input_fn=lambda: input_fn(   

    True, FLAGS.data_dir, FLAGS.batch_size, FLAGS.epochs_per_eval))  

 

Evaluate the model and print results: 

eval_results = chexnet_classifier.evaluate(   

     input_fn=lambda: input_fn(False, FLAGS.data_dir, FLAGS.batch_size))   

     lr = reduce_lr_hook.update_lr(eval_results['loss'])   

print (eval_results)  

3.3 Save the Trained Model with TensorFlow Serving for Inference 
Export the trained model as SavedModel with the Estimator function 

export_savedmodel 

Exports inference graph as a SavedModel into the given directory [9][10] 

def export_saved_model(chexnet_classifier):       

    shape=[_DEFAULT_IMAGE_SIZE, _DEFAULT_IMAGE_SIZE, _NUM_CHANNELS]   

    input_receiver_fn = export.build_tensor_serving_input_receiver_fn(shape,  

    batch_size=FLAGS.batch_size)    

    Chexnet_classifier.export_savedmodel(FLAGS.export_dir, input_receiver_fn)   

 

3.4 Freeze the Saved Model (optional) 
Convert Saved Model to a Frozen Graph: 

def convert_savedmodel_to_frozen_graph(savedmodel_dir, output_dir):   

    meta_graph = get_serving_meta_graph_def(savedmodel_dir)   

        signature_def = tf.contrib.saved_model.get_signature_def_by_key( 

            output=return_tensors[0].outputs[0] 

    with tf.Session(graph=g, config=get_gpu_config()) as sess: 

       result = sess.run([output]) 

       meta_graph, tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY)   
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      graph = tf.Graph()   

      with tf.Session(graph=graph) as sess:   

              tf.saved_model.loader.load(sess, meta_graph.meta_info_def.tags,  

              savedmodel_dir)   

              frozen_graph_def = tf.graph_util.convert_variables_to_constants(sess,    

              graph.as_graph_def(),    

              output_node_names= ["chexnet_sigmoid_tensor", "categories"])    

      #remove the unnecessary training nodes       

      cleaned_frozen_graph = tf.graph_util.remove_training_nodes(frozen_graph_def) 

      write_graph_to_file(_GRAPH_FILE, cleaned_frozen_graph, output_dir)   

      return cleaned_frozen_graph  

 

Command line example to execute the chexnet.py file: 

python3 chexnet.py \ 

    --train_epochs=15 \ 

    --learning_rate=0.001 \ 

    --batch_size=128 \ 

    --data_dir='/home/chexnet_tfrecords’ \ 

    --pretrained_model_dir='/home/resnet_v2_imagenet_checkpoint/ \ 

    --model_dir='/home/chest-x-ray/chexnet_checkpoints' \ 

    --export_dir='/home/chest-x-ray/chexnet_saved_model/ \ 

    --frozen_graph_dir='/home/chest-x-ray/chexnet_frozen_graph/ 

Files used for development: 

Script: chexnet.py 

Base model 

script: 

TensorFlow official 
ResnetV2_50 
resnet_model.py 
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4 Inference with TensorRT™ 
NVIDIA TensorRT™ is a C++ based library aimed to perform high performance inference on 

GPUs. After a model is trained and saved, TensorRT™ transforms it by applying graph 

optimization and layer fusion for a faster implementation, so it can be deployed in an 

inference context. 

TensorRT™ provides three tools to optimize the models for inference: TensorFlow-TensorRT 

integrated (TF-TRT), TensorRT C++ API, and TensorRT Python API. The last two tools 

include parsers for importing existing models from Caffe, ONNX, or TensorFlow. Also, C++ 

and Python API’s include methods for building models programmatically.  It is important to 

note that TF-TRT is the Nvidia’s preferred method for importing TensorFlow models to 

TensorRT™ [11]. 

In this project we will show how to implement using TensorRT™ C++ API, as well as TF-TRT 

integrated with the parser (UFF for TensorFlow). Below is a brief description of each method 

applied to CheXNet model.  

4.1 TensorRT™ using TensorFlow-TensorRT (TF-TRT) Integrated 
With TF-TRT integrated, TensorRT™ will parse the model and apply optimizations to the 

portions of the graph wherever possible, allowing TensorFlow to execute the remaining graph 

that couldn’t be optimized. TF-TRT integration workflow includes importing a TensorFlow 

model, creating an optimized graph with TensorRT™, importing it back as the default graph, 

and running inference. After importing the model TensorRT™ optimizes the TensorFlow's 

subgraphs, then replaces each supported subgraph with a TensorRT™ optimized node, 

producing a frozen graph that runs in TensorFlow for inference. TensorFlow executes the 

graph for all supported areas and calls TensorRT™ to execute TensorRT™ optimized nodes.  

In this section we present the general steps to work with the custom model CheXNet and TF-

TRT integration. For step-by-step instructions on how to use TensorRT™ with the 

TensorFlow framework, see  “Accelerating Inference In TensorFlow With TensorRT™-User 

Guide”[11]. 

4.1.1 TF-TRT Workflow with a Frozen Graph 

There are three workflows for creating a TensorRT™ inference graph from a TensorFlow 

model depending of the format: for saved model, frozen graph, and separate MetaGraph with 

checkpoint files. 

In this project we will focus on the workflow using a frozen graph file. Figure 8. shows the 

specific workflow for creating a TensorRT™ inference graph from a TensorFlow model in 

frozen graph format file as an input. For more information about the other two methods, refer 

to the following Nvidia documentation: “Accelerating Inference in TensorFlow With 

TensorRT™ - User Guide” [12]. 

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html
https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html
https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#using-frozengraph
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Further, the model needs to be built with supported operations by TF-TRT integrated, 
otherwise the system will output errors for unsupported operations. See the reference list for 
further description [13]. 

 

Figure 8: Workflow for Creating a TensorRT Inference Graph from a TensorFlow Model in Frozen 

Graph Format 

Import the library TensorFlow-TensorRT Integration: 
import tensorflow.contrib.TensorRT as trt  

 

Convert a SavedModel to a Frozen Graph and save it in the disk: 

If not converted already, the trained model needs to be frozen before use TensorRT™ 

through the frozen graph method, below is the function to do the conversion 

def convert_savedmodel_to_frozen_graph(savedmodel_dir, output_dir):   

  meta_graph = get_serving_meta_graph_def(savedmodel_dir)   

  signature_def = tf.contrib.saved_model.get_signature_def_by_key(   

      meta_graph,   

      tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY)   

   

  outputs = [v.name for v in signature_def.outputs.values()]   
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  output_names = [node.split(":")[0] for node in outputs]   

   

  graph = tf.Graph()   

  with tf.Session(graph=graph) as sess:   

    tf.saved_model.loader.load(   

        sess, meta_graph.meta_info_def.tags, savedmodel_dir)   

    frozen_graph_def = tf.graph_util.convert_variables_to_constants(   

        sess, graph.as_graph_def(), output_names)   

   

  write_graph_to_file(_GRAPH_FILE, frozen_graph_def, output_dir)   

   

  return frozen_graph_def   

Freezing a model means pulling the values for all the variables from the latest model file, and then 
replace each variable op with a constant that has the numerical data for the weights stored in its 
attributes. It then strips away all the extraneous nodes that aren't used for forward inference, and saves 
out the resulting GraphDef into a just single output file, which is easily deployable for production[14]. 

Load the frozen graph file from disk: 

def get_frozen_graph(graph_file):   

      with tf.gfile.FastGFile(graph_file, "rb") as f:   

           graph_def = tf.GraphDef()   

           graph_def.ParseFromString(f.read()) 

  

Create and save GraphDef for the TensorRT™ inference using TensorRT™ library: 

def get_trt_graph(graph_name, graph_def, precision_mode, output_dir,   

             output_node, batch_size=128, workspace_size=2<<10):   

       trt_graph = trt.create_inference_graph(   

            input_graph_def=graph_def,  

            outputs=[output_node],  
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            max_batch_size=batch_size,   

            max_workspace_size_bytes=workspace_size<<20,   

            precision_mode=precision_mode)   

       write_graph_to_file(graph_name, trt_graph, output_dir)   

       return trt_graph   

 

Create and save GraphDef for the TensorRT™ inference using TensorRT™ library 

(optional INT8 ): 

  “Convert a TensorRT™ graph used for calibration to an inference graph “ 

def get_trt_graph_from_calib(graph_name, calib_graph_def, output_dir):   

       trt_graph = trt.calib_graph_to_infer_graph(calib_graph_def)   

       write_graph_to_file(graph_name, trt_graph, output_dir)   

       return trt_graph  

 

Import the TensorRT™ graph into a new graph: 

output_node = tf.import_graph_def(   

    trt_graph,   

    return_elements=[“chexnet_sigmoid_tensor”])   

 

Run the Optimized Inference in all desired modes: 

output = return_tensors[0].outputs[0]   

with tf.Session(graph=g, config=get_gpu_config()) as sess:   

      result = sess.run([output])   

 

Command line example to execute the tensorrt_chexnet.py file 

To evaluate the inference with TF-TRT integration using the trained CheXNet model: 

python3 tensorrt_chexnet.py \  

--savedmodel_dir=/home/chest-x-ray/chexnet_saved_model/1541777429/ \ 
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--image_file=image.jpg \ 

--int8 \ 

--output_dir=/home/chest-x-ray/output_tensorrt_chexnet_1541777429/ \ 

--batch_size=1 \ 

--input_node="input_tensor” \ 

--output_node="chexnet_sigmoid_tensor" 

Where: 

       --savedmodel_dir: The location of a saved model directory to be converted into a Frozen Graph 

--image_file: The location of a JPEG image that will be passed in for inference 

--int8: Benchmark the model with TensorRT™ using int8 precision 

--output_dir: The location where output files will be saved 

--batch_size: Batch size for inference 

--input_node: The name of the graph input node where the float image array should be fed for 
prediction 

--output_node: The names of the graph output node 

 

Script Output sample: 

On completion, the script prints overall metrics and timing information over the inference 

session 

==========================   

network: tftrt_int8_frozen_graph.pb,     batchsize 1, steps 100   

  fps   median: 284.6, mean: 304.3,    uncertainty: 5.5,   jitter: 4.4   

  latency   median: 0.00351,    mean: 0.00337, 99th_p: 0.00383,    99th_uncertainty: 0.00053   

==========================   

 

• Throughput (images/sec): 304 

• Latency (sec): 3.37 
 

 

 

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#image-class-output
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Files used for development: 

Script: tensorrt_chexnet.py 

Base model script: tensorrt.py 

Labels file  labellist_chest_x_ray.json 

 

4.2 TensorRT™ using TensorRT C++ API 
In this section, we present how to run optimized inferences with an existing TensorFlow 

model using TensorRT C++ API.  The first step is to convert the frozen graph model to uff 

file format with the C++ UFF parser API which supports TensorFlow models, then follow the 

workflow in the Figure 9 to create the TensorRT™ engine for optimized inferences: 

• Create a TensorRT™ network definition from the existing trained model 

• Invoke the TensorRT™ builder to create an optimized runtime engine from the network 

• Serialize and deserialize the engine so that it can be rapidly recreated at runtime 

• Feed the engine with data to perform inference 

 

For the current implementation, we are using Nvidia script trtexec.cpp and referenced the 

TensorRT™ Developer Guide to document the steps described below [15]. 

 

Figure 9: Workflow for Creating a TensorRT Inference Graph using the TensorRT C++ API 
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Converting A Frozen Graph To UFF: 
An existing model built with TensorFlow can be used to build a TensorRT™ engine. 
Importing from the TensorFlow framework requires to convert the TensorFlow model into the 
intermediate format UFF file. To do so, we used the tool convert_to_uff.py located at the 
directory /usr/lib/python3.5/dist-packages/uff/bin, which uses as an input a frozen model, 
below the command to convert .pb TensorFlow frozen graph to .uff format file: 

python3 convert_to_uff.py \ 

          input_file /home/chest-x-ray/chexnet_frozen_graph_1541777429.pb   

 

Create the builder, network, and UFF parser 

//1-Create the builder and network:    

IBuilder* builder = createInferBuilder(gLogger);  

INetworkDefinition* network = builder->createNetwork();   

   

//2-Create the UFF parser:    

IUFFParser* parser = createUffParser();    

 

//3-Declare the network inputs and outputs to the UFF parser:    

parser->registerInput("input_tensor", DimsCHW(3,256,256), UffInputOrder::kNCHW);  

parser->registerOutput("chexnet_sigmoid_tensor");   

 

//Parse the imported model to populate the network:  

parser->parse(uffFile, *network, nvinfer1::DataType::kFLOAT);   

For the network definition, it is important to directly specify to TensorRT™ which tensors are 

inputs and their dimensions, as well as specify which tensors are outputs for inference (inputs 

and output tensors must also be given names); the rest of the tensors are transient values 

that may be optimized by the builder.  

 

UFF Parser is used to parse a network in UFF format. For more details on the C++ UFF 

Parser, see NvUffParser or the Python UFF Parser [16].  

 

TensorRT™ C++ API expects the input tensor to be in channel first order (CHW). When 

importing from TensorFlow, the input tensor is required to be in this format in order to achieve 
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the best possible performance; and if not, it is recommended to convert it to CHW. Overall, 

CHW is generally better for GPUs, while HWC is generally better for CPUs. [6] 

 

Build the Optimized Runtime Engine in fp16 or iInt8 mode (calibration optional for 

INT8int8 inference) [15]: 

//Configure the builder 

builder->setMaxBatchSize(gParams.batchSize);   

builder->setMaxWorkspaceSize(gParams.workspaceSize << 20);   

 

//To run in fp16 mode 

if (gParams.fp16)   

{   

    builder->setFp16Mode(gParams.fp16);   

}   

   

//To run in Int8 mod (calibration optional for int8 inference) 

if (gParams.int8)   

{   

    builder->setInt8Mode(true);   

    builder->setInt8Calibrator(&calibrator);   

}   

 

//Build the engine 

ICudaEngine* engine = builder->buildCudaEngine(*network); 

Highlights: 

• After the network has been built, it can be used as default in FP32fp32 precision mode, for 

example, inputs and outputs remain in 32-bit floating point.  

• Setting the builder’s fp16 mode flag enables 16-bit precision inference mode 

Setting the builder flag to int8 enables int8 precision inference mode. Calibration is an additional 

step required when building networks for int8. The application must provide TensorRT™ with 
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sample input. TensorRT™ will then perform inference in fp32 and gather statistics about 

intermediate activation layers that it will use to build the reduce precision int8 engine. When the 

engine is built, TensorRT™ makes copies of the weights. The TensorRT™ network definition 

contains pointers to model weights, the builder copies the weights into the optimized engine, and 

the parser will own the memory occupied by the weights; the parser object is then deleted after 

the builder has run for inference. 

 

Serialize and Deserialize the model 

//1-Run the builder as a prior offline step and then serialize:    

HostMemory *serializedModel = engine->serialize();   

   

//Store model to disk    

assert(serializedModel);   

p.write(reinterpret_cast<const char*>(serializedModel->data()), serializedModel->size());   

serializedModel->destroy();    

   

//2-Create a runtime object to deserialize:    

IRuntime* runtime = createInferRuntime(gLogger);    

ICudaEngine* engine = runtime->deserializeCudaEngine(modelData, modelSize, nullptr);    

 

It is not mandatory to serialize and deserialize a model before using it for inference, if 

desirable, the engine object can be used for inference directly. Since creating an engine from 

the network definition can be time consuming, we can avoid rebuilding the engine every time 

the application reruns by serializing it once and deserializing it while inferencing. Therefore, 

after the engine is built, it is common to serialize it for later use [17]. 

Perform Inference feeding the engine 

//1-Create the execution context to hold the network definition, trained parameters, necessary space:  

IExecutionContext *context = engine->createExecutionContext();  

 

//2-Use the input and output tensor names to get the corresponding input and output index: 

int inputIndex = engine.getBindingIndex(“input_tensor”);  
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int outputIndex = engine.getBindingIndex(“CheXNet_sigmoid_tensor”); 

 

//3-Set up a buffer array pointing to the input and output buffers on the GPU, using the indexes: 

void* buffers[2];  

buffers[inputIndex] = inputbuffer;  

buffers[outputIndex] = outputBuffer; 

 

//4-TensorRT™ execution is typically asynchronous, so enqueue the kernels on a CUDA stream: 

context.enqueue(batchSize, buffers, stream, nullptr): 

 

Command line to execute the trtexec file: 

./trtexec  

--uff=/home/chest-x-ray/output_convert_to_uff/chexnet_frozen_graph_1541777429.uff \ 

--output=chexnet_sigmoid_tensor \  

--uffInput=input_tensor,3,256,256 \  

--iterations=40 \  

--int8 \  

--batch=1 \  

--device=0 \  

--avgRuns=100   

 

Docker image used for native TRT: nvcr.io/nvidia/tensorrt:18.11-py3 

Where: 
--uff=: UFF file location 

--output: output tensor name 

--uffInput: Input tensor name and its dimensions for UFF parser (in CHW format) 

--iterations: Run N iterations 

--int8: Run in int8 precision mode 

--batch: Set batch size 

--device: Set specific cuda device to N 

--avgRuns: Set avgRuns to N - perf is measured as an average of avgRuns 
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Script Output sample: 

On completion, the script prints overall metrics and timing information over the inference 

session 

Average over 100 runs is 1.44041 ms (host walltime is 1.56217 ms, 99% percentile time is 1.52326). 
Average over 100 runs is 1.43143 ms (host walltime is 1.54826 ms, 99% percentile time is 1.50819). 
Average over 100 runs is 1.44583 ms (host walltime is 1.56766 ms, 99% percentile time is 1.54211). 
Average over 100 runs is 1.43773 ms (host walltime is 1.55612 ms, 99% percentile time is 1.53363). 
Average over 100 runs is 1.44332 ms (host walltime is 1.55968 ms, 99% percentile time is 1.51658). 
Average over 100 runs is 1.43861 ms (host walltime is 1.56039 ms, 99% percentile time is 1.50253). 
Average over 100 runs is 1.43901 ms (host walltime is 1.56038 ms, 99% percentile time is 1.55898). 
Average over 100 runs is 1.43517 ms (host walltime is 1.55967 ms, 99% percentile time is 1.51555). 
Average over 100 runs is 1.45124 ms (host walltime is 1.57128 ms, 99% percentile time is 1.57366). 
Average over 100 runs is 1.4332 ms (host walltime is 1.55241 ms, 99% percentile time is 1.51955). 
Average over 100 runs is 1.43537 ms (host walltime is 1.55512 ms, 99% percentile time is 1.50966). 

 

• Throughput (
imgs

sec
) =  (

𝐵𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒

𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝑚𝑠)
) ∗ 1000 =   (

1

1.43537
) ∗ 1000 =  697 

• Latency (msec): 1.43537 

 

Description of files and parameters used for development: 

  Description 

Script: trtexec.cpp Nvidia sample code showing the 
optimized inference using 
TensorRT C++ API 

TensorFlow Frozen Graph: chexnet_frozen_graph_154177
7429.pb   

existing TensorFlow model 

TensorFlow UFF file: chexnet_frozen_graph_154177
7429.uff 

existing TensorFlow model 
converted to uff format 

Input tensor name: “input_tensor” Input tensor name 

Input tensor dimension 
(NCHW): 

(3,256,256) input tensor dimensions for UFF 
parser 

Output tensor name: “chexnet_sigmoid_tensor” Output tensor name for 
inference 

 

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#image-class-output
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5 Results 

5.1 CheXNet Inference - Native TensorFlow FP32fp32 with CPU Only 

Benchmarks ran with batch sizes 1-32 using native TensorFlow FP32fp32 with CPU-Only 
(AMD EPYC 7551 32-Core Processor). Tests conducted using the docker image 
TensorFlow:1.10.0-py3 

 

Figure 10: CheXNet Inference - Native TensorFlow FP32 with CPU-Only. AMD EPYC 7551 32-Core 

 

Command line to execute the benchmark: 

python3 tensorrt_chest.py  

--savedmodel_dir=/home/dell/chest-x-ray/chexnet_saved_model/1541777429/ \  

--image_file=image.jpg \ 

--native \ 

--output_dir=/home/dell/chest-x-ray/output_tensorrt_chest_only_cpu/ \ 

--batch_size=1 

Docker image for TensorFlow-CPU Only: tensorflow/tensorflow:1.10.0-py3 
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Where: --native: Benchmark model with it's native precision FP32 and without TensorRT™. 

Script Output sample: 

========================== 

network: native_frozen_graph.pb, batchsize 1, steps 100 

  fps  median: 9.2,  mean: 9.1, uncertainty: 0.1, jitter: 0.3 

  latency  median: 0.10912, mean: 0.11459,  99th_p: 0.23157, 99th_uncertainty: 0.18079 

========================== 

• Throughput (images/sec): ~9 

• Latency (sec): 0.11459*1000 = ~115  

 

5.2 CheXNet Inference - Native TensorFlow fp32 with GPU 

Benchmarks ran with batch sizes 1-32 using native TensorFlow FP32 GPU without 
TensorRT™. We ran the benchmarks within the docker image 
nvcr.io/nvidia/tensorflow:18.10-py3, which supports TensorFlow with GPU support. 

 

Figure 11. CheXNet Inference - Native TensorFlow FP32 with GPU 

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#image-class-output
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Command line to execute the benchmark: 

python3 tensorrt_chest.py  

--savedmodel_dir=/home/dell/chest-x-ray/chexnet_saved_model/1541777429/ \ 

--image_file=image.jpg \ 

--native \ 

--output_dir=/home/dell/chest-x-ray/output_tensorrt_chexnet_1541777429/  

--batch_size=1 

Docker image for TensorFlow-GPU:  nvcr.io/nvidia/tensorflow:18.10-py3 

 

Where: --native: Benchmark model with it's native precision FP32 and without TensorRT™. 

Script Output sample: 

========================== 

network: native_frozen_graph.pb,  batchsize 1, steps 100 

  fps  median: 141.8,  mean: 142.1, uncertainty: 0.3, jitter: 2.3 

  latency  median: 0.00705, mean: 0.00704, 99th_p: 0.00740, 99th_uncertainty: 0.00010 

========================== 

• Throughput (images/sec): ~142 

• Latency (sec): 0.00704*1000 = ~7 

5.3 CheXNet Inference –TF-TRT 5.0 Integration in INT8int8 Precision 

Mode 

Benchmarks ran with batch sizes 1-32 using native TensorFlow FP32fp32 TensorRT™. We 
ran the benchmarks within the docker image nvcr.io/nvidia/tensorflow:18.10-py3, which 
supports TensorFlow with GPU as well as TensorRT™ 5.0. 

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#image-class-output
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Figure 12. CheXNet Inference –TF-TRT 5.0 Integration in INT8int8 Precision Mode 
 

Command line to execute the benchmark: 

python3 tensorrt_chest.py  

--savedmodel_dir=/home/dell/chest-x-ray/chexnet_saved_model/1541777429/ \ 

--image_file=image.jpg \ 

--int8 \  

--output_dir=/home/dell/chest-x-ray/output_tensorrt_chexnet_1541777429/  

--batch_size=1 

Docker image for TensorFlow-GPU:  nvcr.io/nvidia/tensorflow:18.10-py3 

 

Where:  --int8: Benchmark the model with TensorRT™ using int8 precision 
Script Output sample: 

========================== 

network: tftrt_int8_frozen_graph.pb,  batchsize 1, steps 100 

  fps  median: 282.2,  mean: 315.2, uncertainty: 6.8, jitter: 5.6 

  latency  median: 0.00354, mean: 0.00329, 99th_p: 0.00371, 99th_uncertainty: 0.00008 

========================== 

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#image-class-output
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• Throughput (images/sec): ~315 

• Latency (sec): 0.00704*1000 = ~3 

5.4 Benchmarking CheXNet Model Inference with Official ResnetV2_50 

To benchmark our custom model CheXNet with a well-known model, we replicated the same 

inference tests TF-TRT-INT8 Integration using the official pre-trained version of the ResNet-

50 v2 model (fp32, Accuracy 76.47%) [6]. The model was downloaded as SavedModel format 

produced with Estimator during the training in FP32 precision mode, this version also accepts 

input tensors with channel first format (CHW). See the TensorFlow performance guide for 

more details[18]. 

 

Figure 13. Throughput CheXNet TF-TRT-INT8int8 versus ResnetV2_50 TF-TRT-INT8int8 Inference 

 

In the Figure 13 we can appreciate that our custom model CheXNet and the official model 

ResnetV2_50 performed closely when running optimized inferences with TF-TRT INT8int8 

integration. It is a good practice to benchmark our custom models with official models, so we 

can decide whether going back and retrain it or move forward with the optimized model. 

We see also in                     Figure 14 that the latency of both models was similar too across 

different batch sizes. Lower latency is better, mainly for critical real time applications where 

milliseconds matter. 

https://www.tensorflow.org/performance/performance_guide#data_formats
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                    Figure 14. Latency CheXNet TF-TRT-INT8int8 versus ResnetV2_50 TF-TRT-INT8int8 

Inference 
 

5.5 CheXNet Inference - Native TensorFlow FP32fp32 with GPU versus 

TF-TRT 5.0  INT8 
After confirming that our custom model performed well compared to the optimized inference 
TF-TRT of an official model, we proceeded in this section to compare the CheXNet inference 
model itself in different configurations. In the Error! Reference source not found. we have 
gathered the previous results obtained when we ran the inference in three modes:  
 

a) Native TensorFlow fpFP32-CPU Only (CPU) 
b) Native TensorFlow fpFP32-GPU (GPU) 
c) TF-TRT Integration in INT8int8 (GPU) 

 
                  Figure 15 shows the CheXNet inference throughput (img/sec) ran in different 

configuration modes and batch sizes. As we can appreciate the TF-TRT_INT8 precision 

mode outperformed the two other configurations consistently across several batch sizes. In 

the next sections we analyzed in detail this performance improvement. 
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                  Figure 15. Throughput Native TensorFlow FP32 versus TF-TRT 5.0 Integration INT8 
 

Figure 16 shows the latency curve for each inference configuration, the lower is the latency 
better is the performance, and in this case TF-TRT-INT8 implementation reached the lowest 
inference time for all the batch sizes. 
 
 



 

37 CheXNet – Inference with Nvidia T4 on Dell EMC PowerEdge R7425 

 

Figure 16. Latency Native TensorFlow FP32fp32 (CPU / GPU)  versus TF-TRT 5.0 Integration 

INT8int8 
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See the Table 5 with the consolidated results of the CheXNet Inference in Native TensorFlow 
FP32 mode versus TF-TRT 5.0 Integration INT8int8, in terms of throughput and latency. We 
observed the huge different when running the test in different configurations. For speedup 
factors see the next tables. 
 

Table 5. Throughput and Latency Native TensorFlow FP32 versus TF-TRT 5.0 Integration INT8 

Batch 
Size 

TF-TRT INT8 Native TensorFlow FP32-GPU Native TensorFlow FP32- CPU Only 
Throughput 

(img/sec) 
Latency 

(ms) 
Throughput 

(img/sec) 
Latency 

(ms) 
Throughput 

(img/sec) 
Latency 

(ms) 

1 315 3 142 7 9 115 

2 544 4 198 10 11 195 

4 901 5 251 16 14 292 

8 1281 7 284 28 19 431 

16 1456 11 307 55 22 755 

32 1549 21 329 98 25 1356 

 

In Table 6 we have calculated the speedup factor of TF-TRT 5.0 Integration INT8 versus 
Native TensorFlow FP32-GPU. The server PowerEdge R7425-T4 performed in average up 
to 4X faster than native TensorFlow-GPU when accelerating the workloads with TF-TRT 
Integration. 
 

Table 6. PowerEdge R7425-T4 Speedup Factor with TF-TRT versus native TensorFlow-GPU 

Batch Size 
TF-TRT INT8 

Native TensorFlow FP32-
GPU Speedup Factor X 

Throughput (img/sec) Throughput (img/sec) 

1 315 142 2X 

2 544 198 3X 

4 901 251 4X 

8 1281 284 5X 

16 1456 307 5X 

32 1549 329 5X 

Average 4X 

 

In Table 7 we have calculated the speedup factor of TF-TRT 5.0 Integration INT8 versus 

Native TensorFlow FP32-CPU Only. The server PowerEdge R7425-T4 performed in average 

up to 58X faster than native TensorFlow-CPU Only when accelerating the workloads with 

TF-TRT Integration 

 

Table 7. PowerEdge R7425-T4 Speedup Factor with TF-TRT versus native TensorFlow-CPU Only 

 

Batch Size 
TF-TRT INT8 

Native TensorFlow FP32- 
CPU Only Speedup Factor X 

Throughput (img/sec) Throughput (img/sec) 

1 315 9 35X 

2 544 11 51X 

4 901 14 63X 

8 1281 19 67X 

16 1456 22 66X 

32 1549 25 63X 

Average 58X 
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See  Figure 17 the R7425-T4-16GB speedup Factor with TF-TRT versus Native 

TensorFlow 

 

Figure 17: Speedup Factor with TF-TRT versus Native TensorFlow 

 

5.6 CheXNet Inference - TF-TRT 5.0 Integration vs Native TRT5 C++ 

API 

We wanted to explore further and optimized the CheXNet inference using the TensorRT C++ 

API with the sample tool trtexec provided by Nvidia. This sample is very useful for generating 

serialized engines and can be used as a template to work with our custom models. 
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Figure 18:Throughput TF-TRT 5.0 Integration vs Native TRT5 C++ API 

 

 

Figure 19: Latency TF-TRT 5.0 Integration vs Native TRT5 C++ API 
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Command line to execute the Native TensorRT™ C++ API benchmark: 

./trtexec  

   --uff=/home/dell/chest-x-ray/output_convert_to_uff/chexnet_frozen_graph_1541777429.uff  

   --output= chexnet_sigmoid_tensor  

   --uffInput=input_tensor,3,256,256  

   --iterations=40 --int8 --batch=1  

   --device=0 

   --avgRuns=100 

 

Where: 
--uff=: UFF file location  

--output: output tensor name 

--uffInput: Input tensor name and its dimensions for UFF parser (in CHW format) 

--iterations: Run N iterations 

--int8: Run in int8 precision mode 

--batch: Set batch size 

--device: Set specific cuda device to N 

--avgRuns: Set avgRuns to N - perf is measured as an average of avgRuns 

Script Output sample: 
Average over 100 runs is 1.4675 ms (host walltime is 1.57855 ms, 99% percentile time is 1.54624). 
Average over 100 runs is 1.48153 ms (host walltime is 1.59364 ms, 99% percentile time is 1.5831). 
Average over 100 runs is 1.4899 ms (host walltime is 1.6021 ms, 99% percentile time is 1.58061). 
Average over 100 runs is 1.47487 ms (host walltime is 1.58658 ms, 99% percentile time is 1.56506). 
Average over 100 runs is 1.47848 ms (host walltime is 1.59125 ms, 99% percentile time is 1.56266). 
Average over 100 runs is 1.48204 ms (host walltime is 1.59392 ms, 99% percentile time is 1.57078). 
Average over 100 runs is 1.48219 ms (host walltime is 1.59398 ms, 99% percentile time is 1.5673). 

 

• Throughput (
imgs

sec
) =  (

𝐵𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒

𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝑚𝑠)
) ∗ 1000 =   (

1

1.48219 
) ∗ 1000 =  675 

• Latency (msec): 1.48219 

 
In Figure 18 we observed that CheXNet inference optimized with Native TRT5 C++ API 
performed ~2X faster than with TF-TRT Integration API optimization, this factor was exposed 
only with batch size 1 and 2; the outperform of TRT5 C++ API over  TF-TRT API gradually 
decreased in the way the batch size increases. We are still working with the Nvidia Developer 
group to find out what should be the performance of both APIs implementations. 
 
Further, in the Figure 19  we showed the latency curves of TRT5 C++ API versus TF-TRT 
API, lower latency is better, as shown by the TRT5 C++ API. 

 

5.7 CheXNet Inference – Throughput with TensorRT™ at ~7ms Latency 

Target 
 

The ~7ms Latency Target is critical, mainly for real time applications. In this section we have 
selected all those configurations that performed at that latency target, see below Table 8 with 
the selected tests we have included the inference TensorFlow-FP32-CPU Only as reference 
since its latency was ~115ms. 
 

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#image-class-output
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Table 8. Throughput with TensorRT™ at ~7ms Latency Target 

Inference Mode Batch Size 
Thoughput 
(img/sec) 

Latency (ms) 

TensorFlow-FP32-CPU Only 1 9 114.9* 

TensorFlow-FP32-GPU 1 142 7.1 

TF-TRT5 Integration FP32 2 272 7.6 

TF-TRT5 Integration FP16 4 656 6.3 

TF-TRT5 Integration INT8 8 1281 6.6 

TensorRT™ C++ API INT8 8 1371 5.8 
 

 

Figure 20. Throughput with TensorRT™ at ~7ms Latency Target 

 

From Table 8 and Figure 20 above, we can observe: 

• Native TensorFlow FP32 without TensorRT™ (batch size=1) inference ran on CPU-Only 

(AMD EPYC 7551 32-Core Processor) performed 9 img/sec with the minimal latency of ~115 

ms. It is a referenceable measurement that shows the different using CPU Only based systems 

versus GPU based systems. 

• The same Native TensorFlow FP32 without TensorRT™ (batch size=1) inference ran on 

GPU performed 142 img/sec at ~7ms latency target. It means ~16X faster than CPU Only (142 

vs 9). Now let us use this configuration as a landmark to benchmark the optimized inferences 

with TensorRT™. 
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• Using TF-TRT-FP32 with TensorRT™ (batch size=2) instead of Native TensorFlow FP32 

without TensorRT™, improved throughput by ~92% (272 vs 142) at ~7ms latency target. 

• Using TF-TRT-FP16 with TensorRT™ (batch size=4) improved throughput by ~362% (656 vs 

142). Also, it decreases latency by ~11%, making it in 6.3ms versus 7.1ms. 

• Now, when using TF-TRT-INT8 (batch size=8) we can appreciate a huge improvement in terms 

of throughput keeping the ~7ms latency target, we observed a speedup of ~802% (from 1281 

vs 142). This is a significant boost in performance. 

• On the other hand, comparing TF-TRT-INT8 Integration versus Native TensorRT-INT8 C++ 

API (batch size=8) we found that there was a slightly improvement of 7% (1371 vs 1281). 

 

It is important to highlight that there are other implementation factors that could affect the end to 

end inference’s speed when deploying these models into production, so model optimization is just 

one of those factors and we have demonstrated here how to do it. 
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6 Conclusion and Future Work 

• Dell EMC offers an excellent solution with its PowerEdge R7425 server based on Nvidia T4 

GPU to accelerate Artificial Intelligent workloads, including high-performance Deep learning 

inference boosted with the Nvidia TensorRT™ library. 

• The Native TensorFlow fp32 (without TensorRT™) inference on PowerEdge R7425-T4-16GB 

server speedup ~16X faster than CPU Only (AMD EPYC 7551 32-Core Processor). It is a 

referenceable measurement that shows the benefit of using GPU based systems versus CPU 

only based systems. 

• When accelerating the custom model CheXNet with TensorFlow-TensorRT Integration, the 

PowerEdge R7425-T4-16GB server performed on average up to 58X faster than native 

TensorFlow-CPU Only. 

• When accelerating the custom model CheXNet with TensorFlow-TensorRT Integration, the 

PowerEdge R7425-T4-16GB server performed on average up to 4X faster than native 

TensorFlow-GPU. 

• The CheXNet inference using TF-TRT-INT8 precision mode speedup of ~802% versus Native 

TensorFlow FP32 on GPU, at a ~7ms latency target. 

• CheXNet inference optimized with Native TRT5 C++ API performed ~2X faster than with TF-

TRT Integration API optimization, this factor was exposed only with batch size 1 and 2; the 

outperform of TRT5 C++ API over TF-TRT API gradually decreased in the way the batch size 

was bigger. We are still working with the Nvidia Developer group to find how out what should be 

the performance of both APIs implementations. 

• Optimized models with Nvidia TensorRT™ 5 can be deployed in several environments 

depending of the target application such as scale-out data centers, embedded systems, or 

automotive product platforms. There are other implementation factors that could affect the end 

to end inference’s speed when deploying the optimized models into these production 

environments, so model optimization is just one of factors and we have demonstrated in these 

projects some methods on how to approach it. 
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A Troubleshooting 

 

In this section we describe the main issues we faced implementing the custom model CheXNet with 

Nvidia TensorRT™ and how we solved these: 

• TensorRT™ installation. For TF-TRT integration, recommended to work with the docker image 

nvcr.io/nvidia/tensorflow:<tag version>-py3. For Native TRT, recommended to work with the 

docker image nvcr.io/nvidia/TensorRT™:<tag version>-py3. 

• Python path to TF models. If using TensorFlow official model as based model, and working 

within the docker environment, make sure to include the python path to official models once 

inside the docker: export PYTHONPATH="$PYTHONPATH:/home/models/“. 

• ImageNet TFRecords. If using TensorFlow official model as based model, make sure that 

there are not missing tfrecords in the dataset. If this is the case, update the file 

/home/models/official/resnet/imagenet_main.py. 

• Non-supported Layer Error. Before building the custom model, double check that the selected 

framework supports operations by TensorRT™; otherwise, the network subgraph conversion will 

fail. In our case, we started with Keras-TensorFlow backend framework and the TensorRT™ 

script failed converting most of the nodes. Then, we switched the model to TensorFlow 

framework version and resolved the issues. See Supported operations for TF-TRT Integration 

[13]. 

• Unimplemented: Not supported constant type at Const_1/Const_5 Error. Error related with 

the same issue above. By the time the tests were conducted, it looks like some Keras layers 

were not supported by TF-TRT Integration. 

• Not conversion function registered for layer IteratortoGetNet Error. This error was thrown 

by the system because the input function was not configurated in the model. When building the 

custom model, make sure to define the input_function properly, and when exporting the model 

with export_savedmodel make sure assure to configure the input_receiver_fn for serving as 

input_receiver_fn=export.build_tensor_serving_input_receiver_fn(shape, 

batch_size=FLAGS.batch_size) 

• Cuda Error in allocate:2. Subgraph conversion error for subgraph_index 1 due to: 

“Internal: Engine building failure” SKIPPING (437 nodes)”. Sometimes this error is related 

to the GPU memory capacity; so, try to run the tests with lower batch size and one precision 

mode at the time. 

• Tensor batch_normalization/beta is not found in resnet_v2_imagenet_checkpoint error. 

In our case we built the custom model CheXNet using transfer learning and the TensorFlow 

official pre-trained ResnetV2_50 checkpoints downloaded from its website. This error was 

produced because by the time the model was trained we didn’t place our variables in the same 
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variable scope as it was in the restored checkpoints. Solution: we customized official TensorFlow 

base script resnet_model.py and placed the variables in the same variable scope name 

“resnet_model” as it was in the official checkpoints downloaded previously. So, we added this 

code line in the model function with tf.variable_scope("resnet_model"):. For more information 

see What's the difference of name scope and a variable scope in TensorFlow [8].  

• TensorFlow Serving for Inference. When building and training the custom model, save the 

trained model with TensorFlow Serving for Inference. To do so, export the trained model as 

SavedModel with the Estimator function export_savedmodel. Also include the PREDICT 

Estimator’s method to enable the inferences mode. For predict mode, it is required to provide 

the export_output argument to the EstimatorSpec, it defines signatures for tensorflow serving 

when Serving a SavedModel. Specify the inputs and outputs node manes, which will be needed 

later on by the TensorRT™ library. See Serving Pre-Modeled and Custom TensorFlow Estimator 

with Tensorflow Serving [10]. 

• ValueError: Negative dimension size caused by subtracting 8 from 7 for 

'import/resnet_model/average_pooling2d/AvgPool' (op: 'AvgPool') with input shapes: 

[128,7,7,2048]. Problem solved updating the base model script resnet_model.py , in the model 

function section, changing from padding=‘VALID’ to padding='SAME’ : inputs = 

tf.layers.average_pooling2d( inputs=inputs, pool_size=pool_size, strides=1, padding='SAME’, 

data_format=data_format) 
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C Appendix - PowerEdge R7425 – GPU Features 

Server   R7425-T4 

CPU   

 CPU model AMD EPYC 7551                          
32-Core Processor 

GPU     

  GPU model Tesla T4-16GB 

 GPU Architecture NVIDIA Turing 

 Attached GPUs 6 

Features per GPU  

  Driver Version 410.79 

  Compute Capability 7.5 

Multiprocessor  

  Multiprocessors (MP) 40 

  CUDA Cores/MP 64 

  CUDA Cores 2,560 

  Clock Rate (GHz) 1.59 

Memory    

  Global Memory Bandwidth (GB/s) 300 

  Global Memory Size (GB) 16 

  Constant Memory Size (KB) 65 

  L2 Cache Size (MB) 4 

Bus Interface PCIe  

  Generation 3 

  Link Width 16 

Peak Performance Floating Point Operations (FLOP) and 
TOPS 

 

 Single-Precision - FP32 (Teraflop/s) 8.1 

  Mixed Precision - FP16/FP32 
(TeraFLOP/s) 

65 

 


