Brocade Communications Systems, Incorporated

Corporate and Latin American Headquarters
Brocade Communications Systems, Inc.
130 Holger Way
San Jose, CA 95134
Tel: 1-408-333-8000
Fax: 1-408-333-8101
E-mail: info@brocade.com

Asia-Pacific Headquarters
Brocade Communications Systems China HK, Ltd.
No. 1 Guanghua Road
Chao Yang District
Units 2718 and 2818
Beijing 100020, China
Tel: +8610 6588 8888
Fax: +8610 6588 9999
E-mail: china-info@brocade.com

European Headquarters
Brocade Communications Switzerland Sàrl
Centre Swissair
Tour B - 4ème étage
29, Route de l’Aéroport
Case Postale 105
CH-1215 Genève 15
Switzerland
Tel: +41 22 799 5640
Fax: +41 22 799 5641
E-mail: emea-info@brocade.com

Asia-Pacific Headquarters
Brocade Communications Systems Co., Ltd. (Shenzhen WFOE)
Citic Plaza
No. 233 Tian He Road North
Unit 1308 - 13th Floor
Guangzhou, China
Tel: +8620 3891 2000
Fax: +8620 3891 2111
E-mail: china-info@brocade.com

Document History

<table>
<thead>
<tr>
<th>Document title</th>
<th>Publication number</th>
<th>Summary of changes</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric OS Reference v2.0</td>
<td>53-0001487-03</td>
<td></td>
<td>September 1999</td>
</tr>
<tr>
<td>Fabric OS Reference v2.2</td>
<td>53-0001558-02</td>
<td></td>
<td>May 2000</td>
</tr>
<tr>
<td>Fabric OS Reference v2.3</td>
<td>53-0000067-02</td>
<td></td>
<td>December 2000</td>
</tr>
<tr>
<td>Fabric OS Reference v3.0</td>
<td>53-0000127-03</td>
<td></td>
<td>July 2001</td>
</tr>
<tr>
<td>Fabric OS Reference v2.6</td>
<td>53-0000194-02</td>
<td></td>
<td>December 2001</td>
</tr>
<tr>
<td>Fabric OS Reference v3.0 / v4.0</td>
<td>53-0000182-02</td>
<td></td>
<td>March 2002</td>
</tr>
<tr>
<td>Fabric OS Reference v4.0.2</td>
<td>53-0000182-03</td>
<td></td>
<td>September 2002</td>
</tr>
<tr>
<td>Fabric OS Reference v3.1.0</td>
<td>53-0000500-02</td>
<td></td>
<td>April 2003</td>
</tr>
<tr>
<td>Fabric OS Reference v4.1.0</td>
<td>53-0000519-02</td>
<td></td>
<td>April 2003</td>
</tr>
<tr>
<td>Fabric OS Reference v4.1.2</td>
<td>53-0000519-03</td>
<td></td>
<td>May 2003</td>
</tr>
<tr>
<td>Fabric OS Reference v4.1.2</td>
<td>53-0000519-04</td>
<td></td>
<td>July 2003</td>
</tr>
<tr>
<td>Document title</td>
<td>Publication number</td>
<td>Summary of changes</td>
<td>Publication date</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>Fabric OS Reference v4.1.2</td>
<td>53-0000519-05</td>
<td></td>
<td>August 2003</td>
</tr>
<tr>
<td>Fabric OS Reference v4.1.2</td>
<td>53-0000519-06</td>
<td></td>
<td>October 2003</td>
</tr>
<tr>
<td>Fabric OS Reference v4.2.0</td>
<td>53-0000519-07</td>
<td></td>
<td>December 2003</td>
</tr>
<tr>
<td>Fabric OS Command Reference</td>
<td>53-0000519-08</td>
<td></td>
<td>March 2004</td>
</tr>
<tr>
<td>Fabric OS Command Reference</td>
<td>53-0000519-08 Rev. A</td>
<td></td>
<td>April 2004</td>
</tr>
<tr>
<td>Fabric OS Command Reference</td>
<td>53-0000519-09</td>
<td></td>
<td>September 2004</td>
</tr>
<tr>
<td>Fabric OS Command Reference</td>
<td>53-0000519-10</td>
<td></td>
<td>April 2005</td>
</tr>
<tr>
<td>Fabric OS Command Reference</td>
<td>53-0000519-12</td>
<td></td>
<td>July 2005</td>
</tr>
<tr>
<td>Fabric OS Command Reference</td>
<td>53-1000436-01</td>
<td></td>
<td>June 2007</td>
</tr>
<tr>
<td>Document title</td>
<td>Publication number</td>
<td>Summary of changes</td>
<td>Publication date</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>Fabric OS Command Reference</td>
<td>53-1001764-01</td>
<td>Added 8 new commands. Modified 41 commands with new operands to support Fabric OS v6.4.0 features. Removed 5 commands and 3 deprecated command options. Miscellaneous edits to ~100 commands to correct edits, update examples, etc. Updated Preface, surrounding chapters, and permission tables.</td>
<td>March 2010</td>
</tr>
<tr>
<td>Fabric OS Command Reference</td>
<td>53-1002147-01</td>
<td>Added 20 new commands. Modified 102 commands to support Fabric OS v7.0.0 features. Removed 40 commands. 16 commands have deprecated command options. Miscellaneous edits to ~250 additional commands. Updated Preface, surrounding chapters, and permission tables.</td>
<td>April 2011</td>
</tr>
<tr>
<td>Document title</td>
<td>Publication number</td>
<td>Summary of changes</td>
<td>Publication date</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>Fabric OS Command Reference</td>
<td>53-1002746-01</td>
<td>Added 7 new commands. Modified 100 commands to support Fabric OS v7.1.0 features. Removed 6 commands. Updated Preface, surrounding chapters, and permission tables.</td>
<td>December 2012</td>
</tr>
<tr>
<td>Fabric OS Command Reference</td>
<td>53-1002746-02</td>
<td>Corrections and updates to 25 commands.</td>
<td>March 2013</td>
</tr>
<tr>
<td>Fabric OS Command Reference</td>
<td>53-1002921-02</td>
<td>Updated 13 commands and changed the name of one command. Updated Preface and permission tables.</td>
<td>September 2013</td>
</tr>
</tbody>
</table>
Contents

About This Document

- How this document is organized .. xxix
- Supported hardware and software ... xi
- What is new in this document ... xxix
 - New commands ... xxiii
 - Modified commands ... xxiii
 - Deprecated commands ... xxvi
- CLI usage conventions ... xxvii
- Document conventions ... xxvii
 - Text formatting ... xxvii
 - Command syntax conventions ... xxvii
 - Notes, cautions, and warnings ... xxviii
 - Key terms .. xxviii
- Notice to the reader ... xxviii
- Additional information ... xxix
 - Brocade resources .. xxix
 - Other industry resources ... xxix
- Getting technical help ... xxx
- Document feedback ... xxxi

Chapter 1 Using Fabric OS Commands

Using the command line interface .. 1
Understanding Role-Based Access Control 2
 - Encryption commands and permissions 2
Understanding Virtual Fabric restrictions 3
Understanding Admin Domain restrictions 4
Determining RBAC permissions for a specific command 4

Chapter 2 Fabric OS Commands

aaaConfig .. 7
ad ... 13
ag ... 23
agAutoMapBalance ... 44
agShow ... 47
aliAdd ... 49
aliCreate ... 50
aliDelete .. 51
aliRemove .. 52
aliShow .. 53
appLoginHistory ... 54
aptPolicy .. 56
auditCfg .. 59
auditDump ... 61
authUtil .. 62
bannerSet .. 66
bannerShow .. 67
bcastShow .. 68
bladeCfgGeMode ... 69
bladeDisable .. 71
bladeEnable ... 73
bladeSwap .. 75
bootLunCfg ... 76
bottleneckMon ... 78
bpPortLoopbackTest .. 91
bpTurboRamTest ... 94
bufOpMode .. 96
ceePortLedTest .. 99
ceePortLoopbackTest ... 100
ceeTurboRamTest ... 101
cfgActvShow .. 102
cfgAdd ... 103
cfgClear .. 104
cfgCreate .. 105
cfgDelete ... 106
cfgDisable ... 107
cfgEnable ... 108
cfgRemove ... 110
cfgSave ... 111
cfgShow .. 113
cfgSize ... 116
cfgTransAbort ... 118
cfgTransShow ... 119
chassisBeacon .. 121
chassisCfgPerrThreshold .. 123
chassisDisable .. 125
chassisDistribute ... 126
chassisEnable ... 128
chassisName ... 129
chassisShow .. 130
classConfig .. 132
cliHistory .. 136
cmsh ... 138
configDefault ... 140
configDownload ... 142
configList .. 148
configRemove ... 149
configShow ... 150
configUpload .. 154
configure ... 158
configureChassis .. 168
creditRecovMode .. 171
cryptoCfg .. 174
dataTypeShow ... 232
date ... 233
dbgShow .. 235
defZone ... 236
diagClearError .. 238
diagDisablePost ... 239
diagEnablePost ... 240
diagHelp .. 241
diagPost .. 242
diagRetry .. 243
diagShow ... 244
distribute ... 245
dlsReset ... 247
dlsSet ... 248
dlsShow ... 252

dnsConfig ... 253

enclosureShow ... 255

errClear ... 257

errDelimiterSet ... 258

errDump .. 259

errFilterSet .. 263

errModuleShow .. 264

errShow .. 265

exit ... 267

fabRetryShow .. 268

fabRetryStats .. 270

fabricLog ... 272

fabricName ... 276

fabricPrincipal .. 278

fabricShow ... 281

fabStatsShow ... 284

fanDisable ... 286

fanEnable .. 287

fanShow .. 288
faPwvn .. 289

fastBoot .. 295

fcipHelp .. 297

fcipLedTest ... 298

fcipPathTest .. 299

fcoe ... 301

fcoeLoginCfg ... 305

fcoeLoginGroup .. 308

fcPing ... 310

fcpLogClear .. 318

fcpLogDisable .. 319

fcpLogEnable ... 320

fcpLogShow ... 321

fcpProbeShow ... 322

fcpRtsProbe ... 323

fcpRtsShow ... 325

fcrBcastConfig ... 327
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>fcrConfigure</td>
<td>329</td>
</tr>
<tr>
<td>fcrEdgeShow</td>
<td>331</td>
</tr>
<tr>
<td>fcrFabricShow</td>
<td>333</td>
</tr>
<tr>
<td>fcrIclPathBWMonitor</td>
<td>335</td>
</tr>
<tr>
<td>fcrLsan</td>
<td>337</td>
</tr>
<tr>
<td>fcrLsanCount</td>
<td>339</td>
</tr>
<tr>
<td>fcrLsanMatrix</td>
<td>340</td>
</tr>
<tr>
<td>fcrPhyDevShow</td>
<td>345</td>
</tr>
<tr>
<td>fcrProxyConfig</td>
<td>347</td>
</tr>
<tr>
<td>fcrProxyDevShow</td>
<td>349</td>
</tr>
<tr>
<td>fcrResourceShow</td>
<td>351</td>
</tr>
<tr>
<td>fcrRouterPortCost</td>
<td>353</td>
</tr>
<tr>
<td>fcrRouteShow</td>
<td>355</td>
</tr>
<tr>
<td>fcrXlateConfig</td>
<td>356</td>
</tr>
<tr>
<td>fddCfg</td>
<td>359</td>
</tr>
<tr>
<td>fdmiCacheShow</td>
<td>361</td>
</tr>
<tr>
<td>fdmiShow</td>
<td>362</td>
</tr>
<tr>
<td>ficonCfg</td>
<td>364</td>
</tr>
<tr>
<td>ficonClear</td>
<td>365</td>
</tr>
<tr>
<td>ficonCupSet</td>
<td>366</td>
</tr>
<tr>
<td>ficonCupShow</td>
<td>369</td>
</tr>
<tr>
<td>ficonHelp</td>
<td>372</td>
</tr>
<tr>
<td>ficonShow</td>
<td>373</td>
</tr>
<tr>
<td>fipsCfg</td>
<td>381</td>
</tr>
<tr>
<td>firmwareCommit</td>
<td>385</td>
</tr>
<tr>
<td>firmwareDownload</td>
<td>386</td>
</tr>
<tr>
<td>firmwareDownloadStatus</td>
<td>391</td>
</tr>
<tr>
<td>firmwareKeyShow</td>
<td>393</td>
</tr>
<tr>
<td>firmwareRestore</td>
<td>394</td>
</tr>
<tr>
<td>firmwareShow</td>
<td>395</td>
</tr>
<tr>
<td>flow</td>
<td>397</td>
</tr>
<tr>
<td>fmMonitor</td>
<td>413</td>
</tr>
<tr>
<td>fosConfig</td>
<td>420</td>
</tr>
<tr>
<td>fosExec</td>
<td>423</td>
</tr>
<tr>
<td>frameLog</td>
<td>426</td>
</tr>
<tr>
<td>fsfpShow</td>
<td>430</td>
</tr>
<tr>
<td>fwAlarmsFilterSet</td>
<td>433</td>
</tr>
<tr>
<td>Command</td>
<td>Page</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
</tr>
<tr>
<td>isIsShow</td>
<td>519</td>
</tr>
<tr>
<td>itemList</td>
<td>522</td>
</tr>
<tr>
<td>killTelnet</td>
<td>524</td>
</tr>
<tr>
<td>ldapCfg</td>
<td>525</td>
</tr>
<tr>
<td>IfCfg</td>
<td>527</td>
</tr>
<tr>
<td>licenseAdd</td>
<td>531</td>
</tr>
<tr>
<td>licenseIdShow</td>
<td>532</td>
</tr>
<tr>
<td>licensePort</td>
<td>533</td>
</tr>
<tr>
<td>licenseRemove</td>
<td>536</td>
</tr>
<tr>
<td>licenseShow</td>
<td>537</td>
</tr>
<tr>
<td>licenseSlotCfg</td>
<td>540</td>
</tr>
<tr>
<td>linkCost</td>
<td>544</td>
</tr>
<tr>
<td>logicalGroup</td>
<td>546</td>
</tr>
<tr>
<td>login</td>
<td>549</td>
</tr>
<tr>
<td>logout</td>
<td>550</td>
</tr>
<tr>
<td>lsanZoneShow</td>
<td>551</td>
</tr>
<tr>
<td>lsCfg</td>
<td>553</td>
</tr>
<tr>
<td>lsDbShow</td>
<td>559</td>
</tr>
<tr>
<td>mapsConfig</td>
<td>563</td>
</tr>
<tr>
<td>mapsDb</td>
<td>568</td>
</tr>
<tr>
<td>mapsHelp</td>
<td>572</td>
</tr>
<tr>
<td>mapsPolicy</td>
<td>573</td>
</tr>
<tr>
<td>mapsRule</td>
<td>576</td>
</tr>
<tr>
<td>mapsSam</td>
<td>584</td>
</tr>
<tr>
<td>memShow</td>
<td>586</td>
</tr>
<tr>
<td>motd</td>
<td>587</td>
</tr>
<tr>
<td>msCapabilityShow</td>
<td>588</td>
</tr>
<tr>
<td>msConfigure</td>
<td>589</td>
</tr>
<tr>
<td>msPlatShow</td>
<td>591</td>
</tr>
<tr>
<td>msPlatShowDBCB</td>
<td>592</td>
</tr>
<tr>
<td>msPlClearDB</td>
<td>593</td>
</tr>
<tr>
<td>msPIMgmtActivate</td>
<td>594</td>
</tr>
<tr>
<td>msPIMgmtDeactivate</td>
<td>595</td>
</tr>
<tr>
<td>msTdDisable</td>
<td>596</td>
</tr>
<tr>
<td>msTdEnable</td>
<td>597</td>
</tr>
<tr>
<td>msTdReadConfig</td>
<td>598</td>
</tr>
<tr>
<td>myId</td>
<td>599</td>
</tr>
<tr>
<td>Command</td>
<td>Page</td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
</tr>
<tr>
<td>portCfgCompress</td>
<td>710</td>
</tr>
<tr>
<td>portCfgCreditRecovery</td>
<td>712</td>
</tr>
<tr>
<td>portCfgDefault</td>
<td>713</td>
</tr>
<tr>
<td>portCfgDPort</td>
<td>714</td>
</tr>
<tr>
<td>portCfgEncrypt</td>
<td>716</td>
</tr>
<tr>
<td>portCfgEport</td>
<td>718</td>
</tr>
<tr>
<td>portCfgEportCredits</td>
<td>720</td>
</tr>
<tr>
<td>portCfgEXPort</td>
<td>722</td>
</tr>
<tr>
<td>portCfgFaultDelay</td>
<td>726</td>
</tr>
<tr>
<td>portCfgFec</td>
<td>729</td>
</tr>
<tr>
<td>portCfgFillword</td>
<td>732</td>
</tr>
<tr>
<td>portCfgFportBuffers</td>
<td>734</td>
</tr>
<tr>
<td>portCfgGeMediaType</td>
<td>735</td>
</tr>
<tr>
<td>portCfgGport</td>
<td>737</td>
</tr>
<tr>
<td>portCfgISLMode</td>
<td>738</td>
</tr>
<tr>
<td>portCfgLongDistance</td>
<td>740</td>
</tr>
<tr>
<td>portCfgLossTov</td>
<td>744</td>
</tr>
<tr>
<td>portCfgLport</td>
<td>745</td>
</tr>
<tr>
<td>portCfgNPIVPort</td>
<td>747</td>
</tr>
<tr>
<td>portCfgNPort</td>
<td>751</td>
</tr>
<tr>
<td>portCfgOctetSpeedCombo</td>
<td>752</td>
</tr>
<tr>
<td>portCfgPersistentDisable</td>
<td>754</td>
</tr>
<tr>
<td>portCfgPersistentEnable</td>
<td>757</td>
</tr>
<tr>
<td>portCfgQoS</td>
<td>759</td>
</tr>
<tr>
<td>portCfgShow</td>
<td>762</td>
</tr>
<tr>
<td>portCfgSpeed</td>
<td>774</td>
</tr>
<tr>
<td>portCfgTrunkPort</td>
<td>777</td>
</tr>
<tr>
<td>portCfgVEXPort</td>
<td>778</td>
</tr>
<tr>
<td>portCmd</td>
<td>781</td>
</tr>
<tr>
<td>portDebug</td>
<td>788</td>
</tr>
<tr>
<td>portDecom</td>
<td>789</td>
</tr>
<tr>
<td>portDisable</td>
<td>790</td>
</tr>
<tr>
<td>portDPortTest</td>
<td>792</td>
</tr>
<tr>
<td>portEnable</td>
<td>797</td>
</tr>
<tr>
<td>portEncCompShow</td>
<td>799</td>
</tr>
<tr>
<td>portErrShow</td>
<td>801</td>
</tr>
<tr>
<td>portFencing</td>
<td>803</td>
</tr>
</tbody>
</table>
psShow ... 939
rasAdmin ... 940
rasMan ... 943
reBoot ... 945
relayConfig .. 947
roleConfig ... 948
routeHelp .. 951
rtLogTrace ... 952
secActiveSize ... 953
secAuthSecret ... 954
secCertUtil .. 956
secDefineSize ... 966
secGlobalShow ... 967
secHelp ... 969
secPolicyAbort ... 970
secPolicyActivate .. 971
secPolicyAdd ... 972
secPolicyCreate .. 975
secPolicyDelete .. 979
secPolicyDump ... 981
secPolicyFCSMove .. 984
secPolicyRemove .. 986
secPolicySave ... 988
secPolicyShow ... 989
secStatsReset ... 991
secStatsShow .. 993
sensorShow .. 995
serDesTuneMode ... 996
setContext .. 999
setDbg ... 1000
setVerbose .. 1001
sfpShow ... 1002
shellFlowControlDisable ... 1009
shellFlowControlEnable ... 1010
slotPowerOff .. 1011
slotPowerOn ... 1012
slotShow .. 1013
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmpConfig</td>
<td>1018</td>
</tr>
<tr>
<td>snmpTraps</td>
<td>1031</td>
</tr>
<tr>
<td>spinFab</td>
<td>1034</td>
</tr>
<tr>
<td>sshUtil</td>
<td>1038</td>
</tr>
<tr>
<td>statsClear</td>
<td>1043</td>
</tr>
<tr>
<td>stopPortTest</td>
<td>1044</td>
</tr>
<tr>
<td>supportFfdd</td>
<td>1045</td>
</tr>
<tr>
<td>supportFtp</td>
<td>1046</td>
</tr>
<tr>
<td>supportSave</td>
<td>1048</td>
</tr>
<tr>
<td>supportShow</td>
<td>1052</td>
</tr>
<tr>
<td>supportShowCfgDisable</td>
<td>1055</td>
</tr>
<tr>
<td>supportShowCfgEnable</td>
<td>1057</td>
</tr>
<tr>
<td>supportShowCfgShow</td>
<td>1059</td>
</tr>
<tr>
<td>switchBeacon</td>
<td>1061</td>
</tr>
<tr>
<td>switchCfgPersistentDisable</td>
<td>1063</td>
</tr>
<tr>
<td>switchCfgPersistentEnable</td>
<td>1064</td>
</tr>
<tr>
<td>switchCfgSpeed</td>
<td>1065</td>
</tr>
<tr>
<td>switchCfgTrunk</td>
<td>1066</td>
</tr>
<tr>
<td>switchDisable</td>
<td>1067</td>
</tr>
<tr>
<td>switchEnable</td>
<td>1068</td>
</tr>
<tr>
<td>switchName</td>
<td>1069</td>
</tr>
<tr>
<td>switchShow</td>
<td>1070</td>
</tr>
<tr>
<td>switchStatusPolicySet</td>
<td>1085</td>
</tr>
<tr>
<td>switchStatusPolicyShow</td>
<td>1088</td>
</tr>
<tr>
<td>switchStatusShow</td>
<td>1089</td>
</tr>
<tr>
<td>switchUptime</td>
<td>1091</td>
</tr>
<tr>
<td>switchViolation</td>
<td>1092</td>
</tr>
<tr>
<td>syslogdFacility</td>
<td>1093</td>
</tr>
<tr>
<td>syslogdIpAdd</td>
<td>1094</td>
</tr>
<tr>
<td>syslogdIpRemove</td>
<td>1095</td>
</tr>
<tr>
<td>syslogdIpShow</td>
<td>1096</td>
</tr>
<tr>
<td>sysMonitor</td>
<td>1097</td>
</tr>
<tr>
<td>sysShutDown</td>
<td>1104</td>
</tr>
<tr>
<td>tempShow</td>
<td>1106</td>
</tr>
<tr>
<td>thConfig</td>
<td>1107</td>
</tr>
<tr>
<td>thMonitor</td>
<td>1116</td>
</tr>
<tr>
<td>timeOut</td>
<td>1117</td>
</tr>
</tbody>
</table>
Chapter 3 Primary FCS Commands

Primary FCS commands .. 1181

Appendix A Command Availability

Command validation checks 1183
Command Admin Domain and Virtual Fabrics restrictions 1184
About This Document

How this document is organized

This document is organized to help you find the information that you want as quickly and easily as possible.

The document contains the following components:

- Chapter 1, “Using Fabric OS Commands,” explains how to use the command line interface to manage a Brocade SAN and Brocade switches.
- Chapter 2, “Fabric OS Commands,” provides command information.
- Chapter 3, “Primary FCS Commands,” summarizes the subset of commands available when an FCS policy is enabled.
- Appendix A, “Command Availability,” explains the Role-Based Access Control, as well as Virtual Fabric and Admin Domain restriction checks used to validate commands.

Supported hardware and software

This document includes updated information specific to new functionality introduced in Fabric OS v7.2.0. Table 1 lists the hardware platforms supported in the Fabric OS v7.2.0 release. ASIC names may be used in this document to distinguish between types of switches that share certain characteristics.
Although Brocade supports and tests many different software and hardware configurations for Fabric OS v7.2.0, documenting all possible configurations and scenarios is beyond the scope of this document.

This document is specific to Fabric OS v7.2.0. To obtain information about an OS version other than v7.2.0, refer to the documentation for that OS version.
What is new in this document

The Fabric OS Command Reference v7.2.0 supports the current Fabric OS release and the new hardware platforms.

The Admin Domain and Virtual Fabric restrictions for Fabric OS commands table in the appendix has been updated. The table lists the Admin domain, Context and Switch type for the commands.

New commands

The following commands and associated man pages have been added since the publication of the Fabric OS v7.1.0 release of this manual:

- **chassisCfgPerrThreshold** - Configures parity error threshold and fault capability on a blade or a switch.
- **creditRecovMode** - Enables credit loss recovery on back-end ports and time-out based credit loss detection of Condor 2 front-end ports.
- **fcrIclPathBWMonitor** - Sets or displays FC Router ICL bandwidth calculation parameters for EX_Ports.
- **flow** - Creates, manages and displays flows in Flow Vision.
- **logicalGroup** - Creates and manages groups of monitored elements.
- **mapsConfig** - Enables MAPS on a switch and sets global monitoring configurations.
- **mapsDb** - Displays or clears the dashboard showing an at-a-glance snapshot of switch health status.
- **mapsHelp** - Displays MAPS command information.
- **mapsPolicy** - Creates and manages MAPS policies.
- **mapsRule** - Creates and manages monitoring rules.
- **mapsSam** - Generates or clears MAPS port availability monitor report.
- **portCfgEportCredits** - Configures normal distance E_Port buffer allocation.
- **relayConfig** - Sets and displays the relay host IP address.

Modified commands

The following commands and associated man pages have been modified to remove support for the Brocade 8000 in Fabric OS v7.2.0:

- **ag**
- **fcoe**
- **perfTTmon**
- **portCfgDefault**
- **portLedTest**
- **portLoopbackTest**
- **switchShow**
- **turboRamTest**
The following commands and associated man pages have been corrected or updated with additional information:

- **aaaConfig** - The common secret can be between 1 to 40 characters long for the TACACS+ server.
- **aliShow** - Added the `--ic` operand to display the zone alias names without case distinction. Added the help option.
- **auditCfg** - The class option 9 enables MAPS event auditing.
- **bladeSwap** - You cannot run this command if the source or destination blades are faulty.
- **bottleneckMon** - All credit recovery-related options supported by this command are also available with the `creditRecovMode` command.
- **cfgShow** - Added the `--ic` operand to display all zone configuration names for a given pattern without case distinction.
- **cfgSize** - The maximum supported zone database size for chassis-based switches has been increased to 2 MB.
- **chassisDistribute** - The RPC port rules will be removed from the IP Filter policy database after upgrading to Fabric OS v7.2.0.
- **cliHistory** - The maximum number of saved entries has been increased to 1680.
- **configShow** - Updated the command example.
- **configure** - Added the Dynamic D-Port, Location ID, and MAX num. of FLOGIs allowed options. The edge hold time values are corrected.
- **diagShow** - You cannot interrupted this command by pressing the return key (<cr>).
- **errDump** - Corrected the typo in the `--attribute` operand name.
- **fabricPrincipal** - The `force` option forces a fabric rebuild regardless of the principal mode of the switch.
- **fabricShow** - Added the `paths` operand to display the number of available paths to each remote domain.
- **fcrConfigure** - Added new operands to specify the Backbone Fabric ID, to enable or disable the shortest inter-fabric link (IFL) mode, and to display the configured setting.
- **fcrEdgeShow** - This command is enhanced to display ICL EX_Ports.
- **ficonCfg** - Updated the description of the `port` operand.
- **ficonCupSet** - Removed the unsupported FICON-CUP mode “UAM”.
- **ficonCupShow** - Added the reporting path state “primary” to the description of the `LP` operand.
- **ficonHelp** - Corrected the command example.
- **ficonShow** - The ILIR option is no longer used and the FICON ILIR database will always be empty.
- **firmwareDownload** - Removed the unsupported option “-r”.
- **help** - Removed the deprecated command “agtcfgdefault” from the command example.
- **ifModeSet** - You can configure 1000 Mbps speed only when auto negotiation is on.
- **interfaceShow** - This command is enhanced to display the port substate.
- **ipAddrSet** - Added the `--clear` operand to clear the IPv4 and IPv6 addresses.
- **ipFilter** - Blocking or permitting the RPC ports 111, 897, and 898 using the `-act` operand is not allowed.
• **islShow** - This command displays “D_PORT” if the D_Port mode is enabled on an ISL.
• **lsCfg** - Added the **-force** and **-qsfp** operands. The domain ID is displayed in the **--show** command output.
• **lsDbShow** - The command is enhanced to display the
• **nbrStateShow** - The command is enhanced to display the port substate.
• **passwdCfg** - Added the **reverse** operand to activate password reverse criterion check. The past password value is between 0 and 24 and the default is 0.
• **perfTTmon** - The maximum of 32 flows are displayed for the Brocade 6505 and Brocade 6520 switches.
• **portAddress** - The **--show** command displays a new column “User_bound” to indicate whether the area for the port index is user bound. "Y" indicates user bound. "–" indicates implicit bound.
• **portBeacon** - The command does not allow to beaconing of Inter Chassis Link (ICL) ports, GE ports, FCoE ports, 10G ports, and embedded internal ports.
• **portCfg** - **fc iptunnel** and **fcipcircuit** - Added the **-g | --failover-group** operand to set the failover group ID for a circuit.
• **portCfgCompress** - Compression is not supported on Condor 3 Inter-Chassis Link (ICL) ports.
• **portCfgDPort** - Added the **-dwdm** operand to disable the DWDM mode on a port.
• **portCfgEncrypt** - Encryption is not supported on Condor 3 ICL ports.
• **portCfgEXPort** - This command does not display the encryption and compression states for the ICL EX_Ports.
• **portCfgOctetSpeedCombo** - The command is enhanced to support 10 Gbps FC speed configuration on all ports of a 16 Gbps-capable blade or switch.
• **portCfgPersistentDisable** - Added the **-r** operand to disable a port persistently with a disable reason.
• **portCfgQoS** - On Condor 3 ICL ports, QoS is not configurable and it is enabled by default.
• **portCfgShow** - Added the **Sim Port** and **E_Ports Credits** fields. Updated the command syntax.
• **portCfgSpeed** - Corrected the command syntax.
• **portCfgTrunkPort** - This command is supported in Access Gateway mode.
• **portDisable** - Added the **-r** operand to disable a port with a disable reason.
• **portDPortTest** - This command is enhanced to display the complete D_Port test results on the responder switch. Added the D_Port test failure example.
• **portLedTest** - Added the **-uports** operand to specify a set of user ports to test. You cannot interrupt the test by pressing the return key (<cr>).
• **portLoopbackTest** - Added the **-uports** operand to specify a set of user ports to test. You cannot interrupt the test by pressing the return key (<cr>).
• **portName** - When FICON Management Server (FMS) mode is disabled, specifying the same port name for multiple ports is permitted.
• **portPerfShow** - A port that is marked with an asterisk (*) in the output indicate that it is a SIM port. Corrected the command syntax.
• **portShow** - This command displays the configured failover group ID for circuits.
• **portStatsShow** - The **stat_ftx** and **stat_frx** fields display class 2, class 3, and control frames transmitted and received. The **compression_ratio** is based on the last 5 second sampled accumulated value. It is represented in percentage.
• **portSwap** - You cannot run this command if the ports are from a faulty blade.

• **portThConfig** - Added the **SL** area option.

• **rasMan** - The **MAPS** class indicates that the message is a MAPS audit message.

• **secStatsShow** - The **INVALID_CERT** policy name is no longer supported.

• **sfpShow** - Added command example for a quad small form-factor pluggable (QSFP).

• **snmpConfig** - Removed the unsupported protocols (3DES, AES192, AES256) from the SNMPv3 configuration command. Added a command example to display the access control configuration.

• **spinFab** - This command supports a maximum of 16 E_Port ICL links. You cannot interrupt the test by pressing the return key (<cr>).

• **supportShow** - Corrected the command syntax.

• **switchShow** - This command displays the World Wide Port Name (WWPN) of the remote device port. The **-qsfp** option is supported with the **-slot** operand. Added the following new comments: D-Port Dynamic, D-Port F-Port WWN Dynamic, SIM-Port, and Disabled (Fabric Vision License required).

• **switchStatusShow** - This command will be disabled if MAPS is enabled on the switch.

• **thConfig** - The **-trigger** command is supported with the **-sfptype** option. Updated the description of the **-area_only** operand.

• **topologyShow** - The “Path Count” field is enhanced to display the total number of active paths to the destination domain. The maximum number of paths supported is 16.

• **traceDump** - Added the name format of the trace dump file generated for an AP blade. Corrected the name format of the default trace dump file.

• **tsTimeZone** - The option **11** (none) in interactive command mode is not supported.

• **turboRamTest** - You cannot interrupt the test by pressing the return key (<cr>).

• **version** - Updated the command example.

• **zone** - Added the -i operand to the **--validate** command and the -ic operand to the **--show** command to display all zone members and TI zone configurations for a given pattern without case distinction.

• **zoneShow** - Added the -ic operand to display all zone configuration names for a given pattern without case distinction.

Deprecated commands

The following commands and associated man pages have been removed since this document was last released:

• **trackChangesHelp**

• **trackChangesSet**

• **trackChangesShow**
CLI usage conventions

- Some Fabric OS show commands display certain switch or fabric components in three-digit decimal numbers, for example, 003. When you use these numeric identifiers as inputs to other commands, you must remove the leading zeros; otherwise the commands will either fail or generate incorrect results. Adding zeros to any decimal number in a command input will cause that number to be treated as an Octal number.

- Automatic page breaks in CLI command output displays are being phased out. Use the more option to display command output with page breaks: command | more. Do not use the more option in conjunction with help pages. Executing help command | more will display a command “no manual entry for command” message.

Document conventions

This section describes text formatting conventions and important notices formats.

Text formatting

The narrative-text formatting conventions that are used in this document are as follows:

- **bold text** Identifies command names
- **bold text** Identifies GUI elements
- **bold text** Identifies keywords and operands
- **bold text** Identifies text to enter at the GUI or CLI

- *italic text* Provides emphasis
- *italic text* Identifies variables
- *italic text* Identifies paths and Internet addresses
- *italic text* Identifies document titles

- **code text** Identifies CLI output
- **code text** Identifies syntax examples

For readability, command names in the command titles and in the narrative portions of this guide are presented in mixed letter case, for example, switchShow. In examples, command letter case is all lowercase.

Command syntax conventions

Command syntax in this document follows these conventions:

- **command** Commands are printed in bold.
- --**option, option** Command options are printed in bold.
- -**argument, arg** Arguments are printed in bold.
- **[]** Optional element.
- **variable** Variables are printed in italics. In the help pages, values are underlined or enclosed in angle brackets < >.
- **...** Repeat the previous element, for example “member[;member...]”
Fixed (literal) values following arguments are printed in plain font. For example, `--show WWN`

| Boolean. Elements are exclusive. Example: `--show -mode egress | ingress`
| Backslash indicates a "soft" line break. If a backslash separates two lines of a command input, enter the entire command at the prompt without the backslash.

Notes, cautions, and warnings

The following notices and statements are used in this manual. They are listed below in order of increasing severity of potential hazards.

NOTE
A note provides a tip, guidance, or advice, emphasizes important information, or provides a reference to related information.

ATTENTION
An Attention statement indicates potential damage to hardware or data.

CAUTION
A Caution statement alerts you to situations that can be potentially hazardous to you or cause damage to hardware, firmware, software, or data.

DANGER
A Danger statement indicates conditions or situations that can be potentially lethal or extremely hazardous to you. Safety labels are also attached directly to products to warn of these conditions or situations.

Key terms

For definitions specific to Brocade and Fibre Channel, see the technical glossaries on the Brocade website. See “Brocade resources” on page xxix for instructions on accessing the information.

For definitions of SAN-specific terms, visit the Storage Networking Industry Association online dictionary at:

http://www.snia.org/education/dictionary

Notice to the reader

This document may contain references to the trademarks of the following corporations. These trademarks are the properties of their respective companies and corporations.
These references are made for informational purposes only.

<table>
<thead>
<tr>
<th>Corporation</th>
<th>Referenced Trademarks and Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commvault</td>
<td>Commvault Galaxy Data Protection</td>
</tr>
<tr>
<td>EMC</td>
<td>RSA Data Protection Manager (DPM)</td>
</tr>
<tr>
<td>HP</td>
<td>Secure Key Manager (SKM) and Enterprise Secure Key Manager (ESKM)</td>
</tr>
<tr>
<td>IBM</td>
<td>Tivoli Key Lifecycle Manager</td>
</tr>
<tr>
<td>Legato</td>
<td>Legato Networker</td>
</tr>
<tr>
<td>Microsoft Corporation</td>
<td>Windows, Windows NT, Internet Explorer</td>
</tr>
<tr>
<td>NetApp</td>
<td>NetApp Lifetime Key Manager (LKM)</td>
</tr>
<tr>
<td>Oracle Corporation</td>
<td>Oracle, Java</td>
</tr>
<tr>
<td>Symantec</td>
<td>Veritas NetBackup 6.5 Enterprise Server</td>
</tr>
<tr>
<td>Red Hat, Inc.</td>
<td>Linux</td>
</tr>
<tr>
<td>Thales</td>
<td>Thales e-Security keyAuthority (TEKA)</td>
</tr>
</tbody>
</table>

Additional information

This section lists additional Brocade and industry-specific documentation that you may find helpful.

Brocade resources

To get up-to-the-minute information, join MyBrocade at no cost to obtain a user ID and password:

http://my.brocade.com

White papers, online demonstrations, and data sheets are available through the Brocade website at:

For additional Brocade documentation, visit the Brocade SAN Info Center and click the Resource Library location:

http://www.brocade.com

Release notes are available on the Brocade website.

Other industry resources

For additional resource information, visit the Technical Committee T11 website. This website provides interface standards for high-performance and mass storage applications for Fibre Channel, storage management, and other applications:

http://www.t11.org
For information about the Fibre Channel industry, visit the Fibre Channel Industry Association website:

http://www.fibrechannel.org

Getting technical help

Contact your switch support supplier for hardware, firmware, and software support, including product repairs and part ordering. To expedite your call, have the following information available:

- General Information
 - Switch model
 - Switch operating system version
 - Error numbers and messages received
 - supportSave command output
 - Detailed description of the problem, including the switch or fabric behavior immediately following the problem, and specific questions
 - Description of any troubleshooting steps already performed and the results
 - Serial console and Telnet session logs
 - syslog message logs

- Switch Serial Number

The switch serial number and corresponding bar code are provided on the serial number label, as shown here:

```
| FT00X0054E9 |
```

The serial number label is located as follows:

- Brocade 300, 5100, 5300, 6505, M6505, 6520, 6547, 7800, VA-40FC, and Brocade Encryption Switch—On the switch ID pull-out tab located inside the chassis on the port side on the left.
- Brocade 5410, 5424, 5430, 5450, 5460, 5470, 5480—Serial number label attached to the module.
- Brocade 6510—On the pull-out tab on the front of the switch.
- DCX and DCX 8510-8—On the port side of the chassis, on the lower right side and directly above the cable management comb.
- DCX-4S and DCX 8510-4—On the non-port side of the chassis on the lower left side.

Use the licenseldShow command to display the switch WWN.

If you cannot use the licenseldShow command because the switch is inoperable, you can get the WWN from the same place as the serial number, except for the Brocade DCX, DCX-4S, DCX 8510-8, and DCX 8510-4. On these models, access the numbers on the WWN cards by removing the Brocade logo plate at the top of the non-port side of the chassis.
Document feedback

Quality is our first concern at Brocade, and we have made every effort to ensure the accuracy and completeness of this document. However, if you find an error or an omission, or you think that a topic needs further development, we want to hear from you. Forward your feedback to:

documentation@brocade.com

Provide the title and version number and as much detail as possible about your issue, including the topic heading and page number and your suggestions for improvement.
In this chapter

- Using the command line interface ... 1
- Understanding Role-Based Access Control 2
- Understanding Virtual Fabric restrictions 3
- Understanding Admin Domain restrictions 4
- Determining RBAC permissions for a specific command 4

Using the command line interface

The Fabric OS command line interface (CLI), accessed via Telnet, SSH, or serial console, provides full management capability on a Brocade switch. The Fabric OS CLI enables an administrator to monitor and manage individual switches, ports, and entire fabrics from a standard workstation. Selected commands must be issued from a secure Telnet or SSH session.

Access is controlled by a switch-level password for each access level. The commands available through the CLI are based on the user’s login role and the license keys used to unlock certain features.

The Fabric OS CLI provides the following capabilities:

- Access to the full range of Fabric OS features, given the license keys installed.
- Assistance with configuration, monitoring, dynamic provisioning, and daily management of every aspect of storage area networks (SANs).
- A deeper view of the tasks involved in managing a Brocade SAN.
- Identification, isolation, and management of SAN events across every switch in the fabric.
- Management of Brocade licenses.

The documentation for each command includes a synopsis of its syntax, a description of command use, and a set of examples. The same information can be accessed by issuing the `help` command followed by the command name on a Brocade switch or director. This command displays the help page for the specified command. For example, to display the help page for `portCfg`, enter:

```
switch:admin> help portCfg
```
Understanding Role-Based Access Control

Fabric OS implements Role-Based Access Control (RBAC) to control access to all Fabric OS operations.

Eight predefined roles are supported, as described in Table 2. These predefined role definitions are guided by perceived common operational situations and the operations and effects a role is permitted to have on a fabric and individual fabric elements.

<table>
<thead>
<tr>
<th>Role name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>Non-administrative use, such as monitoring system activity. In Fabric OS v6.2.0 and later, the user account gains access to Fabric ID 128. This is the default logical fabric after a firmware upgrade.</td>
</tr>
<tr>
<td>Operator</td>
<td>A subset of administrative tasks typically required for routine maintenance operations.</td>
</tr>
<tr>
<td>SwitchAdmin</td>
<td>Administrative use excluding security, user management, and zoning.</td>
</tr>
<tr>
<td>ZoneAdmin</td>
<td>Zone management only.</td>
</tr>
<tr>
<td>FabricAdmin</td>
<td>Administrative use excluding user management and Admin Domain management.</td>
</tr>
<tr>
<td>BasicSwitchAdmin</td>
<td>A subset of administrative tasks, typically of a more limited scope and effect.</td>
</tr>
<tr>
<td>Admin</td>
<td>All administrative tasks, including encryption and chassis commands.</td>
</tr>
<tr>
<td>SecurityAdmin</td>
<td>Administrative use including admin, encryption, security, user management, and zoning.</td>
</tr>
</tbody>
</table>

In addition to these predefined roles, Fabric OS v7.0.0 and later provides support for creating user-defined roles. Refer to the `roleConfig` command for more information.

Additional command restrictions apply depending on whether Virtual Fabrics or Admin Domains are enabled in a fabric. Refer to Appendix A, “Command Availability”.

NOTE
Virtual Fabrics and Admin Domains are mutually exclusive and are not supported at the same time on a switch. To use Admin Domains, you must first disable Virtual Fabrics; to use Virtual Fabrics, you must first delete all Admin Domains. Use `ad --clear -f` to remove all Admin Domains. Refer to the Fabric OS Administrator’s Guide for more information.

Encryption commands and permissions

There are two system RBAC roles that are permitted to perform encryption operations.

- Admin and SecurityAdmin

Users authenticated with the Admin and SecurityAdmin RBAC roles may perform cryptographic functions assigned to the FIPS Crypto Officer, including the following:

- Perform encryption node initialization.
- Enable cryptographic operations.
• Manage critical security parameters (CSPs) input and output functions.
• Zeroize encryption CSPs.
• Register and configure a key vault.
• Configure a recovery share policy.
• Create and register recovery share.
• Encryption group- and clustering-related operations.
• Manage keys, including creation, recovery, and archiving functions.

Admin and FabricAdmin

Users authenticated with the Admin and FabricAdmin RBAC roles may perform routine encryption switch management functions including the following:

• Configure virtual devices and crypto LUN.
• Configure LUN/tape associations.
• Perform re-keying operations.
• Perform firmware download.
• Perform regular Fabric OS management functions.

For a listing of RBAC permissions for cryptoCfg subcommands, refer to the Fabric OS Encryption Administrator’s Guide.

Understanding Virtual Fabric restrictions

All Fabric OS commands are subject to additional RBAC enforcement with regard to Virtual Fabric contexts and switch types. Commands can be executed in one or more of the contexts described in Table 3. Execution of chassis commands requires chassis permissions.

TABLE 3 Virtual Fabric contexts

<table>
<thead>
<tr>
<th>Context type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch context</td>
<td>Command applies to the current logical switch only, or to a specified logical switch.</td>
</tr>
<tr>
<td>Chassis context</td>
<td>Command applies to the chassis on which it is executed.</td>
</tr>
<tr>
<td>Switch and chassis context</td>
<td>Command can be executed in a logical switch context or in a chassis context.</td>
</tr>
<tr>
<td>Disallowed</td>
<td>Command is not supported in Virtual Fabric mode.</td>
</tr>
</tbody>
</table>

Switch commands are further defined by the switch type restrictions as described in Table 4. Switch type restrictions are not applicable to commands that require chassis permissions.

TABLE 4 Switch types

<table>
<thead>
<tr>
<th>Switch type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Switches</td>
<td>Command can be executed in any switch context.</td>
</tr>
<tr>
<td>Base Switch Only</td>
<td>Command can be executed only on the base switch.</td>
</tr>
<tr>
<td>Default Switch Only</td>
<td>Command can be executed only on the default switch.</td>
</tr>
<tr>
<td>N/A</td>
<td>Command is a chassis command or not supported in Virtual Fabric mode.</td>
</tr>
</tbody>
</table>
1 Understanding Admin Domain restrictions

In a Virtual Fabric environment where contexts are enforced, the following Virtual Fabric restrictions apply to the RBAC permissions specified in Table 2. Refer to the userConfig command for more information on configuring user account access permissions in a Virtual Fabric environment.

- Any given role is allowed to execute all switch commands to which the role is authorized in the account’s home context. The default home context is the default logical fabric FID 128.
- You can change an account’s home context to a specified FID and configure the account permissions to access additional logical switches specified in the user’s Fabric ID list.
- Accounts with user or admin permissions can be granted chassis permissions. A user account with the chassis role can execute chassis-level commands at the user RBAC access level. An admin account with the chassis role can execute chassis-level commands at the admin RBAC access level.

Use the classConfig --showcli command to look up the Virtual Fabrics context for a specified command. Refer to Appendix A, “Command Availability,” for a complete listing of Virtual Fabric restrictions that apply to the commands included in this manual.

Understanding Admin Domain restrictions

A subset of Fabric OS commands is subject to Admin Domain (AD) restrictions that may be in place. In order to execute an AD-restricted command on a switch or device, the switch or device must be part of a given Admin Domain, and the user must be logged in to that Admin Domain.

Six Admin Domain types are supported, as defined in Table 5.

<table>
<thead>
<tr>
<th>AD Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowed</td>
<td>Allowed to execute in all ADs.</td>
</tr>
<tr>
<td>PhysFabricOnly</td>
<td>Allowed to execute only in AD255 context (and the user should own access to AD0-AD255 and have admin RBAC privilege).</td>
</tr>
<tr>
<td>Disallowed</td>
<td>Allowed to execute only in AD0 or AD255 context; not allowed in AD1-AD254 context.</td>
</tr>
<tr>
<td>PortMember</td>
<td>All control operations allowed only if the port or the local switch is part of the current AD. View access allowed if the device attached to the port is part of current AD.</td>
</tr>
<tr>
<td>AD0Disallowed</td>
<td>Allowed to execute only in AD255 and AD0 (if no ADs are configured).</td>
</tr>
<tr>
<td>AD0Only</td>
<td>Allowed to execute only in AD0 when ADs are not configured.</td>
</tr>
</tbody>
</table>

Refer to Appendix A, “Command Availability,” for a listing of Admin Domain restrictions that apply to the commands included in this manual.

Determining RBAC permissions for a specific command

To determine RBAC permission for a specific command, use the classconfig --showcli command.

1. Enter the classconfig --showcli command for a specified command.

The command displays the RBAC class and access permissions for each of the command options. Note that options for a single command option can belong to different classes.
Determining RBAC permissions for a specific command

2. Enter the `classconfig --showroles` command and specify the RBAC class of the command option you want to look up.

The command displays the default roles and the permissions they have to access commands in the specified RBAC class.

The following example shows how you can obtain permission information for the `zone` command. Suppose you want to know if a user with the SwitchAdmin role can create a zone. You issue the `classconfig --showcli` command for the `zone` command, which shows that the `zone --add` command belongs to the RBAC class “zoning”. You then issue the `classconfig --showroles` command for the zoning RBAC class. The output shows that the SwitchAdmin role has ‘Observe” (O) permissions only for any command in the zoning class. This means that the user with the SwitchAdmin role is not allowed to create zones. To allow this user to create a zone, you must change the user’s access to any of the roles that have “observe and modify” (OM) access. Use the `userConfig` command to change the user’s role or use the `roleConfig` command to create a custom role.

```
switch:admin> classconfig --showcli zone

<table>
<thead>
<tr>
<th>CLI</th>
<th>Option</th>
<th>Permission</th>
<th>RBAC Class</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>zone</td>
<td>Killall</td>
<td>OM</td>
<td>Debug</td>
<td>vf</td>
</tr>
<tr>
<td>zone</td>
<td>evlogclear</td>
<td>OM</td>
<td>Debug</td>
<td>vf</td>
</tr>
<tr>
<td>zone</td>
<td>evlogshow</td>
<td>O</td>
<td>Debug</td>
<td>vf</td>
</tr>
<tr>
<td>zone</td>
<td>evlogtoggle</td>
<td>OM</td>
<td>Debug</td>
<td>vf</td>
</tr>
<tr>
<td>zone</td>
<td>mergeshow</td>
<td>O</td>
<td>Debug</td>
<td>vf</td>
</tr>
<tr>
<td>zone</td>
<td>stateshow</td>
<td>O</td>
<td>Debug</td>
<td>vf</td>
</tr>
<tr>
<td>zone</td>
<td>activate</td>
<td>OM</td>
<td>Zoning</td>
<td>vf</td>
</tr>
<tr>
<td>zone</td>
<td>add</td>
<td>OM</td>
<td>Zoning</td>
<td>vf</td>
</tr>
<tr>
<td>zone</td>
<td>copy</td>
<td>OM</td>
<td>Zoning</td>
<td>vf</td>
</tr>
<tr>
<td>zone</td>
<td>create</td>
<td>OM</td>
<td>Zoning</td>
<td>vf</td>
</tr>
<tr>
<td>zone</td>
<td>deactivate</td>
<td>OM</td>
<td>Zoning</td>
<td>vf</td>
</tr>
</tbody>
</table>

(output truncated)

switch:admin> classconfig --showroles zoning

Roles that have access to the RBAC Class ‘zoning’ are:

```
<table>
<thead>
<tr>
<th>Role Name</th>
<th>Permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>O</td>
</tr>
<tr>
<td>Admin</td>
<td>OM</td>
</tr>
<tr>
<td>Factory</td>
<td>OM</td>
</tr>
<tr>
<td>Root</td>
<td>OM</td>
</tr>
<tr>
<td>Operator</td>
<td>O</td>
</tr>
<tr>
<td>SwitchAdmin</td>
<td>O</td>
</tr>
<tr>
<td>ZoneAdmin</td>
<td>OM</td>
</tr>
<tr>
<td>FabricAdmin</td>
<td>OM</td>
</tr>
<tr>
<td>BasicSwitchAdmin</td>
<td>O</td>
</tr>
<tr>
<td>SecurityAdmin</td>
<td>O</td>
</tr>
</tbody>
</table>
```

Determining RBAC permissions for a specific command
aaaConfig

Manages RADIUS, LDAP, and TACACS+ configuration information.

SYNOPSIS

aaaconfig

aaaconfig --show

aaaconfig --add | --change server -conf radius | ldap | tacacs+
   [-p port] [-d domain] [-t timeout] [-s secret]
   [-a chap | pap | peap-mschapv2]

aaaconfig --remove server -conf radius | ldap | tacacs+

aaaconfig --move server -conf radius | ldap | tacacs+ to_position

aaaconfig --authspec aaa1;aaa2 [-backup] [-nologout]

aaaconfig --help

DESCRIPTION

Use this command to manage the RADIUS, LDAP, and TACACS+ server configuration for the
authentication, authorization and accounting (AAA) services. Use this command to display, add, remove,
change, enable or disable the RADIUS, LDAP, or TACACS+ configuration.

Brocade switches use a local as well as a remote authentication mechanism for validating a login.
Supported authentication protocols include Password Authentication Protocol (PAP),
Challenge-Handshake Authentication Protocol (CHAP) and Protected Extensible Authentication Protocol
(PEAP). In addition, Fabric OS v6.0.0 and later provides support for Light-weight Directory Access
Protocol (LDAP) authentication against Active Directory for user authentication and authorization.

RADIUS, LDAP or TACACS+ servers are contacted in the order they appear in the configuration list. The
first server returning authentication success or failure causes the authentication request to succeed or
fail. If no response is received within the specified timeout, the next RADIUS, LDAP, or TACACS+ server
in the list is contacted. An event entry logs if all RADIUS, LDAP, or TACACS+ servers fail to respond.

When the command succeeds, it triggers an event log (the Fabric OS error log) to indicate a server is
added, removed, or modified. Refer to the Fabric OS Message Reference manual for specific details.

There are two modes of operation in LDAP authentication, FIPS mode and non-FIPS mode. However,
there is no option to configure LDAP while the switch is in FIPS mode. The LDAP client checks if FIPS
mode is set on the switch and uses FIPS-compliant TLS ciphers for LDAP. If FIPS mode is not set and
the ADir server is configured for FIPS ciphers, it uses FIPS-compliant ciphers.

Configuration changes are persistently saved and take effect with the next AAA request. The
configuration applies to all switch instances in a platform supporting multiple switch domains.

NOTES

Customers can use centralized RADIUS servers to manage AAA services for a switch, as defined in the
RFC 2865 RADIUS specification.

This command can be executed when logged in through the console, Telnet or SSH connection.
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

This command has the following operands:

- **server**
  Specifies an IP address or a server name in dot-decimal notation. IPv6 addresses are supported. If a name is used, a DNS entry must be correctly configured for the server. If the specified server IP address or name already exists in the current configuration, the command fails and generates an error. However, the command does not validate the server name against the IP address in the configuration. Make sure to avoid duplicate configuration of the same server, one specified by the name, the other specified by the IP address.

- **--show**
  Displays the current AAA service configuration.

- **--add | --change server [options]**
  Adds or modifies a RADIUS, LDAP, or TACACS+ server. The **--add** option appends the specified server to the end of the current configuration list. A maximum of 5 servers are supported for each authentication type. The **--change** option modifies the specified server configuration to use the new arguments. The server must be one of the IP addresses or names shown in the current configuration.

  The following **options** are supported:

  - **-conf radius | ldap | tacacs+**
    Specifies the server configuration as either RADIUS, LDAP, or TACACS+. This operand is required.

    The following operands are optional:

    - **-p port**
      Specifies the RADIUS, LDAP, or TACACS+ server port number. Supported range is 1 to 65535. The default port is 1812 for RADIUS authentication. The default port is 1813 for RADIUS accounting. The default port is 389 for LDAP authentication. The default port is 49 for TACACS+ authentication. This operand is optional. If no port is specified, the default is used.

    - **-t timeout**
      Specifies the response timeout for the RADIUS, the LDAP or the TACACS+ server. The supported range is 1 to 30 seconds. The default is 3 seconds. This operand is optional. If no timeout is specified, the default is used.

    - **-d domain**
      Specifies the Windows domain name for the LDAP server, for example, brocade.com. This option is valid only with the **-conf ldap** option. This operand is optional.

    - **-s secret**
      Specifies a common secret between the switch and the RADIUS or TACACS+ server. The secret must be 8 to 40 characters for RADIUS server, and 1 to 40 characters for TACACS+ server. This option is valid only with **-conf radius** or **-conf tacacs+** options, and it is optional. The default value is **sharedsecret**.

    - **-a**
      Specifies the remote authentication protocol for the RADIUS or TACACS+ server. This operand is valid with **-conf radius** or **-conf tacacs+** options, and it is optional. The default value for this operand is **CHAP**.
Note that the distinction between protocols is only applicable to the packets between a system and the RADIUS or TACACS+ server. To authenticate a user to the system, a password is always used.

Valid protocols are one of the following:

- **pap**
  
  Password Authentication Protocol

- **chap**
  
  Challenge-Handshake Authentication Protocol

- **peap-mschapv2**
  
  Protected Extensible Authentication Protocol (requires Fabric OS v5.3.0 or later). This is applicable only to RADIUS configuration.

**--remove server**

Removes the specified server from the configuration. The server must match one of the IP addresses or the names shown in the current configuration. The following operand is required:

- **conf radius | ldap | tacacs+**
  
  Specifies the server configuration as either RADIUS, LDAP, or TACACS+. If the server is enabled, the command does not allow the last server to be removed from the configuration list. RADIUS, LDAP, or TACACS+ must first be disabled before the last server of the specified type may be removed.

**--move server option**

Moves the specified server from the current position in a RADIUS, LDAP, or TACACS+ configuration list to the specified position. If the specified position is the same as the current position, no change takes place. Valid options include the following:

- **conf radius | ldap | tacacs+**
  
  Specifies the server configuration as RADIUS, LDAP, or TACACS+. This operand is required.

- **to_position**
  
  Specifies the new position for the server. The value for to_position is an integer, and must be within the range of server positions in the current configuration. Use the **--show** option to determine current server positions. This operand is required.

**--authspec "aaa1[;aaa2][-backup][-nologout]**

Replaces the configuration with the specified AAA service. Each service can be specified only once in the list, for example, "radius; local; radius" is invalid. No edit option is provided. The **--authspec** option takes as an argument a semicolon-separated list of AAA services. Services must be enclosed in double quotation marks.

The following AAA services and service pairs are valid:

- **"local"**
  
  Default setting. Authenticates the user against the local database only. If the password does not match or the user is not defined, the login fails.

- **"radius"**
  
  When "radius" is specified, the first RADIUS server is contacted. If the RADIUS server is not reachable, the next RADIUS server is contacted. If the authentication fails, the authentication process does not check for the next server in the sequence.
"ldap" When "ldap" is specified, the first Active directory (AD) server is contacted. If the AD server is not reachable, the next AD server is contacted. If the authentication fails, the authentication process does not check for the next server in the sequence.

"tacacs+" When "tacacs+" is specified, the first Active directory (AD) server is contacted. If the AD server is not reachable, the next AD server is contacted. If the authentication fails, the authentication process does not check for the next server in the sequence.

"radius;local" Enables the current RADIUS configuration as the primary AAA service and the switch-local database as the secondary AAA service. If "radius" and "local" are specified, and if the RADIUS servers are reachable and the user credentials are correct, the user authentication succeeds. If the user provides credentials from the switch database, the RADIUS authentication fails but login succeeds through the switch database.

"ldap;local" Enables the current LDAP configuration as the primary AAA service and the switch-local database as the secondary AAA service. If "ldap" and "local" are specified, and if the AD servers are reachable and the user credentials are correct, the user authentication succeeds. If the user provides credentials from the switch database, AD authentication fails but login would still succeed through the switch database.

"tacacs+;local" Enables the current TACACS+ configuration as the primary AAA service and the switch-local database as the secondary AAA service. If "tacacs+" and "local" are specified, and if the AD servers are reachable and the user credentials are correct, the user authentication succeeds. If the user provides credentials from the switch database, AD authentication fails but login would still succeed through the switch database.

-backup For use with the "radius;local", "ldap;local", and "tacacs+;local" options only. The backup option states to try the secondary AAA service only if none of the primary AAA services are available.

-nologout If -nologout is not specified, a change in the authentication mechanism may result in the termination of existing sessions. All existing sessions are terminated if the new authentication mechanism is one of the following: RADIUS only, LDAP only, TACACS+ only, or Local. If -nologout is specified, there will be no effect on the existing sessions regardless of the chosen authentication mechanism.

--help Displays the command usage.

EXAMPLES To display the current RADIUS, LDAP, and TACACS+ configurations:

switch:admin> aaaconfig --show
RADIUS CONFIGURATIONS
============================
<table>
<thead>
<tr>
<th>Position</th>
<th>Server</th>
<th>Port</th>
<th>Timeout(s)</th>
<th>Auth-Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>192.168.233.48</td>
<td>1812</td>
<td>3</td>
<td>CHAP</td>
</tr>
<tr>
<td>2</td>
<td>192.168.233.44</td>
<td>1812</td>
<td>3</td>
<td>CHAP</td>
</tr>
<tr>
<td>3</td>
<td>radserver</td>
<td>1812</td>
<td>5</td>
<td>CHAP</td>
</tr>
</tbody>
</table>
LDAP CONFIGURATIONS
========================
LDAP configuration does not exist.

TACACS+ CONFIGURATIONS
=======================
TACACS+ configuration does not exist.

Primary AAA Service: Switch database
Secondary AAA Service: None

To move the RADIUS server "radserver" from position 3 to position 1:

`switch:admin> aaaconfig --move radserver -conf radius 1`

To configure the RADIUS server 192.168.233.48 as an LDAP server:

`switch:admin> aaaconfig --change 192.168.233.48
-conf ldap -p 3002 -s newsecret -t 1`

To add an AD/LDAP server to the configuration:

`switch:admin> aaaconfig --add 194.72.68.335
-conf ldap -p 3002 -d brocade.com -t 1`

To replace the AAA service with backup option:

`switch:admin> aaaconfig --authspec "ldap;local" -backup`

To change the authentication mechanism with the no logout provision:

`switch:admin> aaaconfig --authspec radius -nologout`
`switch:admin> aaaconfig --show`

RADIUS CONFIGURATIONS
========================
Position : 1
Server : 172.20.1.68
Port : 1812
Timeout(s) : 3
Auth-Protocol: PEAP-MSCHAPv2

LDAP CONFIGURATIONS
========================
LDAP configuration does not exist.

TACACS+ CONFIGURATIONS
=======================
TACACS+ configuration does not exist.

Primary AAA Service: RADIUS
Secondary AAA Service: None
To add a TACACS+ server to the configuration:

```
switch:admin> aaaconfig --add 10.17.56.56 -conf tacacs+ \
 -protocol pap -s "sharedkey" -t 5 -r 5 -port 49
switch:admin> aaaconfig --authspec tacacs+
switch:admin> aaaconfig --show
```

RADIUS CONFIGURATIONS
=======================
RADIUS configuration does not exist.

LDAP CONFIGURATIONS
=====================
LDAP configuration does not exist.

TACACS+ CONFIGURATIONS
=======================
Position : 1
Server   : 10.17.56.56
Port     : 49
Retries  : 5
Timeout(s) : 5
Auth-Protocol: PAP

Primary AAA Service: TACACS+
Secondary AAA Service: None

SEE ALSO  None
ad

Manages Admin Domain operations.

SYNOPSIS
ad --activate ad_id
ad --add ad_id [-d "dev_list"] [-s "switch_list"]
ad --apply
ad --clear [-f]
ad --create ad_id [-d "dev_list"] [-s "switch_list"]
ad --deactivate ad_id
ad --delete ad_id
ad --exec ad_id "command_list"
ad --remove ad_id [-d "dev_list"] [-s "switch_list"]
ad --rename ad_id new_ad_id
ad --save
ad --select ad_id
ad --show [-i | [ad_id [-m mode]]] (in AD255 context)
ad --show [-i ] (in AD0 context)
ad --show (in AD1-254 context)
ad --validate [-i | [ad_id | [-m mode]]]
ad --transabort
ad --transshow

DESCRIPTION
Use this command to manage Admin Domain operations.

This command follows a batched-transaction model. When executed with the --activate, --add, --clear, --create, --deactivate, --delete, --remove, --rename options, this command changes only the Defined Configuration in the transaction buffer. The --save option sends the changes made in the transaction buffer to all other switches and permanently saves the changes to the Defined configuration in persistent storage. The --apply option performs a save operation, sends a request to apply the Admin Domain configuration (as defined in the persistent storage), and then enforces the configuration locally.

The Admin Domain transaction buffer is linked to the current login shell and is lost on logout. Use the --transshow option to display the current Admin Domain transaction information.
Before creating Admin Domains, the default zone mode should be set to "No Access". To set the default zone mode to "No Access" execute the following command sequence:

```
switch:admin> ad --select AD0
switch:admin> defzone --noaccess
switch:admin> cfgsave
```

Refer to `defZone` help for more information.

All switches, switch ports and devices in the fabric that are not specified in any other Admin Domain are treated as implicit members of AD0. Members added to AD0 are called explicit members.

When a new Admin Domain is created, the members included in the new Admin Domain are automatically removed from the implicit member list of AD0. If the devices included in the new Admin Domain are already zoned in AD0, and if you want to move these devices from AD0 without any traffic disruption, do the following:

1. Add the devices to AD0's explicit member list using `ad --add` and `ad --apply`.
2. Create new ADs with the devices and execute `ad --apply`.
3. Select (or login to) the new Admin Domain and create a relevant zone configuration and zones (Refer to `zone --copy` help for details). Enable the new zone configuration under the Admin Domain.
4. (Optionally) remove explicit members from AD0 (using `ad --remove` and `ad --apply`). Remove the member references from the AD0 zone database.

**NOTES**
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**
The generalized syntax for this command is "ad action arguments". Command actions are described first. Argument details follow the description of actions.

The following actions are supported:

---

**--activate arg**

Activates an Admin Domain. An Admin Domain is enforced only if it is in an activated state. AD0 is always in an activated state. By default, after the Admin Domain is enabled, the devices specified in the Admin Domain are not able to see each other until they are zoned together. The command prompts for confirmation. The activate operation remains in the transaction buffer until you issue `ad --apply` or `ad --save`.

**--add arguments**

Adds new members to an existing Admin Domain. The add operation remains in the transaction buffer until you issue `ad --apply` or `ad --save`.

**--apply**

Saves the current transaction buffer contents to the defined configuration and enforces the defined configuration on all switches in the fabric. `ad --apply` prompts for confirmation.

**--clear [-f]**

Deletes all ADs and clears AD0's explicit members. This command fails if AD1 through AD254's zone databases are not empty. The command prompts for confirmation before deleting all Admin Domains. The clear operation remains in the transaction buffer until you issue `ad --apply` or `ad --save`.

When used with the `-f` option, this command deletes all ADs and clears all explicit members from AD0, even if the zone databases or AD1 through AD254 are not empty. Use the force option to remove Admin Domains before enabling Virtual Fabrics.
--create arguments

Creates a new Admin Domain with optionally specified device or switch members. A newly created Admin Domain is in an activated state. It initially contains no zone database. The newly created Admin Domain remains in the transaction buffer until you issue ad --apply or ad --save. AD0 always exists. Use ad --add to add explicit members to AD0.

--deactivate arg

Deactivates an Admin Domain. This operation fails if an effective zone configuration exists under the Admin Domain. This operation is not allowed on AD0. ad --deactivate does not disable any ports. Existing logins to a deactivated Admin Domain are not terminated; however, subsequent CLI execution is disallowed. A message is displayed to indicate that the current Admin Domain is not active. The command prompts for confirmation. The deactivate operation remains in the transaction buffer until you issue ad --apply or ad --save.

--delete arg

Deletes an Admin Domain. This command succeeds regardless of whether the Admin Domain is in a deactivated or an activated state. AD0 always exists; using this operation on AD0 does not delete AD0, it only removes all explicit members from AD0. The AD0 zone database does not need to be empty for the delete operation to succeed. Not all existing user sessions to a deleted Admin Domain are terminated; however, subsequent CLI execution is disallowed. A message displays indicating that the current Admin Domain is not active. The command prompts for confirmation before executing the delete action. The delete operation remains in the transaction buffer until you issue ad --apply or ad --save.

--exec arguments

This command performs the following tasks:
- Creates a new shell.
- Executes ad --select to the specified Admin Domain.
- Executes the specified commands.
- Exits the shell.

--remove arguments

Removes one or more members from an Admin Domain. Removing the last member from an Admin Domain deletes the Admin Domain. The remove operation remains in the transaction buffer until you issue ad --apply or ad --save.

--rename arguments

 Renames the specified Admin Domain. If a reserved name is used for new_ad_id (AD number format), the operation fails if the reserved name does not correspond to the ad_id AD number. The rename operation remains in the transaction buffer until you issue ad --apply or ad --save.

--save

Saves the outstanding Admin Domain transaction to the defined configuration on all switches in the fabric. The saved Admin Domain definition is enforced only when ad --apply is issued. Attempts to modify and save an Admin Domain that is currently enforced will fail. The command prompts for confirmation.

--select arg

Selects an Admin Domain context. This command fails if the corresponding Admin Domain is not activated. This operation succeeds only if you have the specified Admin Domain. This command internally spawns off a new shell within the requested Admin Domain context. Type logout or exit to exit from the selected Admin Domain. The zone transaction is linked to the current shell; therefore, the zone transaction buffer is lost on logout. Use cfgTransShow to display the current zoning transaction information.
--show arguments

Displays the membership information of the specified Admin Domain or all Admin Domains.

When executed in an AD255 context and an Admin Domain name is not specified, all information about all existing Admin Domains is displayed. When executed in an AD0-AD254 context, the command, by default, displays the members of the current Admin Domain's effective configuration, and therefore you cannot specify an ad_id or mode.

When executed in an AD255 context, all Admin Domain information from the transaction buffer, defined configuration and effective configuration is displayed.

--validate arguments

Checks whether Admin Domain members are from a non-Admin Domain aware switch or the members do not exist in the fabric. The output is similar to ad --show; however, all members that are from non-Admin Domain aware switches are marked with a plus sign (+). Members that are not online are marked with an asterisk (*).

FC Router Front Phantom Domain and FC Router Translate Phantom Domain are virtual entities without any exposed management interfaces; therefore, any FC Router phantom switch WWN specified in an AD switch member list is marked as a non-Admin Domain aware member. All D,PI members in the device list corresponding to an FC Router Phantom Domain are marked as non-Admin Domain aware members. All FC Router imported devices in the AD device list are marked as AD-aware members.

--transabort

Aborts the transaction buffer. The command prompts for confirmation before aborting the transaction.

--transshow

Displays the ID of the current Admin Domain transaction and indicates whether or not the transaction can be aborted. The transaction cannot be aborted if it is an internal Admin Domain transaction.

The following arguments are supported with selected AD actions:

ad_id

Uniquely identifies an Admin Domain. An ad_id can be a name or a number:

name

An Admin Domain name can be up to 63 bytes, must begin with a letter, and can consist of letters, numbers, and underscore characters. The Admin Domain names with the format AD[0-255] are reserved for autoassigning Admin Domain names to Admin Domains created with an Admin Domain number, and can be assigned only to the corresponding Admin Domain. Using ad --rename, for example, in an attempt to assign a name of AD5 to an Admin Domain with ID not equal to 5 fails. Admin Domain names are case-sensitive.

number

An Admin Domain can be specified by a number. Valid values include 0 through 255. AD0 and AD255 are always active. AD0 cannot be specified with --activate, --deactivate or --delete actions. AD255 can be specified only with --exec, --show and --validate actions.

For all command iterations, with the exception of ad --create, the Admin Domain is specified either by a name or a number. For ad --create, both name and number can be specified: for example, ad --create test_ad/10 -d "100,5; 100,1".
-d "dev_list"

Specifies the list of devices in an Admin Domain, in quotation marks. Separate each entry in the device list with a semicolon (;). Valid formats include the following:

**D,PI**

- Uses existing zone **D,PI** member types. Benefits include the following:
  - Grants port control and zoning on the switch port and the devices attached to that port.
  - **PI** can be specified as a range; for example, **D,[0 to 34]**. The port index range is expanded and stored internally.
  - The same **D,PI** members can be specified in more than one Admin Domain.

**Device WWN**

- Uses traditional zone WWN member types. Benefits include the following:
  - Supports node or port WWNs.
  - End-device members, whose WWNs are used in an Admin Domain definition, need not be online when the Admin Domain is created (similar to a **zoneCreate** operation).
  - Provides rights to zone the devices.
  - Provides administrative view rights to the switch port the device is connected to.

-s "switch_list"

Specifies the list of switches in an Admin Domain. The list must be enclosed in quotation marks. Separate each entry in the switch list with a semicolon (;).

Specify the switch in one of the following formats:

**Switch WWN**

- World wide name of the switch.

**Domain ID**

- Any switch member specified in Domain ID format is converted into a switch WWN-based on the current fabric information. Operations with switch list fail if the domain ID to switch WWN lookup fails.

Membership in an AD **switch_list** grants switch administrative operations such as **switchDisable**, **switchEnable**, **reboot**, **ad**, etc. on the switch. Ownership of a switch implicitly provides port control capability on all its ports, but no zoning control.

"command_list"

- Specifies one or more commands to execute in an Admin Domain context. This operand is valid only with the **--exec** option.

**new_ad_id**

- Specifies a new Admin Domain name or number. This operand is valid only with the **--rename** option. Format is the same as **ad_id**.

**-i**

- Displays the implicit members of AD0. This operand is valid only with the **--show** option.

**-m mode**

- Specifies the mode in which Admin Domain configuration information is displayed. This operand is valid only with **--show** and **--validate**. Valid values for *mode* include the following:
  - 0: Displays the Admin Domain configuration in the current transaction buffer.
1 Displays the Admin Domain configuration stored in persistent memory (defined configuration).

2 Displays the currently enforced Admin Domain configuration currently enforced (effective configuration).

EXAMPLES To enable AD5:

```
switch:admin> ad --activate 5
You are about to activate a new admin domain.
Do you want to activate '5' admin domain \n(yes, y, no, n): [no] y
```

To enable AD_13:

```
switch:admin> ad --activate AD_13
```

To add new device members to AD1:

```
switch:admin> ad --add AD1, -d "100,5; 4,1"
```

To apply all changes made to the Admin Domain configurations since --apply was last executed:

```
switch:admin> ad --apply
You are about to enforce the saved AD configuration. This action will trigger ad --apply to all switches in the fabric. Do you want to apply all admin domains \n(yes, y, no, n): [no] y
```

To clear all Admin Domain definitions:

```
switch:admin> ad --clear
You are about to delete all ADs definitions. This operation will fail if zone configurations exists in AD1-AD254 Do you want to clear all admin domains \n(yes, y, no, n): [no] y
```

To create an Admin Domain with a mix of D, PI, WWNs, and zone alias device members (two different methods shown):

```
switch admin> ad --create "AD1", \n -d "100,5; 1,3; 20:00:00:e0:8b:05:4d:05"
switch admin> ad --create 1, \n -d "100,5; 1,3; 21:00:00:e0:8b:05:4d:05"
```

To create an Admin Domain with two switches identified by domain ID and switch WWN:

```
switch:admin> ad --create "AD1", \n -s "100; 10:00:00:60:69:80:59:13"
```

To create an Admin Domain with a device list and a switch list:

```
switch:admin> ad --create "AD1", \n -d "100,5; 1,3; 21:20:00:00:e0:8b:05:4d:05" \n -s "100; 10:00:00:60:69:80:59:13"
```
To deactivate Admin Domain 5:

```bash
switch:admin> ad --deactivate 5
You are about to deactivate an AD.
This operation will fail if an effective zone configuration exists in the AD
Do you want to deactivate '5' admin domain \(\text{[yes, y, no, n]}\): [no] y
```

To delete AD13:

```bash
switch:admin> ad --delete 13
You are about to delete an AD.
This operation will fail if an effective zone configuration exists in the AD
Do you want to delete '13' admin domain \(\text{[yes, y, no, n]}\): [no] y
```

To execute `switchShow` in an AD7 context (using the current `user_id`):

```bash
switch:admin> ad --exec 7 "switchshow"
```

To rename Eng_AD to Eng_AD2:

```bash
switch:admin> ad --rename Eng_AD Eng_AD2
```

To rename AD 200 to Eng_AD200:

```bash
switch:admin> ad --rename 200 Eng_AD200
```

To rename a user-assigned Admin Domain name to a reserved Admin Domain name (this operation fails if AD_test’s AD number is not 200):

```bash
switch:admin> ad--rename AD_test AD200
```

To remove the devices 100,5 and 1,3 from AD1:

```bash
switch:admin> ad --remove "AD1", \-d "100,5; 1,3; 21:00:00:e0:8b:05:4d:05"
```

To remove the switch 100 from AD1:

```bash
switch:admin> ad --remove "AD1", -s "100"
```

To save any outstanding Admin Domain definition-related transaction buffer

```bash
switch:admin> ad --save
You are about to save the outstanding AD membership.
This action will only save the changes to Defined configuration.
Any changes made will be enforced only on ad --apply.
Do you want to save admin domains \(\text{[yes, y, no, n]}\): [no] y
```

To select a new Admin Domain context by specifying the AD number:

```bash
switch:admin> ad --select 12
```
To display all ADs:

```
switch:admin> ad --show
Current AD: 255 : AD255

Transaction buffer configuration:

no configuration

Defined configuration:

AD: 1 : AD1 Active

 Device WWN members: 21:00:00:80:e5:12:8b:37;
 21:00:00:80:e5:12:8b:55;
 Switch port members: 1,0; 1,1; 1,2; 1,3; 1,4; 1,5;
 1,6; 1,7; 1,8; 1,9; 1,10; 1,11;
 1,12; 1,13; 1,14; 1,15;
 Switch WWN members: 10:00:00:60:69:00:02:53;

Effective configuration:

AD: 1 : AD1 Active

 Device WWN members: 21:00:00:80:e5:12:8b:37;
 21:00:00:80:e5:12:8b:55;
 Switch port members: 1,0; 1,1; 1,2; 1,3; 1,4; 1,5;
 1,6; 1,7; 1,8; 1,9; 1,10; 1,11;
 1,12; 1,13; 1,14; 1,15;
 Switch WWN members: 10:00:00:60:69:00:02:53;
```

To display the AD1 configuration information in the transaction buffer:

```
switch:admin> ad --show 1 -m 0
Current AD: 255 : AD255

Transaction buffer configuration:

no configuration

To display the AD10 configuration information in persistent storage:

```
switch:admin> ad --show 10 -m 1
Current AD: 255 : AD255

Defined configuration:
----------------------

AD: 1 : AD1  Active

  Device WWN members: 21:00:00:80:e5:12:8b:37;
                      21:00:00:80:e5:12:8b:55;
  Switch port members: 1,0; 1,1; 1,2; 1,3; 1,4; 1,5;
                       1,6; 1,7; 1,8; 1,9; 1,10; 1,11;
                       1,12; 1,13; 1,14; 1,15;
  Switch WWN members: 10:00:00:60:69:00:02:53;
```
To display the Admin Domain effective configuration information:

```
switch:admin> ad --show -m 2
Current AD: 255 : AD255

Effective configuration:
------------------------
AD: 1 : AD1 Active

Device WWN members: 21:00:00:80:e5:12:8b:37;
21:00:00:80:e5:12:8b:55;
Switch port members: 1,0; 1,1; 1,2; 1,3; 1,4; 1,5;
1,6; 1,7; 1,8; 1,9; 1,10; 1,11;
1,12; 1,13; 1,14; 1,15;
Switch WWN members: 10:00:00:60:69:00:02:53;
```

To display the configuration information in the transaction buffer:

```
switch:admin> ad --validate
Current AD Number: 255  AD Name: AD255

Transaction buffer configuration:
---------------------------------
no configuration

Defined configuration:
----------------------
AD Number: 1  AD Name: AD1  State: Inactive

Device WWN members: 10:00:00:00:00:01:00:00;
10:00:00:00:00:04:00:00;
10:00:00:00:00:05:00:00;
10:00:00:00:00:06:00:00;
10:00:00:00:00:08:00:00;
10:00:00:00:00:03:00:00;
10:00:00:00:00:02:00:00;
10:00:00:00:00:07:00:00;
10:00:00:00:00:15:00:00;
10:00:00:00:00:16:00:00;
10:00:00:00:00:17:00:00;
10:00:00:00:00:18:00:00;
10:00:00:00:00:11:00:00;
10:00:00:00:00:12:00:00;
10:00:00:00:00:13:00:00;
10:00:00:00:00:14:00:00;

Effective configuration:
------------------------
AD Number: 50  AD Name: AD50  State: Active

Device WWN members: 10:00:00:00:00:17:00:00;
10:00:00:00:00:15:00:00;
Switch port members: 2,52; 2,53; 2,54; 2,55; 21,5;
3,28; 3,29; 98,72; 98,75;
69,16; 69,18; 69,21; 1,336;
To abort the Admin Domain management transaction buffer:

```
switch:admin> ad --transabort
You are about to abort the outstanding AD transaction.
Do you want to abort the AD transaction \n(yes, y, no, n): [no] y
```

To display the current Admin Domain transaction:

```
switch:admin> ad --transshow
Current transaction token is 26816
It is abortable
```
```
switch:admin> ad --transshow
There is no outstanding zoning transaction
```

SEE ALSO  cfgSave, cfgTransShow, defZone, logout
ag

Enables Access Gateway (AG) and manages AG-specific operations.

SYNOPSIS

ag --help

ag --show

ag --modeshow | --modeenable | --modedisable

ag [--policyenable | --policydisable] policy

ag --policyshow

ag --mapshow [N_Port]

ag [--mapset | --mapadd | --mapdel] N_Port [F_Port1; F_Port2;...]

ag [--staticadd | --staticdel] N_Port [F_Port1; F_Port2;...]

ag --pgshow [pgid]

ag --pgcreate pgid "N_Port1 [:N_Port2;...]

[-n pgname]

[-m "lb; mfnm"]

ag [--pgadd | --pgdel] pgid "N_Port1 [: N_Port2;...]

ag --pgrename pgid newname

ag --pgremove pgid

ag [--pgmapadd | --pgmapdel] pgid "F_Port1 [: F_Port2;...]

ag [--pgsetmodes | --pgdelmodes] pgid "mfnm;lb"

ag --pgfnmtof [new_tov]

ag [--failoverenable | --failoverdisable] [N_Port | -pg pgid]

ag --failovershow [N_Port]

ag [--failbackenable | --failbackdisable] [N_Port | -pg pgid]

ag --failbackshow [N_Port]

ag [--prefset | --prefdel] "F_Port [:F_Port2;...]

N_Port"

ag --prefshow

ag [--adsset | --adsadd | --adssdel] "F_Port [:F_Port2;...]

"WWN [:WWN2;...]"

ag --adssshow

ag --persistentalpaenable 1 | 0 mode
ag --printalpamap F_Portal
ag --deletpwwnfromdb PWWN
ag --clearalpamap F_Portal
ag --addwwnmapping N_Portal "WWN [:WWN2;...];" | --all
ag --delwwnmapping N_Portal "WWN [:WWN2;...];" | --all
ag --addwwnpgmapping Port_Group "WWN [:WWN2;...];" | --all
ag --delwwnpgmapping Port_Group "WWN [:WWN2;...];" | --all
ag --addwwnfailovermapping N_Portal "WWN [:WWN2;...];" | --all
ag --delwwnfailovermapping N_Portal "WWN [:WWN2;...];" | --all
ag --wwnmappingenable "WWN [:WWN2;...];" | --all
ag --wwnmappingdisable "WWN [:WWN2;...];" | --all
ag --wwnmapshow
ag --reliabilitycounterset
ag --reliabilitycountershow
ag --backupmappingsave N_Portal
ag --backupmappingdel N_Portal
ag --backupmappingshow N_Portal

DESCRIPTION
Use this command to perform the following Access Gateway management functions:

- Enable or disable Access Gateway mode.
- Display current configuration and state of AG.
- Configure and display F_Portal to N_Portal mapping.
- Configure and display N_Portal failover and fallback policies.
- Configure and display Port Group policy.
- Create or remove a Port group.
- Enable or disable auto port configuration (APC) modes for a Port group.
- Get or set timeout value for fabric name monitoring.
- Display Port Groups and member N_Ports.
- Add or delete N_Ports in a Port group.
- Display all policies and their status.
- Enable or disable auto port configuration (APC) policy.
- Enable or disable preferred secondary N_Portal policy.
- Enable, disable, and manage advanced device security (ADS) policy.
- Manage persistent ALPA mode.
- Manage device WWN to N_Portal mappings.
• Manage device WWN to N_Port group mappings.
• Manage device WWN failover to N_Ports configured as preferred failover ports.
• Enable or disable device WWN mappings.
• Configure the reliability limit for the preferred N_Port.
• Save the configured F_Ports, static F_Ports for the given N_Port, and F_Ports for which the given N_Port is a preferred one.
• Delete the backup mappings for the given N_Port, if any.
• Display the saved mappings for the given N_Port, if any.

AG configuration changes are saved persistently as configuration keys. Use the portCfgNPort command to set a port as N_Port.

This command supports multiple configurations for mapping device logins to N_Ports for the purposes of load balancing and redistribution in the event of a fabric change. If multiple mappings are configured, the system considers the available mappings in a fixed order of priority to determine which of the available N_Ports should be assigned to the login request. The first eligible mapping is chosen in the order specified below.

1. Device WWN to N_Port
2. Device WWN to N_Port Group
3. Automatic device WWN load balancing.
4. F_Port to N_Port
5. F_Port to N_Port Group

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

AG is supported only on selected Brocade hardware platforms. Refer to the Access Gateway Administrator’s Guide for hardware support and AG configuration procedures.

In non-AG mode, only two actions are available: --modeenable and --modeshow.

The --backupmappingsave, --backupmappingdel and --backupmappingshow commands can be executed if the auto policy is disabled.

OPERANDS
This command has the following operands:

--help
Displays the command usage.

--show
Displays the current configuration of the Access Gateway. This includes all N_Ports and F_Ports that are currently online, failover and failback settings as well as any online F_Ports that are currently mapped to N_Ports. Failover and failback policies are displayed as enabled (1) or disabled (0).

--modeshow
Displays the current Access Gateway operating mode of the switch as either enabled or disabled.

--modeenable
Enables Access Gateway mode on a switch. Long distance mode settings should be cleared for all ports on the NPIV edge switch to which the AG is connected. Otherwise, the NPIV switch port displays the long distance port type along with the F_Port.
--modedisable
Disables Access Gateway mode on a switch. After AG mode is disabled, the switch reboots automatically and comes online with default zone access set to "No Access". In order to merge the switch to a fabric, set the default zone to "All Access" and disable/enable the E_Port.

--policyshow
Displays the supported AG port policies and their status as either enabled or disabled. AG supports four types of policies:

- Port Grouping (pg) policy: This policy manages failover of an F_Port to a set of related N_Ports in a port group.
- Auto Port Configuration (auto): When this policy is enabled, the AG enabled switch automatically detects available ports and maps F_Ports to N_Ports. Auto port configuration is disabled by default.
- Advanced Device Security (ADS) policy. This policy restricts access to the fabric at the AG level to a set of authorized devices. Unauthorized access is rejected and the system logs a RASLOG message. You can configure the list of allowed devices for each F_Port by specifying their Port WWN. Refer to the ag --ads* commands for information on managing advanced device security. ADS policy is disabled by default, which means that all devices can connect to the switch.
- WWN Based Load Balancing policy: This policy routes device logins to the least loaded port in the port group to which they are mapped.

--policyenable policy
Enables the specified port policy for the Access Gateway. When a new policy is enabled, all port related configuration settings are lost. Use the configUpload command to save the current port configuration. Valid policies include the following:

pg
Enables the port grouping policy. A default port group "pg0" is created, which includes all configured N_Ports assigned to the policy. Enabling port grouping policy disables the Get Fabric Name policy.

auto
Enables the automatic port configuration policy. When enabled, this policy applies to all ports on the switch. All F_Port to N_Port mapping and port group configurations are ignored.

ads
Enables the advanced device security (ADS) policy. When enabled, this policy applies to all the ports on the switch. By default all devices have access to the fabric on all ports.

wwnloadbalance
Enables the device WWN load balancing policy. When this policy is enabled, device logins are sent to the least loaded port in the port group to which they are mapped. These devices are displayed with ag --wwnmapshow as dynamic device mappings. Port Group policy must be enabled before you can enable the WWN load balancing policy.

--policydisable policy
Disables the specified policy for the Access Gateway. When a policy is disabled, all port-related configuration settings are lost. Use the configUpload command to save the current port configuration. Valid policies include the following:

pg
Disables the port grouping policy. All port group configurations are deleted. Disabling port grouping policy enables the Get Fabric Name policy.
auto
Disables the automatic port configuration policy and deletes all associated configuration settings.

ads
Disables the advanced device security (ADS) policy and deletes all lists of allowed device WWNs.

wwnloadbalance
Disables the device WWN load balancing policy.

--mapshow [N_Port | device_WWN]
Displays the F_Ports that are configured and currently mapped to a given "primary" N_Port. Optionally specify an N_Port to display the F_Ports that are mapped to the specified N_Port only, or specify a device WWN to display the N_Port to which the device WWN is mapped. Failover and failback policies are displayed as enabled (1) or disabled (0).

--mapset N_Port [F_Port1; F_Port2;...]
Maps a set of F_Ports to a specified "primary" N_Port forcing all traffic from the F_Ports to be routed through this N_Port to the attached fabric. An F_Port cannot be mapped to more than one primary N_Port at any given time. F_Ports are enabled only if the N_Port is online. This command overwrites existing port mappings. Use a blank list ("") to clear current mappings.

--mapadd N_Port F_Port1 [; F_Port2;...]
Adds one or more specified F_Ports to the mapping of an existing "primary" N_Port. The traffic for the configured F_Ports is routed to the fabric through the specified N_Port when the F_Ports come online. An F_Port cannot be mapped to more than one primary N_Port at the same time.

--mapdel N_Port F_Port1 [; F_Port2;...]
Deletes one or more specified F_Ports from the "primary" N_Port mapping.

--staticadd N_Port F_Port1 [; F_Port2;...]
Creates a static mapping between an existing "primary" N_Port and one or more specified F_Ports. This command removes exiting mappings. Once the static mapping is enabled, the F_Ports and all logged-in devices will logout of the previous N_Port and login using the new N_Port.

--staticdel N_Port F_Port1 [; F_Port2;...]
Deletes a static mapping between an existing "primary" N_Port and one or more specified F_Ports. This command removes exiting mappings. Alternately, you can remove an existing mapping by mapping the F_Port to another N_Port.

--pgshow [pgid]
Displays the Port Group configuration. The port grouping feature supports specifying a set of N_Ports to be included in the Port Group (PG) Policy. The factory default PG is "pg0", which includes all N_Ports. The default PG cannot be removed or renamed.

--pgcreate pgid "N_Port1 [; N_Port2;...]" [-n pgname][-m "lb; mfnm"]
Creates a port group with the ID pgid and a specified list of N_Ports to be included in the policy. The list must be enclosed in quotation marks. Ports must be separated by semicolons. The Port Group ID must not exceed 64 characters. Optionally specify a name for the port group and a mode. Modes are by default disabled. For an explanation of mode values, refer to --pgsetmodes.

--pgadd pgid "N_Port1 [; N_Port2;...]"
Adds one or more N_Ports to the specified port group. The port list must be enclosed in quotation marks. Ports must be separated by semicolons.
--pgdel pgid "N_Port1 ; N_Port2;..."
Deletes one or more N_Ports from the specified port group. Deleted ports are added to the default port group "pg0". The port list must be enclosed in quotation marks. Ports must be separated by semicolons.

--pgrename pgid newname
Replaces the name of an existing port group with the specified new name. The port group ID must not exceed 64 characters.

--pgremove pgid
Deletes the specified port group. The N_Ports in the port group that was deleted are moved to the default port group, which is pgid 0.

--pgmapadd pgid "F_Port1;F_Port2;..."
Maps the specified F_Ports to the PG identified by the pgid. Upon execution, the system identifies the least loaded N_Port in the port group and maps the F_Ports to that N_Port. The port list must be enclosed in double quotation marks. Ports must be separated by semicolons. Login balancing (LB) mode must be enabled on the port group for this command to succeed. Use ag --pgsetmodes to enable LB mode.

--pgmapdel pgid "F_Port1;F_Port2;..."
Removes one or more F_Ports that are part of the port group identified by the pgid from their mapping to a corresponding N_Port. The port list must be enclosed in double quotation marks. Ports must be separated by semicolons. Login balancing (LB) mode must be enabled on the port group for this command to succeed. Use ag --pgsetmodes to enable LB mode.

--pgsetmodes pgid "lb;mfnm"
Sets the APC modes for the specified port group. The mode list must be enclosed in double quotation marks and the modes must be separated by a semicolon. Alternately you can set the modes at the time when you create the port group with the pgcreate command. The following modes are supported:

lb
Specifies the login balancing mode for the specified port group. If login balancing mode is enabled and an F_Port goes offline, logins in the port group are redistributed among the remaining F_Ports. Similarly, if an N_Port comes online, port logins in the PG are redistributed to maintain a balanced N_Port to F_Port ratio. This operation is disruptive. Login balancing mode is disabled by default in all port groups.

mfnm
Enables the managed fabric name monitoring mode (MFNM) in the specified port group. This command changes the fabric name monitoring mode from "default" to "managed". In both default and managed mode, the system queries the fabric name once every 120 seconds, and if it detects an inconsistency, for example, if the port group is connected to multiple fabrics, it triggers a RASLOG message. The difference between default and managed fabric name monitoring is that in managed mode, failover is disabled for all ports in the port group if the system detects an inconsistency in fabric names.
You can add or remove MFNM from a port group, however, doing so will enable or disable MFNM on the entire switch. RASLOG messages are generated only if MFNM is enabled on the entire switch and multiple fabrics are connected to the switch.

--pgdelmodes pgid "lb;mfnm"
Disables the specified modes on a given port group. The mode list must be enclosed in double quotation marks and the modes must be separated by a semicolon. For a description of supported modes, refer to --pgsetmodes.
`--agmtov new_tov` Displays the fabric name monitoring timeout value in seconds when used without specifying a new value. To change the current value, specify a new timeout value in seconds. The valid range is 30 to 120 seconds. The default value is 120 seconds.

`--failoverenable [N_Port] | -pg pgid` Enables the failover policy for a given N_Port or for all N_Ports in the given port group. When failover policy is enabled for a given N_Port, F_Ports behave as follows:

- If only primary F_Port to N_Port mapping is in place, all currently mapped F_Ports fail over to another available N_Port in the event the original N_Port becomes disabled. If multiple N_Ports are available for failover, F_Ports are evenly balanced across all available N_Ports. If no other N_Port is available, failover does not occur.
- If preferred secondary F_Port to N_Port Mapping is in place, the F_Ports are routed through the preferred Secondary N_Port. If the preferred secondary N_Port is offline, the F_Ports are disabled.

`--failoverdisable [N_Port] -pg pgid` Disables the failover policy for a given N_Port or for all N_Ports in the given port group.

`--failovershow [N_Port]` If an N_Port is specified (optional), the command displays the failover policy for this N_Port. Otherwise, the failover policy for all N_Ports is displayed. Failover is displayed as enabled (1) or disabled (0).

`--failbackenable [N_Port] | -pg pgid` Enables the failback policy for a specified N_Port or for all N_Ports in the given port group. When failback policy is enabled, ports behave as follows:

- If only primary F_Port to N_Port mapping is in place, all F_Ports are automatically rerouted back to the N_Ports to which they were originally mapped as those N_Ports come back online. Only the originally mapped F_Ports fail back. In the case of multiple N_Port failures, only F_Ports that were mapped to the recovered N_Port experience failback. The remaining F_Ports are not redistributed among the online N_Ports during the failback.
- If preferred secondary F_Port to N_Port mapping is in place, and the primary N_Port comes back online, then the F_Ports are rerouted through the primary N_Port. If the secondary N_Port comes online, while the primary N_Port is still offline, F_Ports are rerouted through the secondary N_Port.

`--failbackdisable [N_Port] -pg pgid` Disables the failback policy for the specified N_Port or for all N_Ports in the given port group.

`--failbackshow [N_Port]` If an N_Port is specified (optional), the command displays the failback policy for this N_Port. Otherwise, the failover policy for all the N_Ports is displayed. The failback policy is displayed as disabled (0) or enabled (1).

`--prefset "F_Port [:F_Port2:...]:] N_Port` Sets the preferred secondary N_Port for one or more F_Ports. Preferred mapping is optional. Preferred F_Port to N_Port Mapping provides an alternate N_Port for F_Ports to come online for predictable failover and failback. An F_Port must have primary N_Port mapping before a secondary N_Port can be configured. The list of F_Ports to be mapped must be enclosed in double quotation marks. Port numbers must be separated by semicolons.
--prefdel "F_Port [:F_Port2;...]", N_Port

Deletes the preferred Secondary N_Port for the specified F_Ports. The list of F_Ports to be deleted from the secondary mapping must be enclosed in double quotation marks. Port numbers must be separated by semicolons.

--prefshow

Displays the preferred Secondary N_Port for all F_Ports.

--adsset "F_Port [:F_Port2;...], "WWN [:WWN2;...]"

Sets the list of devices that are allowed to login to a specified set of F_Ports. Devices are specified by their world wide names. Lists must be enclosed in double quotation marks. List members must be separated by semicolons. The maximum number of entries in the allowed device list is twice the per port maximum login count. Replace the WWN list with an asterisk (*) to indicate all access on the specified F_Port list. Replace the F_Port list with an asterisk (*) to add the specified WWNs to all the F_Ports' allow lists. A blank WWN list ("") indicates no access. ADS policy must be enabled for this command to succeed.

--adsadd "F_Port [:F_Port2;...], "WWN [:WWN2;...]"

Adds the specified WWNs to the list of devices allowed to login to the specified F_Ports. Lists must be enclosed in double quotation marks. List members must be separated by semicolons. Replace the F_Port list with an asterisk (*) to add the specified WWNs to all the F_Ports' allow lists. ADS policy must be enabled for this command to succeed.

--adsdel "F_Port [:F_Port2;...], "WWN [:WWN2;...]"

Deletes the specified WWNs from the list of devices allowed to login to the specified F_Ports. Lists must be enclosed in double quotation marks. List members must be separated by semicolons. Replace the F_Port list with an asterisk (*) to remove the specified WWNs from all the F_Ports' allow lists. ADS policy must be enabled for this command to succeed.

--adsshow

Displays the list of allowed device WWNs for all F_Ports.

--persistentalpaenable 1 | 0 mode

Configures the persistent ALPA feature. Once enabled, the ALPA parts of all device PIDs become persistent regardless of whether they were logged in before or after the persistent ALPA feature was enabled. ALPA persistence ensures that there is no inconsistency between logged in devices. The persistent ALPA feature is disabled by default.

1 | 0

Specify 1 to enable persistent ALPA. Specify 0 to disable the feature.

mode

Specifies the manner in which the ALPA is obtained in the event that the ALPA value is already taken by another host. Valid modes include the following:

-s

Specifies a stringent ALPA request mode. In stringent mode, the login is rejected if the ALPA is not available.

-f

Specifies a flexible ALPA request mode. In flexible mode, the host login is accepted either with the requested ALPA value or with a different ALPA value if the requested ALPA is not available.

--printalpamap F_Port

Displays the database entry for the specified port. An F_Port must be specified. The output displays the PWWN-to-host-ALPA mapping.
--deletepwwnfromdb PWPN
Removes the specified port WWN entry from the database after the host has logged out.

--clearalpamap F_Port
Clears the ALPA values for the specific F_Port. This command removes the PWPN-to-ALPA-value mapping from the database.

--addwwnmapping N_Port "WWN [:;WWN2;...]|--all
Maps one or more device WWNs to a preferred N_Port. All traffic form the specified devices is forced through the specified N_Port, regardless of which F_Port the device logs into. In the event the designated N_Port should become unavailable, an alternate port can serve as a preferred failover port. This command only affects devices that are connecting to the fabric after successful execution of this command; it will not affect devices already logged in. If a device is already connected to the switch when its mapping is created, that mapping goes into effect the next time the device connects. The WWN list must be enclosed in double quotation marks. WWNs must be separated by semicolons.

The --all option indicates all device WWNs already mapped, for example, if you wish to change an existing WWN mapping. It does not affect device WWNs that are not part of an existing mapping.

--delwwnmapping N_Port "WWN [:;WWN2;...]|--all
Removes the mapping of one or more device WWNs to a preferred N_Port. The --all option removes the mapping for all device WWNs currently mapped to the specified N_Port. The WWN list must be enclosed in double quotation marks. WWNs must be separated by semicolons. The mappings are removed upon execution of this command.

--addwwnpgormapping PG "WWN [:;WWN2;...]|--all
Maps one or more device WWNs to any of the N_Ports included in the specified port group. The port group is identified by its port group ID. The --all option maps all currently mapped device WWNs to the specified port group. The WWN list must be enclosed in double quotation marks. WWNs must be separated by semicolons. The device WWN to port group mapping takes effect the next time the device logs in.

--delwwnpgormapping PG "WWN [:;WWN2;...]|--all
Removes the mapping between the specified device WWNs and the specified port group. The port group is identified by its port group ID. The --all option removes the mapping of all device WWNs currently mapped to the specified port group. The WWN list must be enclosed in double quotation marks. WWNs must be separated by semicolons. The mappings are removed upon execution of this command.

--addwwnfailovermapping N_Port "WWN [:;WWN2;...]|--all
Maps one or more device WWNs to a preferred failover N_Port. If the N_Port to which the WWNS are mapped is not available or goes down, the device logins fail over to the preferred failover N_Port. The --all option maps all currently mapped device WWNs to the specified failover N_Port. The WWN list must be enclosed in double quotation marks. WWNs must be separated by semicolons.

--delwwnfailovermapping N_Port "WWN [:;WWN2;...]|--all
Deletes the mapping of one or more device WWNs to a preferred failover N_Port. The --all option deletes the failover mappings of all device WWNs currently mapped to the specified N_Port. The WWN list must be enclosed in double quotation marks. WWNs must be separated by semicolons.
**--wwnmappingdisable** "WWN [:WWN2;...]" | --all

Disables one or more device WWN mappings. Use this command if you want to disable the mapping action temporarily without making permanent changes to the mappings. The mappings remain disabled until they are re-enabled or deleted. The --all option disables all currently existing device WWN mappings.

**--wwnmappingenable** "WWN [:WWN2;...]" | --all

e-enables one or more previously disabled device WWN mappings. The --all option re-enables all previously disabled device WWN mappings.

**--wwnmapshow**

Displays all device WWN mappings. For each device WWN, the command displays the N_Port number to which it is mapped, the secondary (failover) N_Port, and the port group if applicable. The "Current" field shows the port the device is currently using. If the device is not logged in, the field displays "none." If the device is logged in to a port other than the one it is mapped to, the field displays that port. If the device is mapped to a port group, the field displays the number of the port within that port group that the device is currently using. If the device is using a trunk, the field displays which port in that trunk the device is logged in. The "Enabled" field indicates whether a mapping has been temporarily disabled ("no"), or whether it is in enabled state ("yes").

**--reliabilitycounterset** count

Sets the reliability limit for the preferred N_Port. This parameter controls the number of ONLINE or OFFLINE State Change Notification (SCN) messages a port can receive before becoming unreliable. The range is 10 through 100. The default value is 25.

The port becomes reliable again if it does not receive any SCN messages for a period of five minutes. Preferred N_Port settings are not enforced on unreliable N_Ports. When the port becomes reliable again, the behavior is as follows:

- If a FAILBACK flag is set, the port will fail back the configured F_Ports.
- Configured F_Ports that are offline will come back online.
- If LB mode or auto policy is configured, load rebalancing resumes.

**--reliabilitycountershow**

Displays the configured reliability limit for N_Ports.

**--backupmappingsave** N_Port

Saves the configured F_Ports, static F_Ports for the given N_Port, and F_Ports for which the given N_Port is a preferred one.

**--backupmappingdel** N_Port

Deletes the backup mappings for the given N_Port, if any.

**--backupmappingshow** N_Port

Displays the saved mappings for the given N_Port, if any.

**EXAMPLES**

To display the current state of the Access Gateway with Failover (FO) and Failback (FB) enabled on N_Ports 9 and 12:

```
switch:admin> ag --show
Name : core_ag
NodeName : 10:00:00:05:1e:85:ae:f8
Number of Ports : 40
IP Address(es) : 10.17.31.2
Firmware Version : v7.1.0ING
N_Ports : 8
F_Ports : 5
Policies enabled : pg
```
### Fabric Information

<table>
<thead>
<tr>
<th>Attached Fabric Name</th>
<th>N_Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0;1;2;3;8;9;10;11;32;33;34;35;36;37;38;39</td>
</tr>
</tbody>
</table>

### N_Port Information

<table>
<thead>
<tr>
<th>Port</th>
<th>PortID</th>
<th>Attached PWWN</th>
<th>Attached Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0x010100</td>
<td>50:00:51:ed:6f:8e:60:28</td>
<td>Spirit</td>
</tr>
<tr>
<td>1</td>
<td>0x010100</td>
<td>50:00:51:ed:6f:8e:60:28</td>
<td>Spirit</td>
</tr>
<tr>
<td>2</td>
<td>0x010100</td>
<td>50:00:51:ed:6f:8e:60:28</td>
<td>Spirit</td>
</tr>
<tr>
<td>3</td>
<td>0x010100</td>
<td>50:00:51:ed:6f:8e:60:28</td>
<td>Spirit</td>
</tr>
<tr>
<td>8</td>
<td>0x010d00</td>
<td>20:0d:00:05:1e:d6:f8:c9</td>
<td>Spirit</td>
</tr>
<tr>
<td>9</td>
<td>0x010c00</td>
<td>20:0c:00:05:1e:d6:f8:c9</td>
<td>Spirit</td>
</tr>
<tr>
<td>10</td>
<td>0x010e00</td>
<td>20:0e:00:05:1e:d6:f8:c9</td>
<td>Spirit</td>
</tr>
<tr>
<td>11</td>
<td>0x010f00</td>
<td>20:0f:00:05:1e:d6:f8:c9</td>
<td>Spirit</td>
</tr>
</tbody>
</table>

### Switch Information

<table>
<thead>
<tr>
<th>Switch</th>
<th>FO</th>
<th>FB</th>
<th>IP_Addr</th>
<th>F_Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>10.17.31.170</td>
<td>4;5;23;</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>10.17.31.170</td>
<td>None</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>10.17.31.170</td>
<td>None</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>10.17.31.170</td>
<td>None</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
<td>10.17.31.170</td>
<td>6;</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>10.17.31.170</td>
<td>7;</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1</td>
<td>10.17.31.170</td>
<td>None</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
<td>10.17.31.170</td>
<td>None</td>
</tr>
</tbody>
</table>

### F_Port Information

<table>
<thead>
<tr>
<th>Port</th>
<th>PortID</th>
<th>Attached PWWN</th>
<th>N_Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0x010103</td>
<td>20:00:00:05:1e:d8:85:2a</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0x010102</td>
<td>20:01:00:05:1e:d8:85:2a</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0x010101</td>
<td>20:02:00:05:1e:d8:85:2a</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0x010100</td>
<td>20:03:00:05:1e:d8:85:2a</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0x010d00</td>
<td>20:0d:00:05:1e:d8:85:2a</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0x010c00</td>
<td>20:0c:00:05:1e:d8:85:2a</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0x010e00</td>
<td>20:0e:00:05:1e:d8:85:2a</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0x010f00</td>
<td>20:0f:00:05:1e:d8:85:2a</td>
<td>0</td>
</tr>
</tbody>
</table>

### Preferred N-Port to F-Port Mapping

- Preferred N-Port: None
- Login Exceeded: No
N-Port F-Port
----------------------------------------------
 0      None
 1      None
 2      None
 3      None
 8      None
 9      None
10     None
11     None
---------------------------------------------

To display the current Access Gateway mode:

switch:admin> ag --modeshow
Access Gateway mode is enabled.

switch:admin> ag --modeshow
Access Gateway mode is NOT enabled.

AG group policy commands

To show current policies:

switch:admin> ag --policyshow
AG Policy                   Policy Name     State
-----------------------------------------------------
Port Grouping               pg              Enabled
Auto Port Configuration     auto            Disabled
Advanced Device Security    ads             Disabled
WWN Based Load Balancing    wwnloadbalance  Disabled
-----------------------------------------------------

To enable a port grouping policy:

switch:admin> ag --policyenable pg

To disable a port grouping policy:

switch:admin> ag --policydisable pg

To enable auto port configuration policy when both policies are disabled and the switch is already disabled:

switch:admin> ag --policyenable auto
All Port related Access Gateway configurations will be lost.
Please save the current configuration using configupload.
Do you want to continue? (yes, y, no, n): [no] y

To disable auto port configuration policy when the switch is disabled:

switch:admin> ag --policydisable auto
Default factory settings will be restored.
Default mappings will come into effect.
Please save the current configuration using configupload.
Do you want to continue? (yes, y, no, n): [no] y
Access Gateway configuration has been restored to factory default

To enable the ADS policy:

switch:admin> ag --policyenable ads
To disable the ADS policy:

```bash
switch:admin> ag --policydisable ads
```

To enable the WWN load balancing policy:

```bash
switch:admin> ag --policyenable wwnloadbalance
```

To disable the WWN load balancing policy:

```bash
switch:admin> ag --policydisable wwnloadbalance
```

**AG port mapping commands**

To display current port mappings and port grouping policies:

```bash
switch:admin> ag --mapshow
```

<table>
<thead>
<tr>
<th>N_Port</th>
<th>Configured Static</th>
<th>Current</th>
<th>Failover</th>
<th>Failback</th>
<th>PG_ID</th>
<th>PG_Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F_Ports</td>
<td>F_Ports</td>
<td>F_Ports</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>4;5;6</td>
<td>None</td>
<td>4;5;6</td>
<td>1 0 2</td>
<td></td>
<td>SecondFabric</td>
</tr>
<tr>
<td>1</td>
<td>7;8;9</td>
<td>None</td>
<td>7;8;9</td>
<td>0 1 0</td>
<td>pg0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10;11</td>
<td>None</td>
<td>10;11</td>
<td>1 0 2</td>
<td></td>
<td>SecondFabric</td>
</tr>
<tr>
<td>3</td>
<td>12;13</td>
<td>None</td>
<td>12;13</td>
<td>0 1 0</td>
<td>pg0</td>
<td></td>
</tr>
</tbody>
</table>

**Explanation of fields in --mapshow output:**

- **Static F_Ports** are part of static F_Port to N_Port mapping.
- **Current F_Ports** are the F_Ports that are currently online and mapped to a given N_Port either because they are mapped to that N_Port or as a result of N_Port failover.
- **Configured F_Ports** are the F_Ports that are explicitly mapped to this N_Port (saved in config).
- **Failover and Failback** indicate whether or not N_Port policy is enabled (1) or disabled (0).
- **PG_ID** is the Port Group ID and **PG_Name** is the Port Group Name.

To clear all F_Ports mapped to the configured primary N_Port 0:

```bash
switch:admin> ag --mapset 0 ""
F_Port to N_Port mapping has been updated successfully
```

To add F_Ports 4 and 6 to N_Port 0 (observe that Port 0 has no configured F_Ports):

```bash
switch:admin> ag --mapset 0 "4;6"
F_Port to N_Port mapping has been updated successfully
```

To add F_Port 5 to N_Port 2 (observe that N_Port 2 already has mapped F_Ports):

```bash
switch:admin> ag --mapadd 2 "5"
```

To display the new mappings:

```bash
switch:admin> ag --mapshow
```

<table>
<thead>
<tr>
<th>N_Port</th>
<th>Configured Static</th>
<th>Current</th>
<th>Failover</th>
<th>Failback</th>
<th>PG_ID</th>
<th>PG_Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F_Ports</td>
<td>F_Ports</td>
<td>F_Ports</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>4;5;6</td>
<td>None</td>
<td>4;5;6</td>
<td>1 0 2</td>
<td></td>
<td>SecondFabric</td>
</tr>
<tr>
<td>1</td>
<td>7;8;9</td>
<td>None</td>
<td>7;8;9</td>
<td>0 1 0</td>
<td>pg0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10;11</td>
<td>None</td>
<td>10;11</td>
<td>1 0 2</td>
<td></td>
<td>SecondFabric</td>
</tr>
<tr>
<td>3</td>
<td>12;13</td>
<td>None</td>
<td>12;13</td>
<td>0 1 0</td>
<td>pg0</td>
<td></td>
</tr>
</tbody>
</table>
To delete F_Port 5 that was mapped to N_Port 2:

```bash
switch:admin> ag --mapdel 2 "5"
Preferred N_port is set for F_Port[s]
Please delete it before removing primary N_Port
ERROR:Unable to remove F_Port[s] from mapping,
retry the command
```

```bash
switch:admin> ag --prefshow
F_Ports Preferred N_Port

10;11 0
4;5;6 2
7;8;9 3

```

```bash
switch:admin> ag --prefdel 5 2
Preferred N_Port is deleted successfully \nfor the F_Port[s]
```

```bash
switch:admin> ag --mapdel 2 "5"
F_Port to N_Port mapping has been updated successfully
```

To create and display a static mapping:

```bash
switch:admin> ag --staticadd 17 1
```

```bash
switch:admin> ag --show
```

```
N_Port information :
Port PortID Attached PWWN Attached_Switch
F-port\---\0 0x010100 50:00:51:ed:6f:8e:60:28 Spirit \17 0x010100 50:00:51:ed:6f:8e:60:28 Spirit \```

```
Switch  FO  FB  IP_Addr    F_Ports
--------------------------------------------
0     1   1   10.17.31.170    4;5;23;
0     1   1   10.17.31.170    None
-------------------------------------------
```

```
F_Port information :
Port PortID    Attached PWWN   N_Port Preferred \F-port\-----------------------------------------------\4  0x010103  20:00:00:05:1e:85:92:88  0  \5  0x010102  20:01:00:05:1e:85:92:88  0  \```

```
N_port Login Exceeded?

None No
None No

N_Port Configured Current Failover Failback PG_ID PG_Name
AG failover policy commands

To display failover policy settings for all N_Ports:

```
switch:admin> ag --failovershow
N_Port  failover_bit
---------------------------
  0     1
  1     0
  2     1
  3     0
```

To set and display failover and failback policies on a single port:

```
switch:admin> ag --failoverenable 1
Failover policy is enabled for port 1

switch:admin> ag --failoverdisable 0
Failover policy is disabled for port 0

switch:admin> ag --failovershow 0
Failover on N_Port 0 is not supported

switch:admin> ag --failbackdisable 2
Failback policy is disabled for port 2

switch:admin> ag --failbackshow 2
Failback on N_Port 2 is not supported

switch:admin> ag --failbackenable 2
Failback policy is enabled for port 2
```

To display failback policy settings for all the N_Ports:

```
switch:admin> ag --failbackshow
N_Port  failback_bit
-----------------------
  0     0
  1     1
  2     0
  3     1
```
To set and display failback policy settings on a single port:

switch:admin> ag --failbackenable 0
Failback policy cannot be enabled since failover policy is disabled for port 0

switch:admin> ag --failbackenable 2
Failback policy is enabled for port 2

switch:admin> ag --failbackenable 3
Failback on N_Port 3 is not supported

switch:admin> ag --failbackenable 2
Failback on N_Port 2 is supported

Port Group commands

To display Port Group information:

switch:admin> ag --pgshow
PG_ID PG_Name PG_Mode N_Ports F_Ports

0 pg0 lb,mfnm none none
2 SecondFabric - 0;2 4;5;6

To create a port group "FirstFabric" that includes N_Ports 1 and 3 and has login balancing enabled:

switch:admin> ag --pgcreate 3 "1;3" -n FirstFabric1 -m "lb"
Port Group 3 created successfully

switch:admin> ag --pgshow
PG_ID PG_Name PG_Mode N_Ports F_Ports

0 pg0 lb,mfnm none none
2 SecondFabric - 0;2 4;5;6
3 FirstFabric lb 1;3 10;11

To rename the port group with pgid 2 to "MyEvenFabric":

switch:admin> ag --pgrename 2 MyEvenFabric
Port Group 2 has been renamed as MyEvenFabric successfully

switch:admin> ag --pgshow
PG_ID PG_Name PG_Mode N_Ports F_Ports

0 pg0 lb,mfnm none none
2 MyEvenFabric - 0;2 4;5;6
3 FirstFabric lb 1;3 10;11

To remove the port group with pgid 2:

```
switch:admin> ag --pgremove 2
Port Group 2 has been removed successfully
```

```
switch:admin> ag --pgshow
PG_ID PG_Name      PG_Mode  N_Ports   F_Ports
-----------------------------------------------
0     pg0          lb,mfnm     0;2       4;5;6
3     FirstFabric  lb          1;3       10;11
-----------------------------------------------
```

To enable managed fabric name monitoring in port group 3:

```
switch:admin> ag --pgsetmodes 3 "mfnm"
Managed Fabric Name Monitoring mode has been enabled for Port Group 3
```

```
switch:admin> ag --pgshow
PG_ID PG_Name      PG_Mode  N_Ports   F_Ports
-----------------------------------------------
0     pg0          lb,mfnm     0;2       4;5;6
3     FirstFabric  lb,mfnm    1;3       10;11
-----------------------------------------------
```

To disable managed fabric name monitoring in port group 3:

```
switch:admin> ag --pgdelmodes 3 "mfnm"
Managed Fabric Name Monitoring mode has been disabled for Port Group 3
```

```
switch:admin> ag --pgshow
PG_ID PG_Name      PG_Mode  N_Ports   F_Ports
-----------------------------------------------
0     pg0            lb,mfnm     0;2       4;5;6
3     FirstFabric    lb          1;3       10;11
-----------------------------------------------
```

To get the current fabric name monitoring timeout value:

```
switch:admin> ag --pgfnmtov
Fabric Name Monitoring TOV: 120 seconds
```

To set the fabric name monitoring timeout value to 30 seconds:

```
switch:admin> ag --pgfnmtov 30
```

AG Preferred port information commands

To display preferred port settings for F_Ports:

```
switch:admin> ag --prefshow
F_Ports                 Preferred N_Port
------------------------------------------
10;11                          0
12;13                          1
4;6                            2
7;8;9                          3
------------------------------------------
```
To delete secondary port mapping for F_Ports 7, 8 and 9:

```
switch:admin> ag --prefdel "7;8;9" 3
Preferred N_Port is deleted successfully \
for the F_Port[s]
```

To set secondary port mapping for F_Ports 7, 8 and 9:

```
switch:admin> ag --prefset "7;8;9" 3
Preferred N_Port is set successfully \
for the F_Port[s]
```

ADS Policy commands

To set the list of allowed devices for Ports 11 and 12 to 'no access':

```
switch:admin> ag --adsset "11;12" ""
WWN list set successfully as the Allow Lists of \nthe F_Port[s]
```

To set the list of allowed devices for Ports 1, 10 and 13 to 'all access':

```
switch:admin> ag --adsset "1;10;13" "*
WWN list set successfully as the Allow Lists of \nthe F_Port[s]
```

To remove two devices from the lists of allowed devices for ports 1 and 9:

```
switch:admin> ag --adsdel "3;9" \
"22:03:08:00:88:35:a0:12;22:00:00:e0:8b:88:01:8b"
WWNs removed successfully from Allow Lists of the\nF_Port[s]
```

To add a two new device to the lists of allowed devices for ports 1 and 9:

```
switch:admin> ag --adsadd "3;9" \
"20:03:08:00:88:35:a0:12;21:00:00:e0:8b:88:01:8b"
WWNs added successfully to Allow Lists of the \nF_Port[s]
```

To display the lists of allowed devices on the switch:

```
switch:admin> ag --adsshow
F_Port              WWNs Allowed
-------------------------------------------
1                   ALL ACCESS
3                   20:03:08:00:88:35:a0:12
                   21:00:00:e0:8b:88:01:8b
9                   20:03:08:00:88:35:a0:12
                   21:00:00:e0:8b:88:01:8b
10                  ALL ACCESS
11                  NO ACCESS
12                  NO ACCESS
13                  ALL ACCESS
-------------------------------------------
```

Persistent ALPA configuration commands

To enable persistent ALPA in flexible mode:

```
switch:admin> ag --persistentalphaenable 1 -f
Persistent ALPA mode is enabled
```
To enable persistent ALPA in stringent mode:

```
switch:admin> ag --persistentalpaenable 1 -s
Persistent ALPA mode is enabled
```

To disable persistent ALPA mode:

```
switch:admin> ag --persistentalpaenable 0
Persistent ALPA mode is enabled
```

To display the ALPA database entries for F_Port 5:

```
switch:admin> ag --printalpamap 5
Hash table for Port 5 data
PWWN       ALPA
============================================
20:12:00:05:1e:85:92:88       1
20:07:00:05:1e:01:0b:4a       3
```

To attempt to remove a device entry from the database while the device is online and cannot be removed:

```
switch:admin> ag --deletepwwnfromdb
0:12:00:05:1e:85:92:88
20:08:00:05:1e:01:0b:4a Online.
Cannot delete an online device
```

To remove a device entry from the database when the device is offline:

```
switch:admin> ag --deletepwwnfromdb
0:12:00:05:1e:85:92:88
Device 20:13:00:05:1e:85:92:88 successfully deleted
```

To remove a device entry from the database when the device is not present in the table:

```
switch:admin> ag --deletepwwnfromdb
0:12:00:05:1e:85:92:88
0:12:00:05:1e:85:92:00 not found.
Please check the device name
```

To remove the PWWN to ALPA value for port 5 from the database and to verify the removal:

```
switch:admin> ag --clearalpamap 5
ALPA Table for port 5 is cleared
switch:admin> ag --clearalpamap 5
Hash table for Port 5 data
PWWN       ALPA
============================================
Hash Table is empty
```

Device WWN mapping commands

To create a WWN to N_Port mapping for two devices:

```
switch:admin> ag --addwwnmapping 8
"0:12:00:05:1e:85:92:88; 0:12:00:05:1e:85:92:88"
```

To delete one of the device WWN to N_Port mappings:

```
switch:admin> ag --delwwnmapping 8
"0:12:00:05:1e:85:92:88"
```
To create a WWN to port group mapping for all currently mapped devices (this command does not affect devices not already mapped or connecting later).

```
switch:admin> ag --addwwpgmapping 4 --all
```

To add port 13 as a preferred failover N_Port for a device:

```
switch:admin> ag --addwwnfailovermapping 13 "0:12:00:05:1e:85:92:88"
```

To disable all WWN mappings:

```
switch:admin> ag --wwnmappingdisable --all
```

To display the WWN mappings when WWN load balancing policy is not enabled:

```
switch:admin> ag --wwnmapshow
Static Device Mapping Information:
WWN, 1st N_Port 2nd N_Port PG_ID Current Enabled
------------------------------------------
25:f7:00:0c:29:00:02:8b 9 None None None yes
25:f7:00:0c:29:00:03:8b 9 None None None yes
25:f7:00:0c:29:00:04:8b 9 None None None yes
25:f7:00:0c:29:00:05:8b 9 None None None yes
25:f7:00:0c:29:00:07:8b 9 None None None yes
25:f7:00:0c:29:00:08:8b 9 None None None yes
25:f7:00:0c:29:00:09:8b 9 None None None yes
25:f7:00:0c:29:00:0a:8b 9 None None None yes
------------------------------------------
Dynamic Device Mapping Information:
No dynamic mappings in use
------------------------------------------
```

To display the WWN mappings when WWN load balancing policy is enabled:

```
switch:admin> ag --wwnmapshow
Static Device Mapping Information:
WWN, 1st N_Port 2nd N_Port PG_ID Current Enabled
------------------------------------------
No static mappings are defined
------------------------------------------
Dynamic Device Mapping Information:
WWN, 1st N_Port 2nd N_Port PG_ID Current Enabled
------------------------------------------
10:00:00:06:2b:11:52:df 23 None 0 23 yes
------------------------------------------
```

To configure and display the reliability counter for the preferred N_Port:

```
switch:admin> ag --reliabilitycounterset 50

switch:admin> ag --reliabilitycountershow
=================================
Reliability Counter = 50
=================================
```
Backup mapping commands

To save the configured, static, and preferred mapping of an N_Port:

```
switch:admin> ag --backupmappingsave 43
Configured, static and preferred mappings have been saved \nfor the N_port successfully.
```

To display the saved mappings for the given N_Port:

```
switch:admin> ag --backupmappingshow 43
N_Port : 43
Backed-up Configured F_Ports : 15;16;17
Backed-up Static F_ports : 18;19
Backed-up Preferred F_ports : 27;28
```

To delete the backup mappings for the given N_Port:

```
switch:admin> ag --backupmappingdel 43
Backed up mappings have been deleted for the N_port.
```

SEE ALSO
agAutoMapBalance, portCfgNP, portCfgNPIVPort
agAutoMapBalance

Controls automatic remapping of F_Ports in AG mode.

SYNOPSIS

agautomapbalance --enable [-fport | -nport]
 [-pg Port_Group_Number | -all]

agautomapbalance --disable [-fport | -nport]
 [-pg Port_Group_Number | -all]

agautomapbalance --force

agautomapbalance --show

agautomapbalance --help

DESCRIPTION

Use this command to control the automatic rebalancing of F_Ports for login distribution in the event that an F_Port goes offline or an N_Port comes online.

If automatic rebalancing is enabled, and an F_Port goes offline, the remaining F_Port logins are redistributed across the existing N_Ports. Similarly if a new N_Port comes online, some of the F_Port logins being routed through existing N_Ports would be failed over to the new N_Ports. Both operations are potentially disruptive. Disabling automatic rebalancing of login distribution provides a way of avoiding disruptions associated with routine F_Port/N_Port offline/online events.

The default values for agautomapbalance are as follows:

- Disable automatic login redistribution when F_Ports go offline.
- Enable automatic login redistribution when N_Ports come online.

Use the --show option to display the current configuration of the automatic rebalancing feature. The command output varies depending on current AG policy settings:

- If Port Group Policy is enabled on the switch, the command displays the following information for each configured port group:
 - PG_ID - Port Group number
 - LB mode - Login Balancing mode: enabled or disabled
 - nport - Enabled or disabled
 - fport - Enabled or disabled
- If Auto Policy is enabled on the switch, the command displays the status of the automatic rebalancing feature per port type as either disabled or enabled.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

--enable

Enables automatic login redistribution upon removal or addition of a specified port type.

-fport

Enables automatic login redistribution in the event that one or more F_Ports go offline. When automatic login redistribution is enabled, the remaining F_Ports are remapped such that logins are balanced among the existing Imports.
agAutoMapBalance

- `nport`
 Enables automatic login redistribution in the event that one or more N_Ports come online. When automatic login redistribution is enabled, the F_Ports mapped to the current N_Ports are rebalanced among the N_Ports.

--disable
 Disables automatic login redistribution upon removal or addition of a specified port type.

- `fport`
 Disables automatic login redistribution in the event that one or more F_Ports go offline. When automatic login redistribution is disabled, the remaining F_Ports maintain their existing N_Port mappings.

- `nport`
 Disables automatic login redistribution in the event that one or more N_Ports come online. When auto map balancing is enabled, the F_Ports mapped to the current N_Ports are rebalanced among the N_Ports.

- `pg Port_Group_Number | -all`
 Specifies the port group number or all port groups. These operands are mutually exclusive and optional with the --enable and --disable options. When a port group is specified, command execution is targeted to the members of that specific port group. When all port groups are specified, command execution is targeted to all port groups defined in the Access Gateway. The port group options are allowed only when login balancing is enabled on the specified port groups.

--force
 Enforces automatic login redistribution on a one-time basis in the event that automatic login redistribution is disabled for N_Port addition, F_Port removal or both. This command forces rebalancing of the F_Port to N_Port mapping once. It does not affect the configuration settings.

--show
 Displays the auto login distribution configuration.

--help
 Displays the command usage.

EXAMPLES

To display the automatic login redistribution settings for port groups 0 and 1:

```
switch:admin> agautomapbalance --show
AG Policy: pg
-----------------------------
PG_ID   LB mode   nport   fport
-----------------------------
 0       Enabled   Enabled  Disabled
 1       Disabled   -       -
-----------------------------
```

To display the automatic login redistribution settings for N_Ports and F_Ports:

```
switch:admin> agautomapbalance --show
AG Policy: Auto
----------------------------
automapbalance on N_Port Online Event: Disabled
automapbalance on F_Port Offline Event: Enabled
----------------------------
```
To disable automatic login redistribution on F_Port offline events:

```
switch:admin> agautomapbalance --disable -fport
```

To enable automatic login redistribution on F_Ports and N_Ports on port group 1 in the Access Gateway:

```
switch:admin> agautomapbalance --enable -fport pg 1
```

To disable automatic login redistribution on F_Ports and N_Ports on all port groups in the Access Gateway:

```
switch:admin> agautomapbalance --disable -all
```

SEE ALSO ag, agShow
agShow

Displays the Access Gateway information registered with the fabric.

SYNOPSIS

agshow

agshow --name ag_name

agshow --local

DESCRIPTION

This command displays the details of the F_Ports and the configured N_Ports in the Access Gateway attached to the fabric. The command output displays the following information.

- **Name**: The name of the Access Gateway.
- **NodeName**: The World Wide Name of the Access Gateway node.
- **Ports**: The number of ports in the Access Gateway.
- **Enet IP Addr**: The IP address of the Access Gateway.
- **Firmware**: Current firmware running on the Access Gateway.
- **Local/Remote**: Indicates whether the Access Gateway is locally or remotely registered to this switch.
- **World Wide Name**: The world wide name (WWN) of the given Access Gateway.
- **N-Port ID(s)**: The port ids of the N_Ports configured in the given Access Gateway.
- **N-Ports**: The number of configured N_Ports that are online.
- **F-Ports**: The number of F_Ports that are online.

Attached F-Port information

Displays the Port ID, the switch F-port number, and the Port WWN of each F_Port that is online on the Access Gateway.

Access Gateway F-Port information

Displays the port number, the port ID, and the Port WWN of the Access Gateway to which the F_Port is connected. This information is displayed only if both the Access Gateway and the switch to which the Access Gateway is attached are running Fabric OS v.7.0.0. The data in this section is not always synchronized with the data in the Attached F-Port information section.

NOTES

NPIV capability should be enabled on the ports connected to the Access Gateway. NPIV capability is enabled by default. Use `portCfgNPIVPort` to enable NPIV capability a port if it was previously disabled. Note that enabling or disabling NPIV capability is no longer supported in Access Gateway mode.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.
OPERANDS

This command has the following optional operands:

--name ag_name
Displays information regarding a specific Access Gateway that is registered with
this fabric.

--local
Display information regarding all Access Gateways that are locally registered to
this switch.

EXAMPLES

To display the Access Gateway information registered with the fabric:

switch:admin> agshow --name core_ag
Name : core_ag
NodeName : 10:00:00:05:1e:85:ae:f8
N-Port ID(s) : 0x010100,0x010d00,0x010c00,0x010e00,0x010f00
Number of Ports : 40
IP Address(es) : 10.17.31.2
Firmware Version : v7.1.0ING
N-Ports : 5
F-Ports : 5
Attached F-Port information :
<table>
<thead>
<tr>
<th>PortID</th>
<th>Port WWN</th>
<th>Switch F-port</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x010101</td>
<td>10:00:00:05:1e:65:95:81</td>
<td>0</td>
</tr>
<tr>
<td>0x010102</td>
<td>20:01:00:05:1e:85:92:88</td>
<td>0</td>
</tr>
<tr>
<td>0x010d01</td>
<td>20:02:00:05:1e:85:92:88</td>
<td>13</td>
</tr>
<tr>
<td>0x010c01</td>
<td>20:03:00:05:1e:85:92:88</td>
<td>12</td>
</tr>
</tbody>
</table>

Access Gateway F-Port Information :

<table>
<thead>
<tr>
<th>F-Port Number</th>
<th>F-Port IDF</th>
<th>Port WWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>0x010101</td>
<td>10:00:00:05:1e:65:95:81</td>
</tr>
</tbody>
</table>

To display the locally registered Access Gateways:

switch:admin> agshow --local
Worldwide Name Ports Enet IP Addr Firmware \
---\n10:00:00:05:1e:04:06:ae 24 10.32.173.64 v6.4.0 \

Local/Remote Name

local L5D_B10_4016_1
local L5D_B14_4024_1

To display all Access Gateways attached to the fabric:

switch:admin> agshow
Worldwide Name Ports Enet IP Addr Firmware \
---\n10:00:00:05:1e:02:b7:2c 16 10.32.173.62 v6.4.0 \
10:00:00:05:1e:04:06:ae 24 10.32.173.64 v6.4.0 \
10:00:00:05:1e:04:06:ae 24 10.32.173.51 v6.4.0 \

Local/Remote Name

local L5D_B10_4016_1
local L5D_B14_4024_1
local L5D_B13_200_AG

SEE ALSO portCfgNPIVPort
aliAdd

Add member to a zone alias.

SYNOPSIS

 aliAdd "aliName","member[; member...]"

DESCRIPTION

Use this command to add one or more members to an existing zone alias. The alias member list cannot
contain another zone alias.

This command changes the defined configuration. For the change to become effective, enable the zone
configuration with the cfgEnable command. For the change to be preserved across switch reboots, save
the zone configuration to nonvolatile memory with the cfgSave command.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

When an FCS policy is enabled, this command can be issued only from the primary FCS switch.

OPERANDS

The following operands are required:

"aliName"

 Specify the name of a zone alias, enclosed in double quotation marks.

"member"

 Specify a member or list of members to be added to the alias, enclosed in double
 quotation marks. Members must be separated by semicolons. An alias member
can be specified by one or more of the following methods:

 • A switch domain and port index pair. Use switchShow for a list of valid port
 index numbers.
 • A world wide name (WWN).

EXAMPLES

To add members to zone aliases array1, array2, and loop1:

 switch:admin> aliAdd "array1", "1,2"
 switch:admin> aliAdd "array2", "21:00:00:20:37:0c:72:51"

SEE ALSO

aliCreate, aliDelete, aliRemove, aliShow
aliCreate

Creates a zone alias.

SYNOPSIS

```
alicreate "aliName", "member[; member...]"
```

DESCRIPTION

Use this command to create a new zone alias. The zone alias member list must have at least one member (empty lists are not allowed). The alias member list cannot contain another zone alias. Refer to the `zoneCreate` command for more information on name and member specifications.

This command changes the defined configuration. For the change to become effective, enable the zone configuration with the `cfgEnable` command. For the change to be preserved across switch reboots, save the zone configuration to nonvolatile memory with the `cfgSave` command.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

When an FCS policy is enabled, this command can be issued only from the primary FCS switch.

OPERANDS

The following operands are required:

```
"aliName"
```

Specify a name for the zone alias, in double quotation marks. A zone alias name must begin with a letter and can be followed by any number of letters, numbers, and underscore characters. Names are case-sensitive. For example, "Ali_1" and "ali_1" are different zone aliases. Spaces are ignored.

```
"member"
```

Specify a member or list of members to be added to the alias, enclosed in double quotation marks. Members must be separated by semicolons. An alias member can be specified by one or more of the following methods:

- A switch domain and port index pair. Use `switchShow` for a list of valid port index numbers.
- A world wide name (WWN).

EXAMPLES

To create a zone alias defined by domain and port index pairs:

```
switch:admin> alicreate "array1", "2,32; 2,33; 2,34"
```

To create a zone alias with one member defined by WWN.

```
switch:admin> alicreate "array2", "21:00:00:20:37:0c:66:23"
```

SEE ALSO

aliAdd, aliDelete, aliRemove, aliShow
aliDelete

Deletes a zone alias.

SYNOPSIS alidelete "aliName"

DESCRIPTION Use this command to delete a zone alias.

This command changes the defined configuration. For the change to become effective, enable the zone
configuration with the cfgEnable command. For the change to be preserved across switch reboots, save
the zone configuration to nonvolatile memory with the cfgSave command.

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

When an FCS policy is enabled, this command can be issued only from the primary FCS switch.

OPERANDS The following operand is required:

"aliName" Specify the name of the zone alias to be deleted. This operand must be enclosed
in quotation marks.

EXAMPLES To delete the zone alias "array2":

switch:admin> alidelete "array2"

SEE ALSO aliAdd, aliCreate, aliRemove, aliShow
aliRemove

Removes a member from a zone alias.

SYNOPSIS

 aliRemove "aliName","member[; member...]"

DESCRIPTION

Use this command to remove one or more members from an existing zone alias.

If all members are removed, the zone alias is deleted.

This command changes the defined configuration. For the change to become effective, enable the zone configuration with the **cfgEnable** command. For the change to be preserved across switch reboots, save the zone configuration to nonvolatile memory with the **cfgSave** command.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

When an FCS policy is enabled, this command can be issued only from the primary FCS switch.

OPERANDS

This command has the following operands:

"aliName"

Specify the name of the zone alias from which members are to be removed in double quotation marks. This operand is required.

"member"

Specify a member or list of members to be removed from the alias. The list must be enclosed in double quotation marks. Members must be separated by semicolons. An alias member can be specified by one or more of the following methods:

- A switch domain and port index number pair. Use **switchShow** for a list of valid port index numbers.
- A world wide name (WWN)

The member list is located by an exact string match; therefore, it is important to maintain the order when removing multiple members. For example, if a zone alias contains "1,2; 1,3; 1,4", then removing "1,3; 1,4" succeeds but removing "1,4; 1,3" fails.

EXAMPLES

To remove a world wide name from "array1":

 switch:admin> aliRemove "array1", "3,5"
 switch:admin> aliRemove "array1", "21:00:00:20:37:0c:76:8c"
 switch:admin> aliRemove "array1", "0xEF"

SEE ALSO

 aliAdd, aliCreate, aliDelete, aliShow
aliShow

Displays zone alias information.

SYNOPSIS

alishow [-ic] ["pattern"], mode]
alishow --help

DESCRIPTION

Use this command to display zone configuration information.

Use the pattern operand to display only matching zone alias names in the defined configuration.

If no parameters are specified, all zone configuration information (both defined and effective) is displayed. Refer to cfgShow for a description of this display.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

When an FCS policy is enabled, this command can be issued only from the primary FCS switch.

OPERANDS

When invoked without an operand, this command displays all zone configuration information (defined and effective). Refer to cfgShow for a description of this display. The following operands are optional:

--ic

Displays all configured zone alias names for a given pattern without case distinction.

"pattern"

A POSIX-style regular expression that matches zone alias names. This operand must be enclosed in quotation marks. Patterns may contain:

- Question mark (?) - matches any single character.
- Asterisk (*) - matches any string of characters.
- Range - matches any character within the range. Ranges must be enclosed in brackets: for example, [0-9] or [a-f].

mode

Specify 0 to display the contents of the transaction buffer (the contents of the current transaction), or specify 1 to display the contents of the nonvolatile memory. The default value is 0.

--help

Displays the command usage.

EXAMPLES

To display all zone aliases beginning with "arr":

switch:admin> alishow "arr**"
alias: array1 21:00:00:20:37:0c:76:8c
alias: array2 21:00:00:20:37:0c:66:23

To display all zone alias names beginning with "arr", regardless of the case:

switch:admin> alishow --ic "arr**"
alias: array1 20:e0:00:05:33:11:1f:00
alias: ARRAY2 2f:11:00:05:33:c1:37:a2

SEE ALSO

aliAdd, aliCreate, aliDelete, aliRemove
appLoginHistory

Displays the history of HTTP login sessions.

SYNOPSIS

apploginhistory --show

apploginhistory --help

DESCRIPTION

Use this command to display the history of HTTP login sessions from external management applications
such as Brocade Network Advisor or Web Tools. The command displays both current sessions and a
history of past sessions. For each entry, the command output shows the following information:

- The date and time when the session started (YYYY/MM/DD-HH:MM:SS.MS).
- The IP address of the machine that initiated the HTTP login.
- The role of the user initiating the login.
- The application initiating the login.

The history supports a maximum of 100 entries. If the history exceeds the maximum size, the oldest
entries will be removed.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS

This command has the following operands:

--show

Displays the currently active logins and a history of past logins.

--help

Displays the command usage.

EXAMPLES

To display the application login history:

switch:admin> apploginhistory --show

The following are history of logins to the switch from external
applications
(Login Timestamp, IP Address, User Account, Application):

2011/10/13-15:53:55.966050, 10.20.10.161, admin, DCFM-HttpConnector/null
2011/10/13-15:53:56.329979, 10.20.10.161, admin, DCFM-HttpConnector/null
2011/10/13-15:53:56.858216, 10.20.10.161, admin, DCFM-HttpConnector/null
2011/10/13-15:57.547672, 10.20.10.161, admin, DCFM-HttpConnector/null

The following are the sessions from the external applications that are
active currently:

2011/10/13-15:53:57.547672, 10.20.10.161, admin, DCFM-HttpConnector/null

SEE ALSO None
aptPolicy

Changes or displays the Advanced Performance Tuning (APT) policy.

SYNOPSIS

aptpolicy [policy]

aptpolicy -ap [ap_policy]

DESCRIPTION

Use this command to display and change the advanced performance tuning (APT) policies on a switch. Several internal performance tuning parameters can be modified with this command. The default parameters (AP shared Link Policy) are optimized for most SAN applications; in most environments, there is no need to modify the default policy.

Distributed path selection (DPS) is supported in logical fabrics. APT policy settings affecting the DPS behavior can be configured per logical switch, and settings apply to the partition for which they are set. Note that policy settings for the base switch or any switch in the base fabric affect all traffic going through the base fabric including any logical fabric traffic that uses the base fabric.

In a logical fabric environment, Link Policy settings (aptpolicy -ap) apply only to the base switch and can be executed only on the base switch.

When invoked without arguments, this command displays the APT policies supported on this switch, as well as the current policy.

NOTES

You must disable the switch before using this command to change the current policy. Changes take effect immediately for all EX/VEX_Ports after the switch is re-enabled.

For details on performance tuning, refer to the Fabric OS Administrator's Guide.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

policy

Specifies the APT policy. The following polices are supported:

1

Port-based routing policy. With this policy, the path chosen for an ingress frame is based on both of the following items:

• The ingress port on which the frame was received.
• The destination domain for the frame.

The chosen path remains the same if Dynamic Load Sharing (DLS) is not enabled. If DLS is enabled, a different path may be chosen for a fabric event. Refer to disSet for a definition of a fabric event.

This policy may provide better ISL utilization when there is little or no oversubscription of the ISLs.

Note that static routes are supported only with this policy.

2

Device Based Routing Policy (FICON support only). Device-based routing is supported in FICON environments only. With this policy, the path chosen for an ingress frame is based on the following items:

• The ingress port on which the frame was received.
• The FC address of the source fabric device (SID) for this frame.
• The FC address of the destination fabric device (DID) for this frame.
This policy optimizes the utilization of the available paths by allowing I/O traffic between different source fabric device (SID) or destination fabric device (DID) pairs to use different paths. As a result, every distinct flow in the fabric can take a different path through the fabric. Effectively, device based routing works the same as exchange-based routing but does not use the Originator Exchange ID (OXID) field. This helps to ensure that the exchanges between a pair of devices stay in order.

Device-based routing is also a form of Dynamic Path Selection (DPS). DPS assigns communication paths between end devices in a fabric to egress ports in ratios proportional to the potential bandwidth of the ISL, ICL, or trunk group. When there are multiple paths to a destination, the input traffic is distributed across the different paths in proportion to the bandwidth available on each of the paths. This improves utilization of the available paths and reduces possible path congestion.

3

Exchange-based routing policy (default). With this policy, the path chosen for an ingress frame is based on all of the following items:

- The ingress port on which the frame was received.
- The FC address of the SID for this frame.
- The FC address of the DID for this frame.
- The FC OXID for this frame.

This policy optimizes the utilization of the available paths by allowing I/O traffic between different SID, DID, or OXID pairs to use different paths. All frames received on an ingress port with the same SID, DID, or OXID parameters take the same path unless there is a fabric event. Refer to `dlsSet` for the definition of a fabric event.

This policy does not support static routes. DLS is always enabled and the DLS setting cannot change with this policy.

-ap ap_policy

Specifies an additional AP policy option supported under both port-based and exchange-based policies. If logical fabrics are enabled, this command is valid only on the base switch. The following policies are supported:

0

AP Shared Link Policy (default).

1

AP Dedicated Link Policy. This policy dedicates some links to the ingress traffic and some links to the egress traffic. This policy relieves internal congestion in an environment where there is a large amount of traffic going through both directions at the same time. In addition, it can reduce the impact of slow devices on the overall switch performance.

EXAMPLES

To display the current APT policy:

```
switch:admin> aptpolicy
            Current Policy: 3 1(ap)
  3 1 (ap): Default Policy
  1: Port Based Routing Policy
  2: Device Based Routing Policy (FICON support only)
  3: Exchange Based Routing Policy
    0: AP Shared Link Policy
    1: AP Dedicated Link Policy
```
To change the current APT policy to the AP Shared Link Policy:

```
switch:admin> aptpolicy -ap 0
Switch must be disabled in order to modify \nthis configuration parameter. To disable the switch, \nuse the "switchDisable" command.
```

```
switch:admin> switchdisable
```

```
switch:admin> aptpolicy -ap 0
Policy updated successfully.
```

```
switch:admin> switchenable
```

```
switch:admin> aptpolicy
Current Policy: 3 0(ap)
```

3 0(ap): Default Policy
1: Port Based Routing Policy
2: Device Based Routing Policy (FICON support only)
3: Exchange Based Routing Policy
 0: AP Shared Link Policy
 1: AP Dedicated Link Policy

SEE ALSO dlsReset, dlsSet, dlsShow, switchDisable
auditCfg

Modifies and displays the audit log filter configuration.

SYNOPSIS
auditcfg --class audit_class
auditcfg --enable | --disable
auditcfg --severity severity_level
auditcfg --show

DESCRIPTION
Use this command to configure the audit logging and to display the audit log configuration. This
command allows you to set filters by configuring certain classes, to add or remove any of the classes in
the filter list, to set severity levels for audit messages, and to enable or disable audit filters. Based on the
configuration, certain classes are logged to syslog for auditing. Syslog configuration is required for
logging audit messages. Use the syslogdIpAdd command to add the syslogd server IP address.

NOTES
The RAS class is not configurable; its function is to audit the audit log management operations and it is
always enabled internally.
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS
This command has the following operands:
--class
Configures filters for a specified audit class. To add or remove any of the classes in
the filter list, reissue the --class option.

audit_class
Specifies the filters to be configured. Valid values are: 1-ZONE, 2-SECURITY,
3-CONFIGURATION, 4-FIRMWARE, 5-FABRIC, 6-FW (Fabric Watch), and 7-LS
(Logical Switch), 8-CLI, 9-MAPS. The filter is specified by its numeric value. To
add more than one filter, the numeric values must be separated by commas.
Spaces are not permitted. This operand is required.

--severity
Sets audit severity level to a specified value. When severity is set, only log
messages of type severity_level and higher are displayed. You cannot enter
multiple severity levels.

severity_level
Valid values are INFO, WARNING, ERROR, and CRITICAL. By default, all
messages are logged. This operand is required.

--enable
Enables all filters. This action enables an existing configuration; it does not
change the configuration.

--disable
Disables all filters. This action disables an existing configuration; it does not
change the configuration.

--show
Displays the current configuration. This operand is optional.
EXAMPLES

To configure the audit log filter:

```bash
switch:admin> auditcfg --class 2,3,8
Audit filter is configured.
```

To enable audit logging:

```bash
switch:admin> auditcfg --enable
Audit filter is enabled.
```

To display the configuration:

```bash
switch:admin> auditcfg --show
Audit filter is enabled.
2-SECURITY
3-CONFIGURATION
8-CLI
Severity level: INFO
```

To disable audit logging and to display the configuration (the filters are unchanged but show the disabled state):

```bash
switch:admin> auditcfg --disable
Audit filter is disabled.
switch:admin> auditcfg --show
Audit filter is disabled.
2-SECURITY
3-CONFIGURATION
8-CLI
Severity level: INFO
```

SEE ALSO auditDump, rasAdmin
auditDump

Displays or clears the audit log.

SYNOPSIS

auditdump -s | -show

auditdump -c | -clear

DESCRIPTION

Use this command to display or clear the audit log on the switch. The audit log persistently saves the most recent 256 log entries on the switch. On modular platforms, the entries are not shared across CPs. Each CLI executed on a switch from non-root user account is saved as an audit log. To display or clear the logs, this command must be issued for each CP separately.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

-s | -show
Displays the audit log on the switch or the CP.

-c | -clear
Clears the audit log on the switch or the CP.

EXAMPLES

To display the audit log:

switch:admin> auditdump -s

0 AUDIT, 2010/02/18-01:45:52 (PDT), [SEC-3022], INFO, SECURITY, admin/admin/10.32.220.161/http/DCFM-HttpConnec, ad_0/ras035/FID 128,, Event: logout, Status: success, Info: Successful logout by user [admin].

1 AUDIT, 2010/02/18-01:46:00 (PDT), [SEC-3022], INFO, SECURITY, admin/admin/10.32.220.161/http/DCFM-HttpConnec, ad_0/ras035/FID 128,, Event: logout, Status: success, Info: Successful logout by user [admin].

3 AUDIT, 2012/05/23-03:45:15 (UTC), [RAS-3005], INFO, CLI, admin/admin/NONE/console/CLI,ad_0/McKsSpirit/CHASSIS, CLI:clihistory

4 AUDIT, 2012/05/23-04:12:04 (UTC), [RAS-3005], INFO, CLI, admin/admin/NONE/console/CLI,ad_0/McKsSpirit/CHASSIS, CLI:auditdump -s

(output truncated)

To clear the audit log:

switch:admin> auditdump -c

SEE ALSO

auditCfg
authUtil

Displays and sets the authentication configuration.

SYNOPSIS

authutil

authutil --show

authutil --set option value

authutil --policy -sw option | -dev option

authutil --authinit [slot[/port[, [slot[/port...]]] | allE

DESCRIPTION

Use this command to display and set local switch authentication parameters.

Use --set to change authentication parameters such as protocol, Diffie-Hellman group (DH group), or
hash type. When no protocol is set, the default setting of "FCAP, DH-CHAP" is used. When no group is
set, the default setting of "*" (meaning "0,1,2,3,4") is used. Configuration settings are saved persistently
across reboots. Configuration changes take effect during the next authentication request.

Use the --show command to display the current authentication configuration.

Authentication parameters are set on a per-switch basis. If Virtual Fabrics are enabled, all authentication
parameters apply to the current logical switch context only, and must be configured separately for each
logical switch. Use setContext to change the current logical switch context.

In a VF environment, authentication is performed only on physical E_Ports, not on logical interswitch
links (LISLs).

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS

This command has the following operands:

--show

Displays the local authentication configuration. This option is supported in the
Access Gateway (AG) mode.

--set option value

Modifies the authentication configuration. Valid options and their values include
the following:

-a fcap | dhchap | all

Sets the authentication protocol. Specify "fcap" to set only FCAP authentication.
Specify "dhchap" to set only DH-CHAP authentication. Specify "all" to set both
FCAP and DH-CHAP, which is the default setting. When authentication is set to
"all", the implicit order is FCAP followed by DH-CHAP. This means that in
authentication negotiation, FCAP is given priority over DH-CHAP on the local
switch. If the negotiation is done for an encrypted port, DHCHAP takes
precedence over FCAP. The --set dhchap and --set all options are supported in
the AG mode.

-g 0 | 1 | 2 | 3 | 4 | *

Sets the Diffie-Hellman (DH) group. Valid values are 0 to 4 and "*". The DH group
0 is called NULL DH. Each DH group implicitly specifies a key size and associated
parameters. A higher group value provides stronger cryptography and a higher
level of security. When DH group is set to a specified value, only that DH group is
enabled. Specifying "*" enables all DH groups 0, 1, 2, 3, and 4, in that order. This means that in authentication negotiation, the NULL DH group is given priority over all other groups. In the case of a port that is enabled for encryption and you specify "*", the DH group 4 is selected. This option is supported in AG mode.

```
-h sha1 | md5 | all
```

Sets the hash type. Valid values are "sha1", "md5" or "all", which sets both hash types. Use this option to disable md5 authentication access by setting the hash type to sha1 only. Disabling md5 access is required when configuring the system for FIPS. Refer to the Fabric OS Administrator's Guide for details on FIPS configuration. This option is supported in AG mode.

```
--policy
```

Sets the switch authentication policy or device authentication policy. The following options are supported:

```
-sw on | off | active | passive
```

Sets the switch authentication policy. Specify one of the following modes. Operands are exclusive. If the switch has ports enabled for encryption, only the ON and ACTIVE options are supported. Only on and off options are supported in AG mode.

```
on
```

Sets the switch authentication policy to ON mode. Strict authentication is enforced on all E_Ports. The interswitch link (ISL) goes down (port disable), if the connecting switch does not support the authentication or the authentication policy is switched off.

```
off
```

Turns the authentication policy off, and the switch rejects any authentication requests.

```
active
```

Sets the authentication policy to active mode. During switch initialization, authentication is initiated on all E_Ports, but the port is not disabled if the connecting switch does not support authentication or the authentication policy is turned off.

```
passive
```

Sets the authentication policy to passive mode (default). The switch does not initiate authentication but participates in authentication if the connecting switch initiates authentication.

```
-dev off | passive | on
```

Sets the device authentication policy. Three modes are supported. Device authentication policy is off by default. This option and suboptions are supported in AG mode.

```
off
```

Turns off the device authentication policy. Authentication is not required. The switch ignores any authentication requests and continues with the FC probing without authentication.

```
passive
```

Sets the authentication policy to passive mode. Authentication is optional. If the attached device is capable of doing the authentication then the switch participates in authentication; otherwise it forms an F_Port without authentication. In this mode the device accepts authentication on all F_Ports.

```
on
```

Sets the authentication policy to "on" mode. Authentication is mandatory. If the attached device is not capable of doing authentication, the corresponding port is disabled.
authUtil2

--authinit [slot[/]port ...] allE

Reinitiates authentication on selected ports after changing the DH-CHAP group, hash type, and shared secret between a pair of switches. This command does not work on Private, Loop, NPIV and FICON devices. This command may bring down the E_Ports if the DH-CHAP shared secrets are not installed correctly. This command is not supported on encrypted ports. This option is not supported in AG mode. Valid options include the following:

slot
Specify the slot number, if applicable, followed by a slash (/).

port
Specify the port number. On enterprise-class platforms, use the slot/port format for specifying the port number.

allE
Specify all E_Ports in the switch.

EXAMPLES
To display authentication configuration on the switch:

```
switch:admin> authutil --show
AUTH TYPE     HASH TYPE     GROUP TYPE
--------------------------------------
fcap,dhcchap   sha1,md5     0,1,2,3,4
```

Switch Authentication Policy: PASSIVE
Device Authentication Policy: OFF

To set DH-CHAP as the authentication protocol:

```
switch:admin> authutil --set -a dhchap
Authentication is set to dhchap.
```

To set both protocols in order of FCAP and then DH-CHAP:

```
switch:admin> authutil --set -a all
Authentication is set to fcap,dhcchap.
```

To set DH group 3:

```
switch:admin> authutil --set -g 3
DH Group was set to 3.
```

To set all DH groups to be specified in the authentication negotiation in the order of 0, 1, 2, 3, and 4:

```
switch:admin> authutil --set -g "*"
DH Group is set to 0,1,2,3,4
```

To set the Switch policy to active mode:

```
switch:admin> authutil --policy -sw active
Warning: Activating the authentication policy requires either DH-CHAP secrets or PKI certificates depending on the protocol selected. Otherwise, ISLs will be segmented during next E-port bring-up.
ARE YOU SURE (yes, y, no, n): [no] y
Auth Policy is set to ACTIVE
```
To set the Device policy to passive mode:

```
switch:admin> authutil --policy -dev passive
Warning: Activating the authentication policy requires
DH-CHAP secrets on both switch and device. Otherwise,
the F-port will be disabled during next F-port
bring-up.
ARE YOU SURE (yes, y, no, n): [no] y
Device authentication is set to PASSIVE
```

To set the device authentication policy to "on" mode:

```
switch:admin> authutil --policy -dev on
Warning: Activating the authentication policy requires
DH-CHAP secrets on both switch and device. Otherwise,
the F-port will be disabled during next F-port
bring-up.
ARE YOU SURE (yes, y, no, n): [no] y
Device authentication is set to ON
```

To start authentication on E/F_Ports 2, 3, and 4:

```
switch:admin> authutil --authinit 2,3,4
Warning: Initiating the authentication requires either DH-CHAP
secrets or PKI certificates depending on the protocol selected.
Failed authentication may result in traffic disruption.
Authentication will not be initiated on encrypted ports.
ARE YOU SURE (yes, y, no, n): [no] y
```

To disable md5 hash type for FIPS configuration:

```
switch:admin> authutil --show
AUTH TYPE     HASH TYPE     GROUP TYPE
--------------------------------------
fcap,dhchap     sha1,md5     1
Switch Authentication Policy: PASSIVE
Device Authentication Policy: OFF

switch:admin> authutil --set -h sha1
Hash is set to sha1.
```

```
switch:admin> authutil --show
AUTH TYPE     HASH TYPE     GROUP TYPE
--------------------------------------
fcap,dhchap     sha1     1
Switch Authentication Policy: PASSIVE
Device Authentication Policy: OFF
```

SEE ALSO portShow, secAuthSecret
bannerSet

Sets the banner on the local switch.

SYNOPSIS

bannerSet [banner]

DESCRIPTION

Use this command to set the banner on the local switch.

The banner is a string of alphanumeric characters. It is displayed after you log in to a switch.

The banner can be created using the banner operand or interactively by entering the bannerSet command without an operand.

If you enter the banner text using the interactive method, the valid length is 1022 characters. If the banner text length exceeds the maximum allowed, the software truncates the input. To close the banner text string, enter a period at the beginning of a new line.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following optional operand:

banner

Specify a text string to be displayed upon login. If you enter the banner text using the banner operand, the valid length is 116 characters.

EXAMPLES

To set a new banner for a switch:

switch:admin> bannerSet "My banner"

switch:admin> banner

Please input context of security banner (press "." RETURN at the beginning of a newline to finish input):

SEE ALSO

bannerShow, motd
bannerShow

Displays the banner text.

SYNOPSIS
bannerShow

DESCRIPTION
Use this command to display the text of the local switch banner.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
None

EXAMPLES
To display the banner for a switch:

 switch:admin> bannerShow
 Banner: Do not disturb the setup on this switch.

SEE ALSO
bannerSet, motd
bcastShow

Displays broadcast routing information.

SYNOPSIS

bcastshow

DESCRIPTION

Use this command to display the broadcast routing information for all ports in the switch. The broadcast routing information indicates all ports that are members of the broadcast distribution tree: ports that are able to send and receive broadcast frames.

Normally, all F_Ports and FL_Ports are members of the broadcast distribution tree. The broadcast path selection protocol selects the E_Port members of this tree in a manner designed to prevent broadcast routing loops.

The following fields are displayed:

- **Group**: The multicast group ID of the broadcast group (always 256).
- **Member Fx_Ports**: A map of all F_Ports and FL_Ports ports in the broadcast tree.
- **Member E_Ports**: A map of all E_Ports in the broadcast tree.

The broadcast routing information for the ports is displayed as a set of hexadecimal bit maps. Each bit in a bit map represents a port, with the least significant bit in each row representing port 0, 32, 64, and so on.

NOTES

The output from this command may vary depending on the hardware platform.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display the broadcast routing information for all ports in the switch:

```
switch:admin> bcastShow
```

```
<table>
<thead>
<tr>
<th>Group</th>
<th>Member Ports</th>
<th>Member ISL Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>256</td>
<td>0x00012083</td>
<td>0x00002080</td>
</tr>
<tr>
<td></td>
<td>0x00000440</td>
<td>0x00000400</td>
</tr>
<tr>
<td></td>
<td>0x00770000</td>
<td>0x00700000</td>
</tr>
<tr>
<td></td>
<td>0x00008200</td>
<td>0x00000000</td>
</tr>
<tr>
<td></td>
<td>0x00000001</td>
<td>0x00000000</td>
</tr>
</tbody>
</table>
```

In this example from a switch with 128 ports, the member ports consist of ports 7, 13, 42, 84, 85, and 86. The final Member Ports bit set represents the embedded port (frames sent to be handled by firmware) and is typically set.

SEE ALSO

portRouteShow
bladeCfgGeMode

Configures a GbE port or a 10GbE port on the Brocade FX8-24 blade.

SYNOPSIS

bladecfgg_geomode --set mode -slot slot
bladecfgg_geomode --show -slot slot | -all
bladecfgg_geomode --help

DESCRIPTION

Use this command to configure the GbE port mode on the Brocade FX8-24 extension blade or to display the configuration. The mode configuration controls which ports are enabled.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command is supported only on the Brocade FX8-24 blade in a DCX or DCX-S4 chassis.

OPERANDS

This command has the following operands:
--set mode
Sets the GbE port mode for a specified slot. Valid modes are one of the following:
 1g
 Enables the GbE ports ge0-ge9 (xge0 and xge1 are disabled).
 10g
 Enables the GbE ports xge0 and xge1 (ge0-ge9 ports are disabled).
 dual
 Enables the GbE ports ge0-ge9 and xge0 (xge1 is disabled).
 -slot slot
 Specifies the slot number for the FX8-24 blade. This operand is required when setting the GbE port mode
--show
Displays the GbE port mode for the specified slots.
 -slot slot
 Displays the GbE port mode for a single slot.
 -all
 Displays the GbE port mode for all configured slots.
--help
Displays the command usage.

EXAMPLES

To configure the Brocade FX8-24 blade in slot 4 in 1G mode:

switch:admin> bladecfgg_geomode --set 1g -slot 4

To display the GbE port mode for the Brocade FX8-24 blade in slot 4:

switch:admin> bladecfgg_geomode --show -slot 4
bladeCfgGeMode: Blade in slot 4 is configured in 10GigE Mode
10GigE mode: only xge0 and xge1 are enabled (ge0-9 ports \ are disabled)
To display the GbE port mode for all configured slots:

```bash
switch:admin> bladeCfgGeMode --show -all
bladeCfgGeMode: Blade in slot 1 is configured in 1GigE Mode
1GigE mode: only the ge0-9 ports are enabled (xge0 and xge1 are disabled)
bladeCfgGeMode: Blade in slot 4 is configured in 10GigE Mode
10GigE mode: only xge0 and xge1 are enabled (ge0-9 ports are disabled)
```

SEE ALSO None
bladeDisable

Disables all user ports on a blade.

SYNOPSIS

`bladeDisable slot`

DESCRIPTION

Use this command to disable all user ports on a blade. All Fibre Channel ports on the blade are taken offline. If the switch was connected to a fabric through this blade, the remaining switches reconfigure, and the switch reconfigures based on the other blade ports. As each port is disabled, the front panel LED changes to a slow-flashing amber.

After issuing `bladeDisable` on a slot in a chassis, `switchShow` displays the user ports in the disabled state. The blade is still shown as enabled in both `switchShow` and `slotShow` output.

The blade must be disabled before making configuration changes or before running many of the diagnostic tests. The blade does not need to be disabled before rebooting or powering off.

You cannot disable a blade when the blade is faulted, powered off, or running diagnostics.

This command disables the ports on a single blade. To disable the ports in an entire chassis, use the `chassisDisable` command.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operand:

slot

Specifies the slot number for the ports to be disabled.

EXAMPLES

To disable a blade in slot 5:

```
switch:admin> bladeDisable 5
Blade 5 is being disabled...Done
```

To verify that the user ports on the blade are disabled:

```
switch:admin> switchshow -slot 5
switchName: DCX57_9
switchType: 62.1
switchState: Online
switchMode: Native
switchRole: Subordinate
switchDomain: 9
switchId: fffc09
switchWwn: 10:00:00:05:1e:40:4a:00
zoning: ON (all_cfg)
switchBeacon: OFF
FC Router: OFF
FC Router BB Fabric ID: 128

Slot Blade Type ID Model Name Status
---------------------------
 5  COREBLADE 52 CORE8 ENABLED

Index Slot Port Address Media Speed State Proto
---------------------------------------------
384 5 0 ------ cu 8G In_Sync FC Disabled
```
bladeDisable

<table>
<thead>
<tr>
<th>Blade</th>
<th>Cu</th>
<th>Speed</th>
<th>State</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>385</td>
<td>1</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>386</td>
<td>2</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>387</td>
<td>3</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>388</td>
<td>4</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>389</td>
<td>5</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>390</td>
<td>6</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>391</td>
<td>7</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>392</td>
<td>8</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>393</td>
<td>9</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>394</td>
<td>10</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>395</td>
<td>11</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>396</td>
<td>12</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>397</td>
<td>13</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>398</td>
<td>14</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>399</td>
<td>15</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>400</td>
<td>16</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>401</td>
<td>17</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>402</td>
<td>18</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>403</td>
<td>19</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>404</td>
<td>20</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>405</td>
<td>21</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>406</td>
<td>22</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>407</td>
<td>23</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>408</td>
<td>24</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>409</td>
<td>25</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>410</td>
<td>26</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>411</td>
<td>27</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>412</td>
<td>28</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>413</td>
<td>29</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>414</td>
<td>30</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
<tr>
<td>415</td>
<td>31</td>
<td>8G</td>
<td>In_Sync</td>
<td>FC Disabled</td>
</tr>
</tbody>
</table>

SEE ALSO bladeEnable, chassisDisable, chassisEnable, portDisable, portEnable, slotShow, switchEnable, switchDisable, switchShow
bladeEnable

Enables all user ports on a blade.

SYNOPSIS

bladeenable slot

DESCRIPTION

Use this command to enable all user ports on a blade. All ports within the blade that did not fail the power-on self-test (POST) are enabled (except for persistently disabled ports). They may come online if connected to a device, or remain offline if disconnected. Use the bladeEnable command to re-enable the blade after making configuration changes or running offline diagnostics.

If the switch is connected to a fabric through previously disabled ports, it rejoins the fabric. If this switch remains the principal switch at the end of the fabric countdown, it assigns itself a domain ID. If another switch assumes the principal role, the re-enabled switch becomes a subordinate switch and accepts a domain ID from the principal.

As each port is enabled, the front panel LED changes from a slow-flashing amber to nonflashing green for online ports or to nonflashing amber for ports that do not initialize. Disconnected ports remain unlit.

NOTES

You cannot disable a single blade when the entire chassis is disabled, or when the blade itself is faulted, powered off, or running diagnostics. Use chassisEnable to enable the ports on an entire chassis.

Persistently disabled ports are not enabled by this command.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operand:

slot

Specifies the slot number to be enabled.

EXAMPLES

To display the slot status, enable the user ports in slot 4, and verify the settings:

switch:admin> slotshow

<table>
<thead>
<tr>
<th>Slot</th>
<th>Blade Type</th>
<th>ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SW BLADE</td>
<td>2</td>
<td>ENABLED</td>
</tr>
<tr>
<td>2</td>
<td>UNKNOWN</td>
<td></td>
<td>VACANT</td>
</tr>
<tr>
<td>3</td>
<td>UNKNOWN</td>
<td></td>
<td>VACANT</td>
</tr>
<tr>
<td>4</td>
<td>SW BLADE</td>
<td>2</td>
<td>ENABLED (User Ports Disabled)</td>
</tr>
<tr>
<td>5</td>
<td>CP BLADE</td>
<td>1</td>
<td>ENABLED</td>
</tr>
<tr>
<td>6</td>
<td>CP BLADE</td>
<td>1</td>
<td>ENABLED</td>
</tr>
<tr>
<td>7</td>
<td>SW BLADE</td>
<td>2</td>
<td>ENABLED</td>
</tr>
<tr>
<td>8</td>
<td>UNKNOWN</td>
<td></td>
<td>VACANT</td>
</tr>
<tr>
<td>9</td>
<td>UNKNOWN</td>
<td></td>
<td>VACANT</td>
</tr>
<tr>
<td>10</td>
<td>UNKNOWN</td>
<td></td>
<td>VACANT</td>
</tr>
</tbody>
</table>

switch:admin> bladeenable 4
Blade 4 is being enabled...Done

switch:admin> slotshow

<table>
<thead>
<tr>
<th>Slot</th>
<th>Blade Type</th>
<th>ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SW BLADE</td>
<td>2</td>
<td>ENABLED</td>
</tr>
<tr>
<td>2</td>
<td>UNKNOWN</td>
<td></td>
<td>VACANT</td>
</tr>
</tbody>
</table>
bladeEnable

<table>
<thead>
<tr>
<th>Blade</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>UNKNOWN VACANT</td>
</tr>
<tr>
<td>4</td>
<td>SW BLADE 2 ENABLED</td>
</tr>
<tr>
<td>5</td>
<td>CP BLADE 1 ENABLED</td>
</tr>
<tr>
<td>6</td>
<td>CP BLADE 1 ENABLED</td>
</tr>
<tr>
<td>7</td>
<td>SW BLADE 2 ENABLED</td>
</tr>
<tr>
<td>8</td>
<td>UNKNOWN VACANT</td>
</tr>
<tr>
<td>9</td>
<td>UNKNOWN VACANT</td>
</tr>
<tr>
<td>10</td>
<td>UNKNOWN VACANT</td>
</tr>
</tbody>
</table>

SEE ALSO: bladeDisable, chassisDisable, chassisEnable, portEnable, portDisable, switchDisable, switchShow
bladeSwap

Swaps the area numbers for matching port pairs of two blades.

SYNOPSIS
bladeSwap -src source_slot -dest destination_slot

DESCRIPTION
Use this command to swap the area numbers for matching port pairs of two blades. All ports must qualify for swapping for this command to succeed. It validates that the blades in the indicated slots are of the same type, have the same number of ports, and that the port pairs are in the same partition.

If all the ports qualify for swapping, this command automatically performs the following operations:

1. It enables the port swapping feature by executing the portSwapEnable command.
2. It takes all ports on both the source and destination blades offline by executing the bladeDisable command.
3. It swaps the matching port pairs on each of the specified blades.
4. It re-enables the blade by executing the bladeEnable command.

The result of this operation is persistent across reboots and power cycles.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command leaves both the source and destination blades in a disabled state. To enable all ports on a blade, issue the bladeEnable command. To enable individual ports, issue the portEnable command.

This command affects port swap information that is kept in its own database. It cannot be manipulated by editing the configuration database reported by configShow.

This command is not allowed if one or both the blades are faulty.

OPERANDS
This command has the following operands:

-src source_slot
Specifies the slot number for the source blade.

-dest destination_slot
Specifies the slot number for the destination blade. Use slotShow for a listing of valid slots.

EXAMPLES
To swap area numbers between matching port pairs of two slots:

switch:admin> bladeswap -src 1 -dest 3
bladeswap done

SEE ALSO
portSwapEnable, portSwapDisable, portSwapShow, portShow, portEnable, portDisable, bladeEnable, bladeDisable, switchShow, switchEnable
bootLunCfg

Transparently configures the boot LUN for an HBA.

SYNOPSIS

bootluncfg --add HBA_WWN PWNN LUN_ID

bootluncfg --delete HBA_WWN [PWNN LUN_ID]

bootluncfg --show

bootluncfg --help

DESCRIPTION

Use this command to configure the boot LUN for an HBA.

Existing fabric-based boot LUN discovery allows the host's boot LUN information to be stored in the fabric zone database by using a zone name that contains the PWWN of an HBA port. The zone members consist of storage target PWWN and LUN ID.

This command provides a simplified and transparent procedure for configuring the boot LUN. Once configured, the HBA boot code queries the zone member list for the zone name matching the HBA PWWN to determine the boot target and LUN.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

HBA_WWN

Specifies the WWN of the HBA port connecting to the boot LUN. This is a hexadecimal number, for example, 10:00:00:05:1e:41:9a:cb.

PWNN

Specifies the WWN of the remote storage target's port. For example, 50:00:00:05:1e:41:9a:ca. This operand is required with the --add option and optional with the --delete option.

LUN_ID

Specifies the hexadecimal LUN identification. The LUN ID is represented as an eight-byte value (four-level LUN addressing), for example, 09AABBCCDDEEFF00. This operand is required with the --add option and optional with the --delete option.

--add

Configures the specified HBA (HBA_WWN) to boot from the specified LUN (LUN_WWN) accessible through the Target PWWN (PWNN).

--delete

Removes the mapping for the HBA (HBA_PWNN) to boot from the LUN (LUN_ID) accessible through the Target Port (PWNN).

--show

Displays all configured HBA to Port/LUN Mappings.

--help

Displays the command usage.
EXAMPLES

To configure a boot LUN:

```bash
Operation Successful
```

To display existing Port/LUN mappings:

```bash
switch:admin> bootluncfg --show

00:00:00:00:aa:bb:cc:dd;00:00:00:01:ee:ff:11:22; 
00:00:00:02:9a:bc:34:5f;00:00:00:03:a1:11:24:10

00:00:00:00:11:11:11:11;00:00:00:01:11:11:11:11; 
00:00:00:02:9a:bc:34:5f;00:00:00:03:a1:11:24:10

00:00:00:00:11:11:11:11;00:00:00:01:11:11:11:11; 
00:00:00:02:9a:bc:34:5f;00:00:00:03:a1:11:24:10

To remove an HBA to Port/LUN mapping:

```bash
Operation Successful
```

SEE ALSO

None
bottleneckMon

Monitors and reports latency and congestion bottlenecks on F_Ports and E_Ports.

SYNOPSIS


bottleneckMon --disable


bottleneckMon --configclear [slot]/port_list

bottleneckMon --exclude [slot]/port_list

bottleneckMon --include [slot]/port_list

bottleneckMon --show [-interval seconds] [-span seconds] [-refresh] [-congestion | -latency] [slot]/port | ""

bottleneckMon --status

bottleneckMon --cfgcredittools -intport -recover [off | onLrOnly | onLrThresh] [-lrthresh threshold] -fault [edgeblade | coreblade | edgecoreblade]

bottleneckMon --cfgcredittools -intport -check slot/blade_port,VC

bottleneckMon --linkreset slot/blade_port

bottleneckMon --showcredittools

bottleneckMon --help

DESCRIPTION

Use this command to (1) detect latency and congestion bottlenecks on F[L]_Ports and E_Ports and (2) to manage credit recovery on backend ports. Bottleneck detection and credit recovery are two independent functions; enabling credit recovery has no impact on bottleneck detection and vice versa.

Bottleneck Detection

For bottleneck detection, this command provides the following management functions:

- Enabling or disabling bottleneck detection on a switch and optionally configuring thresholds and alert parameters.
- Changing alert parameters on specified ports after you have enabled the feature on the switch.
• Configuring severity thresholds for congestion and latency bottlenecks for a switch or for a specified port list.
• Configuring for congestion and/or latency bottlenecks for a switch or for a specified port list.
• Refining the criterion for defining latency bottleneck conditions to allow for more (or less) sensitive monitoring at the sub-second level.
• Clearing the configuration on specified ports only (this option cannot be performed switch-wide).
• Excluding specified ports from being monitored or including previously excluded ports.
• Generating history or status reports that show congestion bottlenecks and latency bottlenecks.

Enabling or disabling bottleneck detection is a switch-wide operation. If Virtual Fabrics are enabled, the configuration is applied per logical switch and affects all ports on the current logical switch. After the (logical) switch-wide bottleneck detection parameters have been set, you can you can fine-tune the configuration for specific ports.

A bottleneck is defined as a condition where the offered load at a given port exceeds the throughput at the port. This command supports detection of two types of bottleneck conditions: congestion and latency.

• A congestion bottleneck arises from link over-utilization. This happens when the offered load exceeds throughput and throughput is at 100%. Frames attempt to egress at a faster rate than the line rate allows. Link utilization is measured once every second at the port. When trunked ports are monitored, link utilization is measured for the entire trunk. A congestion bottleneck is assumed if the utilization during the measured second is 95% or more.

• A latency bottleneck occurs when egress throughput at a port is lower than the offered load because of latency in the return of credits from the other end of the link. This is not a permanent condition. The offered load exceeds throughput and throughput is less than 100%. In this case, the load does not exceed the physical capacity of the channel as such, but can occur because of an underperforming device connected to the F_Port, or because of back pressure from other congestion or latency bottlenecks on the E_Ports. Bottleneck detection can help identify these devices and pinpoint the upstream bottlenecks caused by these devices inside the fabric.

When bottleneck detection is enabled on a switch and you specify an alert, the command triggers an SNMP and a RASlog alert when the ports on the configured switch experience latency or congestion. Another alert is sent after the condition resolves. For a given averaging time, each second is marked as affected by latency and/or congestion or not. If the number of affected seconds crosses the configured threshold, an alert is triggered for the port. You can configure alerts for latency, for congestion, or both. You can also configure a severity threshold for each type of bottleneck and the time interval over which the bottlenecks are measured.

For example, setting a latency threshold of 0.8 and a time window of 30 seconds specifies that an alert should be sent when 80% of the one-second samples over any period of 30 seconds were affected by latency bottleneck conditions. The -qtime option can be used to throttle alerts by specifying the minimum number of seconds between consecutive alerts. Thresholds are configured separately for each type of bottleneck and statistical data are collected independently for each condition. The -qtime parameter applies to both types of bottleneck detection; there can be one latency alert and one congestion alert in a configured quiet time.

Bottleneck detection works both in non-Virtual Fabric mode and in Virtual Fabric Mode. If Virtual Fabrics are enabled, bottleneck detection is configured per logical switch. If a port is removed from a logical switch after bottleneck detection is enabled on the logical switch, the configuration is retained in that logical switch. If the port is added again to the same logical switch, bottleneck detection is automatically re-enabled for this port using the retained configuration. This feature allows you to configure more than one logical switch to perform bottleneck detection on the same port, although only one logical switch performs the operation on the port at any given time.

The --show option displays a history of the bottleneck severity for a specified port or for all ports. Each line of output shows the percentage of one-second intervals affected by bottleneck conditions during the time window shown on that line. When issued for all ports, the union of all port statistics is displayed in addition to individual port statistics. The union value provides a good indicator for the overall bottleneck
severity on the switch. You can filter the output to display only latency or congestion bottleneck statistics. When used without port operand the command displays the number of ports affected by bottleneck conditions. A "bottlenecked" port in this output is defined as any port that was affected by a bottleneck for one second or more in the corresponding interval.

When using the --show command, you may see a "no data for x seconds" or "no data" message displayed at the end of a line of output. The "no data..." message in any interval means that there was no data to analyze for the stated number of seconds or for the entire interval if the remark is simply "no data." This typically means that there was no traffic on the link for the stated number of seconds. The percentage of affected seconds displayed takes this into account. For example, if there was no traffic for 6 seconds in an interval of 10 seconds, and 1 second out of the other 4 seconds was affected by a bottleneck, the display for that interval would show 25% as the percentage of affected seconds (1 out of 4), and state "no data for 6 seconds." However, if there is no traffic because the port is offline, the "no data..." message is displayed.

The --status option displays bottleneck configuration details for the current (logical) switch. If virtual fabrics are enabled, ports not belonging to the current logical switch are not displayed. The command output includes the following information:

**Bottleneck detection**
- Enabled or disabled

**Switch-wide sub-second latency bottleneck criterion**
- Displays the following parameters:
  - Time threshold
    - The value set with the -lsubsectimethresh operand.
  - Severity threshold
    - The value set with the -lsubsecsevthresh operand.

**Switch-wide alerting parameters**
- Displays the following parameters:
  - Alerts?
    - Yes (enabled), No (disabled), Congestion only, or Latency only.
  - Congestion threshold for alert
    - The severity threshold for triggering a congestion alert. This threshold indicates the percentage of one-second intervals affected by congestion conditions within a specified time window. The congestion threshold is expressed as a fraction between 0 and 1.
  - Latency threshold for alert
    - The severity threshold for triggering a latency alert. This threshold indicates the percentage of one-second intervals affected by latency conditions within a specified time window. The latency threshold is expressed as a fraction between 0 and 1.
  - Averaging time for alert
    - The time window in seconds over which the percentage of seconds affected by bottleneck conditions is computed and compared with the threshold.
  - Quiet time for alert
    - The minimum number of seconds between consecutive alerts. The value assigned to this parameter applies to both latency and congestion detection.

**Per-port overrides for sub-second latency bottleneck criterion**
- Custom configuration for the above mentioned sub-second latency bottleneck parameters. Note that everything above this line applies to all ports in the switch that don't have any custom configuration or exclusions.
Per-port overrides for alert parameters

Custom configuration for the above mentioned alert parameters. The abbreviations "C" and "L" indicate "congestion" and "latency" alerts. "Y" means alerts are enabled for both types, and "N" means alerts are disabled.

Excluded ports

List of ports excluded from bottleneck detection.

Credit recovery on backend ports

Use the –cfgcredittools commands to enable or disable credit recovery of backend ports and to display the configuration. When this feature is enabled, credit is recovered on backend ports (ports connected to the core blade or core blade backend ports) when credit loss has been detected on these ports. If complete loss of credit on a Condor2 backend port causes frame timeouts, a link reset will be performed on that port regardless of the configured setting, even if that setting is -recover off. When used with the -recover onLrOnly option, the recovery mechanism takes the following escalating actions:

- When it detects credit loss, it performs a link reset and logs a RASlog message (RAS Cx-1014).
- If the link reset fails to recover the port, the port reinitializes. A RASlog message is generated (RAS Cx-1015). Note that the port reinitialization does not fault the blade.
- If the port fails to reinitialize, the port is faulted. A RASlog message (RAS Cx-1016) is generated.
- If a port is faulted and there are no more online backend ports in the trunk, the core blade is faulted. (Note that the port blade will always be faulted). A RASlog message is generated (RAS Cx-1017).

When used with the -recover onLrThresh option, recovery is attempted through repeated link resets and a count of the link resets is kept. If the threshold of more than two link resets per hour is reached, the blade is faulted (RAS Cx-1018). Note that regardless of whether the link reset occurs on the port blade or on the core blade, the port blade is always faulted.

If you suspect complete credit loss on a particular virtual channel (VC) on a particular backend port, use the -check option to examine that particular backend port and VC for credit loss. If the command detects complete credit loss, it reports the information. If, in addition, you have enabled link resets on backend ports, this command will perform a link reset on the link in an attempt to recover from the problem. You must explicitly initiate this check and it is a one-time operation. In other words, this command does not continuously monitor for credit loss in the background. Detection of credit loss takes 2-7 seconds, after which the results of the operation are displayed. A Link Reset also generates a RASlog message.

For more information on the RASlog messages, refer to the Fabric OS Message Reference.

NOTES

Command syntax predating Fabric OS v6.4.0 is no longer supported as of Fabric OS v7.0.0.
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.
The bottleneck detection commands are supported on F_Ports, FL_Ports, E_Ports, and EX_Ports.
The credit recovery commands are supported only on backend ports of Condor, Condor 2, and Condor 3-based blades in the Brocade DCX 8510-8 and DCX 8510-4 chassis.
The -check option is supported only on modular switches, and only on links between Condor 2 core blades and Condor 2 port blades. AP blades are not supported.
All credit recovery-related options are also available with the creditRecovMode command as of Fabric OS v7.2.0.
All credit recovery options will be deprecated from the bottleneckMon command in a future Fabric OS release because these options are already made available in the creditRecovMode command.
OPERANDS

**Bottleneck detection commands**

The following operands support bottleneck detection:

- **slot**
  
  On bladed systems only, specifies the slot number of the ports to be configured, followed by a slash (/).

- **port_list**
  
  Specifies one or more ports, relative to the slot on bladed systems. Use `switchShow` for a listing of valid ports. The `--show` option allows only a single port or all ports ("*") to be specified with this command, unless it is used without port operand. A port list should be enclosed in double quotation marks and can consist of the following:

  - A single port, for example, "8" or "5/8" on blades systems.
  - A port range where beginning and end port are separated by a dash, for example, "8-13" or "5/8-13" on blades systems. A port range cannot span multiple slots.
  - A set of ports, separated by a space, for example "3 5 7 8" or 5/3 5 7 8 on blades systems.
  - A wildcard ("*") indicates all ports. The wildcard must be enclosed in single quotation marks and is not allowed with the `--config` option. To make switch-wide changes, use `--config` without a port specifier.

- **--enable**
  
  Enables bottleneck detection on the switch. This operation is switch-wide and affects all F[L]_Ports and F_Ports. This operation enables bottleneck detection on all eligible ports of a switch, no matter when they become eligible. If you have Virtual Fabrics enabled and you move ports into a bottleneck enabled logical switch from another logical switch, bottleneck detection is enabled upon completion of the move. You can configure optional thresholds and alerts when you enable the feature, or you can change selected parameters later with the `--config` command.

- **--config**
  
  Modifies bottleneck detection parameters on specified ports or, when a port list is not specified, on the entire switch. Bottleneck detection must first be enabled before you can fine-tune the configuration with the `--config` command. The history of bottleneck statistics thus far will not be lost for the specified ports and can be viewed with the `--show` option. However, alert calculations restart on the specified ports when parameters change. This operation is allowed on excluded ports.

  The following parameters can be optionally set with the `--enable` and `--config` commands. Any numerical parameters not specified with the `--config` option will retain the current configured values. Whereas, any parameters not specified with the `--enable` option will assume their default values.

- **-alert**
  
  Enables both congestion and latency alerts. You can optionally specify either a congestion threshold or a latency threshold, or both. This operand is optional; if omitted, the alerts are disabled. To retain the current alert configuration, you must specify the `-alert` options for every `--config` operation.

- **-alert=congestion**
  
  Enables congestion alerts only. You can optionally specify a congestion threshold for this type of alert. Latency thresholds are not valid.

- **-alert=latency**
  
  Enables latency alerts only. You can optionally specify a latency threshold for this type of alert. Congestion thresholds are not valid.
When you specify one of the three alert options, the following parameters become available, although the threshold options are subject to the restrictions stated above.

-cthresh congestion_threshold
  Specifies the severity threshold for congestion that triggers an alert. The threshold indicates the percentage of one-second intervals affected by the bottleneck condition within the specified time window. The threshold is expressed as the equivalent fraction between 0 and 1. The default value is 0.8.

-lthresh latency_threshold
  Specifies the severity threshold for latency that triggers an alert. The threshold indicates the percentage of one-second intervals affected by the bottleneck condition within the specified time window. The threshold is expressed as the equivalent fraction between 0 and 1. The default value is 0.1.

-time window
  Specifies the time window in seconds over which the percentage of seconds affected by bottleneck conditions is computed and compared with the threshold. The maximum window size is 10800 seconds (3 hours). The default is 300 seconds. This parameter is valid with all three alert options.

-qtime quiet_time
  Specifies the minimum number of seconds between consecutive alerts. The default is 300 seconds. The maximum is 31556926 seconds (approximately one year). This parameter is valid with all three alert options.

-noalert
  Disables alerts. This is the default state assumed if neither -alert nor -noalert is specified.

-lsubsectimethresh time_threshold
  Sets the threshold for latency bottlenecks at the sub-second level. The time_threshold specifies the minimum fraction of a second that must be affected by latency in order for that second to be considered affected by a latency bottleneck. For example, a value of 0.75 means that at least 75% of a second must have had latency bottleneck conditions in order for that second to be counted as an affected second. The time threshold value must be greater than 0 and no greater than 1. The default value is 0.8. Note that the application of the sub-second numerical limits is approximate. This command erases the statistics history and restarts alert calculations (if alerting is enabled) on the specified ports. When used with the config option, you must specify a port.

-lsubsecsevthresh severity_threshold
  Specifies the threshold on the severity of latency in terms of the throughput loss on the port at the sub-second level. The severity threshold is a floating-point value in the range of no less than 1 and no greater than 1000. This value specifies the factor by which throughput must drop in a second in order for that second to be considered affected by latency bottlenecking. For example, a value of 20 means that the observed throughput in a second must be no more than 1/20th the capacity of the port in order for that second to be counted as an affected second. The default value is 50. This command erases the statistics history and restarts alert calculations (if alerting is enabled) on the specified ports. When used with the config option, you must specify a port.
bottleneckMon

--exclude [slot/port_list]
Excludes the specified ports from bottleneck detection. No data will be collected from these ports, and no alerts will be triggered for these ports. All statistics history for a port is erased when a port is excluded. Alerting parameters are preserved. It is not recommended to exclude ports from monitoring except under special circumstances, for example, when a long-distance port is known to be a bottleneck because of credit insufficiency. The wildcard (*) port specifier is allowed but not recommended. Use --disable to exclude all ports on the switch.

--include [slot/port_list]
Includes previously excluded ports for bottleneck detection. Previously configured switch-wide alerts and threshold parameters reapply when bottleneck detection resumes. The wildcard (*) port specifier may be used as a shorthand for removing all exclusions.

--configclear [slot/port_list]
Removes any port-specific alert parameters from the specified ports and restores switch-wide parameters on these ports. You can still view the history of bottlenecks statistics on these ports. However, alert calculations restart on the specified ports after the parameter reset. This operation is allowed on excluded ports.

--disable
Disables bottleneck detection on the entire switch. This operation erases all configuration details, including the list of excluded ports, all custom thresholds and alerting parameters for specific ports, and all historical data.

--show [[slot/]port [*]]
Displays a history of the bottleneck severity for the specified ports. The output shows the percentage of one-second intervals affected by the bottleneck condition within the specified time interval. When a single port is specified, the command displays the bottleneck statistic for that port. When the wildcard (*) is specified, the same statistic is displayed for every port on the switch. Additionally, a combined "union" statistic for the switch as a whole is displayed. When used without a port specifier, the command displays the number of ports affected by bottleneck conditions. A "bottlenecked" port in this output is defined as any port that was affected by a bottleneck for one second or more in the corresponding interval. This command succeeds only on online ports.

The following operands are optional:

-interval seconds
Specifies the time window in seconds over which the percentage of seconds affected by bottleneck conditions is displayed in the output. When a port is specified with the --show command, the maximum interval is 10800 seconds (3 hours). When a wildcard (*) is specified, the maximum interval is defined such that the value of -span divided by the value of the interval cannot exceed 30. The interval value must be greater than 0. The default value is 10 seconds.

-span seconds
Specifies the total duration in seconds covered in the output. When a port is specified with the --show command, the maximum span is 10800 seconds (3 hours). When a wildcard (*) is specified, the maximum span is defined such that the value of -span divided by the value of the interval cannot exceed 30. The span value must be greater than 0. The default value is 10 seconds.

History data are maintained for a maximum of three hours per port, so the span can be 10800 seconds at most. When the show command is issued for all ports (*), the maximum duration is defined such that the value of -span divided by the value of the interval cannot exceed 30.
-refresh

Refreshes the display to continuously update with fresh data at a certain rate. The refresh rate is equal to the number of seconds specified in the interval.

-congestion | -latency

Restricts the display to congestion or latency data. If neither is specified, the command displays combined statistics for both types of bottlenecks.

--status

Displays the details of the Bottleneck Detection configuration for the current (logical) switch. Refer to the command description section for an explanation of the displays. If virtual fabrics are enabled, ports not belonging to the current logical switch are not displayed.

--help

Displays the command usage.

Back-end port credit recovery commands

The following operands support backend port credit recovery:

--cfgcredittools -intport -recover

Configures credit recovery for backend ports. Use one of the following required recovery options to configure credit recovery:

-recover onLrOnly

Enables the backend port recovery feature in link reset mode.

-recover onLrThresh

Enables the backend port recovery feature in link reset threshold mode.

-recover off

Disables the backend port credit recovery feature.

-irthresh threshold

Specifies the link reset threshold value. Note that the threshold value set using this option will apply only when the recovery mode is onLrThresh.

-fault edgeblade

In this mode, the edge blade alone is faulted when the link reset threshold is reached.

-fault coreblade

In this mode, the core blade alone is faulted when the link reset threshold is reached.

-fault edgecoreblade

In this mode, the edge blade is faulted the first two times the link reset threshold value is reached. If the threshold value is reached the third time, the core blade is faulted.

The -fault option is supported only with the onLrThresh option.

--cfgcredittools -intport -check

Performs the on-demand detection of credit loss on a given backend port and VC. This operand is optional and exclusive; when you specify this option you cannot use the --cfgcredittools -intport -recover options at the same time. You must specify a port and a VC, separated by a comma. A space before the comma is not permitted.

slot/blade_port

Specifies the backend port that is to be examined for credit loss. The port number must be the blade port number, since this is a backend port. The blade port number can be located in the "Bpt" column output of the bladePortMap command. Note that the bladeportmap command requires root permissions.
VC
Specifies the Virtual Channel number. The valid range is 1 through 31. VC 0 is invalid.

--linkreset slot/blade_port
Performs a link reset on the specified front-end or back-end blade port. The blade port number can be located in the "Bpt" column output of the bladePortMap command. The bladeportmap command requires root permissions.

--showcredittools
Displays the backend port credit recovery configuration as enabled or disabled. In addition, the output indicates whether link reset mode or link reset threshold mode is configured.

--help
Displays the command usage.

EXAMPLES
Bottleneck detection examples
To enable bottleneck detection on the switch without alerts (statistics collected with default parameters are still available for viewing):

```
switch:admin> bottleneckmon --enable
```

To enable bottleneck detection on the switch with congestion and latency alerts using default values for thresholds and time (preferred use case):

```
switch:admin> bottleneckmon --enable -alert
```

To enable bottleneck detection on the switch with congestion alerts only:

```
switch:admin> bottleneckmon --enable -alert=congestion
```

To enable bottleneck detection on the switch with latency alerts only:

```
switch:admin> bottleneckmon --enable -alert=latency
```

To customize congestion bottleneck detection on a port range after default alerts are enabled switch-wide:

```
switch:admin> bottleneckmon --enable -alert
switch:admin> bottleneckmon --config -alert -cthresh .5 -time 240 1-15
```

To change the bottleneck detection configuration on the logical switch to allow congestion alerts only:

```
switch:admin> bottleneckmon --config -alert=congestion
```

To change the bottleneck detection configuration on the logical switch to allow latency alerts only:

```
switch:admin> bottleneckmon --config -alert=latency
```

To change the bottleneck detection configuration on the logical switch to allow both congestion and latency alerts:

```
switch:admin> bottleneckmon --config -alert
```

To change the bottleneck detection configuration on the logical switch to disable all alerts:

```
switch:admin> bottleneckmon --config -noalert
```
To change the bottleneck detection configuration on port 5 to allow congestion alerts only; overrides switch-wide configuration:

```
switch:admin> bottleneckmon --config -alert=congestion 5
```

To change the bottleneck detection configuration on port 5 to allow latency alerts only; overrides switch-wide configuration:

```
switch:admin> bottleneckmon --config -alert=latency 5
```

To change the bottleneck detection configuration on port 5 to allow congestion and latency alerts; overrides switch-wide configuration:

```
switch:admin> bottleneckmon --config -alert 5
```

To change the bottleneck detection configuration on port 5 to disable alerts; overrides switch-wide configuration:

```
switch:admin> bottleneckmon --config -noalert 5
```

To disable bottleneck detection on a specified port:

```
switch:admin> bottleneckmon --exclude 2/4
```

To disable bottleneck detection on all ports of a chassis:

```
switch:admin> bottleneckmon --disable
```

To display the number of ports affected by bottleneck conditions:

```
switch:admin> bottleneckmon --show
```

```
==
Fri Feb 26 22:00:00 UTC 2010
==
List of bottlenecked ports in most recent interval:
13 16
===
```

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Number of bottlenecked ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 26 21:59:50</td>
<td>Feb 26 22:00:00</td>
<td>2</td>
</tr>
<tr>
<td>Feb 26 21:59:40</td>
<td>Feb 26 21:59:50</td>
<td>0</td>
</tr>
<tr>
<td>Feb 26 21:59:30</td>
<td>Feb 26 21:59:40</td>
<td>0</td>
</tr>
<tr>
<td>Feb 26 21:59:20</td>
<td>Feb 26 21:59:30</td>
<td>0</td>
</tr>
<tr>
<td>Feb 26 21:59:10</td>
<td>Feb 26 21:59:20</td>
<td>0</td>
</tr>
<tr>
<td>Feb 26 21:59:00</td>
<td>Feb 26 21:59:10</td>
<td>0</td>
</tr>
<tr>
<td>Feb 26 21:58:50</td>
<td>Feb 26 21:59:00</td>
<td>0</td>
</tr>
<tr>
<td>Feb 26 21:58:40</td>
<td>Feb 26 21:58:50</td>
<td>0</td>
</tr>
<tr>
<td>Feb 26 21:58:30</td>
<td>Feb 26 21:58:40</td>
<td>0</td>
</tr>
<tr>
<td>Feb 26 21:58:20</td>
<td>Feb 26 21:58:30</td>
<td>2</td>
</tr>
<tr>
<td>Feb 26 21:58:10</td>
<td>Feb 26 21:58:20</td>
<td>3</td>
</tr>
<tr>
<td>Feb 26 21:58:00</td>
<td>Feb 26 21:58:10</td>
<td>3</td>
</tr>
<tr>
<td>Feb 26 21:57:50</td>
<td>Feb 26 21:58:00</td>
<td>3</td>
</tr>
<tr>
<td>Feb 26 21:57:40</td>
<td>Feb 26 21:57:50</td>
<td>3</td>
</tr>
<tr>
<td>Feb 26 21:57:30</td>
<td>Feb 26 21:57:40</td>
<td>2</td>
</tr>
<tr>
<td>Feb 26 21:57:20</td>
<td>Feb 26 21:57:30</td>
<td>2</td>
</tr>
<tr>
<td>Feb 26 21:57:10</td>
<td>Feb 26 21:57:20</td>
<td>0</td>
</tr>
<tr>
<td>Feb 26 21:57:00</td>
<td>Feb 26 21:57:10</td>
<td>0</td>
</tr>
<tr>
<td>Feb 26 21:56:50</td>
<td>Feb 26 21:57:00</td>
<td>0</td>
</tr>
<tr>
<td>Feb 26 21:56:40</td>
<td>Feb 26 21:56:50</td>
<td>0</td>
</tr>
<tr>
<td>Feb 26 21:56:30</td>
<td>Feb 26 21:56:40</td>
<td>0</td>
</tr>
<tr>
<td>Feb 26 21:56:20</td>
<td>Feb 26 21:56:30</td>
<td>0</td>
</tr>
</tbody>
</table>
To display bottleneck statistics for a single port:

```
switch:admin> bottleneckmon --show -interval 5 -span 30 2/4
```

```

Wed Jan 13 18:54:35 UTC 2010

Percentage of affected secs
From To affected secs

Jan 13 18:54:05 Jan 13 18:54:10 20.00%
Jan 13 18:54:10 Jan 13 18:54:15 60.00%
Jan 13 18:54:15 Jan 13 18:54:20 0.00%
Jan 13 18:54:20 Jan 13 18:54:25 0.00%
Jan 13 18:54:25 Jan 13 18:54:30 40.00%
Jan 13 18:54:30 Jan 13 18:54:35 80.00%
```

To display the bottleneck statistic for every port in the switch including the union of all individual port statistics:

```
switch:admin> bottleneckmon --show -interval 5 -span 30 *
```

```
===
From To 0 1 2 3 4 5
===
Jan13 18:54:05 Jan13 18:54:10 20.00 20.00 0.00 20.00 100.00
===
Jan13 18:54:05 Jan13 18:54:10 40.00 0.00 0.00 0.00 40.00
```

To display only the union statistic for the switch:

```
switch:admin> bottleneckmon --show -interval 5 -span 30
```

```
===
From To affected secs
Jan13 18:54:05 Jan13 18:54:10 80.00
```
To display bottleneck configuration details for the switch:

```
switch:admin> bottleneckmon --status
Bottleneck detection - Enabled
```

```
Switch-wide sub-second latency bottleneck criterion:
==
Time threshold - 0.800
Severity threshold - 50.000
Switch-wide alerting parameters:
=================================
Alerts - Congestion only
Congestion threshold for alert - 0.800
Averaging time for alert - 300 seconds
Quiet time for alert - 300 seconds
Per-port overrides for sub-second latency bottleneck criterion:
==
Slot Port TimeThresh SevThresh
===
1 3 0.500 100.000
1 4 0.600 50.000
1 5 0.700 20.000
Per-port overrides for alert parameters:
==
Slot Port Alerts? LatencyThresh CongestionThresh Time(s) QTime(s)
===
1 1 Y 0.100 0.800 300 300
1 2 C -- 0.800 600 600
1 3 L 0.100 -- 300 300
1 4 N -- -- -- --
Excluded ports:
================
Slot Port
========
1 2
1 3
1 4
```

*Backend port credit recovery examples*

To enable backend port credit recovery with the link reset only option and to display the configuration:

```
switch:admin> bottleneckmon --cfgcredittools
-intport -recover onLrOnly
```

```
switch:admin> bottleneckmon --showcredittools
Internal port credit recovery is Enabled with LrOnly
```
To enable backend port credit recovery with the link reset threshold option and to display the configuration:

```
switch:admin> bottleneckmon --cfgcredittools -intport -recover onLrThresh
```

```
switch:admin> bottleneckmon --showcredittools
Internal port credit recovery is Enabled with LrOnThresh
```

To disable backend port credit recovery and to display the configuration:

```
switch:admin> bottleneckmon --cfgcredittools -intport -recover off
```

```
switch:admin> bottleneckmon --showcredittools
Internal port credit recovery is Disabled
```

To examine a backend port for credit loss:

```
switch:admin> bottleneckmon --cfgcredittools -intport -recover off
```

```
switch:admin> bottleneckmon --cfgcredittools -intport -check 10/4,30
Started Credit loss Detection on slot 10 port 4 VC 30.
Please wait....
Detected credit loss.
Link Reset performed.
```

SEE ALSO creditRecovMode
bpPortLoopbackTest

Sends and receives data from the same BP port to perform a functional test of the port.

SYNOPSIS

bpportloopbacktest [-slot slot]
                   [-nframes count]
                   [-pklen count]
                   [-lb_mode mode]
                   [-spd_mode mode]
                   [-bpports itemlist]

DESCRIPTION

Use this command to verify the functional operation of the switch. The test sends frames from a specified blade processor (BP) port transmitter and loops the frames back into the same BP port's receiver. The path exercised in this test includes the connections from the BP chip to the Control Processor (CP) chip. The test can be performed on a single port or on a range of BP ports.

Before running this diagnostic, you must disable the chassis and clear all logs using the following command sequence:

1. Execute chassisDisable
2. Execute slotStatsClear
3. Execute diagClearError -all
4. Execute cryptoCfg --disableEE (if the encryption engine is in enabled state)

By default, eight frames are transmitted and received on each port. The test method is as follows:

1. Set all ports present for the loopback mode specified.
2. Create a frame F of maximum data size (2112 bytes).
3. Transmit frame F through the specified port.
4. Pick up the frame from the same port.
5. Check if any of the following statistic error counters report nonzero values: ENC_in, CRC_err, TruncFrm, FrmTooLong, BadEOF, Enc_out, BadOrdSet, DiscC3.
6. Check if the transmit, receive, or class 3 receiver counters are stuck at some value.
7. Check if the number of frames transmitted is not equal to the number of frames received.
8. Repeat steps two through seven for all specified ports until one of the following conditions is met:
   a. The number of frames (or nframes) requested is reached.
   b. All ports are marked bad.
At each pass, a different data type is used to create the frame from a palette of seven. If a pass of seven is requested, seven different frames are used in the test. If eight passes, the first seven frames are unique, and the eighth frame is the same as the first. The data palette of seven consists of the following data types:

1) CSPAT: 0x7e, 0x7e, 0x7e, 0x7e, ...
2) BYTE_LFSR: 0x69, 0x01, 0x02, 0x05, ...
3) CHALF_SQ: 0x4a, 0x4a, 0x4a, 0x4a, ...
4) QUAD_NOT: 0x00, 0xff, 0x00, 0xff, ...
5) CQTR_SQ: 0x78, 0x78, 0x78, 0x78, ...
6) CRPAT: 0xbc, 0xbc, 0x23, 0x47, ...
7) RANDOM: 0x25, 0x7f, 0x6e, 0x9a, ...

**NOTES**

This command does not support High Availability (HA).

This command is currently supported only on the Brocade Encryption platform at a default speed of 4 Gbps and a loopback mode of 7. Use `portLoopBackTest` on all other platforms.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

This command has the following operands:

```
--slot slot
 Specifies the slot number on bladed systems.

-nframes count
 Specifies the number of frames to send. The test progresses until the specified number of frames has been transmitted on each port. The default value is 8.

-pklen count
 Specifies the size of the packet to be sent. The default is 2112 bytes. The valid range is 100 to 2112 bytes.

-lb_mode mode
 Specifies the loopback point for the test. The Brocade Encryption Platform, only supports line loopback (lb_mode 7) and lb_mode defaults to 7 when the parameter is not specified. Mode values are as follows:

 1 Port Loopback (loopback plugs)
 2 External (SERDES) loopback
 7 Back-end bypass & port loopback
 8 Back-end bypass & SERDES loopback

-spd_mode mode
 Specifies the speed mode for the test. On the Brocade Encryption platforms only a speed of 4 Gbps is supported and spd_mode defaults to 4 when the parameter is not specified.

 1 Runs test at 1 Gbps (deprecated).
 2 Runs test at 2 Gbps.
 4 Runs test at 4 Gbps (Default for Encryption platforms).
```
bpPortLoopbackTest 2

8

Runs test at 8 Gbps (Default for Condor2).

16

Runs test at 16 Gbps (Condor3 only).

-bpports itemlist

Specifies a list of blade ports to test. By default all valid blade ports in the specified blade are tested. On the Brocade Encryption platforms, ports 80-103 are the only valid ports, because these are the only blade ports with access to the Vader chip. Refer to the itemList help page for further information on the itemList parameter.

DIAGNOSTICS

When it detects failures, the test may report one or more of the following error messages. If errors persist, contact Technical Support.

DATA

Data received does not match the data sent.

ERRSTAT

Errors were found in the ASIC statistics.

INIT

Port failed to initialize.

PORTDIED

A previously initialized port went to an un-initialized state.

STATS

Errors were found in the ASIC statistics.

TIMEOUT

Did not receive a frame in the given timeout period.

XMIT

Frame transmission failure.

EXAMPLES

To run the test on blade ports 80-90 with one frame:

switch:admin> bpportloopbacktest -bpports 80-90 -nframes 1
Running bpportloopbacktest ..............
Ram Init
Ob1 portloopbacktest on ports 80-90 lbMode 7 speed 4
Info: Vader port 0 recovering Rx Fifo
Info: Vader port 1 recovering Rx Fifo
Info: Vader port 2 recovering Rx Fifo
Info: Vader port 3 recovering Rx Fifo
Info: Vader port 4 recovering Rx Fifo
Info: Vader port 5 recovering Rx Fifo
Ob1 portloopbacktest on ports 80-90 PASSED
Test Complete: bpportloopbacktest Pass 1 of 1
Duration 0 hr, 0 min & 24 sec (0:0:24:599).
Cleaning up after test......

SEE ALSO

itemList, portLoopbackTest
bpTurboRamTest

MBIST test for AP Blade BP ASICs.

**SYNOPSIS**

```
bpTurboRamTest [-slot slot] [-passcnt count] [-bpports itemlist]
```

**DESCRIPTION**

Use this command to verify the on-chip static random access memory (SRAM) located in the Blade Processor (BP) ASICs of the Application Processor (AP) blade. The command makes use of the memory built-in self-test (MBIST) circuitry.

Before running this diagnostics, you must disable the chassis and clear all logs using the following command sequence:

1. Execute `chassisdisable`
2. Execute `slotstatsclear`
3. Execute `diagclearerror -all`
4. Execute `cryptocfg --disableEE` (if the encryption engine is in enabled state)

The test flow for each SRAM is as follows:

1. Fill RAM with alternating FFFF 0000 pattern. (Subtest 1: turboram memory fill)
2. For each incrementing address read FFFF 0000 pattern and write 0000 FFFF. (Subtest 2: turboram r-m-w inc 1)
3. For each incrementing address read 0000 FFFF pattern and write FFFF 0000. (Subtest 3: turboram r-m-w inc 2)
4. For each decrementing address read FFFF 0000 pattern and write 0000 FFFF. (Subtest 4: turboram r-m-w dec 1)
5. For each decrementing address read 0000 FFFF pattern and write FFFF 0000. (Subtest 5: turboram r-m-w dec 2)
6. Repeat steps 1-5 with AAAA 5555 pattern.

**NOTES**

This command is supported only on the Brocade Encryption Switch. It complements the `bpTurboramTest`, which tests the Condor2 ASIC on the switch.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

This command has the following operands:

- `-slot slot`
  Specifies the slot number on bladed systems.
- `-passcnt count`
  Specifies the number of test repetitions. By default the test runs once.
- `-bpports itemlist`
  Specifies a list of blade ports to test. By default all blade ports in the specified blade are tested. Note that on the Encryption platform, ports 80-103 are the blade ports connected to the BP ASICs. Refer to the `itemList` help page for further information on the `itemlist` parameter.
EXAMPLES
To run the test in default mode:

    switch:admin> bpturboramtest
    Running bpturboramtest ..............
    Board Init
    Running Vader bist test
    Vader bist test PASSED
    Running Ob1 bist test
    Ob1 bist test PASSED
    BIST test PASSED on all ASIC(s)
    Test Complete: bpturboramtest Pass 1 of 1
    Duration 0 hr, 1 min & 55 sec (0:1:55:884).
    Cleaning up after test....... passed.

SEE ALSO turboRamTest
bufOpMode

Changes or displays the Buffer Optimized Mode.

SYNOPSIS

bufopmode --set slot [-f]
bufopmode --reset slot
bufopmode --show slot
bufopmode --showall

DESCRIPTION

Use this command to display or change the buffer optimized mode on a switch.

When buffer optimized mode is enabled on a slot, additional buffers are allocated on the internal ports.
Use this feature, if you have slow draining devices connected to the slot and there are no long distance links or F_Port buffers configured on that slot.

You must power off the slot before changing the buffer optimized mode. Changes take effect immediately after the slot is powered on.

Enabling buffer optimized mode removes all long distance configurations or F_Port buffers on that slot. You will be prompted if any F_Port buffers or long distance configurations are detected.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command is supported only on the Brocade FC8-16, FC8-32, and FC8-48 blades in a DCX or DCX-4S chassis. An asterisk (*) next to the slot configuration status indicates an unsupported blade. Refer to the example section for an illustration.

This command is not supported on Control Processor (CP) blades and core blades.

OPERANDS

This command has the following operands:

slot

Specifies the slot number.

--set

Enables buffer optimized mode on the specified slot. This commands prompts for confirmation before removing any F_Port buffers or long distance configurations on that slot. Use the -f option to execute this command without confirmation.

--reset

Clears buffer optimized mode on the specified slot.

--show

Displays the current buffer optimized mode for the specified slot (On or Off).

--showall

Displays the current buffer optimized mode for all slots. An asterisk (*) next to the slot configuration status indicates an unsupported blade.

EXAMPLES

To display the buffer optimized mode for all slots on a DCX with supported blades:

switch:admin> bufopmode --showall
Slot 1: buffer optimized mode - Off
Slot 2: buffer optimized mode - Off
Slot 3: buffer optimized mode - Off
Slot 4: buffer optimized mode - Off
Slot 9: buffer optimized mode - Off
Slot 10: buffer optimized mode - Off
Slot 11: buffer optimized mode - Off
Slot 12: buffer optimized mode - On

* indicates buffer optimization not supported on this blade

To display current buffer optimized mode for a single slot:

switch:admin> bufopmode --show 12
Slot 12: buffer optimized mode - On

To enable buffer optimized mode for a given slot:

switch:admin> bufopmode --set 11
The slot must first be powered off to perform this operation

switch:admin> bufopmode --reset 12
The slot must first be powered off to perform this operation

switch:admin> slotpoweroff 11
switch:admin> slotpoweroff 12
switch:admin> bufopmode --set 12
Buffer optimized mode is turned on for slot 11

switch:admin> bufopmode --reset 12
Buffer optimized mode is turned off for slot 12

switch:admin> slotpoweron 11
switch:admin> slotpoweron 12

To display the changes:

switch:admin> bufopmode --showall
Slot 1: buffer optimized mode - Off
Slot 2: buffer optimized mode - Off
Slot 3: buffer optimized mode - Off
Slot 4: buffer optimized mode - On
Slot 9: buffer optimized mode - Off
Slot 10: buffer optimized mode - Off
Slot 11: buffer optimized mode - On
Slot 12: buffer optimized mode - Off

* indicates buffer optimization not supported on this blade

To display the buffer optimized mode for all slots on a DCX 8510-8 with unsupported 16G port blades:

switch:admin> bufopmode --showall
Slot 1: buffer optimized mode - Off*
Slot 2: buffer optimized mode - Off*
Slot 3: buffer optimized mode - Off*
Slot 4: buffer optimized mode - Off*
Slot 9: buffer optimized mode - Off*
Slot 10: buffer optimized mode - Off*
bufOpMode

Slot 11: buffer optimized mode - Off*
Slot 12: buffer optimized mode - Off*

* indicates buffer optimization not supported on this blade

SEE ALSO  slotShow, slotPowerOn, slotPowerOff
ceePortLedTest

DESCRIPTION  See portLedTest.

SEE ALSO  None
ceePortLoopbackTest

DESCRIPTION See portLoopbackTest.

SEE ALSO None
ceeTurboRamTest

DESCRIPTION See turboRamTest.

SEE ALSO None
cfgActvShow

Displays effective zone configuration information.

SYNOPSIS  cfgactvshow

DESCRIPTION  Use this command to display the effective zone configuration information.

The current configuration is a single zone configuration that is currently in effect. The devices that an
initiator sees are based on this configuration. The effective configuration is built when a specified zone
configuration is enabled.

NOTES  The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS  None

EXAMPLES  To display the effective zone configuration information:

switch:admin> cfgactvshow
Effective configuration:
  cfg:    c4
  zone:  z3    33:07:06:05:04:03:02:01
  zone:  z4    44:01:23:45:67:89:a0:bc
                  40:01:23:45:67:89:a0:bc

SEE ALSO  cfgClear, cfgDelete, cfgRemove, cfgSave, cfgShow
cfgAdd

Adds a member to a zone configuration.

SYNOPSIS
cfgadd "cfgName", "member[; member...]"

DESCRIPTION
Use this command to add one or more members to an existing zone configuration.

This command changes the Defined Configuration. For the change to take effect, enable the
configuration with the cfgEnable command. For the change to be preserved across switch reboots, save
the configuration to nonvolatile memory with the cfgSave command.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

When an FCS policy is enabled, this command can be issued only from the primary FCS switch.

OPERANDS
The following operands are required:
"cfgName"
Specify a name for the zone configuration, enclosed in double quotation marks.

"member"
Specify a zone member or a list of zone members to be added to the
configuration. The list must be enclosed in double quotation marks. Members
must be separated by semicolons.

EXAMPLES
To add two new zones to the configuration "Test_cfg":

switch:admin> cfgadd "Test_cfg", "greenzone;bluezone"

SEE ALSO
cfgClear, cfgCreate, cfgDelete, cfgDisable, cfgEnable, cfgRemove, cfgSave, cfgShow
cfgClear

Clears all zone configurations.

SYNOPSIS

```
cfgclear
```

DESCRIPTION

Use this command to clear all zone information in the transaction buffer. All defined zone objects in the transaction buffer are deleted. If an attempt is made to commit the empty transaction buffer while a zone configuration is enabled, you are warned to first disable the enabled zone configuration or to provide a valid configuration with the same name.

After clearing the transaction buffer with the `cfgClear` command, use the `cfgDisable` command to clear the entire zoning configuration (both the transaction buffer and the active configuration). If there is no current active zoning configuration, or you just want to clear the transaction buffer, use the `cfgSave` command to commit the transaction.

If the default zone access mode is "No Access", this command recreates the default zoning objects.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

When an FCS policy is enabled, this command can be issued only from the primary FCS switch.

OPERANDS

None

EXAMPLES

To clear all zones and then clear nonvolatile memory:

```
switch:admin> cfgclear
The Clear All action will clear all Aliases, Zones, FA Zones
and configurations in the Defined configuration.
Run cfgSave to commit the transaction or cfgTransAbort to
cancel the transaction.
Do you really want to clear all configurations? \
(yes, y, no, n): [no] n

switch:admin> cfgsave
You are about to save the Defined zoning configuration. This
action will only save the changes on Defined configuration.
Any changes made on the Effective configuration will not
take effect until it is re-enabled. Until the Effective
configuration is re-enabled, merging new switches into the
fabric is not recommended and may cause unpredictable
results with the potential of mismatched Effective Zoning
configurations.
Do you want to save Defined zoning configuration only? \
(yes, y, no, n): [no]n
```

SEE ALSO

`cfgDisable`, `cfgEnable`, `cfgSave`
cfgCreate

Creates a zone configuration.

SYNOPSIS

    cfgcreate "cfgName", "member[;member...]"

DESCRIPTION

Use this command to create a new zone configuration.

This command changes the Defined Configuration (see cfgShow). For the change to become effective, enable the configuration with the cfgEnable command. For the change to be preserved across switch reboots, save the configuration to nonvolatile memory with the cfgSave command.

Refer to the zoneCreate command for more information on name and member specifications.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

When an FCS policy is enabled, this command can be issued only from the primary FCS switch.

OPERANDS

The following operands are required:

"cfgName"
    Specify a name for the zone configuration in double quotation marks. A zone configuration name must begin with a letter followed by any number of letters, numbers, and underscores. Names are case-sensitive. For example, "Cfg_1" and "cfg_1" are different zone configurations. Blank spaces are ignored.

"member"
    Specify a zone member or list of zone members to be added to the configuration. The list must be enclosed in double quotation marks. Members must be separated by semicolons. The zone configuration member list must have at least one member. Empty member lists are not allowed.

EXAMPLES

To create a configuration containing three zones:

    switch:admin> cfgcreate "USA_cfg", "Purple_zone;Blue_zone;Green_zone"

SEE ALSO

    cfgAdd, cfgClear, cfgDelete, cfgDisable, cfgEnable, cfgRemove, cfgSave, cfgShow
cfgDelete

Deletes a zone configuration.

SYNOPSIS

cfgdelete "cfgName"

DESCRIPTION

Use this command to delete a zone configuration.
This command changes the Defined Configuration (see cfgShow). For the change to become effective, enable the configuration with the cfgEnable command. For the change to be preserved across switch reboots, save the configuration to nonvolatile memory with the cfgSave command.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

When an FCS policy is enabled, this command can be issued only from the primary FCS switch.

OPERANDS

The following operand is required:

"cfgName"

Specify a name for the zone configuration to be deleted. The name must be enclosed in double quotation marks.

EXAMPLES

To delete a zone configuration:

switch:admin> cfgdelete "USA_cfg"

SEE ALSO
cfgAdd, cfgClear, cfgCreate, cfgDisable, cfgEnable, cfgRemove, cfgSave, cfgShow
cfgDisable

Disables a zone configuration.

SYNOPSIS

cfgdisable

DESCRIPTION

Use this command to disable the current zone configuration. The fabric returns to non-zoning mode, a
mode in which all devices can see each other.

This command ends and commits the current zoning transaction buffer to both volatile and nonvolatile
memory. If a transaction is open on a different switch in the fabric when this command is run, the
transaction on the other switch is automatically aborted. A message displays on the other switches to
indicate that the transaction was aborted.

If the default zone access mode is "No Access", then this command becomes equivalent to cfgEnable
"d efault_Cfg". Refer to defZone help for information on zone access configuration.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

When an FCS policy is enabled, this command can be issued only from the primary FCS switch.

OPERANDS

None

EXAMPLES

To disable the current zone configuration:

switch:admin> cfgdisable
You are about to disable zoning configuration. This
action will disable any previous zoning configuration.
Do you want to disable zoning configuration? \<
(yes, y, no, n): [no] y

SEE ALSO

cfgClear, cfgEnable, cfgSave
cfgEnable

Enables a zone configuration.

SYNOPSIS
cfgenable "cfgName"

DESCRIPTION
Use this command to enable a zone configuration. The command builds the specified zone configuration. It checks for undefined zone names, zone alias names, or other inconsistencies, by expanding zone aliases, removing duplicate entries, and then installing the effective configuration.

If the build fails, the previous state is preserved (zoning remains disabled, or the previous effective configuration remains in effect). If the build succeeds, the new configuration replaces the previous configuration. Refer to the cfgShow command for a description of the defined and effective configurations.

If there are open transactions in the fabric, only single transaction can be saved. Use the cfgtransshow --opentrans command to view the list of all the domains in the fabric with open transactions.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

When an FCS policy is enabled, this command can be issued only from the primary FCS switch.

OPERANDS
The following operand is required:
"cfgName"

Specifies the name of the zone configuration. The name must be enclosed in double quotation marks.

EXAMPLES
To enable the zone configuration USA_cfg:

switch:admin> cfgenable "USA_cfg"
You are about to enable a new zoning configuration.
This action will replace the old zoning configuration with the current configuration selected. If the update includes changes to one or more traffic isolation zones, the update may result in localized disruption to traffic on ports associated with the traffic isolation zone changes
Do you want to enable 'USA_cfg' configuration \ (yes, y, no, n): [no] y
zone config "USA_cfg" is in effect
Updating flash ...

To enable the zone configuration USA_cfg when there are open transactions in the fabric:

switch:admin> cfgenable "USA_cfg"
You are about to enable a new zoning configuration.
This action will replace the old zoning configuration with the current configuration selected. If the update includes changes to one or more traffic isolation zones, the update may result in localized disruption to traffic on ports associated with the traffic isolation zone changes
Multiple open transactions are pending in this fabric. Only one transaction can be saved. Please abort all unwanted transactions using the cfgtransabort command. Use the cfgtransshow --opentrans command to display a list of domains with open transactions
switch:admin> **cfgtransabort 271010736**
switch:admin> **cfgenable "USA_cfg"**
You are about to enable a new zoning configuration.
This action will replace the old zoning configuration with the current configuration selected. If the update includes changes to one or more traffic isolation zones, the update may result in localized disruption to traffic on ports associated with the traffic isolation zone changes
Do you want to enable 'USA_cfg' configuration \ (yes, y, no, n): [no] y
zone config "USA_cfg" is in effect
Updating flash ...

SEE ALSO  **cfgClear, cfgDisable, cfgSave, cfgShow**
cfgRemove

Removes a member from a zone configuration.

**SYNOPSIS**

cfgremove "cfgName","member[: member...]"

**DESCRIPTION**

Use this command to remove one or more members from an existing zone configuration. If all members are removed, the zone configuration is deleted.

This command changes the Defined Configuration (see `cfgShow`). For the change to become effective, enable the configuration with the `cfgEnable` command. For the change to be preserved across switch reboots, save the configuration to nonvolatile memory with the `cfgSave` command.

**NOTES**

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

When an FCS policy is enabled, this command can be issued only from the primary FCS switch.

**OPERANDS**

The following operands are required:

"cfgName"

Specify a name for the zone configuration, enclosed in double quotation marks.

"member"

Specify a zone member or a list of zone members to be removed from the configuration. The list must be enclosed in double quotation marks. Members must be separated by semicolons.

**EXAMPLES**

To remove a zone from a configuration:

```
switch:admin> cfgremove "Test_cfg", "bluezone"
```

**SEE ALSO**

`cfgAdd`, `cfgClear`, `cfgCreate`, `cfgDelete`, `cfgDisable`, `cfgEnable`, `cfgSave`, `cfgShow`, `cfgTransAbort`, `cfgTransShow`
cfgSave

Saves the zone configuration to nonvolatile memory.

SYNOPSIS

cfgsave

DESCRIPTION

Use this command to save the current zone configuration. This command writes the defined configuration and the name of the effective configuration to nonvolatile memory in all switches in the fabric.

The saved configuration is automatically reloaded at power on, and, if a configuration was in effect at the time it was saved, the same configuration is reinstalled with an automatic `cfgEnable` command.

Because the saved configuration is reloaded at power on, only valid configurations are saved. The `cfgSave` command validates the effective configuration by performing the same tests as the `cfgEnable` command. If the tests fail, an error message is displayed and the configuration is not saved.

This command ends and commits the current transaction. If a transaction is open on a different switch in the fabric when this command is run, the transaction on the other switch is automatically aborted. A message displays on the other switches to indicate that the transaction was aborted.

If there are open transactions in the fabric, only single transaction can be saved. Use the `cfgTransShow --opentrans` command to view the list of all the domains in the fabric with open transactions.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

When an FCS policy is enabled, this command can be issued only from the primary FCS switch.

OPERANDS

None

EXAMPLES

To save a zone configuration:

```
switch:admin> cfgsave
WARNING!!!
The changes you are attempting to save will render the Effective configuration and the Defined configuration inconsistent. The inconsistency will result in different Effective Zoning configurations for switches in the fabric if a zone merge or HA failover happens. To avoid inconsistency it is recommended to commit the configurations using the cfgenable command.
Do you want to save Defined zoning configuration only? (yes, y, no, n): [no]y
```

To save a zone configuration if there are multiple open transactions:

```
switch:admin> cfgsave
You are about to save the Defined zoning configuration. This action will only save the changes on Defined configuration. Multiple open transactions are pending in this fabric. Only one transaction can be saved. Please abort all unwanted transactions using the cfgtransabort command. Use the cfgtransshow --opentrans command to display a list of domains with open transactions
Do you want to save the Defined zoning configuration only? (yes, y, no, n): [no] n
switch:admin> cfgtransabort 271010736
```
switch:admin> **cfgsave**
You are about to save the Defined zoning configuration. This action will only save the changes on Defined configuration.
Do you want to save the Defined zoning configuration only?  (yes, y, no, n): [no]  **y**

**SEE ALSO**  
cfgAdd, cfgClear, cfgCreate, cfgDelete, cfgDisable, cfgEnable, cfgRemove, cfgShow, cfgTransAbort, cfgTransShow
cfgShow

Displays zone configuration information.

SYNOPSIS

    cfgshow [--ic] ["pattern"] [mode]

    cfgshow [--transdiffs]

    cfgshow [--transdiffsonly]

    cfgshow --help

DESCRIPTION

Use this command to display zone configuration information.

If no operand is specified, all zone configuration information (both defined and effective) is displayed. If
the local switch has an outstanding transaction, this command displays the most recently edited zone
configuration that has not yet been saved. If the local switch has no outstanding transaction, this
command displays the committed zone configuration.

If a pattern is specified, only matching configurations are displayed.

- The defined configuration is the complete set of all zone objects that have been defined in the
  fabric. There can be multiple zone configurations defined, but only one can be enabled at a time.
  There might be inconsistencies in the definitions, zones, or aliases that are referenced but not
defined, or there might be duplicate members. The defined configuration is the current state of the
administrator input.

- The effective configuration is the single zone configuration that is currently enabled. The devices
  that an initiator sees in the fabric are based on this configuration. The effective configuration is built
  when a specific zone configuration is enabled and all error checking has been completed
  successfully.

Use the --transdiffs and --transdiffsonly options to view changes in the current transaction.

The command output displays changes in the current transaction by the following notations:

- An asterisk(*) before any tag indicates a change in that zone, zone configuration, alias or any other
  entity in the zone configuration.

- A plus(+) before any entity indicates that it is a newly added entity.

- A minus(-) before any entity indicates that it is a deleted entity.

When this command is executed after a zoning transaction was aborted on the local switch, it displays
the following warning message: "Warning: Current Zoning Transaction was aborted. Reason code =
Zone Config update received."

When default zoning is enabled with "No Access" mode, "No Effective configuration: (No Access)" is
displayed.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS

The following operands are optional:

- --ic

  Displays all zone configuration names for a given pattern without case distinction.
"pattern"  
A regular expression that matches zone configuration names. The pattern must be enclosed in quotation marks and can contain the following:

- **Question mark (\?)**  
  Matches any single character

- **Asterisk (\*)**  
  Matches any string of characters.

- **Range**  
  Matches any character within the range. Ranges must be enclosed in square brackets, for example, [0-9] or [a-f].

**mode**  
Specify 0 to display the contents of the transaction buffer (the contents of the current transaction) or specify 1 to display the contents of nonvolatile memory. The default value is 0.

**--transdiffs**  
Displays changes in the current transaction.

**--transdiffsonly**  
Displays only the changes in the current transaction.

**EXAMPLES**

To display all zone configurations that start with "Test":

```
switch:admin> cfgshow "Test*"
```

```
cfg: Test1 Blue_zone
cfg: Test_cfg Red_zone; Blue_zone
```

To display all zone configurations that start with "Test", regardless of the case:

```
switch:admin> cfgshow -ic "Test*"
```

```
cfg: Test1 Blue_zone
cfg: TEST2_cfg Red_zone; Blue_zone
```

To display all zone configuration information:

```
switch:admin> cfgshow
```

```
Defined configuration:
 cfg: USA1 Blue_zone
 cfg: USA_cfg Red_zone; Blue_zone
 zone: Blue_zone
 1,1; array1; 1,2; array2
 zone: Red_zone
 1,0; loop1
 alias: array1 21:00:00:20:37:0c:76:8c; \
 21:00:00:20:37:0c:71:02
 alias: array2 21:00:00:20:37:0c:76:22; \
 21:00:00:20:37:0c:76:28
 alias: loop1 21:00:00:20:37:0c:76:85; \
 21:00:00:20:37:0c:71:df

Effective configuration:
 cfg: USA_cfg
 zone: Blue_zone
 1,1
 21:00:00:20:37:0c:76:8c
 21:00:00:20:37:0c:71:02
 1,2
 21:00:00:20:37:0c:76:22
```
To display only configuration names:

switch:admin> **cfgshow ""**  
cfg: USA1 Blue_zone  
cfg: USA_cfg Red_zone; Blue_zone

To display changes in the current transaction:

switch:admin> **cfgshow --transdiffs**  
Defined configuration:  
cfg: fabric_cfg Blue_zone  
zone: Blue_zone  
1,1; array1; 1,2; array2  
*zzone: green_zone  
-1,1; 1,2; +6, 15  
*zzone: +red_zone  
5,1; 4,2  
alias: array1  21:00:00:20:37:0c:76:8c; \  
21:00:00:20:37:0c:71:02  
alias: array2  21:00:00:20:37:0c:76:22; \  
21:00:00:20:37:0c:76:28  
Effective configuration:  
cfg: fabric_cfg  
zone: Blue_zone  
1,1  
21:00:00:20:37:0c:76:8c  
21:00:00:20:37:0c:71:02  
1,2

To display only the changes in the current transaction:

switch:admin> **cfgshow --transdiffsonly**  
*zzone: -Blue_zone  
21:00:00:20:37:0c:76:8c  
21:00:00:20:37:0c:71:02

*zzone: green_zone  
1,1; -1,2;+5,4;+ 21:00:00:20:37:0c:76:55  
*zzone: +red_zone  
5,4; 5,6

**SEE ALSO**  
cfgAdd, cfgClear, cfgCreate, cfgDelete, cfgDisable, cfgEnable, cfgRemove, cfgSave, cfgTransAbort, cfgTransShow
cfgSize

Displays zone and Admin Domain database size details.

SYNOPSIS  
cfgsize [integer]

DESCRIPTION  
Use this command to display the size details of the zone database and the Admin Domain database.

When executed in a non-AD255 context, the size details include maximum size, the committed size, and the transaction size of the Zone database in bytes.

When executed in an AD255 context, this command displays the maximum size for the Admin Domain and Zone database, the Admin Domain header size, and the zone database sizes for each Admin Domain:

Zone DB maximum size  
Defines the upper limit for both Zone and Admin Domain defined configuration, determined by the amount of nonvolatile memory available for storing the defined configuration. The Zone DB maximum size is further reduced due to a message header that is propagated with the zone configuration to all switches in the fabric. The maximum supported zone database size is 2 MB for chassis based switches and 1 MB for other switches.

Available Zone DB size  
Displays the size of the database that is actually available for storage.

Committed size  
Displays the size of the defined configuration currently stored in nonvolatile memory.

Transaction size  
Displays the size of the uncommitted defined configuration. This value will be nonzero if the defined configuration is being modified by Telnet, API, and so forth; otherwise it is 0.

Refer to the cfgShow help page for a description of defined and effective zone configurations. Refer to the ad help page for a description of the defined and the effective Admin Domain configurations.

NOTES  
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

In Virtual Fabric environments, the zone database size of all partitions taken together cannot exceed 2 MB for chassis based switches and 1 MB for other switches. Exceeding the zone database size limit can result in unexpected behavior. Note that in Virtual Fabric mode, the zone database limit is enforced per partition, but not chassis-wide.

OPERANDS  
The following operand is optional:

integer  
If a nonzero integer is specified, the size of the nonvolatile memory allocated for the zone database is displayed. The zone database includes both the defined and effective configurations. The database size is displayed in bytes.
**EXAMPLES**

To display the zone database on a Brocade 6510:

```bash
switch:admin> cfgsize

Zone DB max size - 1045274 bytes
Available Zone DB size - 1041503 bytes

committed - 2759
transaction - 0
```

To display Admin Domain and zone database size information in an AD255 context:

```bash
switch:admin> cfgsize

Maximum AD and Zone DB size - 1045274 bytes
Total Committed AD and Zone DB size - 3390 bytes
AD and Zone DB uncommitted space available - 1041884 bytes
Total AD and Zone Transaction buffer size - 0 bytes

AD Database Size:

committed - 3124 bytes
transaction - 0 bytes

Number of ADs in Effective Configuration - 4

Each AD's Zone Database Size:

cfgsize Info for AD Number:0 (AD Name: AD0, State=Active):
committed - 242 bytes
transaction - 0 bytes
cfgsize Info for AD Number:1 (AD Name: AD1, State=Active):
committed - 16 bytes
transaction - 0 bytes
cfgsize Info for AD Number:2 (AD Name: AD2, State=Active):
committed - 4 bytes
transaction - 0 bytes
cfgsize Info for AD Number:3 (AD Name: AD3, State=Active):
committed - 4 bytes
transaction - 0 bytes
```

**SEE ALSO**  
`ad`, `cfgShow`, `zoneHelp`
cfgTransAbort

Aborts the current zoning transaction.

**SYNOPSIS**

cfgtransabort [token]

**DESCRIPTION**

Use this command to abort the current zoning transaction without committing it. All changes made since the transaction was started are removed and the zone configuration database is restored to the state before the transaction was started.

If a transaction is open on a different switch in the fabric when this command is run, the transaction on the other switch remains open and unaffected.

**NOTES**

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

When an FCS policy is enabled, this command can be issued only from the primary FCS switch.

**OPERANDS**

When invoked without an operand, this command aborts the current transaction. The following operand is optional:

*token*

Specify the token ID of the transaction to be aborted. Use the `cfgTransShow` command to obtain the token ID of a transaction.

**EXAMPLES**

To abort the current transaction:

```
switch:admin> cfgtransabort
```

**SEE ALSO**

`cfgAdd`, `cfgClear`, `cfgCreate`, `cfgDelete`, `cfgDisable`, `cfgEnable`, `cfgRemove`, `cfgSave`, `cfgShow`, `cfgTransShow`
cfgTransShow

Displays information about the current zoning transaction.

SYNOPSIS

cfgtransshow

cfgtransshow --opentrans

cfgtransshow --help

DESCRIPTION

Use this command to display the ID of the current zoning transaction. In addition, the command provides information on whether or not the transaction can be aborted. The transaction cannot be aborted if it is an internal zoning transaction.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

When an FCS policy is enabled, this command can be issued only from the primary FCS switch.

OPERANDS

This command has the following operands:

--opentrans

Displays local open transaction token details and the list of domains with open transactions.

--help

Displays the command usage.

EXAMPLES

To display the current transaction:

switch:admin> cfgtransshow
There is no outstanding zone transaction

switch:admin> cfgclear
Do you really want to clear all configurations? \n(yes, y, no, n): [no] y
Clearing All zoning configurations...

switch:admin> cfgtransshow
Current transaction token is 271010736
It is abortable
To display the current transaction and the list of domains with open transactions:

```
switch:admin> cfgtransshow --opentrans
Current transaction token is 0x3109
It is abortable

Transactions Detect: Capable

Current Open Transactions
Domain List:

1 2 3 4
```

**SEE ALSO**  
cfgAdd, cfgClear, cfgCreate, cfgDelete, cfgDisable, cfgEnable, cfgRemove, cfgSave, cfgShow, cfgTransAbort
**chassisBeacon**

Sets chassis beaconing mode.

**SYNOPSIS**

`chassisbeacon [mode]`

**DESCRIPTION**

Use this command to enable or disable beaconing on a chassis. Chassis beaconing can be used to locate a failing chassis in a group of chassis. Use the `portBeacon` command to locate a failing port, and use the `switchBeacon` command to locate a failing (logical) switch.

When beaconing mode is turned on, the port LEDs flash green at various rates across the chassis. The beaconing continues until you turn it off.

Beaconing mode takes over the port LEDs. The normal flashing LED pattern associated with an active, faulty, or disabled port is suppressed, and only the beaconing pattern is shown. Other commands are still executable and functional. However, if diagnostic frame-based tests such as `portLoopbackTest` are executed, the diagnostic LED pattern is interleaved with the beaconing pattern.

The `chassisBeacon` command is one of three commands that control beaconing. Each command has a clearly defined scope of action:

- The `portBeacon` command enables or disables beaconing on a specified port.
- The `switchBeacon` command enables or disables beaconing on all ports in the current logical switch.
- The `chassisBeacon` command to enables or disables beaconing on all ports in the chassis.

The actions of the beaconing commands are independent and mutually exclusive. For example, if you enabled beaconing on the logical switch and you want to enable beaconing on the entire chassis, you must first disable switch beaconing with the `switchBeacon` command before you can use the `chassisBeacon` command to enable beaconing on the entire chassis. Likewise, existing `portBeacon` settings remain unaffected if you enable or disable beaconing on the switch or on the chassis. Failure to disable existing beaconing commands before using a different type of beaconing may cause the commands to interfere with each other in unexpected ways.

To determine whether or not beaconing is enabled or disabled on the switch or chassis, use the `switchBeacon` or `chassisBeacon` command without operands. A value of 0 indicates that the command is disabled, a value of 1 indicates that the command is enabled. Issue the `portBeacon --show` command to display beaconing for a specific port. The `switchShow` command displays the status of the `switchBeacon` command only.

**NOTES**

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

This command has the following operand:

- `mode`

  Specify 1 to enable chassis beaconing mode or 0 to disable beaconing mode.
  This operand is optional. If no operand is specified, the current value is displayed.

**EXAMPLES**

To turn chassis beaconing mode on:

```
switch:admin> chassisbeacon 1
Chassis beacon success 1
```

To turn beaconing mode off:

```
switch:admin> chassisbeacon 0
Chassis beacon success 0
```
chassisBeacon

To display the chassis beaconing mode:

    switch:admin> chassisbeacon
    Value = 0

SEE ALSO  portBeacon, switchShow, switchBeacon
chassisCfgPerrThreshold

Configures parity error threshold and fault capability on a blade or switch.

SYNOPSIS

chassiscfgperrthreshold --enable [ -threshold threshold_value ]
chassiscfgperrthreshold --disable
chassiscfgperrthreshold --show
chassiscfgperrthreshold --help

DESCRIPTION

Use this command to enable or disable the fault capability on a blade and switch based on the parity
error threshold, to set the threshold value for parity errors, or to display the configuration. If the fault
capability is enabled, the state of the blade or switch changes to Faulty when the parity errors exceed the
threshold value within a time interval of 5 minutes. The default threshold value is 2. You can modify the
threshold using the -threshold threshold_value option.

The configuration is persistent across system reboots and high availability (HA) failover.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS

This command has the following operands:

--enable
   Enables the fault capability on a blade or switch. The default threshold value is 2.
   The following operand is optional:

   -threshold threshold_value
   Specifies the threshold value for parity errors. The range is from 2 through 100.

--disable
   Disables the fault capability on a blade or switch.

--show
   Displays the configured threshold value and the current status of the fault
capability as enabled or disabled.

--help
   Displays the command usage.

EXAMPLES

To enable fault capability:

switch:admin> chassiscfgperrthreshold --enable

To disable fault capability:

switch:admin> chassiscfgperrthreshold --disable

To enable fault capability and set the threshold value to 76:

switch:admin> chassiscfgperrthreshold --enable -threshold 76
chassisCfgPerrThreshold

To display the configuration:

switch:admin> chassisCfgPerrThreshold --show
Configured Threshold is 76 and the Fault is enabled.

SEE ALSO  None
chassisDisable

Disables all user ports in a chassis.

SYNOPSIS
chassisdisable [-force]

DESCRIPTION
Use this command to disable a Virtual Fabric-aware chassis. All Fibre Channel ports are taken offline. This command prompts for confirmation unless the -force option is used. If the chassis is partitioned into logical switches that are part of logical fabrics, the remaining switches in these fabrics reconfigure. As each port is disabled, the front panel LED changes to a slow-flashing amber.

You must disable the chassis before making configuration changes or running offline diagnostic tests. Commands that require the chassis to be disabled generate an error message if invoked while the chassis is enabled. It is not necessary to disable a chassis before rebooting or powering off the switch.

To disable the ports of a single logical switch, use the switchDisable command. To disable the ports of a single blade, use the bladeDisable command.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
-force
Disables the chassis without confirmation. This operand is optional.

EXAMPLES
To disable a chassis:

switch:admin> chassisdisable
This command can cause disruption to\multiple logical switches.
Are you sure you want to disable all chassis ports now?\(yes, y, no, n): [no]y

SEE ALSO
bladeDisable, bladeEnable, chassisEnable, switchShow, switchDisable, switchEnable, switchCfgPersistentEnable, switchCfgPersistentDisable
chassisDistribute

Distributes IP filter policies.

SYNOPSIS

chassisdistribute -db ipfilter -fid target_FID [-force]

chassisdistribute -db ipfilter -domain target_domain_list [-force]

DESCRIPTION

Use this command to manually distribute the IP Filter policy database. The behavior of this command depends on whether Virtual Fabrics are enabled or disabled.

- If Virtual Fabrics are enabled on the originating switch, this command distributes the IP filter policy database to all chassis that are connected through the specified logical switch (FID). If the target chassis has Virtual Fabrics enabled, the IP filter policy database is distributed to all logical switches configured on the target. If Virtual Fabrics are not enabled on the target, the IP filter policy database is distributed to the default logical switch of the target.

- If Virtual fabrics are disabled on the originating switch, the IP filter policy database is distributed to a list of target switches specified by their Domain IDs. If a target domain has Virtual Fabrics enabled, the IP filter policy database is distributed to all logical switches on the target domain. If Virtual Fabrics are not enabled on the target domain, the IP filter policy database is distributed to the default logical switch of the target domain.

This command distributes the entire IP Filter database and overwrites any existing IP Filter policies on the receiving switches. The chassisDistribute command does not enforce FCS policy.

The target chassis or switches must be capable of accepting the distribution. The distribution is aborted if one of the connected chassis or domains is configured to reject the distribution. Use the fddCfg command to configure the fabric-wide policies that control distribution behavior.

When upgrading from pre-7.2.0 to 7.2.0 or later versions, the RPC port rules will be removed from the IP Filter policy database.

The command output includes the following information:

FID

Indicates whether Virtual Fabrics are enabled or not on the domain that receives the distribution. If Virtual Fabrics are enabled, the FID is displayed, and all logical switches which are part of the chassis are targeted to receive the distribution.

DOMAIN

Displays the Domain ID of the originating switch.

CHASSISWWN

Displays the WWN of the originating or receiving chassis. Displays the originating switch WWN in switches running Fabric OS versions that do not support the chassis WWN feature.

CHASSISNAME

Displays the name of the chassis.

SUPPORTED_DIST

Displays yes if the distribution is supported on the receiving chassis. Displays no if the distribution is not supported.

NOTES

This command distributes the IP Filter database only. To distribute other security databases, use the distribute command.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.
OPERANDS

This command has the following operands:

-db ipfilter

Specifies the policy database to be distributed with this command. The only accepted value for -db is ipfilter. The database name is case insensitive. The legacy notation ("IPFILTER") still works but is not necessary. The following operands are mutually exclusive:

-fid target_FID

Specifies the target logical switch for the distribution. The logical switch is identified by its fabric ID (FID). When a FID is specified, the database is distributed to all chassis that are connected to the specified logical switch (FID) and are configured to accept the distribution. This operand is required and valid only when the originating switch is in Virtual Fabric mode.

-domain target_domain_list

Specifies a list of target switch domain IDs that should receive the database. The list must be enclosed in double quotation marks; members must be separated by a semicolon. A wildcard (*) may be specified to include all switches in the fabric that support the distribute feature. This operand is required and valid only when Virtual Fabrics are disabled.

-force

Distributes the database without confirmation.

EXAMPLES

To distribute the IP Filter policies to all chassis that are connected through the logical fabric 128 and support the distribute feature:

switch:admin> chassisDistribute -db ipfilter -fid 128
FID   DOMAIN   CHASSISWWN      CHASSISNAME SUPPORTED_DIST
---------------------------------------------------------
128 3 10:00:00:05:1e:38:ac:0e  DCX_93               yes
NON-VF 4 10:00:00:05:1e:39:bd:0f  Brocade300       yes
128 98 10:00:00:05:1e:41:22:9f  Brocade6510        no
chassisDistribute will distribute the database(s) to above topology.
Would you like to continue [Y/N] : y
ChassisDistribute operation succeeded for above topology

To distribute the IP Filter policies to all switches in the fabric that support the distribute feature (Virtual Fabrics are disabled on the evoking switch):

switch:admin> chassisDistribute -db ipfilter -domain ***
FID   DOMAIN    CHASSISWWN    CHASSISNAME SUPPORTED_DIST
--------------------------------------------------------
128 3 10:00:00:05:1e:38:ac:0e DCX_93            no
NON-VF 4 10:00:00:05:1e:39:bd:0f Brocade300        yes
128 98 10:00:00:05:1e:41:22:9f Brocade6510       no
ChassisDistribute will distribute the database(s) to above topology.
Would you like to continue [Y/N] : y
ChassisDistribute operation succeeded for above topology

SEE ALSO
distribute, fddCfg
chassisEnable

Enables all user ports in a chassis.

SYNOPSIS    chassisenable

DESCRIPTION Use this command to enable a Virtual Fabric-aware chassis. All Fibre Channel ports that passed the power-on self test (POST) are enabled. They may come online if connected to a device, or remain offline if disconnected. Use **chassisEnable** to re-enable the chassis after making configuration changes or running offline diagnostics.

If the chassis is partitioned into multiple logical switches and physically connected to multiple logical fabrics, the logical switches rejoin their fabrics.

As each port is enabled, the front panel LED changes from slow-flashing amber to nonflashing green for online ports, or to nonflashing amber for ports that do not initialize. Disconnected ports remain unlit. Loopback ports slowly flash green when online.

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS None

EXAMPLES To enable a chassis:

```
switch:admin> chassisenable
```

SEE ALSO **bladeDisable**, **bladeEnable**, **chassisDisable**, **switchShow**, **switchDisable**, **switchEnable**, **switchCfgPersistentEnable**, **switchCfgPersistentDisable**
chassisName

Displays or sets the chassis name.

SYNOPSIS

    chassisname [name]

DESCRIPTION

Use this command to display or change the name associated with the chassis.

Use this command without parameters to display the current chassis name. Use this command with the
name operand to assign a new chassis name.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS

This command has the following operand:

    name

        Specify a new name for the chassis, optionally in double quotation marks. A
        chassis name can include up to 31 characters. A chassis name must begin with a
        letter, and can consist of letters, numbers, underscore or hyphen characters.
        Spaces are not permitted.

EXAMPLES

To change the chassis name to "dilbert":

    switch:admin> chassisname dilbert
    switch:admin> chassisname dilbert

SEE ALSO

switchName
chassisShow

Displays all field replaceable units (FRUs).

SYNOPSIS  chassisshow

DESCRIPTION  Use this command to display the Field Replaceable Unit (FR) header content for each object in the chassis and chassis backplane version. This command displays the following information:

1. The chassis family, for example, DCX 8510.
2. The backplane version number, in hexadecimal: Chassis Backplane Revision: xx
3. The first line of each record contains the object ID. If the FRU is part of an assembly, a brief description is displayed in parentheses.
   a. Object type: CHASSIS, FAN, POWER SUPPLY, SW BLADE (switch), CP BLADE (control processor), WWN (world wide name), or UNKNOWN.
   b. Object number: Slot nn (for blades), Unit nn (for everything else).
4. FRU header version number: Header Version: x
5. Displays the maximum allowed power consumption for a given hardware component: positive for power supplies and negative for power consumers. The combined total maximum allowed power consumption for the entire chassis is shown in the output of the slotShow -p command. Power Consume Factor: -xxx
6. Displays the real-time power consumption for each FRU that supports real-time power measurement. Only 16Gb blades currently support real time measurement of power being consumed by these blades. When the capability is not supported for a FRU, the line is suppressed. Power Usage (Watts):
7. Factory part number (up to 14 characters): Factory Part Num: xx-xxxxxx-xx
8. Factory serial number (up to 12 characters): Factory Serial Num:xxxxxxxxxx
9. FRU manufacture date: Manufacture: Day: dd Month: mm Year: yyyy
10. Date of the last FRU header update: Update: Day: dd Month: mm Year: yyyy
11. Cumulative number of days the FRU has been powered on: Time Alive: dddd days
12. Time elapsed, in days, since the FRU was last powered on: Time Awake: dddd days
13. Externally supplied ID (up to 10 characters): ID: xxxxxxxxxxxx
14. Externally supplied part number (up to 20 characters): Part Num: xxxxxxxxxxxxxxxxxxxxxxx
15. Externally supplied serial number (up to 20 characters): Serial Num: xxxxxxxxxxxxxxxxxxxxxxx
16. Externally supplied revision number (up to 4 characters): Revision Num: xxxx

The output of this command depends on the platforms on which it is executed. On some platforms, for certain FRU types, a few items may not be available. In these cases, the lines are suppressed. Possibly affected lines are 1, 3 through 7, 9, and 11 through 14. In addition, for lines 11 through 14, if there is no data set, these lines are suppressed.
NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
None

EXAMPLES
To display the FRUs for a DCX 8510-8:

```
switch:user> chassisshow

Chassis Family: DCX8510-8
Chassis Backplane Revision: 0

SW BLADE Slot: 1
Header Version: 2
Power Consume Factor: -180
Power Usage (Watts): -286
Factory Part Num: 60-1002144-02
Factory Serial Num: BQB0345F00G
Manufacturer: Day: 9 Month: 11 Year: 2010
Update: Day: 19 Month: 2 Year: 2011
Time Alive: 41 days
Time Awake: 1 days

SW BLADE Slot: 2
Header Version: 2
Power Consume Factor: -180
Power Usage (Watts): -306
Factory Part Num: 60-1002144-02
Factory Serial Num: BQB0345F02R
Manufacturer: Day: 21 Month: 11 Year: 2010
Update: Day: 19 Month: 2 Year: 2011
Time Alive: 41 days
Time Awake: 1 days

SW BLADE Slot: 3
Header Version: 2
Power Consume Factor: -180
Power Usage (Watts): -315
Factory Part Num: 60-1002144-02
Factory Serial Num: BQB0345F01N
Manufacturer: Day: 16 Month: 11 Year: 2010
Update: Day: 19 Month: 2 Year: 2011
Time Alive: 39 days
Time Awake: 1 days
(output truncated)
```

SEE ALSO
slotShow
classConfig

Displays RBAC class permissions.

**SYNOPSIS**

```
classconfig --show class_name | -all | -classlist
classconfig --showcli command
classconfig --showroles class_name
classconfig --help
```

**DESCRIPTION**

Use this command to display information about role-based access control (RBAC) permissions for one or all meta-object format (MOF) classes, to display permissions for a specified command, or to display the permissions for a specified MOF class.

Fabric OS commands are grouped into feature sets called MOF classes. For example, the commands `ldapCfg`, `passwd`, `passwdCfg`, and `userConfig` are all related to User Management and are therefore grouped together under a MOF class called `UserManagement`.

The pre-defined roles Root, Factory, Admin, User, SwitchAdmin, ZoneAdmin, FabricAdmin, BasicSwitchAdmin, SecurityAdmin and Operator provide a mechanism for further restricting access to commands of a certain class by role-specific permissions. For example, a user with the ZoneAdmin role will have access to the commands under the MOF class Zoning but not to those under the UserManagement class.

The following RBAC permissions are supported in Fabric OS:

- **O** = observe
- **OM** = observe-modify
- **N** = no access

Note that the MOF class level permissions extend to all commands in that class, but not necessarily to each and every command option. For example, a command may have the RBAC class permission of "OM", but a show only option under that command may have the permission "O". At the role level, a certain role may be excluded from viewing the command information, in which case the permission for that role would be "N".

**NOTES**

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

This command has the following optional operand:

```
--show
```

Displays RBAC permission information. One of the following operands is required:

```
class_name or -all
```

Displays permissions for a single MOF class or for all classes. The output displays the class name, the CLIs grouped under the specified class, the command options, and the RBAC class permissions for each command option.

```
-classlist
```

Displays an alphabetical listing of all MOF classes supported in Fabric OS.
**--showcli command**
Displays the RBAC permissions for the specified command and associated command options. The output displays the command name, the command options, the RBAC class permissions for each command option, the MOF class, and the context restriction for the command in VF mode only. If the length of a row is too long to fit in one line, the strings displayed under RBAC Class and Option column will be split and displayed in two lines.

**--showroles class_name**
Displays the role permissions the specified MOF class.

**--help**
Displays the command usage.

**EXAMPLES**
To display an alphabetical listing of all MOF classes supported in Fabric OS:

```
switch:admin> classconfig --show -classlist
List of RBAC classes:
 1. AdminDomains
 2. ADSelect
 3. AG
 4. APM
 5. Audit
 6. Authentication
 7. Blade
 8. ChassisConfiguration
 9. ChassisManagement
 10. ConfigManagement
 11. Configure
 12. DCB
 13. Debug
 14. Diagnostics
 15. DMM
 16. EncryptionConfiguration
 17. EncryptionManagement
 18. EthernetConfig
 19. Fabric
 20. FabricDistribution
 21. FabricRouting
 22. FabricWatch
 23. Factory
 24. FCoE
 25. FICON
 26. FIPSBootprom
 27. FIPSCfg
 28. FirmwareKeyManagement
 29. FirmwareManagement
 30. FRUManagement
 31. HA
 32. IPfilter
 33. IPSec
 34. ISCSI
 35. License
 36. LocalUserEnvironment
 37. Logging
 38. LogSupportsave
 39. ManagementAccessConfiguration
 40. ManagementServer
 41. NameServer
 42. Nocheck
 43. NxPortManagement
```
To display the RBAC permissions for the commands included in the UserManagement class:

```bash
switch:admin> classconfig --show UserManagement
```

<table>
<thead>
<tr>
<th>CLI</th>
<th>Option</th>
<th>Permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>ldapcfg</td>
<td>help</td>
<td>O</td>
</tr>
<tr>
<td>ldapcfg</td>
<td>maprole</td>
<td>OM</td>
</tr>
<tr>
<td>ldapcfg</td>
<td>show</td>
<td>O</td>
</tr>
<tr>
<td>ldapcfg</td>
<td>unmaprole</td>
<td>OM</td>
</tr>
<tr>
<td>passwd</td>
<td>OperandPresent</td>
<td>OM</td>
</tr>
<tr>
<td>passwdcfg</td>
<td>disableadminlockout</td>
<td>OM</td>
</tr>
<tr>
<td>passwdcfg</td>
<td>enableadminlockout</td>
<td>OM</td>
</tr>
<tr>
<td>passwdcfg</td>
<td>help</td>
<td>O</td>
</tr>
<tr>
<td>passwdcfg</td>
<td>set</td>
<td>OM</td>
</tr>
<tr>
<td>passwdcfg</td>
<td>setdefault</td>
<td>OM</td>
</tr>
<tr>
<td>passwdcfg</td>
<td>showall</td>
<td>O</td>
</tr>
<tr>
<td>userconfig</td>
<td>add</td>
<td>OM</td>
</tr>
<tr>
<td>userconfig</td>
<td>adddad</td>
<td>OM</td>
</tr>
<tr>
<td>userconfig</td>
<td>addlf</td>
<td>OM</td>
</tr>
<tr>
<td>userconfig</td>
<td>change</td>
<td>OM</td>
</tr>
<tr>
<td>userconfig</td>
<td>delete</td>
<td>OM</td>
</tr>
<tr>
<td>userconfig</td>
<td>deletead</td>
<td>OM</td>
</tr>
<tr>
<td>userconfig</td>
<td>deleteelf</td>
<td>OM</td>
</tr>
<tr>
<td>userconfig</td>
<td>showad</td>
<td>O</td>
</tr>
<tr>
<td>userconfig</td>
<td>showlf</td>
<td>O</td>
</tr>
<tr>
<td>userconfig</td>
<td>showuser</td>
<td>O</td>
</tr>
<tr>
<td>userrename</td>
<td></td>
<td>OM</td>
</tr>
</tbody>
</table>
To display the RBAC permissions for the UserManagement class:

```
switch:admin> classconfig --showroles UserManagement
Roles that have access to the RBAC class 'usermanagement' are:

<table>
<thead>
<tr>
<th>Role Name</th>
<th>Permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin</td>
<td>OM</td>
</tr>
<tr>
<td>Factory</td>
<td>OM</td>
</tr>
<tr>
<td>Root</td>
<td>OM</td>
</tr>
<tr>
<td>SecurityAdmin</td>
<td>OM</td>
</tr>
</tbody>
</table>
```

To display the RBAC permissions for a command:

```
switch:admin> classconfig --showcli classconfig

<table>
<thead>
<tr>
<th>CLI</th>
<th>Option</th>
<th>Permission</th>
<th>RBAC Class</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>classconfig</td>
<td>help</td>
<td>O</td>
<td>RoleConfig</td>
<td>chassis</td>
</tr>
<tr>
<td>classconfig</td>
<td>show</td>
<td>O</td>
<td>RoleConfig</td>
<td>chassis</td>
</tr>
<tr>
<td>classconfig</td>
<td>showcli</td>
<td>O</td>
<td>RoleConfig</td>
<td>chassis</td>
</tr>
<tr>
<td>classconfig</td>
<td>showroles</td>
<td>O</td>
<td>RoleConfig</td>
<td>chassis</td>
</tr>
</tbody>
</table>
```

To display the RBAC permissions for a command (in the following example, the command option entries are split and displayed in two lines because the length of the rows is too long):

```
switch:admin> classconfig --showcli ag

<table>
<thead>
<tr>
<th>CLI</th>
<th>Option</th>
<th>Permission</th>
<th>RBAC Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>ag</td>
<td>addwwnfailov</td>
<td>OM</td>
<td>AG</td>
</tr>
<tr>
<td></td>
<td>ermapping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ag</td>
<td>addwwnmappin</td>
<td>OM</td>
<td>AG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ag</td>
<td>addwwnpgmapp</td>
<td>OM</td>
<td>AG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
[...]
```

SEE ALSO  roleConfig
cliHistory

Displays switch command history.

SYNOPSIS

cliHistory

cliHistory --show

cliHistory --showuser username

cliHistory --showall

cliHistory --help

DESCRIPTION

This command saves the following information whenever a command is executed on the switch:

- Timestamp
- Username
- IP address of the Telnet session
- Options
- Arguments

This command displays the local CLI command history. The information is saved in the SSHOW_SYS file as part of supportSave. The CLI history is saved persistently to compact flash. The maximum number of saved entries for this command is 1680. CLI history records is wrapped after reaching the maximum limit specified.

The CLI history is wrapped and saved in a file that is persistent across reboots and firmware download.

Only the command name is stored in the CLI history for commands that requires password; no arguments are stored.

This command can also be executed on the standby CP.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operand:

--show

Displays the CLI history of the current user.

--showuser username

Displays the CLI history of the given user.

--showall

Displays the CLI history of all users.

--help

Displays the command usage.

EXAMPLES

To display the command history on a switch:

switch:admin> cliHistory

Date & Time                     Message
Wed Jul 25 22:35:43 2012       admin, 10.70.12.103, help ag
Wed Jul 25 22:35:51 2012       admin, 10.70.12.103, version
switch:admin> firmwaredownload -s -p scp 10.70.4.109,fvt,/dist,pray4green
Server IP: 10.70.4.109, Protocol IPv4
Checking system settings for firmwaredownload...
Failed to access scp://fvt:**********@10.70.4.109//dist/release.plist
switch:admin> clihistory
Date & Time                      Message
Wed May 23 03:39:37 2012         admin, console, firmwaredownload

SEE ALSO  None
cmsh

Opens the CEE command shell.

SYNOPSIS

    cmsh

DESCRIPTION

Use this command to open a shell for managing 10 GbE interfaces and Layer2/Layer3 protocol services. The CEE management shell provides a hierarchical CLI interface.

Refer to the CEE Command Reference and the CEE Administrator's Guide for information on how to use the CEE commands and configuration procedures.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To run FCoE using the minimum switch configuration:

    switch:admin> cmsh
    admin>en
    admin>#conf t
    Enter configuration commands, one per line. End with CNTL/Z.
    admin>(config)#int te 0/0
    admin>(config-if)#sw
    admin>(config-if)#no shut
    admin>(config-if)#exit
    admin>(config)#exit
    admin>#show ip int br

    Interface   IP-Address  Status  Protocol
    TenGigabitEthernet 0/0 unassigned up up
    TenGigabitEthernet 0/1 unassigned administratively down down
    TenGigabitEthernet 0/2 unassigned administratively down down
    TenGigabitEthernet 0/3 unassigned administratively down down
    TenGigabitEthernet 0/4 unassigned administratively down down
    TenGigabitEthernet 0/5 unassigned administratively down down
    TenGigabitEthernet 0/6 unassigned administratively down down
    TenGigabitEthernet 0/7 unassigned administratively down down
    TenGigabitEthernet 0/8 unassigned administratively down down
    TenGigabitEthernet 0/9 unassigned administratively down down
    TenGigabitEthernet 0/10 unassigned administratively down down
    TenGigabitEthernet 0/11 unassigned administratively down down
    TenGigabitEthernet 0/12 unassigned administratively down down
    TenGigabitEthernet 0/13 unassigned administratively down down
    TenGigabitEthernet 0/14 unassigned administratively down down
    TenGigabitEthernet 0/15 unassigned administratively down down
    TenGigabitEthernet 0/16 unassigned administratively down down
    TenGigabitEthernet 0/17 unassigned administratively down down
    TenGigabitEthernet 0/18 unassigned administratively down down
    TenGigabitEthernet 0/19 unassigned administratively down down
    TenGigabitEthernet 0/20 unassigned administratively down down
    TenGigabitEthernet 0/21 unassigned administratively down down
    TenGigabitEthernet 0/22 unassigned administratively down down
    TenGigabitEthernet 0/23 unassigned administratively down down

    switch:admin>#exit
To create an FCoE VLAN:

```shell
switch:admin> cmsh
switch:admin>en
switch:admin>#conf t
switch:admin>(config)#protocol lldp
switch:admin>(conf-lldp)# advertise dcbx-fcoe-app-tlv
switch:admin>(conf-lldp)# advertise dcbx-fcoe-logical-link-tlv
switch:admin>(conf-lldp)#exit

switch:admin>(config)#exit

switch:admin>(config)# vlan classifier rule 1 proto \n fcoe encap ethv2
switch:admin>(config)# vlan classifier rule 2 proto fip \n encap ethv2
switch:admin>(config)# vlan classifier group 1 add rule 1
switch:admin>(config)# vlan classifier group 1 add rule 2

switch:admin>(config)#interface vlan 5
switch:admin>(conf-if-vl-5)#fcf forward
switch:admin>(conf-if-vl-5)#exit

switch:admin>(config)# cee-map test
switch:admin>(conf-ceemap) # priority-group-table 1 \n weight 40 pfc
switch:admin>(conf-ceemap) # priority-group-table 2 \n weight 60
switch:admin>(conf-ceemap) # priority-table 2 2 2 1 2 2 2 2
switch:admin>(conf-ceemap) # exit

switch:admin>(config)#interface te 0/0
switch:admin>(config-if-te-0/0)#switchport
switch:admin>(config-if-te-0/0)#switchport mode access
switch:admin>(config-if-te-0/0)# vlan classifier activate \n group 1 vlan 5
switch:admin>(config-if-te-0/0)# cee test
switch:admin>(config-if-te-0/0)#no shutdown
switch:admin>(config-if-te-0/0)#exit
switch:admin>(config)#exit
switch:admin>exit
```

SEE ALSO  
fc10e, fcoeLoginCfg, fcoeLoginGroup
configDefault

Resets the nonpersistent configuration data to factory defaults.

SYNOPSIS  configdefault [-fid FID | -all | -switch]

DESCRIPTION Use this command to reset the nonpersistent configuration settings to their factory default values. Configuration data is grouped into chassis information and switch information. Each configuration type is managed separately. The behavior of configDefault depends on the environment in which the command is executed:

- In a Virtual Fabric environment, when executed without operands, this command resets the switch configuration to default values on the current logical switch only. An Admin with chassis permissions can use additional parameters to reset configuration data for a specified logical switch (-fid FID) or for all logical switches and the chassis (-all).
- In a non-Virtual Fabric environment, when executed without operands, this command resets the switch configuration. When executed with the -all operand, configDefault resets all of the system's configuration data, including chassis and switch configurations. The -switch option resets the switch configuration only. The -fid option is not valid.

This command resets nonpersistent configuration parameters only. The following parameters are not affected by this command:

- Ethernet MAC address, IP address, subnet mask, and boot ROM parameters
- IP gateway address
- License keys
- OEM customization
- Product ID and Vendor ID
- SNMP configuration
- System name
- Chassis name
- World wide name
- Zoning configuration (includes aliases, zones, and configurations)
- Security parameters and policies
- User account passwords (includes all user configuration and all built-in accounts)
- Switch PID format
- Ethernet Link Mode

Refer to the help files for configure and configureChassis help for more information on default values for configuration parameters.

NOTES This command cannot be executed on an enabled switch. You must first disable the switch using switchDisable or chassisDisable.

Some configuration parameters are cached by the system. To avoid unexpected system behavior, reboot the system after executing configDefault.

Note that configDefault does not completely remove all FCIP tunnels and GbE IP address information. This may be an issue when attempting to use the same information to create new tunnels or modify the existing ones.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.
OPERANDS
This command has the following operands:

- **-fid FID**
  Specifies the Fabric ID of the logical switch for which to reset the configuration. This operand is valid only in Virtual Fabric mode, and the executing account must have chassis permissions.

- **-all**
  Restores all nonpersistent configuration parameters to factory default values (switch and chassis parameters). This command requires chassis permissions.

- **-switch**
  Resets the switch configuration only. This operand is not valid in VF mode.

EXAMPLES
To restore all system configuration parameters to default values:

```bash
switch:admin> configdefault -all
Executing configdefault...Please wait
Setting the default config: FID = 128 Switch Name =stinger78
Already in Native Mode continuing with configDefault
Committing configuration ... done.
The switch has to be rebooted to allow the changes to take effect.
Do you want to reboot the system (y/n) [y]: y
```

SEE ALSO
```
snmpConfig, configure, configureChassis, switchDisable, switchEnable
```
configDownload

Downloads configuration data to the system.

**SYNOPSIS**

```
configdownload [- all] [-p ftp | -ftp] ["host","user","path"
[,"passwd"]]
configdownload [- all] [-p scp | -scp] ["host","user","path"]
configdownload [- all] [-p sftp | -sftp] ["host","user","path"]
configdownload [- all] [-local | -USB | -U ["file"]]
configdownload [-fid FID | -chassis | -all | -switch]
[-p ftp | -ftp] ["host","user","path" [,"passwd"]]
configdownload [-fid FID | -chassis | -all | -switch]
[-p scp | -scp] ["host","user","path"]
configdownload [-fid FID | -chassis | -all | -switch]
[-p sftp | -sftp] ["host","user","path"]
configdownload [-fid FID | -chassis | -all | -switch]
[-force] [-local | -USB | -U ["file"]]
configdownload [-vf] [-p ftp | -ftp] ["host","user","path"
[,"passwd"]]
configdownload [-vf] [-p scp | -scp] ["host","user","path"]
configdownload [-vf] [-p sftp | -sftp] ["host","user","path"]
configdownload [-vf] [-local | -USB | -U ["file"]]
```

**DESCRIPTION**

This command downloads configuration parameters to the local system. Two types of configuration files can be downloaded with this command: Virtual Fabric configuration parameters and system configuration parameters. You must download both types of configuration data for the system to behave as expected. You can use FTP or SCP to download configuration files from a remote host, or you can retrieve the configuration files from a predetermined directory on the local system, or from an attached USB device.

Use the `-vf` option to download the Virtual Fabric configuration parameters. The Virtual Fabric configuration file includes logical switch definitions and Virtual Fabric status (enabled or disabled). The file should be named switch-conf_xx.txt to distinguish it from the regular system configuration (config.txt). The xx indicates the platform ID. Virtual Fabric configuration data can only be shared between switches that belong to the same platform type and share the same platform ID. If the platform ID contained in the header of the configuration file does not match the platform ID of the system to which it is downloaded, `configDownload` fails. When you download a switch-conf_xx.txt file, all attributes defined in this file are downloaded to the system and take effect with the exception of LISL ports. The LISL ports on the system are not affected by this download.
The system configuration data is downloaded separately. It is grouped into chassis information and switch information. Each configuration type is managed separately and the behavior of `configDownload` depends on the environment in which the command is executed and which part of the system configuration you wish to download.

- In a Virtual Fabric environment, when executed without chassis permissions, this command downloads the switch configuration to the current logical switch only. An Admin user with chassis permissions can use additional parameters to perform the following selective configuration downloads:
  - Download the switch configuration to a specified logical switch (`-fid FID`).
  - Download the chassis configuration only (`-chassis`).
  - Download the entire configuration including the data for all logical switches and for the chassis (`-all`).

The interactive version of the command (no operands) prompts for input on only the parameters the user is allowed to execute.

- In a non-Virtual Fabric environment, this command by default downloads the configuration for the default logical switch only. To download the chassis-level configuration only, use the `-chassis` option. To download both the chassis and switch configuration, use the `-all` option. Chassis permissions are required. The `-fid` option is not valid. The `-switch` option is equivalent to issuing the command default (without options).

The switch must be disabled for configuration download of all parameters with the exception of SNMP and Fabric Watch.

The following rules apply to configuration download in Virtual Fabric mode:

- When downloading the chassis configuration, the number of logical switches defined in the configuration download must match the number of logical switches currently defined on the switch.
- When downloading the switch configuration, the target FID must be defined in both the configuration download and the current system.
- When downloading the switch configuration from a specified source FID to a target FID, the target FID must be defined in both the configuration download and the source FID and associated configuration must be defined in the configuration download. In addition, downloading an SFID configuration resets the target FID ports without warning. Caution is advised when using this option.
- When downloading all configuration parameters, the number of switches defined in the downloaded configuration file must match the number of switches currently defined on the switch. In addition, the following restrictions apply:
  - The switches must be disabled unless you only wish to download SNMP or Fabric Watch parameters.
  - Downloading a configuration file from a system that is not Virtual Fabric-capable to a system in Virtual Fabric mode is not recommended. The configuration is applied to the default switch only, and only to the ports that are part of the default switch.
  - Downloading a Virtual Fabrics configuration file with the `-vf` option to a switch that has Admin Domains configured is not permitted, and the command fails with a warning message. Virtual Fabrics and Admin Domains cannot coexist on the same switch.

If an FCS policy is enabled, the following rules and restrictions apply:

- Both [Defined Security Policies] and [Active Security Policies] sections must exist and contain the FCS_POLICY.
- In the [Defined Security Policies] section, at least one member of the FCS_POLICY must be the same as a member in the previous FCS_POLICY.
- In the [Active Security Policies] section, the FCS_POLICY must be exactly the same as the previous FCS_POLICY. Order of members must be maintained.
- If either security policies section has an RSNMP_POLICY, then that section must have a WSNMP_POLICY.
• After the switch is enabled, if the switch is the primary FCS, then its security and zoning information is propagated to all other switches in the fabric.

• After the switch is enabled, if the switch is a non-FCS or a backup FCS, then its security and zoning information will be overwritten by the primary FCS.

Security parameters and the switch identity cannot be changed by `configDownload`. Parameters such as the switch name and IP address are ignored; they are lines in the configuration file that begin with "boot". Security parameters and version stamp are ignored; they are the lines in the configuration file that begin with "sec".

[License] is only accepted if the boot.mac parameter matches the license ID (WWN) of the switch performing the download; otherwise, it is ignored.

The configuration parameters R_A_TOV, E_D_TOV, WAN_TOV, and MAX_HOPS are interrelated. Assigning a specific value to one or more of these parameters might change the range of allowed values that can be assigned to the other parameters. As a result, you may not be able to set all the values within the range displayed for each parameter. This command validates the modified values of these four parameters and terminates the download operation, if the validation check fails.

This is particularly important when downloading a zoning configuration. Because the new zoning information is added to the current configuration, there might not be any conflicts. If the current zoning configuration is to be replaced, the keyword "clear:" should be inserted into the configuration file immediately before the zoning lines (starting at the line "[Zoning]").

If the configuration file contains the keyword "enable:" followed by a `zone_configuration`, that zoning configuration is enabled in the fabric. If there is no "enable:" keyword in the configuration file or no zoning configuration by that name exists, or if enable fails for any reason (such as dangling aliases), then the following conditions apply:

• The effective configuration remains as it was prior to the configuration download. The "enable:" action is ignored.

• The Defined Configuration changes to reflect the new zoning configuration.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

If the switch is in Access Gateway mode, some of the configuration parameters will take effect only after the switch has been re-enabled with the `switchEnable` command.

F_Port trunking configurations are not saved in the configuration file and will not be restored after a configuration download.

Do not manually edit a configuration file after uploading the file and before downloading the file to a switch. Manual editing bypasses sanity checks for some configuration parameters and results in unpredictable system behavior.

The `configDownload` command prompts for confirmation and issues a notice that "A switch reboot is required for the changes to take effect." A configuration download affects large amount of configuration data, and there is no reliable mechanism to determine, which of these parameters may or may not require a reboot. To ensure that all configuration changes are applied correctly, Brocade strongly recommends that you always reboot the switch after a configuration download.

OPERANDS

This command has the following operands:

- `p ftp | -ftp` or `scp | -scp` or `sftp | -sftp`

  Specifies the data transmission protocol as either file transfer protocol (FTP), secure copy protocol (SCP), or secure FTP (SFTP). If no protocol is specified, the protocol defaults to FTP.
-vf
Downloads the Virtual Fabric configuration (switch-conf_xx.txt) instead of the regular system configuration. The switch-conf_xx.txt file contains a listing of logical switches configured on the platform specified by the platform ID (xx) and other Virtual Fabric parameters. You cannot use the -vf option with any of the system configuration upload options (-fid, -chassis, -all).

-all
Downloads all configuration data, including chassis and switch configuration data.

-fid FID
Downloads the switch configuration to a logical switch specified by its fabric ID. This operand is valid only in a Virtual Fabric environment and requires chassis permissions.

-chassis
Downloads the chassis configuration only.

-switch
Downloads the switch configuration only. This operand is valid only in non-VF mode.

"host"
Specifies the name or the IP address of the external host, from which to download the configuration. IPv4 and IPv6 addresses are supported. To be able to mention the FTP server by name, you need to set up two DNS servers with dnsConfig. Quotation marks are optional.

"user"
Specifies the login name for the external host. Quotation marks are optional.

"path"
Specifies the file name and path of the configuration file. Absolute path names may be specified using a forward slash (/). Relative path names search for the file in the login account's home directory on UNIX hosts and in the directory on which the FTP server is running on Windows hosts. This operand is valid only when the file is downloaded from an external host. Quotation marks are optional.

"passwd"
Specifies the account password. Quotation marks are optional.

-local
Downloads a specified configuration file from a predetermined directory on the local chassis.

-USB | -U
Downloads a specified configuration file from a predetermined directory on an attached USB device.

"file"
Specifies the name of the configuration file to be downloaded. This parameter can be used only with the -local or -USB option, each of which retrieves files from a predetermined directory on the local chassis or on an attached USB device. Therefore, subdirectories and absolute path names are not permitted. Quotation marks are optional.

-force
Overwrites an existing file without confirmation. This parameter is valid only with the -local or -USB options.
DIAGNOSTICS

The configuration download may fail for one or more of the following reasons:

• The switch has not been disabled. Disabling the switch is not necessary for configuration files containing only certain SNMP or Fabric Watch parameters. You can run `configDownload` first without disabling the switch, and if there is at least one changed parameter outside of Fabric Watch or SNMP, you are prompted to disable the switch before proceeding.
• The host name is not known to the switch.
• The host IP address cannot be contacted.
• You do not have permission on the host.
• You are running a script that prints something at login.
• The file does not exist on the host.
• The file is not a switch configuration file.
• The FTP server is not running on the host.
• The configuration file contains errors.
• The configuration file's logical switch definitions do not match the definitions on the target switch.
• Admin Domains are configured on the switch, and you attempt to download a Virtual Fabrics configuration file.

EXAMPLES

To download the switch configuration file interactively to the current logical switch from a local directory (no chassis permissions):

```
switch:admin> configDownload
Protocol (scp, ftp, sftp, local) [ftp]:
Server Name or IP Address [host]: 192.168.163.233
User Name [user]: admin
Path/Filename [home dir>/config.txt]:
Section (all|chassis|FID# [all]):
*** CAUTION ***
This command is used to download a backed-up configuration for a specific switch. If using a file from a different switch, this file's configuration settings will override any current switch settings. Downloading a configuration file, which was uploaded from a different type of switch, may cause the switch to fail.

A switch reboot is required for the changes to take effect.

Please make sure all the switches are disabled by using chassisdisable command. Downloading configuration to an online switch may result in some configuration not being downloaded to that switch.

configDownload operation may take several minutes to complete for large files.
Do you want to continue [y/n]: y
Password: ********
Activating configDownload: Switch is disabled
configDownload complete: All config parameters are downloaded
```

To download the switch configuration data to the current logical switch from an external FTP server (no chassis permissions):

```
switch:admin> configDownload -ftp 192.168.38.245, jdoe,config.txt,password
```
To download all system configuration data for the chassis and all logical switches (requires chassis permissions):

```
switch:admin> configdownload -all -ftp 192.168.38.245, \
jdoe,config.txt,password
```

To download the switch configurations to a logical switch with FID 8 from an attached USB device (requires chassis permissions):

```
switch:admin> configdownload -fid 8 -USB config.txt
```

To download the switch configurations belonging to a logical switch with FID 4 to a logical switch with FID 8 from an attached USB device (requires chassis permissions):

```
switch:admin> configdownload -fid 8 -sfid 4 \
-USB config_fid8.txt
```

To download the Virtual Fabric configuration file using secure FTP:

```
switch:admin> configdownload -vf -p sftp \
10.32.248.119,jdoe,/temp/switch-conf_66.txt,mypassword
```

To attempt to download the Virtual Fabric configuration interactively to a switch with configured Admin Domains:

```
switch:admin> configdownload -vf -p sftp \
10.32.248.119,jdoe,/temp/switch-conf_66.txt,mypassword
```

*** CAUTION ***

This command is used to download the VF configuration to the switch. Afterwards, the switch will be automatically rebooted and the new VF settings will be used. You will then need to run configdownload again to install the configuration(s) for any logical switch(s) that are setup in the new VF configuration.

Please note that Virtual Fabrics and Admin Domains are mutually exclusive and are not supported at the same time on a switch. If any Admin Domains are configured on the switch, the configdownload operation will fail.

Do you want to continue [y/n]: y

jdoe@10.32.248.119's password:

Error: configDownload operation failed. VF/AD Conflict detected. Please remove all ADs before downloading the VF configuration to the switch.

2011/06/12-17:14:02, [CONF-1023], 3637, FID 128, INFO, sw0, configDownload failed for VF config parameters.

SEE ALSO

configDefault, configList, configShow, configUpload, configure, configRemove
configList

Lists uploaded configuration files.

SYNOPSIS configlist -local | -USB | -U

DESCRIPTION This command displays a list of names, sizes, and creation dates of configuration files saved on the local chassis or on an attached USB device. These files are created when the configUpload command is executed with the -local or the -USB option.

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS This command has the following operands:

-local Displays the list of configuration files on the local chassis.

-USB | -U Displays the list of configuration files on the attached USB device.

EXAMPLES To display a list of configuration files stored on the local chassis:

```
switch:admin> configlist -local
config.txt 25679 2007 Jan 02 15:16
config2.txt 25679 2007 Jan 06 15:16
next_cfg.txt 20977 2007 Jan 18 15:16
```

SEE ALSO configDownload, configUpload, configShow, configRemove
configRemove

Deletes a saved configuration file.

**SYNOPSIS**

`configremove -local | -USB | -U [file]`

**DESCRIPTION**

This command deletes a configuration file that was previously saved to the local chassis or to an attached USB device by using the `configUpload` command.

**NOTES**

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

This command has the following operands:

- `-local`
  
  Removes a configuration file that was previously created by `configUpload -local` from the local chassis.

- `-USB | -U`
  
  Removes a configuration file that was previously created by `configUpload -USB` from an attached USB device.

- `file`
  
  Specifies the configuration file to be removed. If the `file` option is omitted, the command prompts for a file name.

**EXAMPLES**

To remove a configuration file from the local chassis:

```
switch:admin> configremove -local first_config.txt
```

To remove a configuration file from an attached USB device without specifying a filename:

```
switch:admin> configremove -USB
File Name [config.txt]: second_config.txt
```

**SEE ALSO**

`configDownload`, `configUpload`, `configList`, `configShow`
configShow

Displays system configuration settings.

SYNOPSIS

configshow

configshow [-all | -fid FID | -chassis | -switch] |
[-local | -USB | -U] [file] [-pattern "pattern"]

DESCRIPTION

Use this command to display system configuration settings. Some but not all of these parameters are set by the configure and configureChassis commands.

Configuration data is grouped into chassis information and switch information. Each configuration type is managed separately. The behavior of configShow depends on the environment in which the command is executed:

- In a Virtual Fabric environment, when executed without operands, this command displays the switch configuration for the current logical switch. An Admin with chassis permissions can use additional parameters to display configuration data for a specified logical switch (-fid FID), for the chassis (-chassis), or for all logical switches and the chassis (-all).
- In a non-Virtual Fabric environment, when executed without operands, this command displays the switch configuration. When executed with the -all operand, configShow displays all of the system's configuration data, including chassis and switch configuration data. The -chassis option displays the chassis configuration only. The -switch option displays the switch configuration only. The -fid option is not valid.

NOTES

Not all values displayed are applicable to all system models and configurations.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

The following operands are optional:

-pattern "pattern"

Specifies a text string, enclosed in double quotation marks, that limits the output of the command to only those entries that contain the pattern. Use of wildcards and other common regular expression operators is not supported. Some configuration settings do not display when filtered. When in doubt, use the command without the -pattern operand. Executing configShow -pattern without further operands is not recommended and can cause unspecified behavior.

-all

Displays all configuration data including chassis and switch configuration.

-fid FID

Displays configuration data for a logical switch specified by its fabric ID. This option is valid only in a Virtual Fabric environment and requires chassis permissions.

-chassis

Displays configuration data for the chassis only. This option is valid only in a Virtual Fabric environment and requires chassis permissions.

-switch

Displays the switch configuration only. This option is valid only in a Non-Virtual Fabric environment.
-local [file] Displays the content of a configuration file that was previously created by configUpload and stored on the chassis. The output can be optionally filtered by -pattern "pattern". If file is omitted, the command prompts for a file name. The output format when -local is specified matches that of configUpload and contains a superset of the information provided when -local is not specified.

-USB | -U [file] Displays the content of a configuration file that was previously created by configUpload and stored on an attached USB device. The output can be optionally filtered by -pattern "pattern". If file is omitted, the command prompts for a file name. The output format when -USB is specified matches that of configUpload and contains a superset of the information provided when -USB is not specified.

EXAMPLES To display all configuration data on a Virtual Fabric-enabled system:

```
switch :admin> configshow -all
[Configuration upload Information]
Configuration Format = 3.0
Minimum Compatible Format = 3.0
Excluding Format = 0.0
date = Sun May 26 06:18:40 2013
FOS version = v7.2.0
Number of LS = 2
[Chassis Configuration Begin]

[fcRouting]
fcRoute.backboneFabricId:100
fcRoute.fcrState:2
fcRouteParam.maxLsanCount:3000
fcRoute.port.8.xportAdmin:DISABLED
fcRoute.port.8.fabricId:4
fcRoute.port.8.ratov:10000
fcRoute.port.8.edtov:2000
fcRoute.port.8.frontConfigDid:160
fcRoute.port.8.portType:400
fcRoute.port.8.portMode:0
fcRoute.port.8.autoElp:7
fcRoute.port.9.xportAdmin:DISABLED
fcRoute.port.9.fabricId:5
fcRoute.port.9.ratov:10000
fcRoute.port.9.edtov:2000
fcRoute.port.9.frontConfigDid:160
fcRoute.port.9.portType:400
fcRoute.port.9.portMode:0
fcRoute.port.9.autoElp:7
fcRouteParam.port.8.rportCost:0
fcRouteParam.port.9.rportCost:0
fcRoute.xlate.persistxdState:1
fcRouteParam.1san.tagCnt:0

[Chassis Configuration]
passwdcfg.minlength:8
passwdcfg.lowercase:0
passwdcfg.uppercase:0
passwdcfg.digits:0
passwdcfg.punctuation:0
passwdcfg.history:1
passwdcfg.minpasswordage:0
```
To filter the content to display only the password configuration:

switch :admin> configshow -all -pattern "passwdcfg"
passwdcfg.maxpasswordage:0
passwdcfg.warning:0
passwdcfg.lockoutthreshold:0
passwdcfg.lockoutduration:30
passwdcfg.adminlockout:0
passwdcfg.repeat:1
passwdcfg.sequence:1
passwdcfg.status:0
fips.mode:0
fips.selftests:0
ipfilter.0.name:default_ipv4
ipfilter.0.numofrules:12
ipfilter.0.rule.1:0,0x23,0,0,6,22
ipfilter.0.rule.10:0,0x23,0,0,17,123
ipfilter.0.rule.11:0,0x63,0,0,6,600,1023
ipfilter.0.rule.12:0,0x63,0,0,17,600,1023
ipfilter.0.rule.2:0,0x23,0,0,6,23
ipfilter.0.rule.3:0,0x23,0,0,6,897
ipfilter.0.rule.4:0,0x23,0,0,6,898
ipfilter.0.rule.5:0,0x23,0,0,6,111
ipfilter.0.rule.6:0,0x23,0,0,6,80
ipfilter.0.rule.7:0,0x23,0,0,6,443
ipfilter.0.rule.8:0,0x23,0,0,17,161
ipfilter.0.rule.9:0,0x23,0,0,17,111
ipfilter.0.state:3
ipfilter.0.type:0
ipfilter.1.name:default_ipv6
ipfilter.1.numofrules:12
ipfilter.1.rule.1:0,0x23,0,0,6,22
ipfilter.1.rule.10:0,0x23,0,0,17,123
ipfilter.1.rule.11:0,0x63,0,0,6,600,1023
ipfilter.1.rule.12:0,0x63,0,0,17,600,1023
ipfilter.1.rule.2:0,0x23,0,0,6,23
ipfilter.1.rule.3:0,0x23,0,0,6,897
ipfilter.1.rule.4:0,0x23,0,0,6,898
ipfilter.1.rule.5:0,0x23,0,0,6,111
ipfilter.1.rule.6:0,0x23,0,0,6,80
ipfilter.1.rule.7:0,0x23,0,0,6,443
ipfilter.1.rule.8:0,0x23,0,0,17,161
ipfilter.1.rule.9:0,0x23,0,0,17,111
ipfilter.1.state:3
ipfilter.1.type:1
(output truncated)
To display switch configuration data for FID 20:

```
switch :admin> configshow -fid 20
[Configuration upload Information]
Configuration Format = 2.0
date = Tue Oct 7 14:53:12 2008
FOS version = v6.2.0.0
Number of LS = 3
[Switch Configuration Begin : 0]
SwitchName = Spirit_66
Fabric ID = 20

[Boot Parameters]
boot.name:Spirit_66
boot.ipa:10.32.228.66
boot.licid:10:00:00:05:1e:41:5c:c1
boot.mac:10:00:00:05:1e:41:5c:c1
boot.device:eth0
boot.gateway.ipa:10.32.224.1

[Configuration]
 acl.clear:0
 ag.port.nfportfailback:0x0
 ag.port.nfportfailover:0x0
 ag.port.nfporttopo.0:0x0
 ag.port.nfporttopo.1:0x0
 ag.port.nfporttopo.10:0x0
 ag.port.nfporttopo.11:0x0
 ag.port.nfporttopo.12:0x0
 ag.port.nfporttopo.13:0x0
 ag.port.nfporttopo.14:0x0
 ag.port.nfporttopo.15:0x0
 ag.port.nfporttopo.16:0x0
 ag.port.nfporttopo.17:0x0
 ag.port.nfporttopo.18:0x0
 ag.port.nfporttopo.19:0x0
 ag.port.nfporttopo.2:0x0
 ag.port.nfporttopo.20:0x0
(output truncated)
```

SEE ALSO configure, configureChassis, configDownload, configUpload, configList, configRemove, diagDisablePost, diagEnablePost, ipAddrShow, licenseShow, syslogdIpShow
configUpload

Uploads system configuration data to a file.

SYNOPSIS

configupload [-all] [-p ftp | -ftp] ["host", "user", "path"
[,"passwd"]]
configupload [-all] [-p scp | -scp] ["host", "user", "path"]
configupload [-all] [-p sftp | -sftp] ["host", "user", "path"]
configupload [-all] [-force] [-local | USB | -U] ["file"]
configupload [-fid FID | -chassis | -all | -switch]
   [-p ftp | -ftp]["host", "user", "path" [,"passwd"]]
configupload [-fid FID | -chassis | -all | -switch]
   [-p scp | -scp]["host", "user", "path"]
configupload [-fid FID | -chassis | -all | -switch]
   [-p sftp | -sftp]["host", "user", "path"]
configupload [-force] [-local | USB | -U] ["file"]
configupload [-vf] [-p ftp | -ftp] ["host", "user", "path"
[,"passwd"]]
configupload [-vf] [-p scp | -scp] ["host", "user", "path"]
configupload [-vf] [-p sftp | -sftp] ["host", "user", "path"]
configupload [-vf] [-force] [-local | USB | -U] ["file"]

DESCRIPTION

This command uploads configuration data to a file. Two types of configuration files can be uploaded with
this command: Virtual Fabric configuration parameters and system configuration parameters.

Use the -vf option to upload Virtual Fabric configuration parameters. The Virtual Fabric configuration
includes logical switch definitions and Virtual Fabric status (enabled or disabled). The file should be
named switch-conf_xx.txt to distinguish it from the regular system configuration (config.txt). The xx
indicates the platform ID specified in the header of the configuration file. The platform ID is the same as
the first two digits of the "switchType" parameter displayed by switchShow. Virtual Fabric configuration
data can only be shared between switches that belong to the same platform type and share the same
platform ID. Refer to configDownload help for more information on the Virtual Fabric configuration.
The system configuration data is uploaded separately. It is grouped into chassis information and switch information. Each configuration type is managed separately and the behavior of `configUpload` depends on the environment in which the command is executed and which part of the system configuration you wish to upload.

- In a Virtual Fabric environment, when executed without chassis permissions, this command uploads the current logical switch configuration only. An Admin user with chassis permissions can use additional parameters to perform the following selective configuration uploads:
  - Upload the switch configuration of a specified logical switch (`-fid FID`).
  - Upload the chassis configuration only (`-chassis`).
  - Upload the entire system configuration including the data for all logical switches and for the chassis (`-all`).
  - Upload the switch configuration only in Non-VF mode (`-switch`).

The interactive version of the command (no operands) prompts for input on only the parameters the user is allowed to execute.

- In a non-Virtual Fabric environment, this command by default uploads the configuration for the default logical switch only. To upload the chassis-level configuration only, use the `-chassis` option. To upload both the chassis and switch configuration, use the `-all` option. Chassis permissions are required. The `-fid` option is not valid. The `-switch` option is equivalent to issuing the command default (without options).

You can use the file transfer protocol (FTP), the secure copy protocol (SCP), or secure FTP (SFTP) to upload configuration files to an external host, or you can save the configuration in a predetermined directory on the local chassis or on an attached USB device. If the specified file already exists, this command prompts you to overwrite the file. Specify `-force` to overwrite the file without confirmation. When the local chassis is chosen as the destination, the resulting file is written to both primary and secondary partitions, and on enterprise-class platforms, to both Active and Standby Control Processors (CPs).

Refer to the *Fabric OS Administrator’s Guide* for information on backward compatibility, on configuration upload and download in Admin Domains (AD), and on the content of the configuration file.

**NOTES**

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

F_Port trunking configurations are not saved in the configuration file and will not be restored after a configuration download.

Do not manually edit a configuration or a switch-conf.xx file after uploading the file and before downloading the file to a switch. Manual editing bypasses sanity checks for some configuration parameters and results in unpredictable system behavior.

**OPERANDS**

This command has the following operands:

- `-p ftp | -pf tp | -p scp | -scp | -p sftp | -sftp`
  Specifies the data transmission protocol as either file transfer protocol (FTP), secure copy protocol (SCP), or secure FTP (SFTP). If no protocol is specified, the protocol defaults to FTP.

- `-vf`
  Uploads the Virtual fabric configuration to a file. You must specify a filename when uploading this file. It is recommended to name this file switch-conf_xx.txt (where xx indicates the platform ID) to distinguish this file from the system configuration (config.txt). Use `switchShow` to determine the platform ID of the system. The platform ID in the header of the configuration file is the same as the first two digits of the switchType parameter in the `switchShow` output. You cannot use the `-vf` option with any of the regular configuration upload options (`-fid`, `-chassis`, `-all`).
configUpload

-fid FID

Uploads switch configuration data from a logical switch specified by its fabric ID. This parameter is valid only in a Virtual Fabric environment and requires chassis permissions.

-chassis

Uploads chassis configuration only.

-all

Uploads all system configuration data including chassis and switch configuration for all logical switches.

-switch

Uploads the switch configuration only. This operand is not valid in VF mode.

"host"

Specifies the name or the IP address of the external host to which to upload the configuration. To be able to mention the FTP server by name, you need to set up one or more DNS servers with dnsConfig. Quotation marks are optional.

"user"

Specifies the login name for the external host. Quotation marks are optional.

"path"

Specifies the file name and path of the configuration file. Absolute path names may be specified using a forward slash (/). Relative path names upload the file to the login account's home directory on UNIX hosts and into the directory on which the FTP server is running on Windows hosts. This operand is valid only when the file is uploaded to an external host. Quotation marks are optional.

"passwd"

Specifies the account password. Quotation marks are optional.

-local

Uploads a specified configuration file to a predetermined directory on the local chassis. This option requires a file name.

-USB | -U

Uploads a specified configuration file to a predetermined directory on an attached USB device. This option requires a file name.

"file"

Specifies the file name. Quotation marks are optional. This parameter is valid only with the -local or -USB options, each of which stores files in a predetermined directory on the local chassis or on an attached USB device. Therefore, subdirectories and absolute path names are not permitted.

-force

Overwrites an existing file without confirmation. This parameter is valid only with the -local or -USB options.

When invoked without operands or without "host" or "file" parameters, configUpload runs in interactive mode.

Diagnostics

The configuration upload may fail for one or more of the following reasons:

- The host name is not known to the switch.
- The host IP address cannot be contacted.
- The user does not have permission on the host.
- The FTP server is not running on the host.
EXAMPLES

To upload the switch configuration interactively from a switch that is not enabled for Virtual Fabrics:

```bash
switch:admin> configupload
Protocol (scp, ftp, sftp, local) [ftp]: sftp
Server Name or IP Address [host]: 192.168.38.245
User Name [user]: jdoe
File Name [<home dir>/config.txt]:
Section (all|chassis|switch [all]):
Password: ******
```

cfgUpload complete: All config parameters are uploaded

To upload the switch configuration that belongs to a logical switch with FID 100:

```bash
switch:admin> configupload
Protocol (scp, ftp, sftp, local) [ftp]: sftp
Server Name or IP Address [host]: 10.32.220.100
User Name [user]: jdoe
File Name [<home dir>/config.txt]: config.fid100.txt
Section (all|chassis|FID# [all]): 100
Password: ******
```

cfgUpload complete: All config parameters are uploaded

To upload the configuration for the entire chassis to a local file from the command line forcing an overwrite:

```bash
switch:admin> configupload -chassis -local -force config.txt
```

cfgUpload complete: All config parameters are uploaded

To upload the configuration for the current logical switch to an external FTP server:

```bash
switch:admin> configupload -ftp 192.168.38.245, jdoe,config.txt,password
```

To upload all system configuration data to an external FTP server:

```bash
switch:admin> configupload -all -ftp 192.168.38.245, jdoe,config.txt,password
```

To upload the system configuration file for a logical switch with FID 8 to an attached USB device:

```bash
switch:admin> configupload -fid 8 -USB config.txt
```

To upload the Virtual Fabric configuration of the current platform to an external FTP server:

```bash
switch:admin> configupload -vf -p ftp 10.32.248.119,jdoe,/temp/switch-conf.66.txt,password
```

SEE ALSO configDefault, configDownload, configShow, configList, configRemove, configure, configureChassis
configure

Changes switch configuration settings.

**SYNOPSIS**

```
configure
```

**DESCRIPTION**

Use this command to change switch configuration settings.

Configuration data is grouped into chassis information and switch information. Each configuration type is managed separately. For information on file format and specific parameters contained in each section, refer to the `configUpload` help page.

The behavior of the `configure` command depends on the environment in which the command is executed:

- In a Virtual Fabric environment, the `configure` command sets switch configuration parameters for the current logical switch only. If a switch or chassis is configured with multiple logical switches, you must configure each logical switch separately. Use the `setContext` command to change the current logical switch context.
- In a non-Virtual Fabric environment, the `configure` command sets switch configuration parameters. To configure chassis-wide parameters, use the `configureChassis` command.

The following switch configuration parameters can be set with the `configure` command:

- Switch fabric parameters
- Virtual channel parameters
- F_Port login parameters
- Zoning operation parameters
- Remote State Change Notifications (RSCN) transmission mode
- Arbitrated Loop parameters
- System Services settings
- Portlog Events enable or disable settings
- Secure Socket Layer (SSL) attributes
- Remote Procedure Call Daemon (RPCD) attributes
- Web Tools attributes

To access all parameters controlled by this command, you must disable the switch using the `switchDisable` command. If executed on an enabled switch, only a subset of attributes are configurable.

Menu displays may vary depending on the hardware platform.

The `configure` command runs in interactive mode and presents you with a series of hierarchical menus. Each top-level menu and its associated submenus consist of a text prompt, a selection of valid values, and a default value (in brackets).

The following keys control the execution of the command:

- **Return**
  - When entered at a prompt with no preceding input, the command accepts the default value (if applicable) and moves to the next prompt.
- **Interrupt (Ctrl-C)**
  - Aborts the command immediately and ignores all changes made.
- **End-of-file (Ctrl-D)**
  - When entered at a prompt with no preceding input, terminates the command and saves changes made.
The following parameters can be modified with the `configure` command:

**Fabric Parameters**

Fabric settings control the overall behavior and operation of the fabric. Some of these settings, such as the domain, are assigned automatically and may differ from one switch to another in a given fabric. Other parameters, such as buffer-to-buffer credit or timeout values, can be modified to suit specific applications or operating environments but must be in agreement among all switches to allow formation of the fabric.

The following fabric settings can be modified (* = multiplication symbol)

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>Number</td>
<td>1</td>
<td>1-239</td>
</tr>
<tr>
<td>Enable 8-bit</td>
<td>Boolean</td>
<td>0</td>
<td>0 or 1</td>
</tr>
<tr>
<td>Dynamic Area Mode</td>
<td>Boolean</td>
<td>0</td>
<td>yes/no</td>
</tr>
<tr>
<td>WWN Based persistent PID</td>
<td>Boolean</td>
<td>no</td>
<td>yes/no</td>
</tr>
<tr>
<td>Dynamic D-Port</td>
<td>Boolean</td>
<td>on</td>
<td>on/off</td>
</tr>
<tr>
<td>Allow XISL Use</td>
<td>Boolean</td>
<td>yes</td>
<td>yes/no</td>
</tr>
<tr>
<td>Location ID</td>
<td>Number</td>
<td>0</td>
<td>0 to 4</td>
</tr>
<tr>
<td>Disable FID Check</td>
<td>Boolean</td>
<td>no</td>
<td>yes/no</td>
</tr>
<tr>
<td>Enable a 256 Area Limit</td>
<td>Number</td>
<td>0</td>
<td>0 to 2</td>
</tr>
<tr>
<td>R_A_TOV</td>
<td>Number</td>
<td>10000</td>
<td>E_D_TOV * 2 to 12000</td>
</tr>
<tr>
<td>E_D_TOV</td>
<td>Number</td>
<td>2000</td>
<td>1000 to R_A_TOV/2</td>
</tr>
<tr>
<td>WAN_TOV</td>
<td>Number</td>
<td>0</td>
<td>0 to R_A_TOV/4</td>
</tr>
<tr>
<td>MAX_HOPS</td>
<td>Number</td>
<td>7</td>
<td>7 to 19</td>
</tr>
<tr>
<td>Data Field Size</td>
<td>Number</td>
<td>2112</td>
<td>256 to 2112</td>
</tr>
<tr>
<td>Sequence Level Switching</td>
<td>Boolean</td>
<td>0</td>
<td>0 or 1</td>
</tr>
<tr>
<td>Disable Device Probing</td>
<td>Boolean</td>
<td>0</td>
<td>0 or 1</td>
</tr>
<tr>
<td>Suppress Class F Traffic</td>
<td>Boolean</td>
<td>0</td>
<td>0 or 1</td>
</tr>
<tr>
<td>Per-frame Route Priority</td>
<td>Boolean</td>
<td>0</td>
<td>0 or 1</td>
</tr>
<tr>
<td>Long Distance Fabric</td>
<td>Boolean</td>
<td>0</td>
<td>0 or 1</td>
</tr>
<tr>
<td>BB Credit</td>
<td>Number</td>
<td>16</td>
<td>1 to 27</td>
</tr>
<tr>
<td>Disable FID Check</td>
<td>Boolean</td>
<td>yes</td>
<td>yes/no</td>
</tr>
<tr>
<td>Insistent Domain ID Mode</td>
<td>Boolean</td>
<td>no</td>
<td>yes/no</td>
</tr>
<tr>
<td>Disable Default PortName</td>
<td>Boolean</td>
<td>no</td>
<td>yes/no</td>
</tr>
<tr>
<td>Edge hold time</td>
<td>Number</td>
<td>220</td>
<td>80 to 500</td>
</tr>
</tbody>
</table>

Fabric parameters are defined as follows:

**Domain**

The domain number uniquely identifies a switch in a fabric. This value is automatically assigned by the fabric. The range is 1-239.

**Enable 8-bit Dynamic Area Mode**

When enabled, this feature supports Dynamic Area Mode in default partitions on the Brocade DCX, DCX-4S, DCX 8510-8, and DCX 8510-4. Dynamic Area Mode is disabled by default. When enabled, Dynamic Area Mode supports both static and dynamic area assignment. Use the `portAddress` command to perform a static assignment of an area to a given port. In Dynamic Area Mode, areas are dynamically assigned to the ports (up to a 255 limit). Port area assignments are persistent; however, disabling Dynamic Area Mode with `configure` resets the area assignments. This feature is configurable only on the default switch.

Enabling Dynamic Area Mode fails under one or more of the following conditions:

- The number of ports in the default partition exceeds 255.
- An AP blade with FL ports is present in the chassis (Brocade Encryption blade, or FCoE 10-24).
**WWW Based persistent PID**

When enabled, this feature supports both dynamic and static WWN-based PID assignment. In dynamic PID binding, the first area assigned to a device when it logs in is bound to the device WWN and remains persistent through subsequent logins. Every time the device logs into the switch, it is guaranteed to get the same PID. Alternately, you can use the `wwnAddress` command to create a static WWN-based PID assignment. In either case, the WWN-based persistent PID feature must be enabled through `configure`. The feature is disabled by default; it is dependent on Dynamic Area Mode being enabled.

**Dynamic D-Port**

Disables or enables Dynamic D_Port mode configuration on the switch. By default, Dynamic D_Port mode is ON. When Dynamic D_Port mode is ON, the port may dynamically go into D_Port mode based on external request from remote HBA or device port. After the D_Port tests are complete, the port may automatically switch to operate as an F_Port. This option is not supported in AG mode.

**Allow XISL Use**

An extended interswitch link (XISL) is an interswitch link (ISL) that connects the logical switch to the base switch and carries traffic for multiple logical fabrics. This feature is supported only on Virtual Fabric-aware platforms under the following conditions: Virtual Fabrics must be enabled on the switch, and the switch cannot be a base switch. In addition, on the Brocade DCX, DCX-4S, DCX 8510-8, and DCX 8510-4 the switch cannot be a default switch or include interchassis link (ICL) ports. This feature is enabled by default (yes=enabled). On the Brocade 5100, 5300, VA-40FC, and 6510 default switch, the feature is disabled by default (no=disabled). Beginning with Fabric OS v7.0.0, the XISL feature is supported on the Brocade extension blade (FX8-24).

You do not need to disable the logical switch before changing the value of this parameter. Turning off XISL use requires confirmation because all LISLs will be removed upon execution. If the logical switch is enabled and is part of an edge fabric connected to an FCR, this parameter cannot be turned on. If the logical switch is disabled or it is not yet part of an edge fabric, this parameter can be turned on. However, execution may cause edge fabric segmentation if the EX_Port connected to the edge fabric is disabled while the logical switch is enabled or connected to the edge fabric. The Brocade 7800 VF configuration does not support XISL usage and therefore this option is not available on this logical switch.

**Location ID**

The Location ID parameter is reserved for future use and it must remain unchanged with the default value of 0.

**Disable FID Check**

If fabric ID (FID) check is disabled, the fabric ignores the Fabric Identifier conflict with the neighboring switch during fabric formation. By default, FID check is enabled. If the fabric detects a FID conflict, it disables the E_Port with a "Fabric ID conflict" message. This parameter is configurable only if the switch is Virtual Fabric-aware and Virtual Fabric is enabled on the switch.

**Enable 256 Area limit**

The 256 area limit allows the partition to be configured for 8-bit addressing rather than the default 10-bit addressing. Each port in this partition is given a unique area represented by the middle 8 bits of the PID. Valid values include the following:

0

No limit is imposed on the area. This is the default value. The partition is configured for 10-bit addressing and supports up to 1800 ports.
1. The unique area assignments begin at zero regardless of where the port is physically located. This allows FICON users to make use of high port count port blades with port indexes greater than 256.

2. The unique area assignments are based on the port index. This mode does not allow FICON users to make use of ports with an index greater than 256 (high ports of a high port count blade), but this mode is compatible with domain-index zoning. This parameter is configurable only if the switch is Virtual Fabric-aware and Virtual Fabric is enabled on the switch.

**R_A_TOV**

The resource allocation timeout value specified in milliseconds. This variable works with the variable **E_D_TOV** to determine switch actions when presented with an error condition.

Allocated circuit resources with detected errors are not released until the time value has expired. If the condition is resolved prior to the time out, the internal time-out clock resets and waits for the next error condition.

**E_D_TOV**

Error detect timeout value specified in milliseconds. This timer is used to flag a potential error condition when an expected response is not received within the set time limit. If the time for an expected response exceeds the set value, then an error condition occurs.

**WAN_TOV**

Wide area network timeout value specified in milliseconds. This timer is the maximum frame time out value for a WAN, if any, interconnecting the Fibre Channel islands.

**MAX_HOPS**

Maximum hops is an integer that denotes the upper limit on the number of hops a frame might have to traverse to reach any destination port from any source port across the fabric.

Note that the **R_A_TOV**, **E_D_TOV**, **WAN_TOV**, and **MAX_HOPS** configuration parameters are interrelated. Assigning a specific value to one or more of these parameters can change the range of allowed values that can be assigned to the other parameters. As a result, you may not be able to set all the values within the range displayed against each parameter. To reduce problems, the configuration utility validates the modified parameter values and prompts you to re-enter some values, if the validation check fails.

**Data Field Size**

The data field size specifies the largest possible value, in bytes, for the size of a type 1 (data) frame. The switch advertises this value to other switches in the fabric during construction of the fabric as well as to other devices when they connect to the fabric. Setting this parameter to a value smaller than 2112 might result in decreased performance.

**Sequence-Level Switching**

When sequence-level switching is set to 1, frames of the same sequence from a particular source are transmitted as a group. When this feature is set to 0, frames are transmitted interleaved among multiple sequences.

Under normal conditions, sequence-level switching should be disabled for better performance. However, some host adapters have performance issues when receiving interleaved frames from multiple sequences. When there are such devices attached to the fabric, sequence-level switching should be enabled.
**Disable Device Probing**

When disable device probing is set to 1, devices that do not register with the Name Server will not be present in the Name Server database. Set this mode only if the switch's N_Port discovery process (PLOGI, PRLI, INQUIRY) causes an attached device to fail.

**Suppress Class F Traffic**

By default, the switch can send Class F frames. When this option is turned on, Class F traffic is converted to Class 2 traffic before being transmitted.

**Per-frame Route Priority**

In addition to the eight virtual channels used in frame routing priority, support is also available for per-frame-based prioritization when this value is set. When Per-frame Route Priority is set to 1, the virtual channel ID is used in conjunction with a frame header to form the final virtual channel ID.

**Long Distance Fabric**

When this mode is set to 1, ISLs in a fabric can be up to 100 km long. The exact distance level is determined by the per-port configuration on the E_Ports of each ISL. Both E_Ports in an ISL must be configured to run the same long-distance level; otherwise, the fabric will be segmented.

An Extended Fabrics license is required to set this mode.

**BB Credit**

The buffer-to-buffer (BB) credit represents the number of buffers available to attached devices for frame receipt. The range of allowed values varies depending on other system settings (see Unicast-only Operation). Refer to the *Fabric OS Administrator's Guide* for more information on platform-specific BB Credit limitations.

**Insistent Domain ID Mode**

When this mode is set, the switch attempts to acquire from the fabric the domain number programmed in its "Switch Fabric Settings." If the operation fails, the switch will segment from the fabric. You must disable the switch before configuring this parameter.

**Disable Default PortName**

When this mode is set, the switch does not generate a default port name.

**Edge hold time**

Configures the maximum time a frame can wait after it is received on the ingress port and before it is delivered to the egress port. If the frame waits in the egress buffer for more than the configured hold time, the switch drops the frame, replenishes sender's credit, and increments the counters er_tx_c3_timeout and er_rx_c3_timeout on the TX and RX ports respectively. The frame-timeout indicates a slow draining or a congestion or bottleneck in the fabric. Decreasing hold time on the edge switches may reduce frame drop counts in the core switches. This parameter is stored persistently in the configuration file. You can configure edge hold time on both default and logical switch.

The edge hold time configuration is a chip-based value and the configuration varies between Condor2-based platforms and Condor3-based platforms. Condor2-based platform provides one register to store the edge hold time value and any change in this value will affect all ports in the chip. Therefore, the edge hold time configuration will not be changed for Condor2-based platform ports in a logical switch. The Condor2-based platform ports in a logical switch take the default edge hold time value (220 milliseconds) or the value configured in the default switch. Condor3-based platform provides four registers to store the edge hold time configuration and therefore each port in a chip can be configured one of the four values.
The edge hold time parameter is enabled by default with a value of 220 milliseconds. The following are the three predefined edge hold time values:

- **80**: Low edge hold time (in milliseconds).
- **220**: Medium edge hold time (in milliseconds). This is the default value.
- **500**: High edge hold time (in milliseconds).

**User Defined**

A user-defined value may be defined in the range of 80 - 500 milliseconds in increments of one. This value is only applicable to the default switch.

In a logical switch, the edge hold time configuration is updated only for Condor3 ports. If Condor2 ports are present in the logical switch, the SWCH-1025 RASLog message is triggered to indicate that Condor2 ports are present and the edge hold time configuration will not change for these ports.

### Virtual Channel Settings

VC Priority specifies the class of frame traffic given priority for a virtual channel. The switch enables fine-tuning for a specific application by configuring the parameters for eight virtual channels. The first two virtual channels are reserved for switch internal functions and are not available for modification.

The default virtual channel settings have already been optimized for switch performance. Changing the default values can improve switch performance but can also degrade performance. Do not change these settings without fully understanding the effects of the changes.

The values for virtual channel settings are as follows:

<table>
<thead>
<tr>
<th>Field</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC Priority 2</td>
<td>2</td>
<td>2 to 3</td>
</tr>
<tr>
<td>VC Priority 3</td>
<td>2</td>
<td>2 to 3</td>
</tr>
<tr>
<td>VC Priority 4</td>
<td>2</td>
<td>2 to 3</td>
</tr>
<tr>
<td>VC Priority 5</td>
<td>2</td>
<td>2 to 3</td>
</tr>
<tr>
<td>VC Priority 6</td>
<td>3</td>
<td>2 to 3</td>
</tr>
<tr>
<td>VC Priority 7</td>
<td>3</td>
<td>2 to 3</td>
</tr>
</tbody>
</table>

### F_Port Login Parameters

Specifies the F_Port login parameters. The following F_Port login settings are configurable. Unless there are issues with F_Port staging, do not change default values. (* = multiplication symbol)

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum logins per switch</td>
<td>Number</td>
<td>For directors: 16 * the max number of physical ports</td>
<td>1 to 126 * the max</td>
</tr>
<tr>
<td>Logins per second</td>
<td>Number</td>
<td>0</td>
<td>0 to 100</td>
</tr>
<tr>
<td>Login stage interval (milli-seconds)</td>
<td>Number</td>
<td>0</td>
<td>0 to 10000</td>
</tr>
<tr>
<td>Stage FDISC logins with busy rejects:</td>
<td>Number</td>
<td>0</td>
<td>1 to 255</td>
</tr>
<tr>
<td>Enforce FLOGI/FDISC login:</td>
<td>Number</td>
<td>0</td>
<td>0 to 1</td>
</tr>
<tr>
<td>MAX num. of FLOGIs allowed</td>
<td>Number</td>
<td>100</td>
<td>0 to 100</td>
</tr>
</tbody>
</table>
**Maximum logins per switch**

Sets a switch-wide limit on allowed logins. The maximum login per switch has decreased with Fabric OS v6.4.0. When upgrading from pre-v6.4.0 firmware versions, the configured maximum is carried forward and may exceed the v6.4.0 limit. It is recommended to reconfigure this parameter to be within the range permitted in Fabric OS v6.4.0.

The following three parameters are related to staged F_Port logins by FLOGI requests and virtual device logins by FDISC(SID==0) requests.

**Logins per second**

Specifies the number of logins the switch accepts per second in staged F_Port bring up.

**Login stage interval**

Specifies the stage interval in staged F_Port bring up.

**Stage FDISC logins with busy reject:**

This parameter, if nonzero, enables staging of FDISC logins by rejecting the FDISC requests with "logical busy", when the requests are more than the number of configured "logins per second". It also specifies the number of FDISC requests that will always be accepted first without reject.

**Enforce FLOGI/FDISC login**

Setting this flag allows a second F_Port login (FLOGI/FDISC login) in the event of two devices attempting to log in with the same PWWN. In default mode (zero) the first FLOGI/FDISC login takes precedence over the second. When the mode is set to 1, the second FLOGI/FDISC login takes precedence over the first. All modes are for NPIV and non-NPIV F-Ports. When mode is set to 2, on FLOGI login the first FLOGI takes precedence. On FDISC login, the second FDISC takes precedence. For more information, refer to "Configure FLOGI-time handling of duplicate PWWNs" section in the *Fabric OS Administrator's Guide*. You must disable the switch to change this parameter.

**MAX num. of FLOGIs allowed**

Specifies the number of FLOGIs the port can accept per second. The default value is 100. When the FLOGI limit is reached, the port will be fenced.

**Zoning Operation Parameters**

The following zoning operation parameter can be modified.

**Disable NodeName Zone Checking**

Specify 1 to disable using node WWN when specifying nodes in the zone database. Specify 0 to enable using node WWN when specifying nodes in the zone data. The default value is 0. This value must be set to 1 for interpretability.

**RSCN Transmission Mode**

The RSCN transmission modes and values are as follows:

**End-device RSCN Transmission Mode**

Values are as follows:

- **0**
  - RSCN only contains single PID

- **1**
  - RSCN contains multiple PIDs (Default)

- **2**
  - Fabric addresses RSCN
Domain RSCN to End-device
Values are as follows:

0
Disabled. No domain RSCN is sent to the end-device for the switch IP address or name change.

1
Enabled. Domain RSCN is sent to the end-device for the switch IP address or name change.

Arbitrated Loop Parameters
Arbitrated Loop Parameter and their values are as follows:

Send FAN frames?
Specifies that fabric address notification (FAN) frames be sent to public loop devices to notify them of their node ID and address. When set to 1, frames are sent; when set to 0, frames are not sent. The default value is 1.

Enable CLOSE on OPEN received?
If this is set, a CLS is returned immediately to an OPN if no buffers are available. This is required for TachLite. The valid range is 0 to 4. The default value is 0.

Always send RSCN?
Following the completion of loop initialization, a remote state change notification (RSCN) is issued when FL_Ports detect the presence of new devices or the absence of preexisting devices. When set to 1, an RSCN is issued upon completion of loop initialization, regardless of the presence or absence of new or preexisting devices. When set to 0, an RSCN is not sent (default).

System Services Settings
The values for the System Services settings are as follows:

Disable RLS probing
Enables or disables the read link status (RLS) probing. Performed by the FCP daemon, RLS probing reads the link error block from the device. This extended link services command is defined by the FC standards. Refer to the FC standards for information. RLS probing is enabled by default, meaning "Disable RLS probing" is "off". "on" disables RLS probing.

Portlog Events Enable/Disable Settings
These settings determine whether or not various types of port events are logged.

Each event type displayed on the screen is enabled by default ("on"). When disabled, this event is not logged by the port log.

Application Attributes
A number of application attributes are configurable. The following table specifies the attributes for applications that can be modified.

<table>
<thead>
<tr>
<th>Application Field</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssl</td>
<td>Certificate File</td>
<td>string</td>
<td>[not-set]</td>
</tr>
<tr>
<td>SSL CA Certificate File</td>
<td>string</td>
<td>[not-set]</td>
<td>varies</td>
</tr>
<tr>
<td>Length of crypto key</td>
<td>number</td>
<td>[128]</td>
<td>40,56,128</td>
</tr>
<tr>
<td>rpcd</td>
<td>Secure RPCd Callback</td>
<td>string</td>
<td>none</td>
</tr>
<tr>
<td>Webtools</td>
<td>Basic User Enabled</td>
<td>boolean</td>
<td>no</td>
</tr>
<tr>
<td>Perform License</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
configure

+-----------------+----------+-----+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+
| Checking and Warning | boolean  | yes | yes/no           | Allow Fabric Event | boolean  | yes | yes/no           | Collection       | boolean  | yes | yes/no           | Login Session Timeout | number | 200 | 60 to 432000     | (in seconds)     |
+-----------------+----------+-----+-----------------+-----------------+----------+-----+-----------------+-----------------+----------+-----+-----------------+-----------------+---------+-----+-----------------+-----------------|

NOTES

The maximum per port login limit is no longer configurable with this command. Use the `portcfgNPIVPort --setloginlimit` command to configure this parameter on a per port basis.

The Telnet interface is no longer configurable with this command. Use the `ipFilter` command to enable or disable the Telnet interface.

The SNMP attributes are no longer configurable with this command. Use the `snmpConfig --set secellevel` command to configure SNMP attributes.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To enable XISL use on a logical switch with FID 20:

```bash
switch:admin> setcontext 20
switch:admin> switchdisable
switch:admin> configure
Configure...

Fabric parameters (yes, y, no, n): [no] y
 Domain: (1..239) [1]
 Enable a 256 Area Limit
 0 = No,
 1 = Zero Based Area Assignment,
 2 = Port Based Area Assignment): (0..2) [0] 1
 WWN Based persistent PID (yes, y, no, n): [no]
 Allow XISL Use (yes, y, no, n): [yes] yes
 R_A_TOV: (4000..120000) [10000]
 E_D_TOV: (1000..5000) [2000]
 WAN_TOV: (0..30000) [0]
 MAX_HOPS: (7..19) [7]
 Data field size: (256..2112) [2112]
 Sequence Level Switching: (0..1) [0]
 Disable Device Probing: (0..1) [0]
 Suppress Class F Traffic: (0..1) [0]
 Per-frame Route Priority: (0..1) [0]
 Long Distance Fabric: (0..1) [0]
 BB credit: (1..27) [16]
 Disable FID Check (yes, y, no, n): [no]
 Insistent Domain ID Mode (yes, y, no, n): [no]
 Disable Default PortName (yes, y, no, n): [no]
 Edge Hold Time(Low(80ms), Medium(220ms), High(500ms)
 UserDefined(80..500ms): (80..500) [500]
 Virtual Channel parameters (yes, y, no, n): [no]
 F-Port login parameters (yes, y, no, n): [no]
 Zoning Operation parameters (yes, y, no, n): [no]
 RSCN Transmission Mode (yes, y, no, n): [no]
 Arbitrated Loop parameters (yes, y, no, n): [no]
 System services (yes, y, no, n): [no]
```
Portlog events enable (yes, y, no, n): [no]
ssl attributes (yes, y, no, n): [no]
rpcd attributes (yes, y, no, n): [no]
webtools attributes (yes, y, no, n): [no]

switch:admin> switchenable

To enable Dynamic Area Mode on the default partition of the Brocade DCX:

switch:admin> switchdisable
switch:admin> configure
Configure...

Change fabric parameters? Y
Domain: (1..239) [160]
Enable 8 bit Dynamic Area Mode
0 = No, 1 = Zero Based Area Assignment): (0..1) [0] 1
R_A_TOV: (4000..120000) [10000] 10000
E_D_TOV: (1000..5000) [2000] 2000
WAN_TOV: (0..30000) [0] 0
MAX_HOPS: (7..19) [7] 7
Data field size: (256..2112) [2112] 2112
Sequence Level Switching: (0..1) [0] 0
Disable Device Probing: (0..1) [0] 0
Suppress Class F Traffic: (0..1) [0] 0
Per-frame Route Priority: (0..1) [0] 0
Long Distance Fabric: (0..1) [0] 0
BB credit: (1..27) [16] 16
Disable FID Check (yes, y, no, n): [no] 0
Insistent Domain ID Mode (yes, y, no, n): [no] 0
Disable Default PortName (yes, y, no, n): [no] 0
Edge Hold Time(Low(80ms), Medium(220ms), High(500ms), UserDefined(80-500ms)): (80..500) [500] 500
Virtual Channel parameters (yes, y, no, n): [no] 0
F-Port login parameters (yes, y, no, n): [no] 0
Zoning Operation parameters (yes, y, no, n): [no] 0
RSCN Transmission Mode (yes, y, no, n): [no] 0
Arbitrated Loop parameters (yes, y, no, n): [no] 0
System services (yes, y, no, n): [no] 0
Portlog events enable (yes, y, no, n): [no] 0
ssl attributes (yes, y, no, n): [no] 0
rpcd attributes (yes, y, no, n): [no] 0
cfgload attributes (yes, y, no, n): [no] 0
webtools attributes (yes, y, no, n): [no] 0

SEE ALSO configDefault, configShow, configureChassis, ipAddrSet, portCfgLongDistance, switchDisable, switchEnable, upTime
configureChassis

Changes chassis-level system configuration settings.

SYNOPSIS

configurechassis

DESCRIPTION

Use this command to modify chassis-level system configuration settings.

Configuration data is grouped into chassis information and switch information. Each configuration type is managed separately.

Use the configure command to modify switch configuration parameters. Use the configureChassis command to modify the following chassis configuration parameters:

- Cfgload attributes
- Custom Attributes
- System settings
- fos attributes

This command requires chassis permissions in both Virtual Fabric and non-Virtual Fabric environments.

The configureChassis command interactively presents a hierarchical menu. Each top-level heading and its associated subheadings consist of a text prompt, a selection of valid values, and a default value (in brackets).

The following keys control the execution of the command:

Return
   When entered at a prompt with no preceding input, the command accepts the default value (if applicable) and moves to the next prompt.

Interrupt (Ctrl-C)
   Aborts the command immediately and ignores all changes made.

End-of-file (Ctrl-D)
   When entered at a prompt with no preceding input, terminates the command and saves changes made.

The following parameters can be modified with the configureChassis command:

Cfgload Attributes

- Configures configuration upload and download parameters.

   Enforce secure Config Upload/Download
      Enables (yes) or disables (no) secure configuration upload or download. The default value is "no."

   Enforce signature validation for firmware
      Enables (yes) or disables (no) signature validation enforcement. By default, this feature is disabled (no).

   Add Suffix to the uploaded file name
      Appends a suffix to the uploaded configuration file. The suffix includes the chassis name and a time stamp in the yyymmdd_hhmmss format. Refer to the example section for an illustration. This feature is disabled by default.

Custom Attributes

- The following custom attributes can be modified.

  config Index
     OEM custom configuration. The range is 0 through 10000. The default is 0. This attribute is for internal use only.
System attributes

The following system-related parameters are configurable on a Virtual Fabric-aware switch.

**system.blade.bladeFaultOnHwErrMsk**

If this field is set to a value other than 0, then any nonfatal HW ASIC data parity error causes the problem blade to be powered off. The valid range is 0x0 to 0xffff. The default value is 0x0.

**system.cpuLoad**

Sets a threshold to define internally when the CPU is busy. The default threshold is 121, which represents a CPU instantaneous load average of 1.21 in the or top command. The range is 10 to 121 (representing CPU load thresholds of .10 to 1.21).

**system.i2cTurboCnfg**

Configures the i2c driver that manages processing of the i2c interrupts. The I2C Turbo mode is enabled (Setting 1) by default on all 16G platforms running Fabric OS v7.0 or later. The mode is disabled by default for any switches capable of running Fabric OS v6.4x and Fabric OS v6.3x. An upgrade preserves the pre-upgrade configuration. The value shown in brackets is the current value. The following values are supported:

0

Disables the I2C Turbo mode. When the I2C Turbo mode is disabled, every byte received by an i2c interrupt is scheduled for processing by the given task or process. This permits other high priority processes to complete, thereby allowing for possible delay in the receipt of the I2C response message.

1

Enables the I2C Turbo mode for SFP transceivers only. This is the default setting. When the I2C Turbo mode is enabled, every I2C byte received from an SFP transceiver is processed by the interrupt handler itself, thus preventing any higher priority processes from preempting this processing.

2

For internal use only.

fos attributes

The following chassis-wide CS_CTL mappings can be modified:

**CSCTL QoS Mode**

Configures the CS_CTL to virtual channel (VC) mapping. This operation is disruptive and therefore you must disable all edge blades after you change the CS_CTL to VC mapping.

0

Clears any previously configured CS_CTL to VC mapping and sets one-to-one mapping between a CS_CTL value and VC number for Condor2 and Condor3 ASIC. The CS_CTL values are divided into three groups: 1-8 (low priority), 9-16 (medium priority), and 17-24 (high priority). This is the default mode.

1

Sets the CS_CTL to VC mapping to support three CS_CTL values: 1 (low priority), 2 (medium priority), and 3 (high priority). Each CS_CTL value can map to more than one VC depending on the underlying support from ASIC. This is the auto mode. For more information about CS_CTL-based frame prioritization, refer to the *Fabric OS Administrator’s Guide*. 
configureChassis

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
None

EXAMPLES
To enable signature validation for downloading firmware:

switch:admin> configurechassis
Configure...

cfgload attributes (yes, y, no, n): [no] y

Enforce secure config Upload/Download (yes, y, no, n): [no]
Enforce signature validation for firmware (yes, y, no, n): [no] y
Add Suffix to the uploaded file name (yes, y, no, n): [no]

Custom attributes (yes, y, no, n): [no]
system attributes (yes, y, no, n): [no]
sos attributes (yes, y, no, n): [no]

To add a suffix to the uploaded file name:

switch:admin> configurechassis
Configure...

cfgload attributes (yes, y, no, n): [no] y

Enforce secure config Upload/Download (yes, y, no, n): [no]
Enforce signature validation for firmware (yes, y, no, n): [no]
Add Suffix to the uploaded file name (yes, y, no, n): [no] y

Custom attributes (yes, y, no, n): [no]
system attributes (yes, y, no, n): [no]
sos attributes (yes, y, no, n): [no]

To change the CS_CTL-based frame prioritization to default mode (one-to-one mapping):

switch:admin> configurechassis
Configure...

cfgload attributes (yes, y, no, n): [no]
Custom attributes (yes, y, no, n): [no]
system attributes (yes, y, no, n): [no]
sos attributes (yes, y, no, n): [no] y
CSCTL QoS Mode (0 = default; 1 = auto mode): (0..1) [1] 0

SEE ALSO
configDefault, configShow, chassisEnable, chassisDisable, configure, ipAddrSet, portCfgLongDistance, switchDisable, switchEnable, upTime
creditRecovMode

Enables credit loss recovery on back-end ports and time-out based credit loss detection of Condor 2 front-end ports.

SYNOPSIS

creditRecovMode --cfg [off | onLrOnly | onLrThresh]

-[-lrthreshold threshold]

-fault [edgeblade | coreblade | edgecoreblade]

creditRecovMode --check [slot]/[blade_port, VC]

creditRecovMode --fe_crdloss [off | on]

creditRecovMode --linkreset [slot]/[blade_port]

creditRecovMode --show

creditRecovMode --help

DESCRIPTION

Use this command to enable or disable credit recovery of backend ports and to display the configuration. When this feature is enabled, credit is recovered on backend ports (ports connected to the core blade or core blade backend ports) when credit loss has been detected on these ports. If complete loss of credit on a Condor2 backend port causes frame timeouts, a link reset will be performed on that port regardless of the configured setting, even if that setting is --cfg off. When used with the --cfg onLrOnly option, the recovery mechanism takes the following escalating actions:

- When it detects credit loss, it performs a link reset and logs a RASlog message (RAS Cx-1014).
- If the link reset fails to recover the port, the port reinitializes. A RASlog message is generated (RAS Cx-1015). Note that the port reinitialization does not fault the blade.
- If the port fails to reinitialize, the port is faulted. A RASlog message (RAS Cx-1016) is generated.
- If a port is faulted and there are no more online backend ports in the trunk, the core blade is faulted.

When used with the --cfg onLrThresh option, recovery is attempted through repeated link resets and a count of the link resets is kept. If the threshold of more than the configured threshold value (using the -lrthreshold option) per hour is reached, the blade is faulted (RAS Cx-1018). Note that regardless of whether the link reset occurs on the port blade or on the core blade, the port blade is always faulted.

If you suspect complete credit loss on a particular virtual channel (VC) on a particular backend port, use the --check option to examine that particular backend port and VC for credit loss. If the command detects complete credit loss, it reports the information. If, in addition, you have enabled link resets on backend ports, this command will perform a link reset on the link in an attempt to recover from the problem. You must explicitly initiate this check and it is a one-time operation. In other words, this command does not continuously monitor for credit loss in the background. Detection of credit loss takes 2 to 7 seconds, after which the results of the operation are displayed. A link reset also generates a RASlog message.

For more information on the RASlog messages, refer to the Fabric OS Message Reference.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command is supported only on backend ports of Condor, Condor 2, and Condor 3-based blades in the Brocade DCX 8510-8 and DCX 8510-4 chassis.

The --check option is supported only on modular switches, and only on links between Condor 2 core blades and Condor 2 port blades. AP blades are not supported.
creditRecovMode

The --fe_crdloss option is supported only on Condor 2-based front-end interswitch link (ISL) ports.

OPERANDS

This command has the following operands:

--cfg

Configures credit recovery for backend ports. Use one of the following required recovery options to configure credit recovery:

  onLrOnly
  Enables the backend port recovery feature in link reset mode.

  onLrThresh
  Enables the backend port recovery feature in link reset threshold mode.

  off
  Disables the backend port credit recovery feature.

  -lrthreshold threshold
  Specifies the link reset threshold value. The default value is 2. Note that the threshold value set using this option will apply only when the recovery mode is onLrThresh.

  -fault edgeblade
  The edge blade alone is faulted when the link reset threshold is reached.

  -fault coreblade
  The core blade alone is faulted when the link reset threshold is reached.

  -fault edgecoreblade
  The edge blade is faulted the first two times the link reset threshold value is reached. If the threshold value is reached the third time, the core blade is faulted.

  The -fault option is supported only with the onLrThresh option.

--fe_crdloss

Configures time-out based credit loss detection of Condor 2 front-end ISL links. This feature is enabled by default.

  off
  Disables credit loss detection on Condor 2 front-end ports.

  on
  Enables credit loss detection on Condor 2 front-end ports.

--check

Performs the on-demand detection of credit loss on a given backend port and VC. This operand is optional and exclusive; when you specify this option you cannot use the --cfg options at the same time. You must specify a port and a VC, separated by a comma. A space before the comma is not permitted.

  slotblade_port
  Specifies the backend port that is to be examined for credit loss. The port number must be the blade port number, because this is a backend port. The blade port number can be located in the "Bpt" column output of the bladePortMap command. Note that the bladeportmap command requires root permissions.

  VC
  Specifies the Virtual Channel number. The valid range is from 1 through 31. VC 0 is invalid.

--linkreset slotblade_port

Performs a link reset on the specified front-end or back-end blade port. The blade port number can be located in the "Bpt" column output of the bladePortMap command. The bladeportmap command requires root permissions.
creditRecovMode

--show
Displays the backend port credit recovery configuration as enabled or disabled. In addition, the output indicates whether link reset mode or link reset threshold mode is configured.

--help
Displays the command usage.

**EXAMPLES**

To enable backend port credit loss recovery with the link reset only option and to display the configuration:

```bash
switch:admin> creditrecovmode --cfg onLrOnly
switch:admin> creditrecovmode --show
Internal port credit recovery is Enabled with LrOnly
C2 FE Complete Credit Loss Detection is Enabled
```

To enable backend port credit loss recovery with the link reset threshold option and to display the configuration:

```bash
switch:admin> creditrecovmode --cfg onLrThresh
switch:admin> creditrecovmode --show
Internal port credit loss recovery is Enabled with LrThresh
C2 FE Complete Credit Loss Detection is Enabled
```

To disable backend port credit loss recovery and to display the configuration:

```bash
switch:admin> creditrecovmode --cfg off
switch:admin> creditrecovmode --show
Internal port credit loss recovery is Disabled
C2 FE Complete Credit Loss Detection is Enabled
```

To disable credit loss detection on Condor 2 front-end ports:

```bash
switch:admin> creditrecovmode --fe_crdloss off
switch:admin> creditrecovmode --show
Internal port credit loss recovery is Disabled
C2 FE Complete Credit Loss Detection is Disabled
```

To examine a backend port for credit loss:

```bash
switch:admin> creditrecovmode --cfg off
switch:admin> creditrecovmode --check 2/32,1
Started Credit loss Detection on slot 2 port 32 VC 1.
Please wait....
Detected credit loss.
Link Reset performed.
```

**SEE ALSO** bottleneckMon
cryptoCfg

Performs encryption configuration and management functions.

SYNOPSIS

cryptocfg --help -nodecfg

cryptocfg --help -groupcfg

cryptocfg --help -hacluster

cryptocfg --help -devicecfg

cryptocfg --help -transcfg

cryptocfg --help -decommission

DESCRIPTION

Use the \texttt{cryptoCfg} command to configure and manage the Brocade Encryption Switch and the FS8-18 encryption blade. These platforms support the encryption of data-at-rest for tape devices and disk array logical unit numbers (LUNs).

The \texttt{cryptoCfg} CLI consists of eight command sets grouped around the following configuration functions:

1. Node configuration
2. Encryption group configuration
3. High Availability (HA) cluster configuration
4. Storage device configuration and management
5. Transaction management
6. Device decommissioning

Each of these command groups is documented in a separate section that includes function, synopsis, description, and operands. Examples are presented at the end of the help page.

For detailed encryption switch management and configuration procedures, refer to the Fabric OS Encryption Administrator’s Guide.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, “Using Fabric OS Commands” and Appendix A, “Command Availability” for details.

\textbf{CAUTION:} When configuring a LUN with multiple paths, there is a considerable risk of ending up with potentially catastrophic scenarios where different policies exist for each path of the LUN, or a situation where one path ends up being exposed through the encryption switch and other path has direct access to the device from a host outside the secured realm of the encryption platform. To protect against this risk, it is necessary to configure containers IN SEQUENCE and with the same policies and not issue a commit until the configuration for all hosts accessing the LUN is complete. Failure to follow correct configuration procedures for multi-path LUNs results in data corruption. If you are configuring multi-path LUNs as part of an HA cluster or DEK cluster or as a standalone LUN accessed by multiple hosts, follow the instructions described in the section “Configuring a multi-path Crypto LUN” in the Fabric OS Encryption Administrator’s Guide.

FUNCTION

1. Node configuration

SYNOPSIS

cryptocfg --help -nodecfg
Use the node configuration commands to perform node initialization and configuration tasks. Node initialization and configuration must be performed on every node. A node is an encryption switch or a chassis containing one or more encryption blades. A node is identified by the switch IP address or switch WWN, which is subsequently referred to as the "node WWN." The node configuration commands include the following functions:

- Node initialization and certificate generation.
- Certificate export and import to and from a specified host or USB device.
- Enabling or disabling an encryption engine (EE).
- Encryption group member node and group leader registration.
Group-wide policy configuration.
Zeroization of all critical security parameters on the local encryption switch or blade.
Certificate display and management.
Display of the local encryption engine status.
Rebalancing of disk and tape LUNS for optimized performance.
Configuring and running key vault diagnostics.

Use the `cryptoCfg` command to display encryption engine configuration parameters pertaining to the local node. The command displays the following information:

- **EE Slot**: Encryption engine slot number.
- **SP state**: Security processor state. For a complete listing of SP states, refer to the Fabric OS Encryption Administrator’s Guide, Appendix A.
- **Current master key ID** (or primary link key ID) - Key ID or zero if not configured.
- **Alternate master key ID** (or secondary link key) - Key ID or zero if not configured.
- **HA cluster name to which this EE belongs, or "No HA cluster membership".**
- **EE Attributes**: The following attributes are displayed:
  - **Link IP Address**: Link IP address
  - **Link GW IP Address**: Link gateway W IP address
  - **Link Net Mask**: Link net mask
  - **Link MAC Address**: Link MAC address
  - **Link MTU**: The maximum transmission unit of the link
  - **Link State**: DOWN unless the EE is part of an HA cluster
  - **Route Mode**: Always "shared;" this parameter is not configurable
  - **Media Type**: TAPE, DISK, DISK/TAPE, or NOT DEFINED
  - **Rebalance Recommended**: No, Yes, or EE Busy (unspecified, try again to determine rebalance recommendation)
  - **System Card Label**: Displayed only if a system card is registered
  - **System Card CID**: Displayed only if a system card is registered.

Remote EE Reachability: If the EE is part of an encryption group, the following information is displayed for the peer. Node WWN/Slot, EE IP Address, EE State, and IO Link State. On a chassis with multiple encryption blades, remote reachability information is displayed for all encryption groups.

**NOTES**
The initial setup includes preparatory steps that are outside the scope of the `cryptoCfg` command. For preinitialization procedures, refer to the Fabric OS Encryption Administrator’s Guide.

**OPERANDS**
The `cryptoCfg` node initialization and configuration function has the following operands:

```
 --help -nodecfg
```
Displays the synopsis for the node initialization and configuration function. This command is valid on all nodes.

```
 --initnode
```
Initializes the node to prepare for the configuration of encryption options. Initialization must be performed on every node before configuration options may be set and encryption may be enabled.

This command prompts for confirmation, because the `--initnode` function overwrites any previously generated identification or authentication data on the node. Successful execution generates the node CP certificate, the key authentication center (KAC) certificate, the FIPS Crypto Officer, and the FIPS User key pairs.
Some of the certificates generated with this command may need to be exported so that they can be registered with external entities, such as the key vault or the group leader, for mutual authentication. Refer to the Fabric OS Encryption Administrator's Guide for details.

The **--initnode** function must be performed before the **--initEE** function may be performed.

**--initEE**

Initializes the encryption engine (EE). This command generates critical security parameters (CSPs) and certificates in the CryptoModule's security processor (SP). The CP and the SP perform a certificate exchange to register respective authorization data. Initialization must be performed on every encryption engine before configuration options may be set and encryption may be enabled.

This command prompts for confirmation, because it overwrites any previously generated identification or authentication data on the SP. Existing key encryption keys (KEKs) such as link keys or master keys are erased. If this is not a first-time initialization, make sure to export the master key before running this command. If the encryption engine was configured with an LKM key vault, you will have to reconfigure the key vault to regenerate the Trusted Link after initializing the encryption engine.

The **--initnode** function must be performed before the **--initEE** function may be performed.

**slot**

Specifies the slot number of the encryption engine to be initialized. This operand is required on bladed systems.

**--regEE**

Registers a previously initialized encryption engine with the CP or chassis. The CP and the specified encryption engine perform a certificate exchange to register respective authorization lists across the encryption engine's FIPS boundary. The encryption blade's certificate is registered with the CP. The CP, FIPS Crypto Officer, and FIPS User certificate are registered with the specified encryption engine.

**slot**

Specifies the slot number of the encryption engine to be registered. This operand is required on bladed systems.

**--enableEE** | **--disableEE**

Enables or disables an encryption engine to perform encryption. You must create the encryption group and complete the key vault registration before you can enable an encryption engine for encryption. In addition, you must re-enable the encryption engine for encryption every time a Brocade Encryption Switch or DCX chassis goes through a power cycle event or after issuing **slotPowerOff** followed by **slotPowerOn** for an FS8-18 blade. This command is valid on all nodes.

**slot**

Specifies the slot number to identify the encryption engine. This operand is required on bladed systems.
--export
Exports a certificate from the local encryption switch or blade to a specified external host or to a mounted USB device. This command is valid on all nodes. The files are exported from the predetermined directory that was generated during the node initialization phase. The following operands are supported with the --export command:

  -scp
Exports a specified certificate to an external host using the secure copy (SCP) protocol.
When -scp is specified, the following operands are required:

  host_IP| host_name
Specifies the IP address of the host to which the file is to be exported. To specify the host by name, it must first be configured with the dnsConfig command.

  host_username
Specifies the user name for the host. Depending on your host configuration, the command may prompt for a password.

  host_file_path
Specifies the fully qualified path to the file on the host to which the file is to be exported. This includes the file name. Make sure to name your certificates so you can track the file type and the originator switch, for example, name_cpcert.pem.

  -usb
Exports a specified certificate to a mounted USB storage device. When -usb is specified, the following operands are required:

  dest_filename
Specifies the name of the file on the USB device to which the file is to be exported. The file is stored in a predetermined default directory on the storage device.

Specify one of the following certificates to be exported. Certificates must be specified by file type. Referring to certificates by file name is not permitted. These file types are valid both with the -scp and with the -usb options.

  -dhchallenge vault_IP_address
Exports the DH Challenge file for the specified key vault.

  -currentMK
Exports the current master key file.

  -KACcert
Exports the KAC certificate.

  -KACcsr
Exports the certificate sign request file. Use the cryptofg --reg -KACcert command to register the certificate on the node after it has been signed and reimported. This procedure must be performed for all nodes that participate in a two-way certificate exchange-based authentication mechanism with key vaults. Two-way certificate exchange is supported only for the DPM, HP SKM, and TEKA key vaults.

  -CPcert
Exports the member node CP certificate.

--import
Imports a certificate from a specified external host or from a mounted USB storage device to a predetermined directory on the local encryption switch or blade. This command is valid on all nodes.
Files to be imported include member node CP certificates and key vault certificates. Use the `cryptocfg --show -file -all` command to view all imported files. The following operands are supported with the `--import` command:

**-scp**

Imports a specified certificate from an external host using the secure copy (SCP) protocol. When `-scp` is specified, the following operands are required:

- `local_name`
  Specifies the name to be assigned to the imported certificate. This is a user-generated file name.

- `host_IP | host_name`
  Specifies the IP address or name of the host from which to import the file. To specify the host by name, it must first be configured with the `dnscCnfig` command.

- `host_username`
  Specifies the user name for the host. Depending on your host configuration, this command may prompt for a password.

- `host_file_path`
  Specifies the fully qualified path of the file to be imported. The path must include the file name.

**-usb**

Imports a file from a mounted USB storage device. This command is valid only on nodes with an attached USB device. When `-usb` is specified, the following operands are required:

- `dest_filename`
  Specifies the name to be assigned to the imported file. This is a user-generated file name.

- `source_filename`
  Specifies the name of the certificate on the USB storage device from which you are importing.

**--reg -membernode**

Registers a member node with the group leader. This command is valid only on the group leader. The encryption group must have been created prior to performing member node registration. All member nodes and group leaders must be registered before encryption group discovery and formation can occur.

The order in which member node registration is performed defines group leader succession. At any given time, there is only one active group leader in an encryption group. The group leader succession list specifies the order in which group leadership is assumed if the current group leader is not available.

The following operands are required when registering a member node with the group leader:

- `member_node_WWN`
  Specifies the switch world wide name of the member node.

- `member_node_certfile`
  Specifies the member node CP certificate. You must have exported this file earlier to external storage and then imported it to the group leader before you can register a member node. Use the `cryptocfg --show -file -all` command to view all imported certificates.

- `member_node_IP_add`
  Specifies the IP address of the member node to be registered with the group leader.
--dereg -membernode

Removes the registration for the specified member node. This command is valid only on the group leader. The node is identified by the switch WWN.

member_node_WWN

Specifies the member node by its switch WWN. This operand is required when removing a node registration.

--dhchallenge

Establishes a link key agreement protocol between a node and an instance of the primary or backup NetApp Lifetime Key Management (LKM) appliance. This command generates the Diffie-Hellman challenge that is passed from the node to the specified NetApp LKM appliance. When quorum authentication is enabled and the quorum size is greater than zero, this operation requires authentication of a quorum of authentication cards. This command is valid on all nodes.

vault_IP_addr

Specifies the IP address of the NetApp LKM appliance. This operand is required.

--dhresponse

Accepts the LKM Diffie-Hellman response from the specified NetApp LKM appliance and generates the link key on the node on which this command is issued. The DH response occurs by an automatic trusted link establishment method. The LKM appliance must be specified by its vault_IP_addr. The DH challenge request must be approved on the Net App LKM appliance for this command to succeed. When quorum authentication is enabled (Quorum Size is > 0), this operation requires authentication of a quorum of authentication cards.

vault_IP_addr

Specifies the IP address of the NetApp LKM appliance. This operand is required.

--zeroizeEE

Zeroizes all critical security parameters on the local encryption switch or blade including all data encryption keys. This command is valid on all nodes. This operation causes the encryption switch to reboot. When issued on a chassis, it power-cycles the encryption blade only. This command prompts for confirmation and should be exercised with caution.

slot

Specifies the slot number of the encryption engine to be zeroized on a bladed system.

--delete -file

Deletes an imported file. The file must be specified by its local name. This command is valid on all nodes.

local_name

Specifies the file to be deleted from the local directory where certificates are stored.

--reg -KAClogin

Registers the node KAC login credentials (username and password) with the configured key vaults. This command is valid for the Thales nCipher (TEKA), HP SKM, and the TKLM key vaults. This command must be run on each member node.

primary | secondary

Specifies the key vault as primary or secondary.

For the TEKA, run this command on both a primary and a secondary key vault. The system generates a username based on the switch WWN. The username and group under which the username should be created on the key vault are displayed when the command is executed. Configure the password on the switch and create the same username on the key vault.
For the SKM, run this command only for the primary key vault. The login credential must match a valid username/password pair configured on the key vault. **The same username/password must be configured on all the nodes of any given encryption group to prevent livity issues between the SKM and the switch. However, there is no enforcement from the switch to ensure the same username is configured on all nodes.** Different encryption groups can use different usernames so long as all nodes in the group have the same username. Changing the username using `-KAClogin` renders the previously created keys inaccessible. When changing the username you must do the same on the key vault, and you must change the key owner for all keys of all LUNs through the SKM GUI. For downgrade considerations, refer to the Fabric OS Encryption Administrator's Guide.

**--show**

Displays node configuration information. This command requires one of the following mutually exclusive operands:

- **-localEE**
  
  Displays encryption engine information local to the node.

- **-file -all**
  
  Displays all imported certificates. The `-all` parameter is required with the `--show -file` command.

**--rebalance [slot]**

Rebalances the disk and tape containers to maximize throughput. Rebalancing is recommended after containers have been added, removed, moved, failed over, and failed back. This is a disruptive operation. You may have to restart backup applications after rebalancing is complete. Optionally specify a slot number on bladed systems.

**--kvdiag -enable**

Enables the keyvault diagnostics. When enabled, this command checks connectivity, configuration parameter retrieval, and readiness for key retrieval and archival at specified intervals. You can configure the tests to run separately for each encryption node. The actions of this command are diagnostic only; no corrective measures are taken. Key vault connectivity errors are reported through RASlog messages. Logs are stored in `/etc/fabos/mace/kvdiag.log`. The key vault diagnostics is by default enabled.

**--kvdiag -disable**

Disables the key vault diagnostics.

**--kvdiag -show**

Displays the current configuration of the key vault diagnostics, including the enabled status, configured time interval, and test types.

**--kvdiag -interval interval**

Specifies the time interval at which the test is repeated (in minutes). Valid values are 1 through 2147483647. The default value is 5 minutes. This operand is valid only if key vault diagnostics is enabled.

**--kvdiag -type type**

Specifies the type of key vault test. Valid test types include the following:

- **connect**
  
  Monitors key vault connectivity. Disconnect and reconnect events generate a RASlog message.

- **config**
  
  Retrieves configuration parameters from the key vault.
cryptoCfg

diag
Runs diagnostic tests including retrieval, archival and synchronization of the tests in the key vault cluster.

EXAMPLES
To initialize a node and generate certificates (output shows what is generated and where it is stored):

SecurityAdmin:switch> cryptocfg --initnode
This will overwrite all identification and authentication data
ARE YOU SURE (yes, y, no, n): [no] y

Notify SPM of Node Cfg
Operation succeeded.

To initialize an encryption engine:

SecurityAdmin:switch> cryptocfg --initEE
This will overwrite previously generated identification and authentication data
ARE YOU SURE (yes, y, no, n): y
Operation succeeded.

To register an encryption engine with the CP or chassis:

SecurityAdmin:switch> cryptocfg --regEE
Operation succeeded.

To enable an encryption engine:

SecurityAdmin:switch> cryptocfg --enableEE
Operation succeeded.

To disable an encryption engine:

SecurityAdmin:switch> cryptocfg --disableEE
Operation succeeded.

To export a KAC certificate from the group leader to an external host:

SecurityAdmin:switch> cryptocfg --export -scp -KACcert \\
192.168.38.245 mylogin kac_lkm_cert.pem
Password: ******
Operation succeeded.

To export a KAC certificate from the group leader to an attached USB device:

SecurityAdmin:switch> cryptocfg --export -usb \\
-KACcert kac_lkm_cert.pem
Password:******
Operation succeeded.

To import a member CP certificate to the group leader:

SecurityAdmin:switch> cryptocfg --import \\
-scpcenc1_cpcert.pem 192.168.38.245 mylogin \\
/temp/certs/enc_switch1_cpcert.pem
Password:
To register a member node with the group leader:

```bash
SecurityAdmin:switch> cryptoCfg --reg \
 -membernode 10:00:00:05:1e:39:14:00 \
 enc_switch1_cert.pem 10.32.244.60
Operation succeeded.
```

To deregister a member node:

```bash
SecurityAdmin:switch> cryptoCfg --dereg \
 -membernode 10:00:00:05:1e:53:b6:80
Operation succeeded.
```

To generate a trusted link establishment package (TEP):

```bash
SecurityAdmin:switch> cryptoCfg --dhchallenge 10.33.54.231
Operation succeeded.
```

To issue the DH response to retrieve the TAP from the NetApp LKM appliance:

```bash
SecurityAdmin:switch> cryptoCfg --dhresponse 10.33.54.231
Operation succeeded.
```

To zeroize all critical security parameters on an encryption switch:

```bash
SecurityAdmin:switch> cryptoCfg --zeroizeEE
This will zeroize all critical security parameters
ARE YOU SURE (yes, y, no, n): [no] y
Operation succeeded.
```

To delete a file from the local node:

```bash
SecurityAdmin:switch> cryptoCfg --delete -file \
 /etc/fabos/certs/sw0/foo.pem
This will permanently delete the selected file.
ARE YOU SURE (yes, y, no, n): [no] y
```

To display local encryption engine information for a Brocade FS8-18 encryption blade on a DCX:

```bash
SecurityAdmin:switch> cryptoCfg --show -localEE
EE Slot: 1
SP state: Online
HA Cluster Membership:mace40_dcx74_1
EE Attributes:
 Link IP Addr : 10.32.72.75
 Link GW IP Addr : 10.32.64.1
 Link Net Mask : 255.255.240.0
 Link MAC Addr : 00:05:1e:53:8d:cd
 Link MTU : 1500
 Link State : UP
 Media Type : DISK/TAPE
 Rebalance Recommended: NO
 System Card Label :
 System Card CID :
Remote EE Reachability :
 Node WWN/Slot EE IP Addr EE State IO Link State
 10:00:00:05:1e:54:22:36:0 10.32.72.62 EE_STATE_ONLINE Reachable
 10:00:00:05:1e:47:30:00/1 10.32.71.104 EE_STATE_ONLINE Reachable
```
To rebalance load between tape and disk LUNS for optimal performance on slot 1:

```
switch:admin> cryptocfg --rebalance 1
```

Rebalancing the EE may cause disruption to disk I/Os. Backup applications to tapes may need to be restarted after rebalance.

ARE YOU SURE (yes, y, no, n): [no] yes

Operation succeeded

To disable the key vault diagnostics:

```
switch:admin> cryptocfg --kvdiag -disable
```

Key vault diagnostic periodic tests Disabled

Operation succeeded

To re-enable the key vault diagnostics after it has been disabled:

```
switch:admin> cryptocfg --kvdiag -enable
```

Key vault diagnostic periodic tests Enabled

Interval: 5 minute(s)
Test Type: (diag) key retrieval/archival readiness

Operation succeeded
To display the key vault diagnostics configuration:

```
switch:admin> cryptoCfg --kvdiag -show
Key vault diagnostic periodic tests Enabled
Interval: 5 minute(s)
Test Type: (diag) key retrieval/archival readiness
Operation succeeded
```

To change the interval at which the key vault diagnostics is run:

```
switch:admin> cryptoCfg --kvdiag -interval 60
Key vault diagnostic periodic tests Enabled
Interval: 60 minute(s)
Test Type: (diag) key retrieval/archival readiness
Operation succeeded
```

**FUNCTION**

2. Encryption group configuration

**SYNOPSIS**

```
cryptoCfg --help -groupcfg

cryptoCfg --create -encgroup encryption_group_name

cryptoCfg --delete -encgroup encryption_group_name

cryptoCfg --reg -keyvault cert_label certfile hostname | ip_address primary | secondary

cryptoCfg --dereg -keyvault cert_label

cryptoCfg --reg -KACcert signed_certfile primary | secondary

cryptoCfg --set -keyvault LKM | DPM | SKM | TEKA | TKLM | KMIP

cryptoCfg --set -kvparam ha transparent | opaque | disable

cryptoCfg --set -kvparam login disable | enableU | enableP

cryptoCfg --set -kvparam cert self | ca

cryptoCfg --set -kvparam loglevel error | warning | info | io | debug | trace

cryptoCfg --show -kvparam

cryptoCfg --set -failbackmode auto | manual

cryptoCfg --set -hbmisses value

cryptoCfg --set -hbtimeout value

cryptoCfg --set -quorumsize value

cryptoCfg --set -systemcard enable | disable

cryptoCfg --set -replication enable | disable

cryptoCfg --add -membernode node_WWN

cryptoCfg --eject -membernode node_WWN
```
cryptoCfg --leave_encryption_group

cryptoCfg --genmasterkey

cryptoCfg --exportmasterkey [-file]

cryptoCfg --recovermasterkey currentMK | alternateMK
   -keyID keyID | -srcfile filename

cryptoCfg --show -mkexported_keyids key_id

cryptoCfg --show -groupcfg

cryptoCfg --show -groupmember -all | node_WWN

cryptoCfg --show -egstatus -cfg | -stat

cryptoCfg --sync -encgroup

cryptoCfg --sync -securitydb

cryptoCfg --perfshow [slot] [-tx | -rx | -tx -rx] [-t interval]

**DESCRIPTION**

Use these `cryptoCfg` commands to create or delete an encryption group, to add or remove group member nodes, key vaults, and authentication cards, to enable or disable system cards, to enable quorum authentication and set the quorum size, to manage keys including key recovery from backup, to configure group-wide policies, and to sync the encryption group databases.

An encryption group is a collection of encryption engines that share the same key vault and are managed as a group. All EEs in a node are part of the same encryption group. An encryption group can include up to four nodes, and each node can contain up to four encryption engines. The maximum number of EEs per encryption group is sixteen (four per member node).

With the exception of the `--help` and `--show` commands, all group configuration functions must be performed from the designated group leader. The encryption switch or blade on which you create the encryption group becomes the designated group leader. The group leader distributes all relevant configuration data to the member nodes in the encryption group.

The `groupCfg` commands include three display options that show group configuration, runtime status, and group member information. Refer to the Appendix of the *Fabric OS Encryption Administrator's Guide* for a more comprehensive explanation of system states.

Use the `--show -groupcfg` command to display encryption group and member configuration parameters, including the following parameters:

- Encryption group name: user-defined label
- Encryption group policies:
  - Failback mode: Auto or Manual
  - Replication mode: Enabled or Disabled
  - Heartbeat misses: numeric value
  - Heartbeat timeout: value in seconds
  - Key Vault Type: LKM, DPM, SKM, TEKA, KMIP, or TKLM
  - System Card: Disabled or Enabled
- For each configured key vault, primary and secondary, the command shows:
  - IP address: The key vault IP address
  - Certificate ID: the key vault certificate name
- State: connected, disconnected, up, authentication failure, or unknown.
- Type: LKM, DPM, SKM, TEKA, or TKLM

If an SKM key vault is configured in HA mode, no connection information is displayed because the system is unable to detect the connection status of an SKM appliance in an HA configuration.

- Additional diagnostic key vault information to facilitate troubleshooting of connectivity "Additional Primary Key Vault Information" and "Additional Secondary Key Vault Information" is displayed separately. For the SKM and DPM there is just one section "Additional Key Vault/Cluster Information"):
  - Key Vault/CA Certificate Validity: Yes or No
  - Port for Key Vault Connection: numeric identifier
  - Time of Day on Key Server: time stamp or N/A
  - Server SDK Version: revision number or N/A

- Diagnostic information for the encryption node (key vault client):
  - Node KAC Certificate Validity: Yes (valid) or No (invalid)
  - Time of Day on the Switch: time stamp
  - Client SDK Version: SDK revision number
  - Client Username: node login name for key vault
  - Client Usergroup: user group
  - Connection Timeout: time in seconds
  - Response Timeout: time in seconds
  - Connection Idle Timeout: time in seconds
  - Status message indicating success/readiness for key operations or, if there is a problem, displays a diagnostic message. For example, if the username on the switch has changed, but the key owner is still the old username, key operations will not be permitted.

- Quorum information includes the following parameters:
  - Authentication Quorum Size: 0 (disabled), 1-5 (enabled).
  - Authentication Cards: Certificate ID / label or "not configured".

- Node list display includes the following parameters:
  - Total number of defined nodes: numeric value
  - Group leader node name: Node WWN
  - Encryption group state: CONVERGED = Encryption group formed successfully. CONVERGING = Encryption group partially formed, member nodes may still be in discovery process. DEGRADED = Nodes lost connection with the group.

- For each node in the encryption group, the following information is displayed:
  - Node name: the node WWN
  - IP address: the node IP address
  - Role: GroupLeader or MemberNode

Use the --show groupmember command to display encryption group member information for one or all member nodes. Depending on the key vault configuration, the command displays master key information (DPM) or link key information (LKM).

- Node List (displayed only with the --all option)
  - Total number of defined nodes: numeric value
  - Group leader node name: the node WWN
  - Encryption group state: CONVERGED = Encryption group formed successfully. CONVERGING = Encryption group partially formed, member nodes may still be in discovery process. DEGRADED = Nodes lost connection with the group.
• For each node, the display includes the following parameters:
  - **Node Name**: the node WWN
  - **State**: DISCOVERED = The node is part of the encryption group. DISCOVERING = The node is in the process of discovery.
  - **Role**: GroupLeader or MemberNode
  - **IP address**: the node IP address
  - **Certificate**: the node CP certificate name (user-defined)
  - **Current master key (or primary link key) state**: Not configured, Saved, Created, Propagated, Valid, or Invalid.
  - **Current master key ID (or primary link key ID)**: Shows key ID or zero if not configured.
  - **Alternate master key (or secondary link key) state**: Not configured, Saved, Created, Propagated, Valid, or Invalid.
  - **Alternate master key ID (or secondary link key ID)**: Shows key ID or zero if not configured.

• For each encryption engine, the command displays the following parameters:
  - **EE slot number**: the encryption engine slot number
  - **SP state**: refer to the appendix in the Fabric OS Encryption Administrator's Guide. Current master key ID (if DPM is configured) or primary link key ID (if LKM is configured).
  - **Alternate master key ID (if DPM is configured) or secondary link key ID (if LKM is configured)**.
  - **HA cluster name to which this encryption engine belongs, or "No HA cluster membership"**.
  - **Media Type**: DISK, TAPE, or MEDIA NOT DEFINED.

Use the **--show -egstatus** command with the **-stat** or **-cfg** option to display configuration or status information for all nodes in the encryption group. This command displays a superset of information included in the **-groupcfg**, **-groupmember** and **-hacluster** show commands. Refer to these commands for a description of display details.

**NOTES**

All encryption engines in the encryption group must be interconnected through a dedicated local area network (LAN), preferably on the same subnet and on the same VLAN using the GbE ports on the encryption switch or blade. The two GbE ports of each member node (Eth0 and Eth1) should be connected to the same IP Network, the same subnet, and the same VLAN. Configure the GbE ports (I/O sync links) with an IP address for the eth0 Ethernet interface, and also configure a gateway for these I/O sync links. Refer to the ipAddrSet help page for instructions on configuring the Ethernet interface.

These I/O sync link connections must be established before you enable the EEs for encryption. If these configuration steps are not performed, you cannot create an HA cluster, perform a first-time encryption, or initiate a rekeying session.

**OPERANDS**

The **cryptoCfg** group configuration function has the following operands:

- **--help -groupcfg**
  Displays the synopsis for the group configuration function. This command is valid on all nodes.

- **--create -encgroup**
  Creates an encryption group. The node on which this command is invoked becomes the group leader. You must specify a name when creating an encryption group. If stale encryption configurations exist on the node, this command displays a warning and prompts for confirmations to delete the configurations before creating the encryption group. A "no" response aborts the operation.

  **encryption_group_name**
  Specifies the name of the encryption group to be created. The name can be up to 15 characters long and include alphanumeric characters and underscores. White space, hyphens, and other special characters are not permitted.
cryptoCfg --delete -encgroup

Deletes an encryption group with the specified name. This command is valid only on the group leader. This command fails if the encryption group has more than one node, or if any HA cluster configurations, CryptoTarget container/LUN configurations, or tape pool configurations exist in the encryption group. Remove excess member nodes and clear all HA cluster, CryptoTarget container/LUN, or tape pool configurations before deleting an encryption group.

encryption_group_name

Specifies the name of the encryption group to be deleted. This operand is required when deleting an encryption group.

cryptoCfg --reg -keyvault

Registers the specified key vault (primary or secondary) with the encryption engines of all nodes present in an encryption group. Upon successful registration, a connection to the key vault is automatically established. This command is valid only on the group leader. Registered certificates are distributed from the group leader to all member nodes in the encryption group. Each node in the encryption group distributes the certificates to their respective encryption engines.

The following operands are required when registering a key vault:

cert_label

Specifies the key vault certificate label. This is a user-generated name for the specified key vault. Use the cryptofg --show -groupcfg command to view the key vault label after registration is complete.

certfile

Specifies the certificate file. This file must be imported prior to registering the key vault and reside in the predetermined directory where certificates are stored. In the case of the HP SKM, this operand specifies CA file, which is the certificate of the signing authority on the SKM. Use the --show -file -all command for a listing of imported certificates.

hostname | ip_address

Specifies the key vault by providing either a host name or IP address. If you are registering a key vault that is part of a DPM cluster, the value for ip_address is the virtual IP address for the DPM cluster and not the address of the actual key vault.

primary | secondary

Specifies the key vault as either primary or secondary. The secondary key vault serves as backup.

cryptoCfg --dereg -keyvault

Removes the registration for a specified key vault. The key vault is identified by specifying the certificate label. Removing a key vault registration disconnects the key vault. This command is valid only on the group leader.

cert_label

Specifies the key vault certificate label. This operand is required when removing the registration for a key vault.

cryptoCfg --reg -KACcert

Registers the signed node certificate. After being exported and signed by the external signing authority, the signed node certificate must be imported back into the node and registered for a successful two-way certificate exchange with the key vault. This command is valid only on the group leader.

Registration functions need to be invoked on all the nodes in a DEK cluster for their respective signed node certificates. The following operands are required:

signed_certfile

Specifies the name of the signed node certificate to be reimported.
primary | secondary

Specifies the signing key vault as primary or secondary. This operand is valid only with the TEKA, SKM, or KMIP key vault, which requires the CSR to be signed by the primary or secondary vault. If both primary and secondary vaults are configured, this command must be run once for the primary and once for secondary key vault from every node.

--set -keyvault

Sets the key vault type. This command is valid only on the group leader.

value

Specifies the key vault type. The default is set to no value. This operand is required. Valid values for -keyvault include the following parameters:

LKM

Specifies the NetApp LKM appliance (trusted key vault).

DPM

Specifies the Data protection Manager key repository.

SKM

Specifies one of the following: the HP Secure Key Manager (SKM) or the HP Enterprise Secure Key Manager (ESKM). Both are opaque key repositories.

TEKA

Specifies the Thales e-Security keyAuthority (TEKA) key repository.

TKLM

Specifies the Tivoli Key Lifetime Manager (TKLM) key repository

KMIP

Specifies the Key Management Interoperability Protocol (KMIP) key repository.

--set -kvparam

Sets the key vault configuration parameters. These parameters must be configured after setting the key vault type to KMIP, and before the key vault is registered on the Brocade Encryption Switch.

ha transparent | opaque | disable

Sets the HA mode for key archival.

login disable | enableU | enableP

Sets the user name and password authentication after TLS connection to a client device is requested. If you specify "enableU", only a user name is required to identify the client device. If you specify "enableP", both a user name and a password are required to identify the client device.

cert self | ca

Specifies the certificate type to use for TLS connection.

loglevel warning | info | io | debug | trace

Changes the default logging level.

--show -kvparam

Displays all the configured KMIP key vault parameters.

--set -failbackmode

Sets the failback mode parameter. This parameter is set on the group leader. Valid values for failback mode include the following parameters:

auto

Enables automatic failback. In this mode, failback occurs automatically within an HA cluster when an encryption switch or blade that failed earlier has been restored or replaced. Automatic failback mode is enabled by default.
cryptoCfg

manual
Enables manual failback. In this mode, failback must be initiated manually after an encryption switch or blade that failed earlier has been restored or replaced.

--set -hbmisses
Sets the number of heartbeat misses allowed in a node that is part of an encryption group before the node is declared unreachable. This value is set in conjunction with the time-out value. It must be configured at the group leader node and is distributed to all member nodes in the encryption group. The following operand is required:

value
Specifies the number of heartbeat misses. The default value is 3. The range is 1 to 15 in integer increments only.

--set -hbtimeout
Sets the time-out value for the heartbeat. This parameter must be configured at the group leader node and is distributed to all member nodes in the encryption group. The following operand is required:

value
Specifies the heartbeat time-out in seconds. The default value is 2 seconds. Valid values are integers in the range between 1 and 30 seconds.

--set -quorumsize
Sets the quorum size used to authenticate functions that require a quorum of authentication cards. The default value is zero. You can set the quorum size only if the current value is zero. Note that this value is different from the recovery set size that specifies the number of recovery shares used to perform Master Key recovery. When quorum authentication is enabled (Quorum Size is > 0), this operation requires authentication of a quorum of authentication cards.

value
Specifies the quorum size. Valid values are 0 (quorum authentication is disabled) and 1 through 5 (quorum authentication is enabled). This operand is required.

--set -systemcard
Enables or disables the system card usage policy. When the policy is enabled, a system card is required to be inserted in an encryption engine to enable encryption after a power-cycle event. When quorum authentication is enabled (Quorum Size is > 0), this operation requires authentication of a quorum of authentication cards. The policy is disabled by default. This command must be executed on the group leader.

--set -replication
Enables or disables replication-specific features. You must enable replication before you can use replication-specific features such as the -newLUN, -include_mirror, or the --refreshDEK command. Replication is disabled by default; it must be enabled on the group leader. This command is supported only for the DPM key vault.

--add -membernode
Adds the specified member node to the existing encryption group. The member node is specified by its node WWN. This command is valid only on the group leader. Initial setup on the node must be performed prior to adding the node to an encryption group.
This command is required only when a node that was earlier part of encryption group (online and DISCOVERED) was ejected or left the encryption group and is now added back to that encryption group. A member node that is online during registration is added automatically to the encryption group. The following operand is required:

```
node_WWN
```

Specifies the WWN of the node to be added back to the encryption group.

```
--eject -membernode
```

Removes a member node from the existing encryption group. The node is specified by its node WWN. This command is valid only on the group leader. The node must be online (in DISCOVERED state) for this command to succeed. To remove a node that is not online (in DISCOVERING State), use the ```--dereg -membernode``` command. You must remove the EEs from the HA cluster and delete any Crypto Target container/LUN configurations from this node before ejecting the node or the command fails. The following operand is required when ejecting a member node:

```
node_WWN
```

Specifies the node WWN of the node to be removed from the encryption group.

```
--leave_encryption_group
```

Clears the node's states pertaining to the node's membership in the encryption group. This command is invoked from the member node that is to be ejected from the encryption group.

If there are CryptoTarget container/LUN configurations on the node and the encryption engines of this node are part of any HA Cluster configuration, this command prompts you to either continue leaving the encryption group while retaining the configuration, or to abort the leave operation. It is recommended that you remove the EEs from the HA cluster and delete any CryptoTarget container and Crypto LUN configurations from this node prior to initiating a leave operation.

```
--genmasterkey
```

Generates a master key. A master key is needed when an opaque key vault such as DPM is used. The master key must be exported (backed up) before it may be used. This command is valid only on the group leader. Only one master key per key vault is needed for the entire encryption group. When a master key is generated and a master key exists, the current master key becomes the alternate master Key and the newly generated master key becomes the current master key.

```
--exportmasterkey
```

Exports the current master key encrypted in a key generated from a specified pass phrase. By default this command backs up the key to the attached key vaults, or optionally to a predetermined file on the switch. This command is valid only on the group leader. This command prompts for a pass phrase.

```
passphrase
```

Specifies the pass phrase for the master key encryption. A pass phrase must be between 8 and 40 characters in length and can contain any character combination. Make a note of the pass phrase, because the same pass phrase is required to restore the master key from backup. This operand is required.

```
-file
```

Stores the encrypted master key in a predetermined file on the switch. This operand is optional. If the ```-file``` operand is not specified, the encrypted master key is stored in the attached key vaults, using a unique associate Key ID for tracking the export. Upon execution, this command displays both the associated Key ID and the master key ID. You can export the master key to the key vault more than
once. Each time you export the same master key, the associate key ID is incremented, and both the master key ID and the associate key are displayed. Make a note of the key ID, because you will need same key ID is to restore the master key from backup.

```
--recovermasterkey
```
Restores the master key from backup. This command is valid only on the group leader. This command prompts for a pass phrase:

```
passphrase
```
Specifies the pass phrase for recovering the master key. The pass phrase must be the same that was used to back up the master key with the `--exportmasterkey` command.

```
currentMK | alternateMK
```
Specifies whether the master key should be restored to the current position or the alternate position. This command replaces the specified existing master key and should be exercised with caution. A master key is typically restored to the alternate position to enable decryption of older data encryption keys (DEKs) that were encrypted in that master key.

```
-keyID keyID
```
Specifies the associative master key ID. This option restores the master key from the key vault. The associative master key ID was returned when it was backed up to the key vault with the `--exportmasterkey` command. The `--keyID` and the `--srcfile` options are mutually exclusive.

```
-srcfile filename
```
Specifies the file name when restoring the master key from a file in the predetermined directory on the switch. Use this operand when the master key was backed up to a file rather than to a key vault. The `--keyID` and the `--srcfile` operands are mutually exclusive.

```
--show -mkexported_keyids key_id
```
Displays all exported key IDs used to store a particular master key on keyvault. The key ID must be in the format displayed in the output of the `cryptoCfg --show -localEE` command. This command is valid on any node connected to the key vault.

```
--show -groupcfg
```
Displays the group-wide encryption policy configuration. This command is valid on all member nodes and on the group leader.

```
--show -groupmember
```
Displays detailed information for all encryption group members or for a single member. This command is valid on all member nodes and on the group leader. The following required operands are mutually exclusive:

```
-all
```
Displays information on all nodes in the existing encryption group.

```
node_WWN
```
Displays information on a single specified node. The node is identified by its node WWN.

```
--show -egstatus
```
Displays encryption group configuration or status information for all nodes in the encryption group. The following operands are exclusive:

```
-cfg
```
Displays encryption group configuration information.

```
-stat
```
Displays encryption group status information.
--sync -encgroup
Manually synchronizes the encryption group database belonging to the group
leader node with the databases of all member nodes that are out of sync. If this
command is invoked when the encryption group databases are in sync, the
command is ignored.

Note: When the encryption group is out of sync and the group leader reboots, the
newly selected group leader pushes its database information to all other
members. The new group leader's database information may be different from
what was set up before the group leader was rebooted.

--sync -securitydb
Distributes the security database from the group leader node to all member
nodes. This operation can resolve problems with master key propagation. The
synchronization occurs every time this command is executed regardless of
whether or not the security database was in sync across all nodes in the
encryption group. This command is valid only on the group leader.

--perfshow
Displays the encryption performance.

slot
Displays the encryption performance for specified slot.

-tx
Displays the transmitter throughput.

-rx
Displays receiver throughput.

-tx -rx
Displays transmitter and receiver throughput.

-t interval
Specifies the time interval, in seconds, between refreshes.

EXAMPLES
To create an encryption group "brocade":

SecurityAdmin:switch> cryptocfg --create -encgroup brocade
Encryption group create status: Operation Succeeded.

To create an encryption group "brocade" on a node that has stale configurations:

SecurityAdmin:switch> cryptocfg --create -encgroup brocade
Warning: There are stale (Container|HA|Tape) cryptodb configurations.
Please confirm to delete them.
ARE YOU SURE (yes, y, no, n): [no] y
Warning: These are the list of crypto configuration \\
to be cleaned up:
Inside /etc/fabos/mace (crypto_dek.db.0, crypto_dev.db.0, \\
crypto_hac.db.0, crypto_pool.db.0, crypto_wwn.db.0).
ARE YOU SURE (yes, y, no, n): [yes]y
Encryption group create status: Operation Succeeded.

To delete the encryption group "brocade":

SecurityAdmin:switch> cryptocfg --delete -encgroup brocade
Encryption group create status: Operation Succeeded.
To register a NetApp LKM appliance as the primary key vault "LKM1":

```
SecurityAdmin:switch> cryptofg --reg -regkeyvault \
 LKM1 lkmcert.pem 10.33.45.231 primary decru-lkm-1
Register key vault status: Operation Succeeded.
```

To set the key vault type to KMIP:

```
SecurityAdmin:switch> cryptofg --set -keyvault KMIP
Set key vault status: Operation Succeeded.
```

To set the key vault parameters:

```
SecurityAdmin:switch> cryptofg--set -kvparam ha opaque
KVParams Set Successfully
SecurityAdmin:switch> cryptofg--set -kvparam cert ca
KVParams Set Successfully
SecurityAdmin:switch> cryptofg--set -kvparam login enableP
KVParams Set Successfully
```

To display the key vault parameter setting:

```
SecurityAdmin:switch> cryptofg --show -kvparam
KVParams are:
 HA Mode = HA Opaque
 Username authentication = Username/password
 Certificate signature = CA Signed
 Key vault client logging level = None
```

To add a member node to the encryption group:

```
SecurityAdmin:switch> cryptofg --add -membernode \
 10:00:00:05:1e:39:14:00
Add node status: Operation Succeeded.
```

To eject a member node from the encryption group:

```
SecurityAdmin:switch> cryptofg --eject -membernode \
 10:00:00:05:1e:53:b8:45
Eject node status: Operation Succeeded.
```

To leave the encryption group:

```
SecurityAdmin:switch> cryptofg --leave_encryption_group
Leave node status: Operation Succeeded.
```

To generate the master key (DPM) on the group leader:

```
SecurityAdmin:switch> cryptofg --genmasterkey
Master key generated. The master key should be exported before further operations are performed.
```

To export the master key to the DPM key vault:

```
SecurityAdmin:switch> cryptofg --exportmasterkey
Enter passphrase: **********
Confirm passphrase: **********
Master key exported.
Master key exported.
```
To export the master key to a file:

SecurityAdmin:switch> cryptoCfg --exportmasterkey -file
Enter the passphrase: **********
Master key file generated.

To export the master key file to an external host:

SecurityAdmin:switch> cryptoCfg --export -scp -currentMK 192.168.38.245 mylogin GL_MK.mk
Password: *************
Operation succeeded.

To recover the master key from the key vault to the current location:

Enter the passphrase: passphrase
Recover master key status: Operation succeeded.

To display the saved key IDs associated with a repeatedly exported master key

Operation Succeeded.

To display the encryption group configuration:

SecurityAdmin:switch> cryptoCfg --show -groupcfg
Encryption Group Name:  system_test
    Failback mode: Auto
    Replication mode: Disabled
    Heartbeat misses: 3
    Heartbeat timeout: 2
    Key Vault Type: LKM
    System Card: Disabled

Primary Key Vault:
    IP address: 10.32.49.200
    Certificate ID: 3D2-LKM3-B05-200
    Certificate label: LKM200
    State: Connected
    Type: LKM

Secondary Key Vault:
    IP address: 10.32.49.201
    Certificate ID: 3D2-LKM4-B05-201
    Certificate label: LKM201
    State: Connected
    Type: LKM

Additional Primary Key Vault Information: :
Key Vault/CA Certificate Validity: Yes
Port for Key Vault Connection: 32579
Time of Day on Key Server: N/A
Server SDK Version: N/A

Additional Secondary Key Vault Information:
Key Vault/CA Certificate Validity: Yes
Port for Key Vault Connection: 32579
Time of Day on Key Server: N/A
Server SDK Version: N/A

Encryption Node (Key Vault Client) Information:
Node KAC Certificate Validity: Yes
Time of Day on the Switch: Fri Jan 29 23:01:55.205779 GMT 2010
Client SDK Version: OpenKey Reference Lib 2.0.9
Client Username: N/A
Client Usergroup: N/A
Connection Timeout: 20 seconds
Response Timeout: 20 seconds
Connection Idle Timeout: N/A

Key Vault configuration and connectivity checks successful, ready for key operations.

Authentication Quorum Size: 0
Authentication Cards not configured

NODE LIST
Total Number of defined nodes: 4
Group Leader Node Name: 10:00:00:05:1e:54:22:36
Encryption Group state: CLUSTER_STATE_CONVERGED

<table>
<thead>
<tr>
<th>Node Name</th>
<th>IP address</th>
<th>Role</th>
<th>EE Slot</th>
<th>SP state</th>
<th>SP state</th>
<th>SP state</th>
<th>SP state</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00:00:05:1e:40:22:00</td>
<td>10.32.72.74</td>
<td>MemberNode</td>
<td>1</td>
<td>Online</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EE Slot</td>
<td>2</td>
<td>SP state</td>
<td>Online</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EE Slot</td>
<td>4</td>
<td>SP state</td>
<td>Online</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EE Slot</td>
<td>9</td>
<td>SP state</td>
<td>Online</td>
<td></td>
</tr>
<tr>
<td>10:00:00:05:1e:53:6b:62</td>
<td>10.32.72.40</td>
<td>MemberNode</td>
<td>0</td>
<td>Waiting for enableEE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00:00:05:1e:54:22:36</td>
<td>10.32.72.61</td>
<td>GroupLeader</td>
<td>0</td>
<td>Online</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00:00:05:1e:47:30:00</td>
<td>10.32.72.10</td>
<td>MemberNode</td>
<td>1</td>
<td>Online</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EE Slot</td>
<td>3</td>
<td>SP state</td>
<td>Online</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EE Slot</td>
<td>10</td>
<td>SP state</td>
<td>Online</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EE Slot</td>
<td>12</td>
<td>SP state</td>
<td>Online</td>
<td></td>
</tr>
</tbody>
</table>
To display the encryption group member information:

```
SecurityAdmin:switch> cryptocfg --show -groupmember -all
NODE LIST
Total Number of defined nodes:2
Group Leader Node Name: 10:00:00:05:1e:41:9a:7e
Encryption Group state: CLUSTER_STATE_CONVERGED

Node Name: 10:00:00:05:1e:41:9a:7e (current node)
State: DEF_NODE_STATE_DISCOVERED
Role: GroupLeader
IP Address: 10.32.244.71
Certificate: GL_cpcert.pem
Current Master Key State: Not configured
Current Master KeyID: 00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00
Alternate Master Key State: Not configured
Alternate Master KeyID: 00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00
EE Slot: 0
SP state: Operational; Need Valid KEK
Current Master KeyID: 00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00
Alternate Master KeyID: 00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00
No HA cluster membership

Node Name: 10:00:00:05:1e:39:14:00
State: DEF_NODE_STATE_DISCOVERED
Role: MemberNode
IP Address: 10.32.244.60
Certificate: enc1_cpcert.pem
Current Master Key State: Not configured
Current Master KeyID: 00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00
Alternate Master Key State: Not configured
Alternate Master KeyID: 00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00
EE Slot: 0
SP state: Unknown State
Current Master KeyID: 00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00
Alternate Master KeyID: 00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00
No HA cluster membership
No HA cluster membership
```

To set the failback mode to manual failback:

```
SecurityAdmin:switch> cryptocfg --set -failbackmode manual
Set failback policy status: Operation Succeeded.
```

To set the heartbeat miss value to 3:

```
SecurityAdmin:switch> cryptocfg --set -hbmisses 3
Set heartbeat miss status: Operation Succeeded.
```

To set the heartbeat timeout value to 10 seconds:

```
SecurityAdmin:switch> cryptocfg --set -hbtimeout 10
Set heartbeat timeout status: Operation Succeeded.
```
To display encryption performance:

```
SecurityAdmin:switch> cryptofg --perfshow
33 32 38 39 37 36 35 43 42 41 40
==
5.4m 5.1m 5.4m 47.5m 0 0 0 0 0 0 0
47 46 44 45 55 54 52 53 51 50 48 49 Total
==
0 0 0 0 0 0 0 0 0 0 0 75.6m
```

**FUNCTION**

3. High Availability (HA) cluster configuration

**SYNOPSIS**

```
cryptofg --help -hacluster

cryptofg --create -hacluster HA_cluster_name
 [node_WWN [slot]] [node_WWN [slot]]

cryptofg --delete -hacluster HA_cluster_name

cryptofg --add -haclustermember HA_cluster_name
 node_WWN [slot] [node_WWN [slot]]

cryptofg --remove -haclustermember HA_cluster_name
 node_WWN [slot] [node_WWN [slot]]

cryptofg --replace [-haclustermember HA_cluster_name]
 current_node_WWN [slot] new_node_WWN [slot]

cryptofg --show -hacluster -all | HA_cluster_name
```

**DESCRIPTION**

Use these cryptofg commands to configure and manage High Availability (HA) clusters.

An HA cluster consists of two encryption engines configured to host the CryptoTargets and to provide the active/standby failover and failback capabilities in a pair-wise relationship in a single fabric. The encryption engines that are part of an HA cluster must belong to the same encryption group and be part of the same fabric.

Failure to ensure that HA cluster members are part of the same encryption group dissolves the HA cluster and the encryption engines lose their failover capability.

The HA cluster configuration must be performed on the group leader. Configuration changes must be committed before they take effect. Use the cryptofg --commit command to commit a new configuration or a configuration change. Refer to section "5. Transaction management" for more information. Any operation related to an HA cluster performed without a commit operation will not survive across switch reboots, power cycles, CP failover, or HA reboots.

The command group includes a show option, --show -hacluster. When invoked on a member node, this command displays the committed HA cluster configuration. When invoked on the group leader, both defined and committed configuration data is displayed including the following parameters:

- Encryption group name: A user-defined name
- Number of HA clusters in the existing encryption group: numeric value
- For each HA cluster:
  - HA cluster name: user-defined label
  - Number of encryption engine entries: numeric value
  - HA cluster Status: Committed or Defined
- For each encryption engine member in the HA cluster:
- EE WWN: the encryption group world wide name
- EE slot number: the encryption group slot number
- EE status: online or offline

**OPERANDS**

The `cryptoCfg` HA cluster configuration function has the following operands:

--help -hacluster

Displays the synopsis for the HA cluster configuration function. This command is valid on all nodes.

--create -hacluster

Defines an HA cluster with a specified name and optionally associates up to two encryption engines with the HA cluster. This command is valid only on the group leader. The EEs must be members of the same encryption group as the group leader on which this command is issued. This command fails if the member nodes’ IP addresses for the GbE ports (I/O sync ports) are not configured. The encryption engines must belong to different switches or chassis. This rule is enforced by the CLI to ensure redundancy.

The following operands are supported:

`HA_cluster_name`

Specifies the name for the HA cluster. The name can be up to 31 characters long and can include alphanumeric characters, hyphens, and underscores. White space and other special characters are not permitted. This operand is required.

`node_WWN`

Specifies the WWN of the switch or chassis to which the encryption engine belongs. This operand is optional; if omitted, only the HA cluster name is defined. You may add EEs separately with the `--add -haclustermember` command.

`slot`

Specifies the encryption engine slot number on bladed systems.

--delete -hacluster

Deletes the HA cluster with the specified name. This command is valid only on the group leader. The following operand is required:

`HA_cluster_name`

Specifies the name of the HA cluster to be deleted.

--add -haclustermember

Adds one or more encryption engine members to an already configured HA. A maximum of two HA cluster members is currently supported. The EEs must be part of the same encryption group as the node on which this command is issued. This command is valid only on the group leader. The encryption engines must belong to different switches or chassis. This rule is enforced by the CLI to ensure redundancy.

The following operands are required with the `--add` command:

`node_WWN`

Specifies the node WWN of the switch or chassis to which the encryption engine belongs.

`slot`

Specifies the encryption engine slot number on bladed systems.
--remove -haclustermember

Removes one or both encryption engine members from an already configured HA cluster. This command is valid only on the group leader. This command only removes the failover/failback capability for the removed EEs; it does not affect the relationship between configured CryptoTarget containers and the encryption engine that is removed from the HA cluster. The containers still belong to this encryption engine and encryption operations continue.

The following operands are required with the --remove command:

node_WWN

Specifies the WWN of the switch or chassis to which the encryption engine belongs.

slot

Specifies the encryption engine slot number on bladed systems.

--replace -haclustermember

Replaces an encryption engine, either failed or alive, with an alternate encryption engine. All target associations for the current encryption engine are transferred over to the alternate encryption engine when this command is executed. The alternate encryption engine does not have to be part of the current HA cluster. Upon successful replacement, the alternate encryption engine automatically becomes part of the configured HA cluster and disrupted peer relationships are repaired. This command is only valid on the group leader.

The following operands are supported with the --replace command:

HA_cluster_name

Specifies the HA cluster member to be replaced. The HA cluster name must be specified when this operand is used. This operand is optional. It is not needed if the encryption engine to be replaced is not part of an HA cluster.

current_node_WWN [slot]

Specifies the WWN of the encryption engine to be replaced. This operand is required. On bladed systems, include the encryption engine slot number.

new_node_WWN [slot]

Specifies the WWN of the encryption engine that is to replace the current encryption engine. This operand is required. On bladed systems, include the encryption engine’s slot number.

--show -hacluster

Displays the specified HA clusters in the encryption group and associated state information for all HA clusters or for a single, specified HA cluster. When invoked on a member node, only the committed HA cluster configuration is displayed. When invoked on the group leader, both defined and committed configuration data is displayed.

The following operands are mutually exclusive:

-all

Displays configuration information for all HA clusters.

HA_cluster_name

Displays configuration information for a specified HA cluster.
**EXAMPLES**

To display existing HA clusters in the encryption group "brocade" (the encryption group in the example has one committed HA cluster with one encryption engine):

```
SecurityAdmin:switch> cryptoCfg --show -hacluster -all
Encryption Group Name: brocade
Number of HA Clusters: 1

HA cluster name: HAC1 - 1 EE entry
Status: Committed
 WWN Slot Number Status
 11:22:33:44:55:66:77:00 0 Online
```

To create a second HA cluster with one encryption engine:

```
SecurityAdmin:switch> cryptoCfg --create -hacluster HAC2
10:00:00:05:1e:53:4c:91
EE Node WWN: 10:00:00:05:1e:53:4c:91 Slot number: 0 Detected
Create HA cluster status: Operation succeeded.
```

To add another encryption engine to HA cluster HAC2:

```
SecurityAdmin:switch> cryptoCfg --add -haclustermember HAC2
10:00:00:05:1e:53:74:87 3
EE Node WWN: 10:00:00:05:1e:53:74:87 Slot number: 3 Detected
Add HA cluster member status: Operation succeeded.
```

To display the changes (Note that "HAC2" is in the "defined" state until the transaction is committed):

```
SecurityAdmin:switch> cryptoCfg --show -hacluster -all
Encryption Group Name: brocade_1
Number of HA Clusters: 2

HA cluster name: HAC1 - 1 EE entry
Status: Committed
 WWN Slot Number Status
 11:22:33:44:55:66:77:00 0 Online

HA cluster name: HAC2 - 2 EE entries
Status: Defined
 WWN Slot Number Status
 10:00:00:05:1e:53:4c:91 0 Online
 10:00:00:05:1e:53:74:87 3 Online
```

To replace an encryption engine in HA cluster "HAC2":

```
SecurityAdmin:switch> cryptoCfg --replace \
 -haclustermember HAC2 10:00:00:05:1e:53:4c:91 \
 10:00:00:05:1e:39:53:67
Replace HA cluster member status: Operation Succeeded.
```

To remove HA cluster member 10:00:00:05:1e:53:74:87 from the HA cluster "HAC2":

```
SecurityAdmin:switch> cryptoCfg --rem -haclustermember \
 HAC2 10:00:00:05:1e:53:74:87
Remove HA cluster member status: Operation Succeeded.
```

To delete a previously created (committed) HA cluster named HAC1:

```
SecurityAdmin:switch> cryptoCfg --delete -hacluster HAC1
Delete HA cluster status: Operation succeeded
```
To commit the changes:

SecurityAdmin:switch> `cryptocfg --commit`
Operation Succeeded

To view the changes:

SecurityAdmin:switch> `cryptocfg --show -hacluster -all`
Encryption Group Name: brocade_1
Number of HA Clusters: 1

HA cluster name: HAC2 - 1 EE entry
Status: Defined

<table>
<thead>
<tr>
<th>WWN</th>
<th>Slot Number</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00:00:05:1e:39:53:67</td>
<td>0</td>
<td>Online</td>
</tr>
</tbody>
</table>

To initiate a manual failback of an encryption engine:

SecurityAdmin:switch> `cryptocfg --failback -EE`
10:00:00:05:1e:39:53:67 0 22:00:00:04:cf:6e:57:62
Operation Succeeded

**FUNCTION**
4. Storage device configuration and management

**SYNOPSIS**
cryptocfg --help -devicecfg

cryptocfg --create -container disk | tape
crypto_target_container_name
EE_node_WWN [EE_slot] target_PWWN target_NWWN
[-initiator initiator_PWWN initiator_NWWN]

[-initiator initiator_PWWN initiator_NWWN]...

cryptocfg --delete -container crypto_target_container_name

cryptocfg --failback -EE current_node_WWN [current_slot]
new_node_WWN [new_slot]

cryptocfg --move -container crypto_target_container_name
new_node_WWN [new_slot]

cryptocfg --add -initiator crypto_target_container_name
initiator_PWWN initiator_NWWN
[[initiator_PWWN initiator_NWWN]...]

cryptocfg --remove -initiator crypto_target_container_name
initiator_PWWN [initiator_PWWN]...

cryptocfg --add -LUN crypto_target_container_name
LUN_Num | LUN_Num_Range
initiator_PWWN initiator_NWWN
[[initiator_PWWN initiator_NWWN]...]
[-lunstate encrypted | cleartext]
[-keyID keyID]
[-encryption_format native | DF_compatible]
[-encrypt | -cleartext]
[-enable_encexistingdata | -disable_encexistingdata]
[-enablerekey time_period | -disable_rekey]
[-key_lifespan time_in_days | none]
[-newLUN]]
cryptoCfg

[-write_early_ack disable | enable]
[-read_ahead disable | enable]

cryptoCfg --modify -LUN crypto_target_container_name
    LUN_Num initiator_PWWN
    [-encryption_format native | DF_compatible]
    -encrypt | -cleartext]
    [-enable_encexistingdata | -disable_encexistingdata]
    [-enablerekey time_period | -disable_rekey]
    [-write_early_ack disable | enable]
    [-read_ahead disable | enable]

cryptoCfg --remove -LUN crypto_target_container_name
    LUN_Num initiator_PWWN

cryptoCfg --enable -LUN crypto_target_container_name
    LUN_Num initiator_PWWN

cryptoCfg --create -tapepool -label pool_label | -num pool_num
    [-encryption_format native | DF_compatible]
    [-encrypt | -cleartext]
    [-key_lifespan time_in_days | none]

cryptoCfg --delete -tapepool
    -label pool_label | -num pool_num

cryptoCfg --modify -tapepool
    -label pool_label | -num pool_num
    [-encryption_format native | DF_compatible]
    [-encrypt | -cleartext]

cryptoCfg --manual_rekey crypto_target_container_name
    LUN_Num initiator_PWWN [-include_mirror]

cryptoCfg --manual_rekey -all [-include_mirror]

cryptoCfg --resume_rekey crypto_target_container_name
    LUN_Num initiator_PWWN

cryptoCfg --discoverLUN crypto_target_container_name

cryptoCfg --show -container -all -cfg | -stat

cryptoCfg --show -container crypto_target_container_name
    -cfg | -stat

cryptoCfg --show -tapepool -all | -label pool_label |
    -num pool_num -cfg | -stat

cryptoCfg --show -LUN crypto_target_container_name
    LUN_Num initiator_PWWN -cfg | -stat

cryptoCfg --show -rekey -all

cryptoCfg --show -rekey crypto_target_container_name

cryptoCfg --show -rekey crypto_target_container_name
cryptoCfg

DESCRIPTION

Use these cryptoCfg commands to configure and manage tape or disk devices that store the encrypted and compressed data.

A CryptoTarget container (CTC) is a configuration of "virtual devices" that is created for each target port hosted on a Brocade Encryption Switch or FS8-18 blade. The container holds the configuration information for a single target, including associated hosts and LUN settings. A CryptoTarget container interfaces between the encryption engine, the external storage devices (targets), and the initiators (hosts) that can access the storage devices through the target ports.

Virtual devices redirect the traffic between host and target/LUN to encryption engines so they can perform cryptographic operations. To enable frame redirection, you must create a target-initiator zone prior to performing any CryptoTarget container configuration.

The CryptoTarget container (CTC) and associated Crypto LUN configuration is always configured from the group leader node, and the configuration is subsequently propagated to all members in the encryption group.

CTC configuration uses a transaction model. Configuration changes must be committed before they take effect. Use the cryptoCfg --commit command to commit the transaction. Refer to section "5. Transaction management" for more information.

This command set supports the following tasks:

- Configure and manage CryptoTarget containers (CTCs). Create, move, or delete a CTC, add or remove initiators (hosts permitted to access the targets), or manually initiate a failback of an encryption engine.
- Configure and manage logical unit numbers (LUNs) for disk and tape storage devices: add a LUN to a CTC, set or modify LUN encryption policy parameters, or remove a LUN from a CTC. Perform LUN discovery.
- Configure and manage tape pools: create a tape pool, set or modify tape pool encryption policies, or delete a tape pool. Perform LUN discovery.
- Manage rekey operations for primary and mirror LUNS.
- Reallocate or change the world wide name (WWN) of virtual entities that have been moved or removed from an encryption group. This operation is indicated when you want to eject a Brocade Encryption Switch from an encryption group as a result of a move operation or a split EG, or if you intend to remove an FS8-18 Encryption blade from an encryption group.

LUN_Num initiator_PWWN

cryptoCfg --show -tape_sessions -all

cryptoCfg --show -tape_sessions crypto_target_container_name

cryptoCfg --clearstats -container
  [-all | crypto_target_container_name ]

cryptoCfg --clearstats -LUN crypto_target_container_name
  LUN_Num initiator_PWWN

cryptoCfg --refreshDEK crypto_target_container_name
  LUN_Num initiator_PWWN

cryptoCfg --reclaimWWN -membernode node_WWN [-list]

cryptoCfg --reclaimWWN -EE node_WWN slot[-list]

cryptoCfg --reclaimWWN -cleanup
In addition, this command set includes the following display commands. Output may vary depending on your configuration. Refer to the Appendix of the Fabric OS Encryption Administrator's Guide for a more comprehensive explanation of system states.

Use the `--show -container -all -stat` command for runtime status information on all CryptoTarget containers in the encryption group. The display includes the following information:

- Encryption group name: user-defined label
- Number of containers numeric value
- For each container:
  - Container name: user-defined label
  - Type: disk or tape
  - EE node: The node WWN
  - EE slot: the slot number for the encryption engine
  - Target: The target port WWN
  - Target PID: The target PID
  - VT: The virtual target port WWN
  - VT PID: The virtual target PID
  - Number of hosts: numeric value
  - Number of tape sessions (or rekey sessions): numeric value
  - Host: The port WWN
  - Host PID: The host PID
  - VI: The virtual initiator port WWN
  - VI PID: The virtual initiator PID
  - Number of LUNs: numeric value
  - LUN number: numeric ID
  - LUN type: disk or tape drive, tape medium changer, tape attached medium changer, tape offline/unknown, or unsupported/other
  - LUN serial number: The LUN serial number
  - Encryption mode: encrypt or cleartext
  - Encryption format: (brocade) native or DF-compatible
  - Tape policy type: pool-based, LUN-based
  - Encrypt existing data: disabled or enabled
  - Rekey: disabled or enabled
  - Key life: the key life span (in days)
  - Volume/Pool label: the label for the tape volume or tape pool
  - Internal EE LUN state: Encrypted, Cleartext, or Disabled (Data state is cleartext but metadata exists on the LUN, or vice versa.)
  - Encryption algorithm: AES256-ECB (DF_compatible), AES256-GCM (native) or None (cleartext)
  - Key ID state: Read, Write, or Key ID not applicable
  - Key ID: The Key ID (if available)
  - New LUN: Yes or No
  - Replication LUN type: Primary or Mirror
  - Tape session number: numeric value
  - Number of uncompressed blocks: numeric value
Use the `--show -container -all -cfg` command for configuration information on all CryptoTarget containers in the encryption group, or specify a `crypto_target_container_name` for information on a specified CTC. The display includes the following information:

- Encryption group name: user-defined label
- Number of containers: numeric value
- For each container
  - Container name: a user-defined label
  - Type: tape or disk
  - EE node: the node WWN
  - EE slot: numeric value
  - Target: target port WWN, node WWN
  - VT: virtual target port WWN, node WWN
  - Number of hosts: numeric value
  - Configuration status: committed or defined
  - For each host: the host port WWN and the node WWN
  - For each VI: the virtual initiator port WWN and the node WWN
  - Number of LUNs: numeric value

If a rekey session is in progress while the command is run, the following additional information is displayed:

- LUN number: numeric ID
- LUN type: disk, tape drive, tape medium changer, tape attached medium changer, offline/unknown, or unsupported/other
- LUN serial number (disk only): alpha-numeric ID
- Encryption mode: encrypt or cleartext
- Encryption format: native or DF compatible
- Encrypt existing data: enabled or disabled
- Rekey: enabled or disabled
- LUN state: refer to the appendix in the Fabric OS Encryption Administrator's Guide
- Encryption algorithm: AES256 -XTS (disk), AES256-CCM (tape), or none
- Key ID state: Rekey
- Key ID: numeric identifier
- Key creation time: date and time of key creation
- Key life (in days); number of days until expiration
- Rekey status: numeric value
- Key expiration time
- Rekey session number: numeric value
- Percentage complete
- Rekey state: Read or write Phase
- Rekey role: primary, alternate
- Block size: numeric value
- Number of blocks: numeric value
- Current logical block address (LBA) being processed

Use the `--show -tapepool` command to display tape pool configuration parameters for all Tape pools or for a specific tape pool. For each tape pool, the display includes the following information:

- tape pool Label: user-define label
- Key Life: Life span in days
• Encryption mode: encrypt or cleartext
• Encryption format: native or DF compatible
• Configuration status: committed or defined

Use the `--show -LUN` command for a listing of Crypto LUN status or configuration information for a specific CTC.

When used with `-stat` the display includes the following LUN runtime status information:

• Container name: user-defined label
• Type: disk or tape
• EE node: node WWN
• EE slot: EE slot number
• Target: target port WWN and node WWN
• Target PID
• VT: virtual target port WWN and node WWN
• VT PID: virtual target PID
• Number of hosts: numeric value
• Number of rekey (or tape) sessions: numeric value
• For each host:
  - Host PWWN, NWWN: host port WWN and node WWN
  - Host PID: host port ID
  - VI PWWN, NWWN: virtual initiator port WWN and node WWN
  - VI PID: virtual initiator port ID
• Number of LUNs: numeric value
• For each LUN:
  - LUN number: numeric value
  - LUN type: disk, tape drive, tape medium changer, tape attached medium changer, offline/unknown, or unsupported/other
  - LUN serial number: alpha-numeric ID
  - Encryption mode: encrypt or cleartext
  - Encryption format: native or DF-compatible
  - Encrypt existing data: enabled or disabled
  - Rekey: enabled or disabled
  - Tape policy type: pool-based or LUN-based
  - Key life: key lifespan in days
  - Volume/pool label
  - LUN state: Refer to the Fabric OS Encryption Administrator’s Guide.
  - Encryption algorithm: AES256 -XTS (disk), AES256-CCM (tape), or none
  - Compression algorithm
  - Key ID state: available or not available
  - Key ID: numeric identifier if available
  - New LUN: Yes or No
  - Replication LUN type: Primary or Mirror

If the LUN is a disk and the LUN is enabled for auto rekey, the following additional information is displayed below the Key ID. Refer to the example section for an illustration.

• Key creation time: date and time
• Key life: remaining time (in days) until the key expires
cryptoCfg

- Rekey status: 0 = rekey in progress, 1 = no rekey in progress
- Key expiration time: date and time
- Time remaining to Auto Rekey: Displays key life for LUNs that are currently being rekeyed and after the rekey is complete.
- The remaining Key life period is displayed in the following format: num_yrs, num_months, num_days, num_minutes.

When used with -cfg the --show -LUN command displays LUN configuration information:

- EE node: node WWN
- EE slot: slot number
- Target: target port WWN and node NWWN
- VT: virtual target port WWN and node WWN
- Number of hosts: numeric value
- Configuration status: committed or defined
- For each host:
  - Host port WWN and node WWN
  - Virtual initiator port WWN and node WWN
  - Virtual initiator PID
- Number of LUNs
- For each LUN:
  - LUN number: numeric identifier
  - LUN type: disk, tape drive, tape medium changer, tape attached medium changer, offline/unknown, or unsupported/other
  - LUN status: numeric value
  - Encryption mode: encrypt or cleartext
  - Encryption format: native or DF compatible
  - Tape policy type: pool-based or LUN-based
  - Encrypt existing data: disabled or enabled
  - Rekey: disabled or enabled
  - Key ID state: Read, Write, or Key ID not applicable
  - Key life (in days): numeric value
  - Volume/pool label: user-defined label
  - Rekey status: numeric value

If rekey- or tape sessions are in progress, the command shows the following information:

- Number of rekey sessions in progress: numeric value
- For each rekey session the display includes the following parameters:
  - Rekey session number: numeric value
  - Percent completion: numeric value
  - Rekey state: Read or Write phase

Use the --show -rekey command to display all rekey sessions in progress on the current node or for a specified container. The display includes the following information:

- Number of rekey sessions in progress: numeric value
- For each rekey session, the display includes the following parameters:
  - Container name: user-defined label
  - EE node: node WWN
  - EE slot: Slot number
Use the **--show -rekey crypto_target_container_name LUN_Num initiator_PWWN** command to display all rekey sessions in progress for a specific Crypto LUN/initiator pair of a specific CryptoTarget container. The display includes the following information:

- LUN number: numeric ID
- LUN Serial Number (SN): alpha-numeric label
- CryptoTarget container Name: user-defined name
- Target: target port WWN and node WWN
- Target PID: target PID
- EE node name: node WWN
- EE slot: slot number
- Number of rekey sessions in progress: numeric value
- For each rekey session the display includes the following parameters:
  - Rekey session number: numeric value
  - Percent completion: numeric value
  - Rekey state. Displays one of the following parameters:
    - Rekey Setup
    - LUN Prep
    - Key Update
  - Operation in progress. Displays one of the following parameters:
    - Read Phase
    - Write Phase
    - HA Sync Phase
    - LUN Cleanup
- VI: virtual initiator port WWN and node WWN
- VI PID: virtual initiator PID
- Number of blocks: numeric value
- Block size: numeric value (in KB)
- Size of the LUN (in bytes)
- Current logical block address (LBA) being processed
- Rekey Role: Primary Or Backup

Use the **--show -tape_sessions** command to display all tape sessions in progress on the local node or for a specific container. The display includes the following information:

- Number of tape sessions in progress: numeric value
- Container name: user-defined label
- EE node name: node WWN
- EE Slot Number: slot number
- Target: target port WWN and node WWN
- Target PID: Target PID
- VT: virtual target port WWN and node WWN
- VT PID: virtual target PID
- Host: host port WWN and node WWN
- Host PID: host PID
- VI: virtual initiator port WWN and node WWN
- VI PID: virtual initiator PID
- LUN number: numeric identifier
- Tape session number: numeric identifier

For each Tape session:
- Number of uncompressed blocks: numeric value
- Number of compressed blocks: numeric value
- Number of uncompressed bytes: numeric value
- Number of compressed bytes: numeric value

**NOTES**

Encryption groups and HA clusters must be configured before performing any CryptoTarget container and Crypto LUN configurations.

When adding a LUN to a CryptoTarget container, special attention should be paid to the input format. A LUN number can be entered either as a 16-bit (2 bytes) number in hex notation (for example, 0x07) or as a 64-bit (8 bytes) number in WWN format (for example, 00:07:00:00:00:00:00:00). Although the command does accept decimal input, it is not recommended. The conversion function used to parse the LUN number converts a decimal number beginning with 0 to an octal, which results in a conversion error. For example, 035 is interpreted as 29 (decimal), or 0x1D hex, or 00:1D:00:00:00:00:00:00. To ensure correct conversion to decimal notation, use the recommended Hex formats or make sure to remove preceding zeros from decimal input.

**OPERANDS**

The **cryptoCfg** storage device configuration and management function has the following operands:

- **--help -devicecfg**
  Displays the synopsis for the storage device configuration and management function. This command is valid on all nodes.

- **--create -container**
  Creates a CryptoTarget container (CTC) for a disk or a tape storage device. The target device port WWN must be specified and one or more initiator port WWNs (PWWNs) may optionally be specified. Additional initiator PWWNs may be added after the CryptoTarget container is created.
Upon commit of a CTC configuration, one virtual target (VT) is created, and for each initiator that has the access to the target port, one virtual initiator (VI) is created. These virtual devices are created by logging into the fabric and registering with the Name Server. Initiator and target must be zoned for NS-based frame redirection to take effect. Use the `nsShow` command to verify the creation of the virtual devices. Use the `cfgShow` command to view the redirection zone.

This command is valid only on the group leader. The following operands are supported:

```
disk | tape
```

Specifies the type of the CTC as a disk array or tape storage container depending on the target device. These operands are mutually exclusive.

```
crypto_target_container_name
```

Specifies the CTC name for the storage device. The CTC name can be up to 31 characters long and include any alphanumeric characters, hyphens, and underscores. White space and other special characters are not permitted. This operand is required.

```
EE_node_WWN [EE_slot]
```

Specifies the WWN of the node to which the encryption engine belongs and on which encryption engine this particular CTC is hosted. This operand is required. On bladed systems, include the slot number.

```
target_PWWN
```

Specifies the target port WWN of the device port hosted on the encryption engine. This operand is required.

```
target_NWWN
```

Specifies the target node WWN. This operand is required.

```
-initiator
```

Specifies one or more initiators. Specifying initiators within a CTC does not mean that these initiators have access to the Crypto LUN. The initiator PWWNs still need to be specified when the LUN is added to the CTC to which these initiators should gain access. The initiators added to the CTC are used only for discovering the LUNs of the target as exposed to these initiators. This operand is optional. You may add initiators at the time when the CTC is created or any time thereafter with the `--add -initiator` command. The following operands are required when specifying an initiator:

```
initiator_PWWN
```

Specifies the initiator port WWN.

```
initiator_NWWN
```

Specifies the initiator node WWN.

```
--delete -container
```

Deletes a specified CTC. This command removes the virtual target and associated LUNs from the fabric. Before issuing this command, you must stop all traffic to the target port for which the CTC is being deleted. Failure to do so results in I/O failure between the initiators and that target Port.

This command is valid only on the group leader. The following operand is required when deleting a CTC:

```
crypto_target_container_name
```

Specifies the name of the CTC to be deleted. Use the `cryptocfg --show -container` command for a listing of valid CTC names.
--failback -EE

Performs a manual failback of all CTCs that were failed over earlier to another encryption engine within an HA cluster to a "new" specified encryption engine. This command generates an error if the specified current encryption engine and new encryption engine are not members of the same HA cluster or if the current encryption engine or the new encryption engine are offline.

This command is valid only on the group leader. The following operands are required:

`current_node_WWN [current_slot]`

Specifies the node WWN of the current encryption engine to which failover occurred earlier, and which is now performing all encryption tasks. On bladed systems, specify the slot number of the current encryption engine.

`new_node_WWN [new_slot]`

Specifies the node WWN of the encryption engine to which failback of all CTCs should occur. On bladed systems, specify the slot number of the new encryption engine.

--move -container

Moves the specified CTC from its currently configured encryption engine to another encryption engine. This command is valid only on the group leader. The EEs must be part of the same encryption group for this operation to succeed, but they do not need to be part of the same HA cluster. This operation permanently changes the encryption engine association of a single CTC from an existing encryption engine to another encryption engine. To move all CTCs hosted on an encryption engine permanently to another encryption engine, use the `cryptoCfg --replace` command.

This command is valid only on the group leader. The following operands are required when moving a CTC:

`crypto_target_container_name`

Specifies the name of the CTC to be moved.

`new_node_WWN [new_slot]`

Specifies the encryption engine to which the CTC should be moved. On bladed systems, specify the encryption engine’s slot number.

--add -initiator

Adds one or more initiators to an existing CTC. An initiator that is added to a CTC facilitates discovering the LUNs of the target as exposed to these initiators. You must still add the initiators when you add the LUN to the CTC to enable access for these initiators.

This command is valid only on the group leader. The following operands are required when adding an initiator to a CTC:

`crypto_target_container_name`

Specifies the name of the CTC to which the initiators should be added.

`initiator_PWWN`

Specifies the initiator port WWN.

`initiator_NWWN`

Specifies the initiator node WWN.

--remove -initiator

Removes an initiator from the specified CTC. This command is valid only on the group leader. The following operands are required when removing an initiator:

`crypto_target_container_name`

Specifies the name of the CTC from which the initiator is to be removed.
cryptoCfg

cryptoCfg -initiator_PWWN

-initiator_PWWN

--add -LUN

Specifies the initiator port WWN.

Add a LUN to a CTC and optionally sets encryption policies for the LUN. The maximum number of Tape LUNs that can be added to an Initiator in a container is 8. LUN policies may be set at this time or after the LUN is added. The maximum number of LUNs you can add in one commit operation is 25. There is a delay of five seconds for each commit operation.

This command is valid only on the group leader. The following operands are supported:

**crypto_target_container_name**

Specifies the name of the CTC to which the LUN is added. This operand is required.

**LUN_Num | LUN_Num_Range**

Specifies the LUN number or a range of LUN numbers. These operands are mutually exclusive. The LUN number can be either a 16-bit (2 bytes) number in hex notation (for example, 0x07) or a 64-bit (8 bytes) number in WWN format (for example, 00:07:00:00:00:00:00:00). When specifying a range, the LUN numbers must be 16-bit numbers in hex format. The Range parameter is not supported for 64-bit LUN numbers.

The LUN number must be zero when a tape LUN is specified and the tape drive is a single LUN device.

**initiator_PWWN | initiator_NWWN**

Optionally specifies one or more hosts (initiators) that will be permitted to access the LUN. For each initiator added, the port WWN and the node WWN must be specified. You may add more than one initiator.

**Encryption policy parameters**: The following encryption policy configuration parameters can be optionally set for disk and tape devices when adding a LUN to a CTC, or they can be set at a later time with the **--modify -LUN** command.

The tape policies specified at the LUN level take effect if you do not create tape pools or configure policies at the tape pool level.

LUN policies are configured per HA or DEK cluster. For multi-path LUNs exposed through multiple target ports and thus configured on multiple CTCs on different EEs in an HA cluster or DEK cluster, the same LUN policies must be configured. Refer to the **Fabric OS Administrator's Guide** for more information.

The following LUN policy parameters can be optionally set:

**-lunstate encrypted | cleartext**

Sets the encryption state of a specified disk LUN. When set to encrypted, metadata on the LUN containing the key ID of the DEK that was used for encrypting the LUN is used to retrieve the DEK from the key vault. If the LUN state is not specified, the default state is cleartext. This operand is not valid for tape LUNs.

**-keyID keyID**

Specifies the Key ID. Use this operand only if the LUN was encrypted but does not include the metadata containing the key ID for the LUN. This is a rare case for LUNs encrypted in Brocade native mode. However for LUNs encrypted with DataFort v2.0, a Key ID is required, because these LUNs do not contain any metadata. This operand is not valid for tape LUNs.

**-encryption_format native | DF_compatible**

Specifies the LUN encryption format. Two encryption formats are supported:
The LUN uses the Brocade metadata format and algorithm for the encryption and decryption of data. This is the default mode.

The LUN uses the NetApp DataFort metadata format and algorithm for the encryption and decryption of data. Use of this format requires a NetApp DataFort-compatible license to be present on the encryption switch or the chassis that houses the encryption blade.

-enencrypt | -cleartext

Enables or disables the LUN for encryption. By default, cleartext is enabled (no encryption). When the LUN policy is changed from encrypt to cleartext, the following policy parameters become disabled (default) and generate errors when executed: -enable_encexistingdata, -enable_rekey, and -key_lifespan. When a LUN is added in DF-compatible encryption format, -cleartext is rejected as invalid.

-enable_encexistingdata | -disable_encexistingdata

Specifies whether or not existing data should be encrypted. The Encryption policy must be enabled on the LUN before the -enable_encexistingdata parameter can be set and the LUN state must be set to -cleartext. By default, encryption of existing data is disabled. If LUN policy is set to -encrypt, the encryption of existing data must be enabled, or existing data is not preserved. This policy is not valid for tape LUNs.

-enable_rekey time_period | -disable_rekey

Enables or disables the auto rekeying capability on the specified disk LUN. This operand is not valid for tape LUNs. By default, the automatic rekey feature is disabled. Enabling automatic rekeying is valid only if the LUN policy is set to encrypt. You must specify a time_period in days when enabling auto rekeying to indicate the interval at which automatic rekeying should take place.

-key_lifespan time_in_days | none

Specifies the lifespan of the encryption key in days. The key will expire after the specified number of days. Accepted values are integers from 1 to 2982616. The default value is none, which means, the key does not expire. This operand is valid only for tape LUNs. The key lifespan cannot be modified after it is set.

-newLUN

Indicates that the LUN created does not contain any user data and will be part of a replication configuration. This operand is optional. The presence of this operand is incompatible with the -keyID, -key_lifespan, and -enable_rekey options. An RSA DPM must be configured and replication must be enabled (cryptocfg --set replication enabled) before invoking this command. Both primary and remote mirror LUNs must be added to their container with the -newLUN option.

-write_early_ack disable | enable

Specifies the Tape Write pipelining mode of the LUN. This option enables or disables early acknowledgement of commands (internal buffering) for a tape LUN. This feature is enabled by default.

-read_ahead disable | enable

Specifies the Tape Read Ahead mode of the LUN. When Tape Read Ahead is disabled, the tape LUN operates in unbuffered mode. When Tape Read ahead is disabled, the tape LUN operates in buffered mode. This feature is enabled by default.
cryptoCfg

--modify -LUN

Modifies the encryption policies of one or more LUNs in a specified CTC. This command is valid only on the group leader. The following operands are required when modifying a LUN:

`crypto_target_container_name`

Specifies the name of the CTC to which the LUNs belong.

`LUN_Num | range`

Specifies the LUN number either as a 16-bit (2 bytes) number in hex notation (for example, 0x07) or as a 64-bit (8 bytes) number in WWN format (for example, 0:07:00:00:00:00:00:00). The LUN number must be zero when a tape LUN is specified and the tape drive is a single LUN device. When specifying a range, the LUN numbers must be entered in the 16-bit hex format.

`initiator_PWWN initiator_NWWN`

Specifies the initiator by its port WWN and node WWN.

You may optionally modify the following LUN policy configuration parameters. Refer to `cryptoCfg --add -LUN` for descriptions of these parameters.

- **[-encryption_format native | DF_compatible]**
- **[-encrypt | cleartext]**
- **[-enable_encexistingdata | -disable_encexistingdata]**
- **[-enablerekey time_period | -disable_rekey]**
- **[-write_early_ack disable | enable]**
- **[-read_ahead disable | enable]**

Make sure you understand the ramifications of modifying LUN parameters (such as changing the LUN policy from encrypt to cleartext) for devices that are online and are already being utilized. The following restrictions apply when modifying LUN policy parameters:

- When you change LUN policy from encrypt to cleartext the following policy parameters are restored to default (disabled): `-enable_encexistingdata`, `-enable_rekey`, and `-key_lifespan`.
- When changing the LUN policy back to encrypt, these parameters need to be reconfigured. Attempting to reconfigure these parameters while the LUN policy is set to cleartext is not permitted and generates an error.
- For tape LUNs the `-enable_encexistingdata` and the `-enable_rekey` operands are not valid and return an error when executed.
- The `-key_lifespan` parameter cannot be modified for tape LUNs once it has been set.
- Exercise caution when modifying policy parameters while tape sessions are in progress. For information on the impact of encryption policy changes while tape sessions are in progress, refer to the `Fabric OS Encryption Administrator's Guide`.

--remove -LUN

Removes a LUN from a specified CTC. You must stop all traffic to the LUN from all initiators accessing the LUN you are removing from the CTC. Failure to do so results in I/O failure between the initiators and the LUN. If the LUN is exposed with different LUN Numbers to different initiators, all exposed LUN Numbers must be removed. This command is valid only on the group leader. The following operands are required when removing a LUN from a CTC:

`crypto_target_container_name`

Specifies the name of the CTC from which the LUN is to be removed.

`LUN_Num`

Specifies the number of the LUN to be removed. Use the `--show -container` command for a list of LUN numbers associated with the specified CTC.
**initiator_PWWN**  
Specifies the initiator port WWN for the LUN to be removed.

**--enable -LUN**  
Forces the LUN to become enabled for encryption from a disabled state. This command must be executed on the local switch that is hosting the LUN. No commit is required after executing this command. This command proceeds with a warning and prompts for confirmation.

A LUN may become disabled for various reasons, such as a change in policy from encrypted to cleartext, a conflict between LUN policy and LUN, or a missing DEK in the key vault. Force-enabling a LUN while metadata exist on the LUN may result in a loss of data and should be exercised with caution. Refer to the Fabric OS Encryption Administrator's Guide for a description of conditions under which a LUN may be disabled and recommendations for re-enabling the LUN while minimizing the risk of data loss.

The following operands are required when force-enabling a LUN:

**crypto_target_container_name**  
Specifies the name of the CTC to which this LUN belongs.

**LUN_Num**  
Specifies the number of the LUN to be enabled. Use the **--show -container** command for a list of LUN numbers associated with the specified CTC.

**initiator_PWWN**  
Specifies the initiator port WWN for the specified LUN.

**--create -tapepool**  
Creates a tape pool. A tape pool consists of a group of tape media that share the same encryption policies and data encryption keys (DEKs).

A maximum of 4096 tape pools per encryption group are supported. You may add up to a maximum of 25 tape pools per commit operation. There is a delay of five seconds delay at each commit operation.

Policy configuration at the tape pool level is optional; if left unspecified LUN-level tape policy parameters apply.

This command is valid only on the group leader. The following operands are supported:

**-label pool_label** | **-num pool_num**  
Specifies the tape pool volume label or alternately the tape pool ID. This is a user-defined identifier, which must be unique within the encryption group and should match the tape pool label or ID that is configured on the tape backup application. The tape pool label can consist of any combination of characters. When using white space, you must enclose the tape pool label in double quotation marks. The maximum size is 64 bytes. This operand is required.

**-encryption_format**  
Optionally specifies the tape encryption format. Two encryption formats are supported for tape pools:

- **native**  
  Data is encrypted or decrypted using the Brocade native encryption format (metadata format and algorithm). This is the default setting.

- **DF_compatible**  
  Data is encrypted or decrypted using the NetApp DataFort encryption format (metadata format and algorithm). Use of this format requires a NetApp DataFort-compatible license on the encryption switch or on the chassis that houses the encryption blade.
cryptoCfg

-encrypt | -cleartext
Enables encryption or cleartext (no encryption). By default, cleartext is enabled.

-key_lifespan time_in_days | none
Specifies the lifespan of the encryption key in days. The key expires after the specified number of days. The default value is none, which means the key does not expire until the value is set. This parameter cannot be modified for tape pools once it is set.

--delete -tapepool
Deletes the specified tape pool. This command is valid only on the group leader. The following operand is required:

-label pool_label | -num pool_num
Specifies the tape pool by volume label or tape pool ID. Use the --show -tapepool command for a listing of configured tape pools and their respective labels or IDs.

--modify -tapepool
Modifies the encryption policies of a specified tape pool. This command is valid only on the group leader. The following operand is required:

-label pool_label | -num pool_num
Specifies the tape pool by volume label or tape pool ID. Use the --show -tapepool command for a listing of configured tape pools and their respective labels or IDs. To modify the label or pool number, you must delete and recreate the tape pool.

You may optionally modify the following tape policy parameters.

• [-encryption_format native | DF_compatible]
• [-encrypt | cleartext]
Refer to cryptoCfg --create -tapepool for descriptions of these parameters. Exercise caution when modifying tape pool policy parameters while tape sessions are in progress. Refer to the Fabric OS Encryption Administrator's Guide for more information.

--manual_rekey
Performs a manual rekeying of a specified LUN associated with a specified CTC. Manual rekeying is performed in both online and offline fashion depending on whether or not the host is online or host I/O is present. If any policy-based rekeying operation is currently in progress, this command aborts with a warning message. This command is valid only on the group leader.

The following operands are supported:

crypto_target_container_name
Specifies the name of the CTC to which this LUN belongs.

LUN_Num
Specifies the number of the LUN to be rekeyed. Use the --show -container command for a list of LUN numbers associated with the specified CTC.

initiator_PWWN
Specifies the port WWN of the initiator for the specified LUN.

-include_mirror
Initiates a manual rekey on mirror LUN or on a primary LUN in read-only state. This operand is required if the specified LUN is mirror LUN or a primary that has been restored from an out-of-sync mirror LUN.

-all
Performs a manual rekey operation on all encrypted primary or nonreplicated LUNs on the node that are in read-write state. This operation may take an extended period of time.
-include_mirror

Initiates a manual rekey operation on all primary LUNs and mirror LUNs in read-only state. In addition, this command also starts a manual rekey operation on all primary and nonreplicated LUNs in read-write state.

--resume_rekey

Resumes a suspended rekey session for a specified disk LUN at the termination point. A rekey session may terminate prematurely due to unrecoverable medium or hardware errors. When a rekey session terminates prematurely, the system logs CRITICAL RASlog and rekey operation failure status messages. You must take corrective action to clear all error conditions that caused the rekey failure before resuming a suspended rekey session. All DEK or HA cluster members must be online and reachable for this operation to succeed.

crypto_target_container_name

Specifies the name of the CTC to which the LUN belongs.

LUN_Num

 Specifies the number of the LUN to be rekeyed. Use the --show -container command for a list of LUN numbers associated with the specified CTC.

initiator_PWWN

 Specifies the initiator port WWN for the specified LUN.

--discoverLUN

Performs LUN discovery. This command discovers and displays all LUNs that are discoverable by the initiators of a specified CTC. This command is valid only on the node that hosts the CTC. The following operand is required:

crypto_target_container_name

Specifies the name of the CTC.

--show -container

Displays all CTCs in the encryption group. This command is valid on all nodes. The following operands are supported:

-all -cfg

Displays the configuration for all containers in the encryption group.

-all -stat

Displays the runtime status for all containers hosted on the local node only.

crypto_target_container_name

Displays information for the specified CryptoTarget container. If the -stat parameter is specified with this operand, the CTC must be hosted on the local node.

-cfg

Displays the configuration for the specified CTC.

-stat

Displays the runtime status for the specified CTC.

--show -tapepool

Displays configuration information for specified tape pools when used with the -cfg option. Displays runtime status information for specified tape pools when used with the -cfg option. This command is valid on all nodes. The following operands are supported:

-all -cfg

Displays configuration information for all configured tape pools in the encryption group.
cryptoCfg

- **-all -stat**
  Displays runtime status information for all configured tape pools in the encryption group.

- **-label pool_label | -num pool_num**
  Displays tape pool configuration or runtime status information for a single tape pool specified either by a tape pool label or a number. These operands must be used with either the **-stat** or the **-cfg** option.

- **-cfg | -stat**
  Displays either configuration information or runtime status for the specified tape pools.

-- **show -LUN**
Displays Crypto LUN configuration or runtime status information for a specified CTC. This command is valid on all nodes. The following operands are supported:

- **crypto_target_container_name**
  Specifies the CTC for which to display the Crypto LUN information.

- **LUN_Num**
  Specifies the number of the LUN for which to display information.

- **initiator_PWWN**
  Specifies the PWWN of the initiator.

- **-cfg | -stat**
  Displays either the configuration or the status of the specified Crypto LUN. The configuration can be displayed on any node in the encryption group. To display LUN status, the specified LUN must be hosted on the local node.

-- **show -rekey**
Displays information about rekey sessions in progress. This command is valid on all nodes. The following operands are mutually exclusive:

- **-all**
  Lists all rekey sessions in progress on the current node.

- **crypto_target_container_name**
  Lists all rekey sessions in progress for a specified CryptoTarget container. You may further specify either one of the following operands:

- **LUN_Num**
  Lists all rekey sessions in progress for a specific Crypto LUN of the specified CryptoTarget container.

- **initiator_PWWN**
  Lists all rekey sessions in progress for a specific initiator of the specified CryptoTarget container.

-- **show -tape_sessions**
Displays runtime tape session information. This command is valid on all nodes. The following operands are mutually exclusive:

- **-all**
  Displays runtime information for all tape sessions in progress on the local node.

- **crypto_target_container_name**
  Displays runtime information for all tape sessions in progress for a specified CryptoTarget container.
cryptoCfg

--clearstats -container
Clears compressed or uncompressed blocks and/or byte counters for the specified containers. Specify one of the following operands:

- all
  Clears blocks and/or byte counters for all CryptoTarget tape containers.

crypto_target_container_name
  Clears blocks and/or byte counters for all CryptoLUNs of the specified CryptoTarget tape container.

--clearstats -LUN
Clears compressed or uncompressed blocks and/or byte counters for a specific CryptoLUN. The following operands are required:

crypto_target_container_name
  Specifies the CryptoTarget tape container for the LUN.

LUN_Num
  Specifies the number of the LUN to be cleared.

initiator_PWWN
  Specifies the initiator port WWN for the specified LUN.

--refreshDEK
Rereads the mirror LUN metadata and updates the FPGA tables for the LUN if the keyID in the metadata has changed. You must issue this command on the node of the EE where the container that includes the mirror LUN is hosted. An RSA DPM must be configured for the encryption group and replication mode must be enabled for this command to succeed. This command fails if the specified LUN was not added with -newLUN option. The refresh operation may cause a brief disruption of the host I/O. The following operands are required:

crypto_target_container_name
  Specifies the CryptoTarget container for the LUN.

LUN_Num
  Specifies the number of the LUN whose metadata needs to be reread.

initiator_PWWN
  Specifies the initiator port WWN for the specified LUN.

--reclaimWWN
Reclaims the WWNs of the specified member node or encryption engine. This command removes the WWNs from the specified entity. Once removed you can reallocate the WWNs. The reclaim operation is disruptive and prompts for confirmation.

The following restrictions apply when you reallocate a WWN:

- The reclaim operations must be executed on the group leader node. All encryption engines must be online and the Group status must be "converged".
- All nodes in the encryption group must run Fabric OS v7.0.0 or later.
- You must commit all container changes prior to and following the reclaim operation.
- You must perform a reclaim operation for any node or encryption engine that needs to be moved out of an existing encryption group.

-membernode node_WWN
  Specifies the node WWN of any member node in the encryption group. This command frees up all WWNs associated with all encryption engines in the specified member node. It also displays a list of containers that will be affected by the reclaim operation.
--EE node_WWN slot

Specifies the node WWN of any encryption engine in the encryption group. This command frees up all WWNs associated with the specified encryption engines for reallocation. You must specify a slot number in addition to the EE node WWN. To complete the reclaiming of an EE, you must remove the EE from the chassis after the reclaim operation and commit the transaction.

-list

Displays a listing of crypto-target containers affected by the reclaim operation. This operand is optional.

-cleanup

Removes all crypto configurations present on the member node after the WWNs have been reclaimed. This command must be executed on the ejected member node.

EXAMPLES

1. Create a zone that includes initiator and target.

   a. Determine the device configuration.

   FabricAdmin:switch> nsshow
   {
   Type Pid  COS PortName               NodeName           TTL(sec)
   N 010600;2,3;10:00:00:00:c9:2b:c9:3a;20:00:00:00:c9:2b:c9:3a;na
   NodeSymb: [35]  "Emulex LP9002 EV3.82A1 DV5-4.81A4 "
   Fabric Port Name: 20:06:00:05:1e:41:9a:7e
   Permanent Port Name: 10:00:00:00:c9:2b:c9:3a
   Port Index: 6
   Share Area: No
   Device Shared in Other AD: No
   Redirect: No
   Partial: No
   The Local Name Server has 1 entry }

   FabricAdmin:switch> nscamshow
   nscamshow for remote switches:
   Switch entry for 2
   state rev  owner
   known v611 0xfffc01
   Device list: count 13
   Type Pid COS    PortName                 NodeName
   NL 0208d3;3;20:0c:00:00:6:2b:0f:72:0f:72:6d;20:00:00:00:2b:0f:72:6d;
   FC4s: FCP
   PortSymb: [55] "LSI7404XP-LC BR A.1 03-01081-02D
   FW:01.03.06 Port 1"
   Fabric Port Name: 20:08:00:05:1e:34:e0:6b
   Permanent Port Name: 20:00:00:00:2b:0f:72:6d
   Port Index: 8
   Share Area: No
   Device Shared in Other AD: No
   Redirect: No
   Partial: No

   b. Create and enable a zone named "itzone" that includes initiator and target.

   FabricAdmin:switch> zonecreate itzone, "10:00:00:00:c9:2b:c9:3a; 20:00:00:00:2b:0f:72:6d"

   FabricAdmin:switch> cfgcreate itcfg, itzone

   FabricAdmin:switch> cfgenable itcfg
You are about to enable a new zoning configuration. This action will replace the old zoning configuration with the current configuration selected. Do you want to enable 'itcfg' configuration \ (yes, y, no, n): [no] y zone config "itcfg" is in effect Updating flash ...

2. Create a disk CryptoTarget container to be hosted on the encryption engine.
FabricAdmin:switch> cryptocfg --create -container \ disk my_disk_tgt 0:00:00:05:1e:41:9a:7e 20:0c:00:06:2b:0f:72:6d 20:00:00:06:2b:0f:72:6d Operation Succeeded

3. Add an initiator to the CryptoTarget container and commit the transaction.
FabricAdmin:switch> cryptocfg --add -initiator my_disk_tgt \ 10:00:00:00:c9:2b:c9:3a 20:00:00:00:c9:2b:c9:3a Operation Succeeded
FabricAdmin:switch> cryptocfg --commit Operation Succeeded

4. Display the CTC configuration.
FabricAdmin:switch> cryptocfg --show -container \ my_disk_tgt -cfg
Container name: my_disk_tgt
Type: disk
EE node: 10:00:00:05:1e:41:9a:7e
EE slot: 0
Target: 20:0c:00:06:2b:0f:72:6d \ 20:00:00:06:2b:0f:72:6d
VT: 20:00:00:05:1e:41:4e:1d \ 20:01:00:05:1e:41:4e:1d
Number of host(s): 1
Configuration status: committed
Host: 10:00:00:00:c9:2b:c9:3a \ 20:00:00:00:c9:2b:c9:3a
VI: 20:02:00:05:1e:41:4e:1d \ 20:03:00:05:1e:41:4e:1d
Number of LUN(s): 0
Operation Succeeded

5. Discover the LUNs seen by the initiators in the CryptoTarget container.
FabricAdmin:switch> cryptocfg --discoverLUN my_disk_tgt
Container name: my_disk_tgt
Number of LUN(s): 1
Host: 10:00:00:00:c9:2b:c9:3a
LUN number: 0x0
LUN serial number: 200000062B0F726D0C000000
Key ID state: Read write

6. Add a LUN to the CTC with encryption enabled.
FabricAdmin:switch> cryptocfg --add -LUN \ my_disk_tgt 0 10:00:00:00:c9:2b:c9:3a \ 20:00:00:00:c9:2b:c9:3a -lunstate cleartext -encrypt Operation Succeeded
7. Commit the device configuration.

FabricAdmin:switch> cryptoCfg --commit
Operation Succeeded

8. Display Crypto LUN runtime status.

FabricAdmin:switch> cryptoCfg --show -LUN \[my_disk_tgt 0 10:00:00:00:c9:2b:c9:3a -stat
Container name: my_disk_tgt
Type: disk
EE node: 10:00:00:05:1e:41:9a:7e
EE slot: 0
E hosting container: current
Target: 20:00:00:06:2b:0f:72:6d
Target PID: 0208d3
VT: 20:01:00:05:1e:41:4e:1d
VT PID: 012001
Number of host(s): 1
Number of rekey session(s): 0
Host: 10:00:00:00:c9:2b:c9:3a
Host PID: 010600
VI: 20:02:00:05:1e:41:4e:1d
Number of LUN(s): 1
LUN number: 0x0
LUN type: disk
LUN serial number: 200000062B0F726D0C000000
Encryption mode: encrypt
Encryption format: native
Encrypt existing data: disabled
Rekey: disabled
Internal EE LUN state: Encryption enabled
Encryption algorithm: AES256-XTS
Key ID state: Read write
Key creation time: Sun Jun 1 20:21:32 2008
New LUN: No
Replication LUN type: Primary
Operation Succeeded

9. Display Crypto LUN configuration.

FabricAdmin:switch> cryptoCfg --show -LUN \[my_disk_tgt 0 10:00:00:00:c9:2b:c9:3a -cfg
EE node: 10:00:00:05:1e:41:9a:7e
EE slot: 0
Target: 20:0c:00:06:2b:0f:72:6d
Target PID: 0208d3
VT: 20:01:00:05:1e:41:4e:1d
VT PID: 012001
Number of host(s): 1
Configuration status: committed
Host: 10:00:00:00:c9:2b:c9:3a
Host PID: 010600
VI: 20:02:00:05:1e:41:4e:1d
Number of LUN(s): 1
LUN number: 0x0
LUN type: disk
LUN serial number: 200000062B0F726D0C000000
Encryption mode: encrypt
Encryption format: native
Encrypt existing data: disabled
Rekey: disabled
Internal EE LUN state: Encryption enabled
Encryption algorithm: AES256-XTS
Key ID state: Read write
Key creation time: Sun Jun 1 20:21:32 2008
New LUN: No
Replication LUN type: Primary
Operation Succeeded
LUN number: 0x0
LUN type: disk
LUN status: 0
Encryption mode: encrypt
Encryption format: native
Encrypt existing data: disabled
Rekey: disabled
Key ID: not available
Operation Succeeded

10. Display the zone configuration (note that a frame redirection zone has been created automatically to route traffic between host, VT, VI and target, VI, VT.)

FabricAdmin:switch> cfgshow
Defined configuration:
cfg: itcfg  itzone
cfg: r_e_d_i_r_c__fg
red_1109_brcd200c00062b0f726d200200051e414e1d; red_______base
cfg: testcfg1
testzone1
zone: itzone 10:00:00:00:c9:2b:c9:3a; 20:0c:00:06:2b:0f:72:6d
zone: red_1109_brcd200c00062b0f726d200200051e414e1d
zone: red_______base
00:00:00:00:00:00:00:01; 00:00:00:00:00:00:00:02;
00:00:00:00:00:00:00:03; 00:00:00:00:00:00:00:04
zone: testzone1
1,0

Effective configuration:
cfg: itcfg
zone: itzone 10:00:00:00:c9:2b:c9:3a
20:0c:00:06:2b:0f:72:6d

To display the tape pool configuration:

FabricAdmin:switch> cryptocfg --show -container -all -cfg
Encryption group name: brocade
Number of Container(s): 2

Container name: pc21_stk10k
Type: tape
EE node: 10:00:00:05:1e:53:8a:28
EE slot: 0
Target: 50:01:04:f0:00:b2:ea:6c \n 50:01:04:f0:00:b2:ea:6b
VT: 20:00:00:05:1e:53:8a:24 \n 20:01:00:05:1e:53:8a:24
Number of host(s): 1
Configuration status: committed
Host: 10:00:00:06:2b:0f:41:0c \n 20:00:00:06:2b:0f:41:0c
VI: 20:02:00:05:1e:53:8a:24 \n 20:03:00:05:1e:53:8a:24
Number of LUN(s): 1

Container name: pc23_hplto3
Type: tape
EE node: 10:00:00:05:1e:53:8a:28
EE slot: 0
Target: 50:01:10:a0:00:8c:28:ba  
   50:01:10:a0:00:8c:28:b9  
VT: 20:08:00:05:1e:53:8a:24  
   20:09:00:05:1e:53:8a:24  
Number of host(s): 1  
Configuration status: committed  
Host: 10:00:00:05:1e:53:68:28  
   20:00:00:05:1e:53:68:28  
VI: 20:0a:00:05:1e:53:8a:24  
   20:0b:00:05:1e:53:8a:24  
Number of LUN(s): 1

To display all configured tape pools:

FabricAdmin:switch> cryptofg --show -tapepool -all

Tape pool label: tpool.00001  
Key life: 0 (days)  
Encryption mode: encrypt  
Encryption format: native  
Configuration status: committed(2)

Tape pool label: tpool.00002  
Key life: 0 (days)  
Encryption mode: encrypt  
Encryption format: native  
Configuration status: committed(2)

To display CryptoTarget container runtime status information For a disk LUN with rekeying enabled:

FabricAdmin:switch> cryptofg --show -tapepool -LUN my_disk_tgt 0x0 10:00:00:db:69:78:93:0e -stat

Container name: my_disk_tgt  
Type: disk  
EE node: 10:00:00:05:1e:53:75:01  
EE slot: 0  
Target: 21:00:00:04:cf:6e:58:2c  
   20:00:00:04:cf:6e:58:2c  
Target PID: 0107d5  
VT: 20:29:00:05:1e:53:74:fd  
   20:28:00:05:1e:53:74:fd  
VT PID: 012805  
Number of host(s): 1  
Number of rekey session(s): 1  
Host: 10:00:00:db:69:78:93:0e  
   20:00:00:db:69:78:93:0e  
Host PID: 000000  
VI: 20:37:00:05:1e:53:74:fd  
   20:36:00:05:1e:53:74:fd  
VI PID: 012806  
Number of LUN(s): 1  
LUN number: 0x0  
LUN type: disk  
LUN serial number: 20000004CF6E582C  
Encryption mode: encrypt  
Encryption format: native  
Encrypt existing data: enabled  
Rekey: enabled
LUN state: First time re-key is in progress
Encryption algorithm: AES256-XTS
Key ID state: Re-key
Key creation time: Fri May 16 02:03:48 2008
Key life: 300 (days)
Rekey status: 0
Key expiration time: Sun May 18 04:03:48 2008
Operation Succeeded

To display CryptoTarget container configuration information For a disk LUN with rekeying enabled:

FabricAdmin:switch> cryptocfg --show -LUN my_disk_tgt 0x0
10:00:00:db:69:78:93:0e -cfg
EE node: 10:00:00:05:1e:53:75:01
EE slot: 0
Target: 21:00:00:04:cf:6e:58:2c
  20:00:00:04:cf:6e:58:2c
VT: 20:29:00:05:1e:53:74:fd
  20:28:00:05:1e:53:74:fd
Number of host(s): 1
Configuration status: committed
Host: 10:00:00:db:69:78:93:0e
  20:00:00:04:cf:6e:58:2c
VI: 20:36:00:05:1e:53:74:fd
  20:37:00:05:1e:53:74:fd
LUN number: 0x0
LUN type: disk
LUN status: 0
Encryption mode: encrypt
Encryption format: native
Encrypt existing data: enabled
Rekey: enabled
Key ID: not available
Key life: 300 (days)
Rekey status: 0
Operation Succeeded

To display all tape sessions in progress on the local node:

FabricAdmin:switch> cryptocfg --show -tape_sessions -all
Number of tape session(s): 2
Container name: apps92
EE node: 10:00:00:05:1e:43:ee:00
EE slot: 2
Target: 50:03:08:c0:9c:e5:a0:00
  50:03:08:c0:9c:e5:a0:01
Target PID: 8e0100
VT: 20:01:00:05:1e:53:77:e8
  20:01:00:05:1e:53:77:e8
VT PID: 019001
Host: 10:00:00:00:c9:52:00:ba
  20:00:00:00:c9:52:00:ba
Host PID: 8e0200
VI: 20:02:00:05:1e:53:77:e8
  20:03:00:05:1e:53:77:e8
VI PID: 019002
LUN number: 0x0
Tape session number: 0
cryptoCfg

Number of uncompressed blocks: 37466
Number of compressed blocks: 36587
Number of uncompressed bytes: 2455059456
Number of compressed bytes: 1138031028
LUN number: 0x1
Tape session number: 1
Number of uncompressed blocks: 0
Number of compressed blocks: 0
Number of uncompressed bytes: 0
Number of compressed bytes: 0
Operation succeeded.

To reclaim all WWNs associated with an encryption engine:

switch:admin> cryptocfg --reclaimWWN -EE 10:00:00:05:1e:39:b3:96 12
Warning: WWN reclaim operation may result in momentary IO disruption.
ARE YOU SURE (yes, y, no, n): [no] y
Operation succeeded.
Please use "cryptocfg --commit" to commit the configuration.

To attempt to reclaim all WWNs associated with a member node when containers are still present on the node:

switch:admin> cryptocfg --reclaimWWN -membernode 10:00:00:05:33:13:7a:e8
Warning: WWN reclaim operation may result in momentary IO disruption.
Make sure that the Membernodes are not hosting any container.
ARE YOU SURE (yes, y, no, n): [no] y
Operation failed: Reclaim WWN's is not allowed as the Membernode still hosts containers. Please delete or move the containers.

To reclaim all WWNs associated with a member node when no containers are present on the node:

switch:admin> cryptocfg --reclaimWWN -membernode 10:00:00:05:33:13:7a:e8
Warning: WWN reclaim operation may result in momentary IO disruption.
Make sure that the Membernodes are not hosting any container.
ARE YOU SURE (yes, y, no, n): [no] y
Operation succeeded.
Please use "cryptocfg --commit" to commit the configuration.
Please eject the membernode from the EG "cryptocfg --eject -membernode 10:00:00:05:33:13:7a:e8".
Then deregister the membernode "cryptocfg --dereg -membernode 10:00:00:05:33:13:7a:e8".
On the membernode [10:00:00:05:33:13:7a:e8] execute "cryptocfg --reclaimWWN -cleanup".

To display the crypto-target containers affected by the reclaim operation:

switch:admin> cryptocfg --reclaimWWN -membernode memmembernode \
10:00:00:05:33:13:7a:e8 -list
Following is the list of containers using the reclaimed WWN base.
[ 1] H183SB182_1
[ 2] H183SB182_2
[ 4] H183SB182_4
[ 5] H183SB182_5
Operation succeeded.
To clean up the stale crypto configurations from the ejected member node.

```
switch:admin> cryptofg --reclaimWWN --cleanup
Warning: There are stale (Container|HA|Tape) cryptodb \
configurations. Please confirm to delete them.
ARE YOU SURE (yes, y, no, n): [no] y
Warning: These are the list of crypto configuration \
files to be cleaned up:
Inside /etc/fabos/mace (crypto_dek.db.0, crypto_dev.db.0, \
crypto_hac.db.0, crypto_pool.db.0, crypto_wwn.db.0).
ARE YOU SURE (yes, y, no, n): [yes] y
Operation Succeeded.
```

**FUNCTION**

5. Transaction management

**SYNOPSIS**

```
cryptofg --help transcfg
```

```
cryptofg --commit [-force]
```

```
cryptofg --transabort transaction_ID
```

```
cryptofg --transshow
```

**DESCRIPTION**

Use these cryptofg commands to manage the transaction mechanism for those functions that require configuration changes to be committed before they take effect. These functions include "3. High Availability (HA) cluster configuration" and "4. Storage device configuration and management"

Transaction commands must be invoked on the group leader.

**OPERANDS**

The cryptofg transaction management function has the following operands:

```
--help transcfg
```

Displays the synopsis for the transaction management function.

```
--commit
```

Commits the transaction. This command saves the defined configuration to nonvolatile storage. Changes are persistent across reboots and power cycles. This command overwrites existing configuration parameters and therefore prompts for confirmation. This command is permitted only when the encryption group is in a converged state.

The following operand is optional:

```
-force
```

Commits the transaction without confirmation.

```
--transabort transaction_ID
```

Aborts a pending database transaction for any device configurations invoked earlier through the CLI or DCFM interfaces. The following operand is required:

```
transaction_ID
```

Specifies the ID of the transaction to be aborted. Use the **--transshow** command to determine the currently pending transaction ID.
cryptoCfg

--transshow
Displays the pending database transaction for any device configurations invoked earlier through the CLI or DCFM interfaces. The command displays the transaction status (completed or pending), the transaction ID, and the transaction owner (CLI or DCFM)

FUNCTION 6. Device decommissioning

SYNOPSIS cryptoCfg --help -decommission

cryptoCfg --decommission -container container_name
            -initiator initiator _PWWN -LUN LUN_num

cryptoCfg --delete -decommissionedkeyids

cryptoCfg --show -decommissionedkeyids

cryptoCfg --show -vendorspecifickeyid key_ID

DESCRIPTION
Use these cryptoCfg commands to decommission a disk LUN in the event that the storage device is to be reprovisioned, retired, or returned to the vendor. The decommission function renders all data on the disk media inaccessible before decommissioning the device.

Device decommissioning deletes or renders invalid all important information including keys stored in the key vault, on the chip, and from the various internal caches, and it erases the metadata on the media to ensure that the data on the decommissioned device is irrecoverable.

The following restrictions apply to device decommissioning:

• Devices not encrypted on the Brocade Encryption platform or devices in cleartext cannot be decommissioned with this command.
• All nodes in the encryption group must run Fabric OS v6.4.0 or later.
• All nodes in the encryption group must run Fabric OS v7.1.0 or later when keyvault type is not set to DPM or LKM.
• All nodes in the encryption group must run Fabric OS v6.4.0 or later when keyvault type is set to DPM or LKM.
• Device decommissioning does not work across a reboot. Rebooting terminates an ongoing decommissioning process and the command must be reissued after completing the reboot.
• Device decommissioning is supported with the DPM, TKLM, KMIP, ESKM, TEKA, and LKM key vaults.
• Decommissioning of tape devices or snap drive volumes is currently no supported.
• Decommissioning does not automatically delete the keys. You must manually delete the keys from the key vault to complete the operation.

OPERANDS
This command has the following operands:

--help -decommission
Displays the command usage help for the device decommissioning commands.
cryptoCfg

--decommission
Decommissions a disk LUN hosted in a specified container as seen from the
initiator. You must issue this command from the node that hosts the container.
Upon successful completion of a decommissioning operation, the LUN is deleted
from all the containers hosting it. All active paths to the LUN are lost; there is no
need to execute a decommissioning operation separately for each path
associated with the LUN. A commit operation is not required. The following
operands are required:

- **-container container_name**
  Specifies the name of the container that hosts the LUN.

- **-initiator initiator_PWWN**
  Specifies the initiator port WWN.

- **-LUN LUN_num**
  Specifies the number of the LUN to be decommissioned.

--delete -decommissionedkeyids
Purges all key IDs associated with decommissioned LUNs from the internal
cache. You must delete the keys manually from the key vaults before purging the
cache.

--show -decommissionedkeyids
Displays the key IDs associated with decommissioned LUNs.

--show -vendorspecifickeyid key_ID
Displays vendor specific key_ID or UUID for a given key_ID.

**EXAMPLES**
The following steps must be performed to decommission a disk LUN:

1. Execute the decommission operation on a LUN
   switch:admin> cryptocfg --decommission -container disk_ct0 \ 
   -initiator 21:01:00:1b:32:29:5d:1c -LUN 0
   Operation succeeded.

2. Display the key IDs to be deleted manually from the vault
   switch:admin> cryptocfg --show -decommissionedkeyids

   Please Delete these keyed from the vault:

   switch:admin> cryptocfg --show vendorspecifickeyid
   uuid = b7e07a6a-db64-40c2-883a-0bc6c4e923e6

3. Manually delete the keys from the vault. This step requires accessing the Key Vault GUI and deleting
   the keys manually.

4. Delete the key IDs from the internal cache.
   switch:admin> cryptocfg --delete -decommissionedkeyids
   operation succeeded

**SEE ALSO** None
dataTypeShow

Displays sample data stream types used in some diagnostic commands.

SYNOPSIS
datatypeshow [-seed value]

DESCRIPTION
Use this command to display sample data stream types used in diagnostic commands. There are 25 different sample data types. The command displays an example of each data stream.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
This command has the following operand:

- seed value
  Specify the data pattern seed value. This operand is optional. The default value is 0.

EXAMPLES
To display sample data streams you can use with diagnostics:

switch:admin> datatypeshow

<table>
<thead>
<tr>
<th>Pattern</th>
<th>type</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYTE_FILL</td>
<td>1</td>
<td>15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15</td>
</tr>
<tr>
<td>WORD_FILL</td>
<td>2</td>
<td>0015 0015 0015 0015 0015 0015 0015 0015 0015 0015 0015 0015 0015 0015 0015 0015 0015 0015</td>
</tr>
<tr>
<td>QUAD_FILL</td>
<td>3</td>
<td>00000015 00000015 00000015 00000015</td>
</tr>
<tr>
<td>BYTE_NOT</td>
<td>4</td>
<td>15 ea 15 ea</td>
</tr>
<tr>
<td>WORD_NOT</td>
<td>5</td>
<td>0015 ffe a 0015 ffe a 0015 ffe a 0015 ffe a</td>
</tr>
<tr>
<td>QUAD_NOT</td>
<td>6</td>
<td>00000015 fffffffea 00000015 fffffffea</td>
</tr>
<tr>
<td>BYTE_RAMP</td>
<td>7</td>
<td>15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24</td>
</tr>
<tr>
<td>WORD_RAMP</td>
<td>8</td>
<td>0015 0016 0017 0018 0019 001a 001b 001c</td>
</tr>
<tr>
<td>QUAD_RAMP</td>
<td>9</td>
<td>00000015 00000016 00000017 00000018 00000019</td>
</tr>
<tr>
<td>BYTE_LFSR</td>
<td>10</td>
<td>1c 38 71 e3 c6 8d 1a 34 68 d0 a0 41 82 04 09 12</td>
</tr>
<tr>
<td>RANDOM</td>
<td>11</td>
<td>14 5b 52 66 77 c5 bc 76 5a 6e d3 e2 de 3b 6b 40</td>
</tr>
<tr>
<td>CRPAT</td>
<td>12</td>
<td>1c bc 23 47 6b 8f b3 d7 fb 14 36 59 bc bc 23 47</td>
</tr>
<tr>
<td>CSPAT</td>
<td>13</td>
<td>7f 7f 7f</td>
</tr>
<tr>
<td>CHALF_SQ</td>
<td>14</td>
<td>b5 b5 b5</td>
</tr>
<tr>
<td>CJTTR_SQ</td>
<td>15</td>
<td>d9 26 d9 26</td>
</tr>
<tr>
<td>RDRAM_PAT</td>
<td>16</td>
<td>ff 00 ff 00</td>
</tr>
<tr>
<td>jCPAT</td>
<td>17</td>
<td>be d7 23 47 6b 8f b3 14 5e fb 35 59 be d7 23 47</td>
</tr>
<tr>
<td>jCJTPAT</td>
<td>18</td>
<td>7e 7e 7e</td>
</tr>
<tr>
<td>jCSPAT</td>
<td>19</td>
<td>7f 7f 7f</td>
</tr>
<tr>
<td>jSJPAT</td>
<td>20</td>
<td>00000015 00000015 00000015 00000015</td>
</tr>
<tr>
<td>jCJPAT</td>
<td>21</td>
<td>7e 7e 7e</td>
</tr>
<tr>
<td>jSJPAT</td>
<td>22</td>
<td>00000015 00000015 00000015 00000015</td>
</tr>
<tr>
<td>jSPAT</td>
<td>23</td>
<td>7e 7e 7e</td>
</tr>
<tr>
<td>jTSPAT</td>
<td>24</td>
<td>7e 7e 7e</td>
</tr>
<tr>
<td>jTSPAT</td>
<td>25</td>
<td>7e 7e 7e</td>
</tr>
</tbody>
</table>

SEE ALSO
None
date

Displays or sets the switch date and time.

SYNOPSIS
date ["newdate"]

DESCRIPTION Use this command to display or set the date and time. All switches maintain current date and time in flash memory. Date and time are used for logging events. Normal switch operation does not depend on the date and time; a switch with incorrect date values continues to function properly.

This command sets a common date and time for the entire fabric. A change in date or time to one switch is forwarded to the principal switch and distributed to the fabric. It may take up to 64 seconds for the switches in the fabric to be synchronized. However, if an FCS policy is enabled, this command can be executed only on the Primary FCS switch, and only the primary FCS switch can distribute the time stamp to all other switches in the fabric.

If Virtual Fabrics are enabled, the date is set for the entire chassis, including all logical switches.

The date specified is always the local switch time, taking into account daylight saving time and the time zone setup of the switch. Each switch takes care of converting the GMT time distributed fabric-wide to its local time. Refer to tsTimeZone for more information on time zone support.

If the switch is operating in FICON Management Server mode (fmsMode), setting the date is subject to the director clock alert mode (DCAM). If DCAM is 1, the operator issues a warning that the switch date is about to change. The operator then prompts to confirm the change with a yes or no response.

NOTES This command becomes read-only if external NTP synchronization is enabled. For more information, refer to tsClockServer.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS This command has the following operand:

"newdate" Specify the new date and time enclosed in double quotation marks. This operand is optional; if omitted, the current date and time is displayed. Date and time are specified as a string in the mmddhhmmyy format.

mm Specifies the month. Valid values are 01 to 12.

dd Specifies the date. Valid values are 01 to 31.

hh Specifies the hour. Valid values are 00 to 23.

mm Specifies the minutes. Valid values are 00 to 59.

yy Specifies the year, valid values are 00 to 37 and 70 to 99. Year values from 70 to 99 are interpreted as 1970 to 1999; year values from 00 to 37 are interpreted as 2000 to 2037.
EXAMPLES  To display the current date and time and then modify it:
switch:admin> date
Thu Mar 24 17:15:00 UTC 2011

switch:admin> date "0324182011"
Thu Mar 24 18:20:26 UTC 2011

SEE ALSO  errShow, ficonCupSet, ficonCupShow, portLogShow, tsClockServer, tsTimeZone, upTime
dbgShow

Displays current values of debug and verbosity levels of the specified module.

SYNOPSIS
dbgshow [module_name]

DESCRIPTION
Use this command to display the current values of debug and verbosity levels of the specified module. If no module name is specified, this command displays a listing of all modules along with debug and verbosity levels.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
This command has the following operand:

module_name
  Specifies the name of the module for which you want to view the debug and verbosity levels. Module names are case-sensitive. This operand is optional.

EXAMPLES
To display information about a specific module named NS:

switch:admin> dbgshow NS
Module NS, debug level = 1, verbose level = 1

SEE ALSO
setDbg
defZone

Sets or displays the default zone access mode.

SYNOPSIS
defzone [-noaccess | --allaccess | --show]

DESCRIPTION Use this command to display or set the Default Zone access mode. Setting the Default Zone mode initializes a zoning transaction (if one is not already in progress), and create reserved zoning objects.

A default zone controls device access when zoning is not enabled. When a user-specified zoning configuration is not enabled, Default Zone is in effect, allowing access to all devices. When a user-specified zone configuration is enabled, it overrides the Default Zone access mode.

NOTES This command must be issued from the primary FCS switch.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

Zone object names beginning with the d_efault_ prefix are reserved for default zoning use. Editing of these objects is not permitted. Therefore, cfgShow does not display the names of these objects.

If d_efault_Cfg is the effective zone configuration, both cfgShow and cfgActvShow do not display d_efault_Cfg as the effective zone configuration.

OPERANDS This command has the following operands:

--noaccess
Sets the default zone access mode to No Access, initializes a zoning transaction (if one is not already in progress), and creates the reserved zoning objects equivalent to the following zoning commands:

• cfgCreate "d_efault_Cfg","d_efault_Zone"
• zoneCreate "d_efault_Zone","00:00:00:00:00:00:00:01"

A cfgSave, cfgEnable, or cfgDisable command must be issued after issuing this command to commit the changes and distribute them to the fabric; for example:

• defzone --noaccess
• cfgsave

An audit log record is generated for each execution of this command.

When No Access default zone is activated, the following conditions apply:

• If the current effective zone configuration is disabled with the cfgDisable command, the local switch converts this command to the equivalent of cfgEnable "d_efault_Cfg".
• If zoning receives a cfgDisable command from a remote switch that does not support default zoning, zoning rejects the cfgDisable command in the second phase of RCS because the remote switch does not convert the cfgDisable command to cfgEnable "d_efault_Cfg".

--allaccess
Sets the default zone access mode to All Access, initiates a zoning transaction (if one is not already in progress), and deletes the reserved zoning objects by performing the equivalent to the following zoning commands:

• cfgDelete "d_efault_Cfg"
• zoneDelete "d_efault_Zone"
A `cfgSave`, `cfgEnable`, or `cfgDisable` command must be performed subsequent to the use of this command to commit the changes and distribute them to the fabric. If a `cfgSave` is performed and the fabric is already in the No Access default zone state, a `cfgDisable` is sent to the fabric. For example:

- `defzone --allaccess`
- `cfgsave`

An audit log record is generated for each use of this command.

--show

Displays the current state of the default zone access mode.

EXAMPLES

To create a default zone configuration:

```bash
primaryfcs:admin> cfgactvshow
Effective configuration:
 No Effective configuration
```

```bash
primaryfcs:admin> defzone --noaccess
primaryfcs:admin> cfgsave
```

```bash
primaryfcs:admin> defzone --show
Default Zone Access Mode
 committed - No Access
 transaction - No Transaction
```

```bash
primaryfcs:admin> cfgactvshow
Effective configuration:
 No Effective configuration: (No Access)
```

SEE ALSO None
diagClearError

Clears the diagnostics failure status.

SYNOPSIS
diagclearerror [[--slot] slot] -all

DESCRIPTION
Use this command to clear the diagnostics failure status. When used without operands, this command clears all port failure flags.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
This command has the following operand:

--slot slot
Specify the slot on which to clear the diagnostics failure status. The default is set to 0 and designed to operate on fixed-port-count products.

-all
If specified, all blades clear.

EXAMPLES
To clear the diag software flag:

switch:admin> diagclearerror --slot 8
ERROR: DIAG CLEARERR
Diagnostics Errors Cleared, port: 8/31
Err# 0120041 081F

SEE ALSO
None
diagDisablePost

Disables the power-on self-test (POST).

SYNOPSIS
diagdisablepost

DESCRIPTION
Use this command to disable POST. A reboot is not required for this command to take effect. Use the
diagPost command to display the current POST status, and use diagEnablePost to enable POST.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS
None

EXAMPLES
To disable the POST:

    switch:admin> diagdisablepost
    Config update Succeeded
    Diagnostic POST is now disabled.

SEE ALSO
diagEnablePost, diagPost
diagEnablePost

Enables the power-on self-test (POST).

SYNOPSIS
diagenablepost

DESCRIPTION
Use this command to enable POST. A reboot is not required for this command to take effect. POST includes two phases: POST Phase I mainly tests hardware and POST Phase II tests system functionality. Use the diagPost command to display the current POST status, and use diagDisablePost to disable POST.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
None

EXAMPLES
To enable POST:

switch:admin> diagenablepost
Config update Succeeded
Diagnostic POST is now enabled.

SEE ALSO
diagDisablePost, diagPost
diagHelp

Displays diagnostic command information.

SYNOPSIS diaghelp

DESCRIPTION Use this command to display a short description of diagnostic commands.

Use default operands when running diagnostics commands. Non-default settings require detailed knowledge of the underlying hardware and are intended for support personnel only. Contact support if you want to use these operands.

NOTES The diagHelp command displays diagnostic commands that may not be available. Execute help command to verify availability.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS None

EXAMPLES To display diagnostic command information:

switch:admin> diaghelp
bpportloopbacktest Functional test of port via blade processor path.
bpturboramtest MBIST test for AP blade BP ASICs
ceeportloopbacktest Functional test of port N->N path.
ceeturboramtest MBIST test for ASICs
(output truncated)

SEE ALSO None
diagPost

Displays the diagnostic power-on self-test (POST) configuration.

SYNOPSIS
diagpost

DESCRIPTION Use this command to display the current POST configuration. Use diagEnablePost or diagDisablePost to modify the POST configuration.

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS None

EXAMPLES To display the current POST configuration:

switch:admin> diagpost
Diagnostic POST is currently disabled.

SEE ALSO None
diagRetry

Sets or displays diagnostic retry mode.

SYNOPSIS
diagretry [mode | -show]

DESCRIPTION
Use this command to enable retry mode if the mode value is nonzero and to disable the retry mode if the
mode value is 0. The mode value is saved in nonvolatile memory until you change the mode. Changes
made by this command do not require a reboot to take effect.

Retry mode modifies the behavior of the diagnostic test methods, power-on self-test (POST), and burn-in
scripts. The exact behavior depends on the tests and scripts that are run.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS
This command has the following optional operands:

mode
   Specify 1 to enable retry mode. Specify 0 to disable the feature.

-show
   Displays the current mode setting. The --show option is equivalent to using the
   command without operands.

EXAMPLES
To view and modify the current retry mode value:

switch:admin> diagretry -show
Diagnostic Retry Mode is currently enabled.

switch:admin> diagretry 0
Config update Succeeded
Diagnostic Retry Mode is now disabled.

switch:admin> diagretry 1
Config update Succeeded
Diagnostic Retry Mode is now enabled.

SEE ALSO
None
diagShow

Displays diagnostics status.

SYNOPSIS
diagshow
  [--slot number]
  [-uports itemlist]
  [-bports itemlist]
  [-use_bports value]

DESCRIPTION
Use this command to display the diagnostics status for the specified list of blade or user ports.

NOTES
On 10 Gbps and 16 Gbps (Condor3-based) platforms, the following output fields display invalid values, unless diagShow is executed while the spinFab or the portTest tests are running: “Speed”, “FrTX”, “FrRX”, “LLI Errs”, “Loopback”, “Total Diag Frames Tx” and “Total Diag Frames Rx”.

You cannot interrupt the test by pressing the return key (<cr>).

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
This command has the following optional operands:

  --slot number
  Specify which slot to operate on. If this option is not specified, the default slot 0 is used. The default slot is designed to operate on fixed-port-count products. By default, this command displays information for all user ports in the system.

  -uports itemlist
  Specify a list of user ports.

  -bports itemlist
  Specify a list of blade ports.

  -use_bports value
  If this value is nonzero, this command displays the diagnostics status for the blade ports specified in -use_bports; otherwise, the command displays information for the user ports specified in -uports. The default value is 0.

EXAMPLES
To display diagnostic status on a switch blade:

  switch:admin> diagshow
  Diagnostics Status:  Fri Feb 08 15:25:24 2002
  Slot: 1 UPORTS
  Port  BPort  Diag  Active  Speed       ......
  0     15     OK    UP     2G Auto      ......
  1     14     OK    UP     2G Auto      ......
  2     13     OK    UP     2G Auto      ......
  3     12     OK    UP     2G Auto      ......
  4     31     OK    UP     2G Auto      ......
  5     30     OK    UP     2G Auto      ......
  6     29     OK    UP     2G Auto      ......
  7     28     OK    UP     2G Auto      ......
  8     47     OK    UP     2G Auto      ......
  (output truncated)

SEE ALSO
  itemList
distribute

Distributes data to switches in a fabric.

SYNOPSIS

distribute -p policy_list -d switch_list

DESCRIPTION

Use this command to distribute data to a specified list of switches in the fabric. The distributed data must be from the list of currently supported policy sets:

- **SCC**
  - Switch Connection Control Policy
- **DCC**
  - Device Connection Control Policy
- **PWD**
  - Password Database and Password Configuration Policy
- **AUTH**
  - E_Port and F_Port Authentication Policy
- **FCS**
  - Fabric Configuration Server Policy

Each supported database has a switch-local configuration parameter that controls whether the database can be distributed and accepts distributions. Use the `fddCfg` command to view and modify these parameters.

NOTES

IP Filter policies cannot be distributed with the distribute command. Use the `chassisDistribute` command.

The password database received from a switch running pre-v6.3.0 firmware will be rejected by a Virtual Fabric-enabled v6.3.0 chassis if it has more than one logical switch.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

- **-p policy_list**
  - Specify the list of policy sets, also called security databases, to be distributed. `policy_list` is a semicolon-separated list. Valid values include SCC, DCC, PWD, AUTH, and FCS.

- **-d switch_list**
  - Specify the list of switches that should receive the data distribution. The `switch_list` is a semicolon-separated list of one of the following:
    - Switch domain IDs
    - Switch names
    - Switch WWNs
  - A wildcard (*) may be specified to include all switches in the fabric that support the distribute feature.

EXAMPLES

To distribute the Switch Connection Control Policy and Device Connection Control Policy to domains 3 and 5 in the fabric:

```
switch:admin> distribute -p "SCC;DCC" -d "3;5"
```
To distribute the Switch Connection Control Policy, Fabric Configuration Server Policy, and Password database to all domains in the fabric that support the `distribute` feature:

```
switch:admin> distribute -p "SCC;FCS;PWD" -d "***"
Wildcard domains are:
1 3 5
```

To distribute the FCS policy, and the Password database to all domains in the fabric that support the `distribute` feature:

```
switch:admin> distribute -p "FCS;PWD" -d "***"
```

To distribute the AUTH and FCS policies to all switches in the fabric that run Fabric OS v5.3.0 or later:

```
switch:admin> distribute -p "AUTH;FCS" -d "***"
```

To distribute the AUTH and SCC policies to domains 1 and 3 in the fabric:

```
switch:admin> distribute -p "AUTH;SCC" -d "1;3"
```

SEE ALSO  `fddCfg`
dlsReset

Disables Dynamic Load Sharing (DLS).

SYNOPSIS
dlsreset

DESCRIPTION
Use this command to disable Dynamic Load Sharing.

If DLS is turned off, load sharing calculations are used only to place new routes. Once placed, existing routes are never moved from one output E_Port to another, unless the original output E_Port is no longer a recognized path to the remote domain. Optimal balance is rarely achieved with this setting. Refer to the dlsSet help page for a full description of load sharing options, including the Lossless feature.

The behavior of this command depends on the routing policies configured on the switch:

- If a port-based routing policy is in place, DLS is disabled by default, and dlsReset returns the DLS setting to default. If Lossless was enabled, this command removes the Lossless option along with the DLS feature and returns a message stating that "DLS is not set".
- If an exchange-based routing policy is in place, DLS is always enabled. It cannot be disabled and the dlsReset command fails. The command generates a message stating that "DLS cannot be changed with current routing policy". If Lossless is enabled, the feature remains enabled until you disable it with the dlsSet --disable -lossless command.
- If DLS is already disabled, the command output confirms the disabled status: "DLS is not set (unchanged).

Refer to aptPolicy for information on routing policies.

NOTES
The Lossless feature is not supported on GbE ports and FCoE ports. On unsupported platforms, this command exits with an appropriate message.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
None

EXAMPLES
To disable the Dynamic Load Sharing option on a switch with a port-based routing policy and DLS enabled:

    switch:admin> dlsreset
    DLS is not set

To execute dlsReset on a switch with an exchange-based routing policy and DLS enabled:

    switch:admin> dlsreset
    DLS cannot be changed with current routing policy

SEE ALSO
    aptPolicy, dlsSet, dlsShow
dlsSet

Enables Dynamic Load Sharing (DLS) without frame loss.

SYNOPSIS

dlsset

dlsset --enable -lossless

dlsset --disable -lossless

dlsset --help

DESCRIPTION

Use this command to enable or disable Dynamic Load Sharing (DLS) in the event of a fabric change, to
configure DLS without frame loss, and to display the DLS configuration.

Dynamic load sharing optimizes the utilization of the interswitch links (ISLs) by rebalancing the paths
going over the ISLs whenever there is a fabric event that may result in a sub-optimal utilization of the ISL.
Dynamic rebalancing can be triggered by any one of the following events:

- A change in the fabric occurs.
- A local E_Port (including trunk ports) goes up or down.
- A local Fx_Port goes down.

When used without operands, this command enables Dynamic Load Sharing on a switch (legacy DLS
behavior). Frames may be lost during reroute operations. If the switch has an exchanged-based routing
policy, DLS is enabled by default and this command fails with the following message: "DLS can not be
changed with current routing policy."

During the load sharing recomputation, existing routes may be moved to maintain optimal load balance.
Frame loss is unavoidable when a port goes down. To prevent frames from being lost during this
operation, you can enable DLS without frame loss by issuing this command with the --enable -lossless
option.

Dynamic load sharing without frame loss is supported in logical fabrics and is configured per logical
switch. However, there is a potential impact on other logical switches because they share the same
hardware. Chassis permissions are required to configure DLS in a logical fabric environment.

For example, assume a chassis is partitioned as follows: logical switch LS1 consists of ports 1/0-1/5, and
logical switch LS2 consists of ports 1/6-1/10. Lossless is enabled on logical switch LS1. Because the
ports 1/0-1/10 share the same chip, traffic in LS2 is affected whenever traffic for LS1 on ports 1/0-1/5 is
rebalanced. The impact on LS2 depends on the configuration on LS2:

- If the Lossless feature is enabled on LS1, traffic pauses and resumes without frame loss on both
  switches at the same time.
- If the Lossless feature is disabled on LS1, traffic on LS2 is not affected.
NOTES
For switches running Fabric OS v7.1.0 or later, you can enable Lossless (or enable Fabric Management Server mode) when XISL is enabled and enable XISL when Lossless or Fabric Management Server mode is enabled.

When you downgrade from Fabric OS v7.1.x to Fabric OS v7.0.x the following rules apply: If Lossless (or Fabric Management Server mode) and XISL use are not enabled at the same time, firmware download can be executed. If both of them are enabled, firmware download is rejected with an error message.

If the active control processor (CP) runs Fabric OS v7.1.x or later, and the standby CP runs Fabric OS v7.0.x and if both Lossless (or Fabric Management Server mode) and XISLs are enabled, High Availability synchronization will fail. Otherwise, standby CP will synchronize with the active CP. After the synchronization of the active and standby CP, enabling Lossless (or Fabric Management Server mode), when XISL is enabled, is rejected with an error message. Enabling XISL, when Lossless (or Fabric Management Server mode) is enabled, is also rejected with an error message.

Use the configure command to disable XISL use.

Lossless is supported with both exchange-based and port-based routing policies. Behavior depends on the kind of policy configured and concurrent IOD settings. Refer to the Fabric OS Administrator’s Guide for information on how to optimize your configuration. Refer to the aptPolicy help page for more information on routing policies.

The Lossless feature is not supported on GbE ports and FCoE. On unsupported platforms, this command exits with an appropriate message.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
--enable -lossless
Enables the Lossless feature. Frame loss is reduced while the path is rerouted. If DLS is set on the switch, this command adds the Lossless feature to the existing DLS legacy mode. If DLS is not set on the switch, this command enables both DLS and the Lossless feature. The Lossless feature is disabled by default.

--disable -lossless
Disables the previously enabled Lossless feature. Execution of this command is equivalent to the legacy dlsSet command. Dynamic load balancing is enforced but not without frame loss. DLS (legacy mode) continues to be enabled after Lossless is disabled. Use dlsReset to disable DLS completely.

--help
Displays the command usage.

EXAMPLES
DLS configuration commands on a switch with an exchange-based policy:

```
switch:admin> aptpolicy
Current Policy: 3 0(ap)

3 0(ap) : Default Policy
1: Port Based Routing Policy
3: Exchange Based Routing Policy
0: AP Shared Link Policy
1: AP Dedicated Link Policy
```

```
switch:admin> dlsshow

DLS is set by default with current routing policy
DLS is set with Lossless enabled
```
switch:admin> dlsreset
DLS can not be changed with current routing policy

switch:admin> dlsset
DLS can not be changed with current routing policy

switch:admin> dlsset --enable -lossless
Lossless is set

switch:admin> dlsset --disable -lossless
Lossless is not set

switch:admin> dlsshow
DLS is set by default with current routing policy

DLS configuration commands on a switch with a port-based policy:

switch:admin> dlsshow
DLS is set by default with current routing policy
DLS is set with Lossless enabled

switch:admin> dlsreset
DLS is not set

switch:admin> dlsshow
DLS is not set

switch:admin> dlsset --enable -lossless
DLS and Lossless are set

switch:admin> dlsshow
DLS is set with Lossless enabled

switch:admin> dlsset
Lossless is set (unchanged)

switch:admin> dlsset --disable -lossless
Lossless is not set

switch:admin> dlsshow
DLS is not set
To attempt to enable Lossless while XISL use is enabled:

```
switch:admin> dlsset --enable -lossless

Lossless option cannot be enabled when XISL use is allowed.
Please disable the switch with 'switchdisable' and run 'configure' to disallow XISL use before enabling Lossless.
```

SEE ALSO aptPolicy, dlsReset, dlsShow, iodReset, iodSet, iodShow, uRouteShow, topologyShow
dlsShow

Displays the setting of the Dynamic Load Sharing (DLS) option.

SYNOPSIS
dlsshow

DESCRIPTION
Use this command to display information about Dynamic Load Sharing configuration settings on the switch. Depending on the configuration, the command output displays one of the following messages:

- **DLS is set** - DLS is enabled without the Lossless feature. Load sharing is reconfigured with every change in the fabric, and existing routes can be moved to maintain optimal balance. No attempt is made to prevent frames from being lost while load sharing is recomputed.

- **DLS is not set** - DLS is disabled. Existing routes are never moved to maintain optimal balance. If the Lossless option was enabled before you disabled DLS, it is now disabled as well. This means, frame loss is not prevented during a load sharing recomputation.

- **DLS is set with Lossless enabled** - DLS is enabled with the Lossless feature. Load sharing is recomputed with every change in the fabric, and existing routes can be moved to maintain optimal balance. In Lossless mode, no framers are lost during this operation.

- **DLS is set by default with current routing policy. DLS is set with Lossless enabled** - Indicates that the current routing policy (Exchange-based) requires DLS to be enabled by default. In addition, the Lossless option is enabled. Frame loss is prevented during a load sharing recomputation.

Refer to **dlsSet** for a description of load sharing.

NOTES
The Lossless feature is not supported on GbE ports and FCoE ports. On unsupported platforms, this command exits with an appropriate message.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
None

EXAMPLES
To display the current DLS configuration on a switch with port-based routing:

```
switch:admin> dlsshow
DLS is set with Lossless enabled.
```

SEE ALSO
**dlsSet, dlsReset**
**dnsConfig**

Sets, displays, or removes domain name service (DNS) parameters.

**SYNOPSIS**

```
dnsconfig

dnsconfig --add -domain name -serverip1 ipaddr serverip2 ipaddr

dnsconfig --delete

dnsconfig --show

dnsconfig --help
```

**DESCRIPTION**

Use this command to display, set, or remove the domain name service parameters. The domain name service parameters are the domain name and the name server IP address for primary and secondary name servers. The `dnsconfig` command displays IPv4 and IPv6 addresses.

**NOTES**

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

This command has the following operands:

---

```
--add
```

Sets the DNS configuration.

```
-domain name
```

Specifies the DNS domain name.

```
-serverip1 ipaddr
```

Specifies the DNS primary server IP address. The IP address can be an IPv4 or IPv6 address.

```
-serverip2 ipaddr
```

Specifies the DNS secondary server IP address. The IP address can be an IPv4 or IPv6 address.

---

```
--delete
```

Removes the DNS configurations.

---

```
--show
```

Displays the current DNS configuration.

---

```
--help
```

Displays the command usage.

**EXAMPLES**

To set the DNS parameters for the system:

```
switch:admin> dnsconfig

Enter option
1 Display Domain Name Service (DNS) configuration
2 Set DNS configuration
3 Remove DNS configuration
4 Quit
Select an item: (1..4) [4] 2

Enter Domain Name: [] domain.com
```
Enter Name Server IP address in dot notation: []
   123.123.123.123
Enter Name Server IP address in dot notation: []
   123.123.123.124
DNS parameters saved successfully

Enter option
1 Display Domain Name Service (DNS) configuration
2 Set DNS configuration
3 Remove DNS configuration
4 Quit
Select an item: (1..4) [4] 4

To configure the DNS domain name, DNS server address:

switch:admin> dnsconfig --add -domain www.cp0.com
       serverip1 192.168.1.1  serverip2 192.168.201.1
DNS parameters saved successfully.

To delete the DNS configurations:

switch:admin> dnsconfig --delete
DNS parameters removed successfully.

To display the DNS configurations:

switch:admin> dnsconfig --show
Domain Name Server Configuration Information

Domain Name       = www.cp0.com
Name Server IP Address = 192.168.1.1
Name Server IP Address = 192.168.201.1

SEE ALSO configDownload, configUpload, firmwareDownload, ipAddrSet, ipAddrShow
enclosureShow

Displays attributes of the switch enclosure.

SYNOPSIS

enclosureshow attribute

DESCRIPTION

Use this command to display attributes of the switch enclosure, including the vendor-specific enclosure identifier and the identifier of the enclosure interface to which the switch is attached.

This command applies to products that are embedded in a blade server or storage chassis. Most options are platform-specific. Options that do not apply to a platform are identified with a "Not supported on this platform" message.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operand:

attribute

Specifies the enclosure attribute. Valid attributes include the following:

id

The vendor-specific enclosure identifier.

modelName

The vendor-specific enclosure model name.

slotid

The identifier of the enclosure interface to which the switch is attached.

rackname

The name assigned by the enclosure manager to the rack.

rackid

The serial number assigned by the enclosure manager to the rack.

enclosurename

The name assigned by the enclosure manager to the enclosure.

enclosureid

The serial number assigned by the enclosure manager to the enclosure.

connname

The product name used by the enclosure manager for the switch model.

connaddr

The connector address used by the enclosure manager for this switch (indicates the physical position of the switch in the enclosure).

connid

The serial number of the switch used by the enclosure manager (not to be confused with the Factory Serial Number).

conntype

The connector type used by the enclosure manager for this model of switch.

connloc

The switch location within the enclosure.

connpres

Information about the presence of the switch that is used by the enclosure manager.
enclosureShow

- **connfuse**: Information about whether or not the switch has a fuse.
- **uuid**: The Universal Unique ID for the switch if visible to the enclosure manager.
- **mmmacaddr**: The enclosure manager's Ethernet MAC Address.
- **snmpports**: The SNMP agent and trap ports if visible to the enclosure manager.

**EXAMPLES**

To display the identifier of the enclosure interface to which the switch is attached:

```
switch:admin> enclosureShow slotid
Bay 4
```

**SEE ALSO**

chassisShow
errClear

Clears all error log messages for all switch instances on this Control Processor (CP).

SYNOPSIS

errclear

DESCRIPTION

Use this command to clear all internal and external error log messages for all switch instances on the CP where the command is executed. For products with a single processor, all error log messages are cleared. For products that contain multiple processors, this command can be executed on either control processor. It clears the error log only on the CP where the command is executed. For example, to clear the error log on the standby CP, issue errclear on the standby CP.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To clear the error log messages:

switch:admin> errclear

SEE ALSO

errDump, errShow
errDelimiterSet

Sets the error log start and end delimiters for messages sent to the console and syslog.

SYNOPSIS
errdelimiterset
[-s "start_delimiter_string"]
[-e "end_delimiter_string"]

DESCRIPTION
Use this command to set the error log start and end delimiters for log messages sent to the console and syslog. An empty string clears the start and the end delimiters (including the colon) so that they are not displayed.

When used without operands, this command displays the existing errDelimiterSet configuration. The delimiter configuration is stored persistently.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

Start and end delimiters are displayed only at the console; they are not displayed in a Telnet session or in the RASLog.

OPERANDS
This command has the following operands:

- -s "start_delimiter_string"
  Specifies an alphanumeric string for the start delimiter. The string can be up to 10 characters long and must be enclosed in double quotation marks. This operand is optional.

- -e "end_delimiter_string"
  Specifies the alphanumeric string for the end delimiter. The string can be up to 10 characters long and must be enclosed in double quotation marks. This operand is optional.

EXAMPLES
To display the start and end delimiters:

switch:admin> errdelimiterset
delimiter start string: <none> 
delimiter end string: <none>

To change the start and end delimiters (with sample output):

switch:admin> errdelimiterset -s "Start" -e "End"

switch:admin> errdelimiterset
delimiter start string: Start
delimiter end string: End

Sample output:
Start2003/03/10-09:54:03, [NS-1002], 1035,, ERROR, 
SWITCH43, Name Server received an invalid request 

SEE ALSO errDump, errFilterSet, errShow
errDump

Displays the error log without pagination.

SYNOPSIS

errdump [--all]
errdump [--count number]
errdump [--reverse]
errdump [--severity severity]
errdump [--slot slotnum]
errdump [--attribute attribute]
errdump [--message msgID]
errdump [--help]

DESCRIPTION

Use this command to dump external error log messages without any page breaks. When executed without operands, this command prints all error messages for the logical switch context in which the command is executed.

The output of this command is unique for each control processor (CP). On dual CP systems this command must be executed on each CP to obtain a complete record.

The following information is displayed in each message:

Start delimiter

Delimiter string for the start of a message.

Timestamp

Timestamp for the message.

Message ID

Message identifier.

External sequence number

Sequence number for the message.

Security audit flag

Security audit message displayed as AUDIT.

Severity

Severity of the message. Valid values include INFO, WARNING, ERROR, and CRITICAL.

Switch name

Switch name for the generator of this message, or "chassis".

Message

Message body.

End delimiter

Delimiter string for the end of a message.
errDump

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
This command has the following operands:

--all
Displays messages for the entire chassis for a user with admin and chassis permissions. This operand is optional; if omitted, the messages for the current logical switch context are displayed.

--count number
Displays messages based on count value.

--reverse
Displays messages in reversed order. This operand is optional; if omitted, the messages display in chronological order.

--severity severity
Displays messages based on severity.

  CRITICAL
  Displays critical messages.

  ERROR
  Displays error messages.

  WARNING
  Displays warning messages.

  INFO
  Displays informational messages.

--slot slotnum
Displays messages based on slot.

--attribute attribute
Displays messages with the given attribute. Valid attributes values are ALL and FFDC.

--message msgID
Displays all raslog messages based on the message ID.

--help
Displays command usage.

EXAMPLES
To display the error log for the chassis:

switch:admin> errdump --all
Fabric OS: v7.0.0

2010/12/17-22:29:17, [SEC-1203], 9036, CHASSIS, INFO, 
  Spir_67, Login information : Login successful via \ 
  TELNET/SSH/RSH. IP Addr: 10.106.7.62

2010/12/17-22:29:17, [ZONE-1022], 9037, CHASSIS, INFO, 
  Spir_67, The effective configuration has changed to meh.

2010/12/17-22:29:17, [FABR-1001], 9041, CHASSIS, WARNING, 
  Spir_67, port 0, incompatible Long distance mode.

2010/12/17-22:29:17, [LOG-1000], 9043, CHASSIS, INFO, 
  Spir_67, Previous message repeated 1 time(s)
(output truncated)
To display messages for a slot:

```bash
switch:admin> errdump --slot 4
Fabric OS: v7.1.0

2012/06/19-03:26:44, [HAM-1004], 31, SLOT 4 | CHASSIS, INFO, \pluto_19, Processor rebooted - Reboot.

2012/06/19-03:26:44, [SULB-1003], 32, SLOT 4 | CHASSIS, INFO, \pluto_19, Firmwarecommit has started.

2012/06/19-03:26:44, [IPAD-1001], 33, SLOT 4 | CHASSIS, INFO, \pluto_19, CP/1 IPv6 manual fe80::224:38ff:fe1b:4400 DHCP Off.

2012/06/19-03:29:15, [IPAD-1000], 48, SLOT 4 | CHASSIS, INFO, \pluto_19, CP/0 Ether/0 IPv6 autoconf fd00:60:69bc:816:205:1eff:fe84:3f49/64 tentative DHCP Off.

2012/06/19-03:29:15, [IPAD-1000], 51, SLOT 4 | CHASSIS, INFO, \pluto_19, CP/1 Ether/0 IPv6 autoconf fd00:60:69bc:816:205:1eff:fe84:4aa1/64 tentative DHCP Off.
```

To display messages based on severity:

```bash
switch:admin> errdump --severity WARNING
Fabric OS: v7.1.0

2012/06/18-20:24:52, [SULB-1001], 2, SLOT 5 | CHASSIS, WARNING, \pluto_19, Firmwaredownload command has started.

2012/06/18-20:36:08, [FSSM-1003], 6, SLOT 5 | CHASSIS, WARNING, \pluto_19, HA State out of sync.

2012/06/18-20:36:11, [FABR-1001], 8, SLOT 5 | FID 128, WARNING, \sw0, port 268, ESC detected Fabric ID conflict with neighbor \(FID 10).

2012/06/18-20:36:11, [FABR-1001], 9, SLOT 5 | FID 128, WARNING, \sw0, port 281, ESC detected Fabric ID conflict with neighbor \(FID 20).

2012/06/18-20:36:11, [FABR-1001], 10, SLOT 5 | FID 128, WARNING, \sw0, port 265, ESC detected Fabric ID conflict with neighbor\(FID 1).
```

To display messages based on attributes:

```bash
switch:admin> errdump --attribute FFDC
Fabric OS: v7.1.0

2012/06/19-03:58:42, [LOG-1001], 81, SLOT 5 | FFDC | CHASSIS, \WARNING, pluto_19, A log message was dropped
```

To display messages based on count value:

```bash
switch:admin> errdump --count 3
Fabric OS: v7.1.0

2012/06/18-20:23:09, [LOG-1003], 1, SLOT 5 | CHASSIS, INFO, \pluto_19, The log has been cleared.
```
errDump

2012/06/18-20:24:52, [SULB-1001], 2, SLOT 5 | CHASSIS, WARNING, pluto_19, Firmwaredownload command has started.

2012/06/18-20:24:52, [SULB-1036], 3, SLOT 5 | CHASSIS, INFO, pluto_19, The current Version: Fabric OS v7.1.0

To display raslog messages based on a message ID:

switch:admin> errdump --message SEC-1203
Fabric OS: v7.1.0


2012/11/22-10:27:41, [SEC-1203], 21, FID 128, INFO, switch, Login information: Login successful via TELNET/SSH/RSH. IP Addr: 10.70.4.109

SEE ALSO errDelimiterSet, errFilterSet, errShow
errFilterSet

Sets a filter for an error log destination.

SYNOPSIS

errfilterset [-d destination][-v severity]

DESCRIPTION

Use this command to set a filter for an error log destination. A filter is set based on the severity level of
the messages.

When used without operands, this command displays the filters that are currently in configured.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS

This command has the following operands:

-d destination

Specifies the destination for the filter. The string console is the only valid value at
this time.

-v severity

Specifies the minimum severity level of the message to pass through the filter.
Valid values are INFO, WARNING, ERROR, or CRITICAL. Input values are not
case-sensitive.

EXAMPLES

To display the current filter settings:

switch:admin> errfilterset

console: filter severity = WARNING

To set the filter severity level for the console:

switch:admin> errfilterset -d console -v warning

SEE ALSO

errDump, errShow
errModuleShow

Displays all the defined error log modules.

SYNOPSIS  errmoduleshow

DESCRIPTION Use this command to display a list of all defined error log modules.

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS None

EXAMPLES To display a list of all defined error log modules:

switch:user> errmoduleshow
Module IDs:

 1 KT          2 UT          3 TRCE        4 KTRC
 5 LOG         6 CDR         7 BLPU        8 PISP
 9 PIXE       10 EGR         11 BL         12 PIC
13 PS         14 RTE         15 AS         16 AUTH
17 BLDE       18 BLM         19 BPRT       20 CER
21 CFLD       22 CFMN        23 CHPS       24 CONF
(output truncated)

SEE ALSO  errDump, errShow
errShow

Displays the error log messages with pagination.

SYNOPSIS  errshow [-a | -r]

DESCRIPTION  Use this command to display external error log messages one at a time. When executed without
operator, this command prints the error messages for the logical switch context in which the command
is executed. When used with the -a option, the command prints the error messages for the entire
chassis. The messages are displayed with page breaks. The -r operand displays the messages in
reversed order.

The output of this command is unique for each Control Processor (CP). On dual CPs this command must
be executed on each CP to obtain a complete record.

The following information displays in each message:

Start delimiter  Delimiter string for the start of a message.

Timestamp  Timestamp for the message.

Message ID  Message identifier.

External sequence number  Sequence number for the message

Security audit flag  Security audit message displayed as AUDIT.

Severity  Severity of the message. Valid values include INFO, WARNING, ERROR, and
CRITICAL.

Switch name  Switch name for the generator of this message, or "chassis".

Message  Message body.

End delimiter  Delimiter string for the end of a message.

NOTES  The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS  This command has the following operands:

-a  Displays messages for the entire chassis for a user with admin and chassis
permissions. This operand is optional; if omitted, the messages for the current
logical switch context are displayed.

-r  Displays messages in reversed order. This operand is optional; if omitted, the
messages display in the chronological order.
 EXAMPLES  To display the error log for the chassis:

```
switch:admin> errshow -a
Fabric OS: v7.2.0

2013/06/11-10:16:07, [SEC-1203], 261, FID 128, INFO, \n switch, Login information: Login successful via \ TELNET/SSH/RSH. IP Addr: 192.0.2.2

[Type <CR> to continue, Q<CR> to stop:

2013/06/11-10:44:13, [TS-1002], 262, FID 128, INFO, \ switch, External Clock Server used instead of \ LOCL: locl: 0x45585400 remote: 0x4c4f434c.

[Type <CR> to continue, Q<CR> to stop:

2013/06/11-11:00:49, [SNMP-1005], 287, FID 128, INFO, \ switch, SNMP configuration attribute, SNMPv3 Trap \ Recipient IP Address 6, has changed from [192.0.2.10] \ to [0.0.0.0].

[Type <CR> to continue, Q<CR> to stop:

2013/06/11-11:00:49, [SNMP-1005], 288, FID 128, INFO, \ switch, SNMP configuration attribute, SNMPv3 Trap \ Recipient Severity Level 6, has changed from 4 to 0.

[Type <CR> to continue, Q<CR> to stop:

SEE ALSO errDelimiterSet, errDump, errFilterSet
exit

DESCRIPTION See logout.

SEE ALSO None
fabRetryShow

Displays the retry count of the fabric commands.

SYNOPSIS

fabretryshow

DESCRIPTION

Use this command to display the retry count of the fabric commands. For each port, the command output displays counts for the following Switch Internal Link Service (SW_ILS) requests:

- **ELP**: Exchange Link Parameters
- **EFP**: Exchange Fabric Parameters
- **HA_EFP**: Exchange Fabric Parameters used during warm recovery
- **DIA**: Domain Identifier Assigned
- **RDI**: Request Domain Identifier
- **BF**: Build Fabric
- **FWD**: Fabric Controller Forward
- **EMT**: Fabric Controller Mark Timestamp
- **ETP**: Fabric Controller Trunk Parameters
- **RAID**: Return Address Identifier
- **GAID**: Get Address Identifier
- **ELP_TMR**: Used internally for fabric application (not a SW_ILS)
- **GRE**: Get Route Entry
- **ECP**: Exchange Credit Parameters
- **ESC**: Exchange Switch Capabilities
- **EFMD**: Exchange Fabric Membership Data
- **ESA**: Exchange Security Attributes
- **DIAG_CMD**: Diagnostic Command
NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS None

EXAMPLES To display the retry count of Fabric OS Commands:

```
switch:user> fabretryshow

SW_ILS
  E_Port  ELP  EFP  HA_EFP  DIA  RDI  BF  FWD  EMT  ETP  RAID
  34     0    0    0      0    0    0    0    0    0    0
  35     0    0    0      0    0    0    0    0    0    0

GAID  ELP_TMR  GRE  ECP  ESC  EFMD  ESA  DIAG_CMD
  0    0       0    0    0    0    0    0
  0    0       0    0    0    0    0    0
```

SEE ALSO None
fabRetryStats

Displays or manages the retry count of fabric commands.

SYNOPSIS

fabretrystats --show
fabretrystats --clear
fabretrystats --help

DESCRIPTION

Use this command to view and clear the retry count of the fabric commands. The --clear option clears the counters for all the Switch Internal Link Service (SW_ILS) requests. For each E/D_Port, the --show option displays the counters for the following Switch Internal Link Service (SW_ILS) requests:

- **ELP**: Exchange Link Parameters
- **EFP**: Exchange Fabric Parameters
- **HA_EFP**: Exchange Fabric Parameters used during warm recovery
- **DIA**: Domain Identifier Assigned
- **RDI**: Request Domain Identifier
- **BF**: Build Fabric
- **FWD**: Fabric Controller Forward
- **EMT**: Fabric Controller Mark Timestamp
- **ETP**: Fabric Controller Trunk Parameters
- **RAID**: Return Address Identifier
- **GAID**: Get Address Identifier
- **ELP_TMR**: Used internally for fabric application (not a SW_ILS)
- **GRE**: Get Route Entry
- **ECP**: Exchange Credit Parameters
- **ESC**: Exchange Switch Capabilities
- **EFMD**: Exchange Fabric Membership Data
- **ESA**: Exchange Security Attributes
DIAG_CMD

Diagnostic Command

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

--show

Displays the retry count of fabric commands for all E_Ports and D_Ports.

--clear

Clears the retry count of fabric commands.

--help

Displays the command usage.

EXAMPLES

To display the retry count of fabric commands:

```
switch:admin> fabretrystats --show
SW_ILS
-----------------------------------------------------------
E/D_Port   ELP   EFP   HA_EFP  DIA   RDI   BF    FWD   EMT  
-------------------------------------------------------------------------------
 3          1      0      0      0    0     0     0      0 
12         0      0      0      0    0     0     0      0 
ETP   RAID  GAID  ELP_TMR   GRE   BCP   ESC   EFMD  ESA   DIAG_CMD
0      0    0       0       0     0     0      0    0     0 
0      0    0       0       0     0     0      0    0     0 
```

To clear the retry count of fabric commands:

```
switch:admin> fabretrystats --clear
switch:admin> fabretrystats --show
SW_ILS
-----------------------------------------------------------
E/D_Port   ELP   EFP   HA_EFP  DIA   RDI   BF    FWD   EMT  
-------------------------------------------------------------------------------
 3          0      0      0      0    0     0     0      0 
12         0      0      0      0    0     0     0      0 
ETP   RAID  GAID  ELP_TMR   GRE   BCP   ESC   EFMD  ESA   DIAG_CMD
0      0    0       0       0     0     0      0    0     0 
0      0    0       0       0     0     0      0    0     0 
```

SEE ALSO

fabRetryShow, fabStatsShow
fabricLog

Displays (all users) or manipulates (admin) the fabric log.

SYNOPSIS

```
fabriclog -s | --show [dport]
fabriclog -c | --clear [dport]
fabriclog -d | --disable
fabriclog -e | --enable
fabriclog -r size | --resize size
fabriclog -h | --help
```

DESCRIPTION

Use this command to display, clear, disable, enable, or resize the fabric log. When used with the `--show` option, this command displays the following information:

- **Time Stamp**: Time of the event in the following format `HH:MM:SS:MS`.
- **Input and *Action**: Fabric log message. An asterisk (*) in the message indicates an action. The link reset information is indicated by LR_IN and LR_OUT. LR_IN indicates a link reset on the remote switch, whereas LR_OUT indicates a link reset on the local switch.
- **S**: Current switch state. Valid switch states include the following:
 - **FO**: Build Fabric (BF) received.
 - **F1**: Reconfigure Fabric (RCF) is not supported.
 - **F2**: Exchange Fabric Parameters (EFP) is waiting for last Accept Frame (ACC) from flood.
 - **F3**: Flood EFPs.
 - **D0**: The switch is the principal switch.
 - **D1**: The principal switch is sending Domain ID Assigned (DIA).
 - **D2**: The principal switch is waiting for Request Domain ID (RDI).
 - **D3**: The principle switch is processing the RDI.
 - **A0**: The switch is not the principal switch.
 - **A1**: The non-principal switch is sending a DIA.
 - **A2**: The non-principal switch is waiting for an RDI.
A3
The non-Principal switch is processing an RDI.

S0
The switch is in offline state.

P
Port state. Port states include the following:

PO
The port is offline.

P1
The port is online.

P2
Exchange Link Parameters (ELP) Accept Frame (ACC) received.

P3
Link reset occurred on master or E_Port.

I0
Trunk Initiator: Exchange Mark Timestamp (EMT) sent.

I1
Trunk Initiator: Exchange Trunking Parameters (ETP) Accept Frame (ACC) received.

I2
Trunk Initiator: ETP sent.

I3
Trunk Initiator: Link reset occurred.

I4
Trunk Initiator: Link reset done on slave.

T0
Trunk Target: EMT received.

T1
Trunk Target: ETP received.

T2
Trunk Target: Link reset.

T3
Trunk Target: Link reset done on slave.

LD
Dynamic long distance ECP sent or received.

ESC
Exchange Switch Capabilities (ESC) state between P2 and P3.

Sn
Next switch state. Refer to switch states for valid states.

Pn
Next port state. Refer to port states for valid states.

Port
Port number, if applicable, or NA

Xid
OXID (Exchange ID) Port number, if applicable, or NA

Refer to the FC-SW-5 specification for more information on the port and switch states logged by this command.
fabricLog

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
This command has the following operands:
-s | --show [dport]
Displays the fabric log. Optionally displays the D_Port logs only.
-c | --clear [dport]
Clears the fabric log. Optionally clears the D_Port logs only.
-d | --disable
Disables the fabric log. By default, the fabric log is enabled.
-e | --enable
Enables the fabric log.
-r size | --resize size
Changes the maximum number of log entries. The specified size must be at least 2 and a power of 2; otherwise, the command fails.
-h | --help
Displays the command usage.

EXAMPLES
To display the fabric log:

```bash
switch:admin> fabriclog -s
Time Stamp    Input and *Action              S, P Sn,Pn Port
Xid
=============================================================================
Switch 0; Thu Feb 23 06:55:59 2012 GMT (GMT+0:00)
06:55:59.661357 *Fss Init              NA,NA  NA,NA  NA    NA
06:55:59.661606 *Initiate State        NA,NA  F2,NA  NA
06:56:03.242214 Rcv FSS_RECOV_COLD     F2,NA  F2,NA  NA
06:59.963652 SCN LR_PORT (0);g=0x22; LR_IN A2,P0  A2,P0  41
06:58.772930 SCN Port Online;g=0x0;    F2,P0  F2,P1  11
(output truncated)
```

To change the size of the fabric log:

```bash
switch:admin> fabriclog -r 64
Warning: This command will clear the logs.
Are you sure you want to do the resize [y/n]? y
```
To display the cleared fabric log after the size was changed:

```
switch:admin> fabriclog -s
Time Stamp  Input and *Action    S, P   Sn,Pn  Port  Xid
=========================================================
Number of entries: 0
Max number of entries: 64
```

SEE ALSO None
fabricName

Configures the fabric name parameter.

SYNOPSIS

```
fabricname --set fabric_name

fabricname --clear

fabricname --show

fabricname --help
```

DESCRIPTION

Use this command to configure a name for the fabric.

With Virtual Fabrics it is not uncommon to have multiple fabrics in a single chassis. These logical fabrics are identified by their Fabric ID. With the `fabricName` command, you can address a fabric by name. This command provides an option for addressing fabrics by name. However, the fabric name does not replace the FID; the functionality of the FID is unaffected by the fabric name.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

Fabric name support requires Fabric OS v7.0.0 firmware and will be lost on downgrade.

OPERANDS

This command has the following operands:

```
--set fabric_name
```

Sets the fabric name. The fabric name is a unique character string and can be up to 128 characters long. You can use any character including spaces and meta-characters. A fabric name that includes spaces must be included in double quotation marks. Tabs are not permitted. By default, the fabric name is not configured.

```
--clear
```

Clears the fabric name.

```
--show
```

Displays the fabric name. If a fabric name is not configured, an appropriate message is displayed.

```
--help
```

Displays the command usage.

EXAMPLES

To set and display the fabric name:

```
switch:user> fabricname --show
Fabric Name is not configured

switch:user> fabricname --set myfabric@1
Fabric Name set to "myfabric@1"

switch:user> fabricname --show
Fabric Name: "myfabric@1"
```

To set a fabric name that includes spaces:

```
switch:user> fabricname --set "my new fabric"
Fabric Name set to "my new fabric"
```
switch:user> **fabricname --show**
Fabric Name: "my new fabric"

To clear the fabric name:
switch:user> **fabricname --clear**
Fabric Name cleared!

switch:user> **fabricname --show**
Fabric Name is not configured

SEE ALSO switchShow, fabricShow
fabricPrincipal

Sets the principal switch selection mode.

SYNOPSIS
fabricprincipal --help | -h
fabricprincipal [--show | -q]
fabricprincipal --enable
 [-priority | -p priority]
 [-force | -f]
fabricprincipal --disable
fabricprincipal [-f] mode

DESCRIPTION
Use this command to set principal switch selection mode for a switch and to set priorities for principal
switch selection.

The implementation of the fabricPrincipal command is based solely on mechanisms specified in the
Fibre Channel standards. These mechanisms provide a preference for a switch requesting to be the
principal switch in a fabric, but they do not provide an absolute guarantee that a switch requesting to be
the principal switch is granted this status.

When dealing with large fabrics, the selection of the principal switch is less deterministic. In these cases,
to help ensure that the desired switch is selected as the principal switch, a small cluster of switches
should be interconnected first, followed by additional switches to enlarge the fabric.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS
This command has the following operands:

--help | -h
Displays the command usage.

--show
Displays the current mode setting and principal switch selection priority. This
operand is optional; if not specified, fabricPrincipal displays the same data as
with the --show option.

-q
Displays principal mode only (enabled or disabled). This is a legacy command
option that does not display the priority settings.

--enable
Enables principal switch selection. The following operands are optional. If you do
not provide a priority value, the system assigns the default of 0x01 or generates a
value based on the switch state.

-priority | -p priority
Sets the principal selection priority of the switch. The specified priority value is
used in the principal switch selection protocol when the fabric rebuilds. Not all of
these values can be assigned.

0x00
Reserved. This value cannot be assigned.
0x01
Highest priority. This is a user-defined value

0x02
Switch was principal prior to sending or receiving a build fabric (BF) request. This value is generated by the switch to initiate a fabric reconfiguration. This value should not be assigned.

0x3 - 0xFE
Priority value range. Choose a value in this range to indicate priority. Higher numbers mean lower priority.

0xFF
Switch is not capable of acting as a principal switch. This is a user-defined value. Use --enable with a new priority to revert to this condition.

-force | -f
Forces a fabric rebuild regardless of whether the switch is principal or subordinate. This option is not valid with the --disable command.

--disable
Disables principal switch selection. This command resets the priority to the default value 0xFE.

[-f] mode
Sets the principal switch selection mode. Specify 1 to enable principal switch selection mode. Specify 0 to disable principal switch selection mode. Optionally, use the -f operand to force a fabric rebuild. Mode changes take effect when the fabric rebuilds. This operand is optional.

EXAMPLES
To enable a high fabric principal priority setting:
```
switch:admin> fabricprincipal --enable -p 0xff
Principal Selection Mode enabled (Activate in next fabric rebuild)
```

To disable the principal mode selection:
```
switch:admin> fabricprincipal --disable
Principal Selection Mode disabled
```

To display the current mode setting:
```
switch:admin> fabricprincipal -q
Principal Selection Mode: Enable
```

To disable the mode setting:
```
switch:admin> fabricprincipal 0
Principal Selection Mode disabled
```

To enable the mode setting:
```
switch:admin> fabricprincipal 1
Principal Selection Mode enabled
```

To enable the mode setting and force fabric rebuild:
```
switch:admin> fabricprincipal -f 1
Principal Selection Mode enabled (Forcing fabric rebuild)
```
To display the principal switch selection priority:

 switch:admin> fabricprincipal --show
 Principal Selection Mode: Enable
 Principal Switch Selection Priority: 0x10

SEE ALSO fabricShow
fabricShow

Displays fabric membership information.

SYNOPSIS fabricshow [-membership | -chassis | -paths]

fabricshow -help

DESCRIPTION Use this command to display information about switches in the fabric.

If the switch is initializing or is disabled, the message "no fabric" is displayed.

Running this command on an FCR or edge switch does not provide any router information; running this command on an edge switch with the -membership option does provide router information.

If the fabric is reconfiguring, some or all switches may not be displayed; otherwise, the following fields are displayed depending on the command option used:

Switch ID The switch Domain_ID and embedded port D_ID.

Worldwide Name The switch WWN.

Enet IP Addr The switch Ethernet IP address for IPv4- and IPv6-configured switches. For IPv6 switches, only the static IP address displays.

FC IP Addr The switch FC IP address.

Name The switch symbolic name. An arrow (>) indicates the principal switch.

FC Router IP Addr The IP address of the FC Router. This field is empty if the switch is not an FC Router or it the FC Router does not support it.

FC Router Name The FC Router symbolic name. This field is empty if the switch is not an FC Router or it the FC Router does not support it.

Chassis WWN The world wide name of the chassis. For switches running firmware versions that do not distribute the chassis WWN, this field displays "NA".

Chassis Name The name of the chassis. For switches running firmware versions that do not distribute the chassis name, this field displays "NA".

Fabric Name If the fabric has an assigned name, the fabric name is displayed at the end of the command output.

Path Count The number of currently available paths to the remote domain.
fabricShow

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
This command has the following operands:

- membership
 Displays fabric membership information with additional details of the FC Router, if present in the fabric.

- chassis
 Displays information about the chassis including chassis WWN and chassis name.

- paths
 Displays the number of paths available to each remote domain.

- help
 Displays the command usage.

EXAMPLES
The following example illustrates a fabric of four switches. The switch named "sw180" is the Principal switch. Three of the switches are configured to run IP over Fibre Channel. The fabric name is configured.

```bash
switch:admin> fabricshow
Switch ID  Worldwide Name           Enet IP Addr    FC IP Addr   Name
----------------------------------------------------------------------
64:fffc40 10:00:00:60:69:00:06:56 192.168.64.59  192.168.65.59   "sw5"
65:fffc41 10:00:00:60:69:00:02:0b 192.168.64.180 192.168.65.180>"sw180"
66:fffc42 10:00:00:60:69:00:05:91 192.168.64.60  192.168.65.60  "sw60"
67:fffc43 10:00:00:60:69:10:60:1f 192.168.64.187  0.0.0.0       "sw187"

The Fabric has 4 switches
Fabric Name: mainFabricA
```

To show a mixed fabric with IPv4- and IPv6-configured switches (the fabric name is not configured):

```bash
switch:admin> fabricshow
Switch ID  Worldwide Name         Enet IP Addr   FC IP Addr      Name
----------------------------------------------------------------------
1:fffc41 10:00:00:60:69:00:02:0b 192.168.64.180 192.168.65.180>"sw180"
2:fffc42 10:00:00:60:69:00:05:91 192.168.64.60  192.168.65.60  "sw60"

The Fabric has 2 switches.
```

To show additional details of the FC Router, if present:

```bash
switch:admin> fabricshow -membership
Switch ID  Name          ENET IP Addr  FC Router IP Addr    FC Router Name
----------------------------------------------------------------------
1: fffc01  fcr_sprint_01 10.33.59.224
160: fffca0 fcr_fd_160    0.0.0.0       10.33.59.25  fcr_meteor2
190: fffcbe fcr_mojo_6    10.33.59.32

The Fabric has 3 switches
```
To show additional details about the chassis:

```
switch:admin> fabricshow -chassis
```

<table>
<thead>
<tr>
<th>Switch ID</th>
<th>Name</th>
<th>ENET IP Addr</th>
<th>Chassis WWN</th>
<th>Chassis Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:fffc04</td>
<td>sw5100_126_128</td>
<td>10.38.17.126</td>
<td>10:00:00:05:1e:0e:eb:58</td>
<td>Brcd5100</td>
</tr>
<tr>
<td>5:fffc05</td>
<td>sw1500_127_128</td>
<td>10.38.17.127</td>
<td>10:00:00:05:1e:0e:eb:98</td>
<td>Brcd5100</td>
</tr>
</tbody>
</table>

The Fabric has 2 switches.

To show additional details about the paths:

```
switch:admin> fabricshow -paths
```

<table>
<thead>
<tr>
<th>Switch ID</th>
<th>Name</th>
<th>ENET IP Addr</th>
<th>Worldwide Name</th>
<th>Path Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>28: fffcb2</td>
<td>DCX_28</td>
<td>192.0.2.28</td>
<td>10:00:00:05:1e:e5:ab:00</td>
<td>N/A</td>
</tr>
<tr>
<td>38: fffcbc</td>
<td>DCX_38</td>
<td>192.0.2.38</td>
<td>10:00:00:05:1e:47:cb:00</td>
<td>9</td>
</tr>
</tbody>
</table>

The Fabric has 2 switches.

SEE ALSO
fabricName, switchShow
fabStatsShow

Displays fabric statistics.

SYNOPSIS fabstatsshow

DESCRIPTION Use this command to display statistics for the fabric. The following information is displayed:

- Number of times a switch domain ID has been forcibly changed
- Number of E_Port offline transitions
- Number of fabric reconfigurations
- Number of fabric segmentations resulting from any of the following causes:
 - Loopback
 - Incompatibility
 - Overlap
 - Zoning
 - E_Port segment
 - Licensing
 - Disabled E_Port
 - Platform DB
 - Security incompatibility
 - Security violation
 - ECP error
 - Duplicate WWN
 - E_Port isolated
 - Admin Domain header conflict
 - Virtual Fabric Admin Domain conflict
 - MSFR/RD H&T WWN conflict (internal only)
 - Enhanced/Overlapping TI zones (ETIZ) Incompatibility
 - Exchange Switch Capabilities (ESC) detected conflict
 - Encryption conflict - Both ends are not configured for encryption
 - Compression conflict - Both ends are not configured for encryption
 - Encryp/Comp bw availability - Encryption or compression - Configured but lack of bandwidth in the ASIC

For each recorded incident, the command provides the following additional information:

- **Count**: The total number of times the specific event occurred on various ports on the switch.
- **Port**: The number of the port where the latest incident occurred. An arrow (<) next to the port number denotes the type of event that occurred last.
- **Timestamp**: The time when the latest incident occurred.
NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
None

EXAMPLES
To display the fabric statistics:

```
switch:admin> fabstatsshow
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Count</th>
<th>Port</th>
<th>Timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain ID forcibly changed:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_Port offline transitions:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reconfigurations:</td>
<td>2 0</td>
<td>Sat Dec 18 14:29:56 2010</td>
<td></td>
</tr>
<tr>
<td>Segmentations due to:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loopback:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incompatibility:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overlap:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoning:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_Port Segment:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Licensing:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disabled E_Port:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platform DB:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sec Incompatibility:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sec Violation:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECP Error:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duplicate WWN:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eport Isolated:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD header conflict:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VF AD conflict:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSFR/RD H&T WWN conflict:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETIZ Incompatibility:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESC detected conflict:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encryption conflict:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compression conflict:</td>
<td>0</td>
<td>< 349 Wed Oct 27 15:33:58 2010</td>
<td></td>
</tr>
<tr>
<td>Encryp/Comp bw availability:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

'<' - Denotes the type of event that occurred last.

SEE ALSO fabRetryShow
fanDisable

Disables a fan unit.

SYNOPSIS

fandisable unit

DESCRIPTION

Use this command to disable a nonfaulty fan unit by setting the RPM speed to 0.

NOTES

This command is not available on nonbladed systems except for the Brocade 5300.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operand:

unit

Specifies the number of the fan unit to disable.

EXAMPLES

To disable a fan unit:

switch:admin> fandisable 1

Fan unit 1 has been disabled

SEE ALSO

fanEnable, fanShow
fanEnable

Enables a fan unit.

SYNOPSIS

fanenable unit

DESCRIPTION

Use this command to set a previously disabled fan unit back to the default RPM speed.

NOTES

This command is not available on nonbladed systems except for the Brocade 5300.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operand:

 unit

Specify the fan unit number to enable.

EXAMPLES

To enable a fan unit:

 switch:admin> fanenable 1

 Fan unit 1 has been enabled

SEE ALSO

fanDisable, fanShow
fanShow

Displays fan status and speed.

SYNOPSIS

fanshow

DESCRIPTION

Use this command to display the current status and speed of each fan in the system.

Fan status is displayed as follows:

- **OK**: Fan is functioning correctly.
- **absent**: Fan is not present.
- **below minimum**: Fan is present but rotating too slowly or stopped.
- **above minimum**: Fan is rotating too quickly.
- **unknown**: Unknown fan unit installed.
- **faulty**: Fan has exceeded hardware tolerance and has stopped. In this case, the last known fan speed is displayed.

The output from this command varies depending on switch type and number of fans present.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display information on the fans in the system:

```
switch:admin> fanshow
Fan #1 is OK, speed is 2721 RPM
Fan #2 is OK, speed is 2657 RPM
Fan #3 is OK, speed is 2700 RPM
```

SEE ALSO

chassisShow, fanDisable, fanEnable, psShow
faPwwn

Manages fabric-assigned port world wide names.

SYNOPSIS

faPwwn --enable -port [slot[/port[-port]]

faPwwn --enable -ag AG_WWN [-port port]

faPwwn --disable -port [slot[/port[-port]]

faPwwn --disable -ag AG_WWN -port port

faPwwn --assign [-ag AG_WWN] -port [slot[/port[-port]] [-v VPWWN]

faPwwn --delete -port [slot[/port[-port]]

faPwwn --delete -ag AG_WWN [-port port]

faPwwn --delete -v VPWWN

faPwwn --move -srcport source_port -dstport dest_port

faPwwn --move -srcag AG_WWN -srcport source_port -dstag AG_WWN -dstport dest_port

faPwwn --show [-port | -ag] all

faPwwn --show -port [slot[/port][-port]]

faPwwn --show -ag AG_WWN [-port]

faPwwn --help

DESCRIPTION

Use this command to create and manage fabric-assigned port world wide names (FA-PPWWNs) for Dynamic Fabric Provisioning (DFP). A FA-PPWWN is a "virtual" port WWN that will bind to a device port and can be later assigned to a physical device. A FA-PPWWN can be either user-generated or automatically assigned by the fabric. The automatically assigned FA-PPWWN is created by default when you enable the feature without explicitly providing a VPWWN. With FA-PPWWNs assigned to FC ports or Access Gateway (AG) ports, you can provision the ports in advance with zoning configurations, access control, or Ports on Demand assignments, and you can easily move servers across ports or Access Gateways by way of reassigning the FA-PPWWN to another port.

The faPwwn command supports the following management tasks:

• Bind an automatically assigned or a user-assigned FA-PPWWN to a switch port.
• Override an automatically assigned FA-PPWWN with a user-assigned FA-PPWWN.
• Bind an AG port with an automatically assigned or a user-assigned FA-PPWWN.
• Delete any existing FA-PPWWN bindings.
• Move a FA-PPWWN from one port to another port.
• Move a FA-PPWWN assigned to an AG port to another AG.
• Display information about configured FA-PPWWN bindings.
A single port can be assigned up to two WWNs, one assigned automatically and one assigned by the user. Only one FA-PWWN can be active at any given time. The user-assigned FA-PWWN takes precedence over the automatically assigned FA-PWWN. This means, the switch will bind the user-assigned FA-PWWN to the port if both a user-assigned and an automatically assigned FA-PWWN are available.

FA-PWWN configurations are saved persistently and are preserved even if the feature is disabled on a port, or if you move the port to a different logical switch. The same configuration will be reapplied on the port once the feature is enabled or the port is moved back to the switch where you initially created and saved the configuration.

When issued for switch ports, the --show option displays the following information:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>Port number</td>
</tr>
<tr>
<td>PPWNN</td>
<td>Real PWWN of the device</td>
</tr>
<tr>
<td>VPWNN</td>
<td>Currently active FA-PWWN</td>
</tr>
</tbody>
</table>

The following information is displayed for Access Gateway ports:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG Port</td>
<td>Access Gateway node WWN followed by a slash and port number</td>
</tr>
<tr>
<td>Port</td>
<td>The FC switch port number</td>
</tr>
<tr>
<td>Device Port WWN</td>
<td>The real device port WWN displays only if the device is logged into the Access Gateway.</td>
</tr>
<tr>
<td>Virtual Port WWN</td>
<td>The FA-PWWN (user-assigned or automatically assigned) created on the FC switch for the Access Gateway port.</td>
</tr>
</tbody>
</table>

The following information is displayed for both AG and FC switch ports:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID</td>
<td>Port ID.</td>
</tr>
<tr>
<td>Enable</td>
<td>Displays "yes" if the configuration is enabled; displays "No" if the configuration is disabled.</td>
</tr>
<tr>
<td>MapType</td>
<td>Displays the type of mapping: Access Gateway (AG) or switch port (port), user-assigned (user) or automatically assigned (auto).</td>
</tr>
</tbody>
</table>

NOTES

This command is supported only on the Brocade DCX, DCX-4S, DCX 8510-4, DCX 8510-8, and the Brocade 6510. Regarding Access Gateway support, you cannot configure FA-PWWN on the Brocade 300, and 5100 when these switches are in Access Gateway mode. The AG port must be configured on the switch to which the AG is connected. However, both AG switches are FA-PWWN-aware, which means that they can connect to switches with configured FA-PWWN ports. Refer to the *Brocade Adapters Administrator's Guide* for list of supported Host Bus Adapters (HBAs) and configuration procedures. Refer to the Release Notes for other restrictions that may apply.

You cannot enable the FA-PWWN feature if portSwap is enabled on the ports.

The operands, --assign, --delete, --enable, and --disable can be executed only on a disabled port (switch ports and AG ports). You must re-enable the ports to come online with the new configuration.
OPERANDS

this command has the following operands:

--enable

Enables the FA-PWWN feature on the specified switch ports or AG ports. If a
FA-PWWN is not available for the ports, this command automatically assigns
FA-PWWNs to the ports.

--disable

Disables the FA-PWWN feature on the specified switch ports or AG ports. This
command disables the binding of any existing FA-PWWNs to the specified ports,
it does not delete the port configurations themselves. When you re-enable the
feature, the persistently saved configurations are re-applied to the ports.

--assign

Assigns a FA-PWWN to a specified port. You can specify only a single port with
this command (not a port range) and optionally provide a VPWWN. When
executed without the -v option, this command automatically generates a
FA-PWWN and assigns it to the port. When executed with the -v option, and a
user-assigned FA-PWWN already exists, this command fails with an appropriate
message. If an automatically assigned FA-PWWN exists, the user-generated
FA-PWWN overrides the automatically generated FA-PWWN. When you assign a
FA-PWWN to an AG port, you must specify the AG node WWN to uniquely identify
the AG. The new FA-PWWN will take effect upon the next login session.

--delete

Deletes the active FA-PWWN from the specified ports. If a port is bound to a
user-assigned FA-PWWN, this command deletes the currently active FA-PWWN
and activates the automatically assigned FA-PWWN. If the active FA-PWWN is
automatically assigned and no user-assigned FA-PWWN exists, this command
deletes the FA-PWWN. When deleting VPWWNs from an AG, you must specify
the AG node WWN and the -port operand is optional; if omitted, all active
FA-PWWNs are deleted from the AG. To delete a single FA-PWWN, use the
delete command with the -v option.

If no active FA-PWWNs exist on the ports, the FA-PWWN feature is disabled. Use
the -enable command to re-enable the feature.

--show

Displays the FA-PWWN configuration for the specified ports or for all ports in the
logical switch. When displaying information for AG ports, you must specify the AG
node WWN.

-port[<slot>/<port>[:<port>]]

Specifies the ports to be configured or displayed on the switch or on the AG,
preceded by a slot number on bladed systems. The port list can include a single
port or a port range, for example, 3-5 or 1/3-5. Port ranges are supported only with
automatically assigned FA-PWWNs, and only on switch ports. You cannot use a
port range on AG ports.

-ag AG_WWN

Specifies the Access Gateway node WWN.

-v VPWWN

Specifies a virtual PWWN to be assigned to the port. This operation deactivates
any existing FA-PWWN on the port.
all

Specifies all ports on the logical switch. This operand is valid only with the --show option.

--move

Moves an active FA-PWWN from a source to the specified destination port. Use this command to move a server across switch ports. If the source port has both a user-assigned and an automatically assigned FA-PWWN, the user-assigned FA-PWWN will be moved to the destination port as a user-assigned FA-PWWN and replace any automatically assigned FA-PWWN that may be active on that port. If the source port has only an auto-assigned FA-PWWN, the auto-assigned FA-PWWN will be moved to the destination port and the FA-PWWN feature will be disabled on the source port, because there is no FA-PWWN left on that port.

When moving PWWNs between Access Gateways, you must specify the source AG node WWN and the destination AG node WWN in addition to the ports.

The following operands are supported with the --move option:

-srcag AG_WWN

Specifies the source AG by its node WWN. This operand is required only when moving ports between Access Gateways.

-dstag AG_WWN

Specifies the destination AG by its node WWN. This operand is required only when moving ports between Access Gateways.

-srcport source_port

Specifies the port from which to move the PWWN.

-dstport dest_port

Specifies the destination port for the moved PWWN.

--help

Displays the command usage.

EXAMPLES

To enable the FA-PWWN feature on a switch port:

switch:admin> fapwn --enable -port 10

To disable the FA-PWWN feature on the switch port:

switch:admin> fapwn --disable -port 10

To move the active FA-PWWN from a source port to another port:

switch:admin> fapwn --move -srcport 2 -dstport 3

To move the active FA-PWWN from a source AG port to a destination AG port:

To assign a user-assigned FA-PWWN to a switch port:

To assign an automatically assigned FA-PWWN to a switch port:

fapwn --assign -port 1/10

To assign a fabric-assigned FA-PWWN to an AG port identified by the AG node WWNN and port number:

fapwn --assign -ag 12:34:56:78:90:12:23:45 -port 0
To assign an user-assigned FA-PWWN to an AG port:
```
```

To delete the active FA-PWWN of a switch port:
```
fapwwn --delete -port 10
```

To delete the active FA-PWWN of an AG port:
```
fapwwn --delete -ag 12:34:56:78:90:12:34:56 -port 10
```

To display the active FA-PWWN for a single FC port (the real device PWWN is hidden):
```
fapwwn --show -port 10
```

<table>
<thead>
<tr>
<th>Port</th>
<th>PPWWN</th>
<th>VPWWN</th>
<th>PID</th>
<th>Enable</th>
<th>MapType</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>--:--:--:--:--:--:--:--</td>
<td>52:00:10:00:00:0f:50:45</td>
<td>--</td>
<td>Yes</td>
<td>Port/Auto</td>
</tr>
</tbody>
</table>

To display the active FA-PWWNs for all FC switch ports:
```
fapwwn --show -port all
```

<table>
<thead>
<tr>
<th>Port</th>
<th>PPWWN</th>
<th>VPWWN</th>
<th>PID</th>
<th>Enable</th>
<th>MapType</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>--:--:--:--:--:--:--:--</td>
<td>52:00:10:00:00:0f:50:30</td>
<td>10101</td>
<td>Yes</td>
<td>Port/Auto</td>
</tr>
<tr>
<td>10</td>
<td>--:--:--:--:--:--:--:--</td>
<td>52:00:10:00:00:0f:50:44</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To display the active FA-PWWN of an AG port:
```
fapwwn --show -ag 10:00:00:05:1e:d7:3d:dc -port 8
```

<table>
<thead>
<tr>
<th>AG Port</th>
<th>Port</th>
<th>Device Port WWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00:00:05:1e:d7:3d:dc/8</td>
<td>20</td>
<td>20:08:00:05:1e:d7:2b:74</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Virtual Port WWN</th>
<th>PID</th>
<th>Enable</th>
<th>MapType</th>
</tr>
</thead>
<tbody>
<tr>
<td>52:00:10:00:00:0f:50:32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To display the active FA-PWWNs of all configured AG ports:
```
fapwwn --show -ag all
```

<table>
<thead>
<tr>
<th>AG Port</th>
<th>Port</th>
<th>Device Port WWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00:00:05:1e:d5:8a:d5/16</td>
<td>--</td>
<td>--:--:--:--:--:--:--:--</td>
</tr>
<tr>
<td>10:00:00:05:1e:d7:3d:dc/8</td>
<td>20</td>
<td>20:08:00:05:1e:d7:2b:74</td>
</tr>
<tr>
<td>10:00:00:05:1e:d7:3d:dc/9</td>
<td>20</td>
<td>20:09:00:05:1e:d7:2b:73</td>
</tr>
<tr>
<td>10:00:00:05:1e:d7:3d:dc/16</td>
<td>--</td>
<td>--:--:--:--:--:--:--:--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Virtual Port WWN</th>
<th>PID</th>
<th>Enable</th>
<th>MapType</th>
</tr>
</thead>
<tbody>
<tr>
<td>52:00:10:00:00:0f:50:30</td>
<td>--</td>
<td>Yes</td>
<td>AG/Auto</td>
</tr>
</tbody>
</table>
To display the active FA-PWWNs of all ports associated with a single AG (in the following example, one VPWWN is not unassigned):

```
faPwnn --show -ag 10:00:00:05:1e:d7:3d:dc
```

```
AG Port                Port       Device Port WWN      
-----------------------------------------------------------
10:00:00:05:1e:d7:3d:dc/16  --    --:--:--:--:--:--:--:--  
10:00:00:05:1e:d7:3d:dc/9   20    20:09:00:05:1e:d7:2b:73  
10:00:00:05:1e:d7:3d:dc/8   20    20:08:00:05:1e:d7:2b:74  

10:00:00:05:1e:d7:3d:dc/16  --    --:--:--:--:--:--:--:--  

Virtual Port WWN       PID   Enable  MapType
------------------------------------------------------------
52:00:10:00:00:0f:50:38     --    Yes    AG/Auto
20:00:10:00:00:0f:50:33   11404   Yes    AG/Auto
52:00:10:00:00:0f:50:32   (output split)
```

SEE ALSO

None
fastBoot

Reboots the Control Processor (CP), bypassing the Power-On Self-Test (POST).

SYNOPSIS

fastboot

DESCRIPTION

Use this command to perform a "cold reboot" (power off/restart) of the CP bypassing POST when the system comes back up. Bypassing POST can reduce boot time significantly. If POST was previously disabled using the diagDisablePost command, then fastBoot is the same as reBoot.

The fastBoot operation is disruptive, and the command prompts for confirmation before executing. When you reboot a switch connected to a fabric, all traffic to and from that switch stops. All Fibre Channel ports on that switch including E_Ports become inactive until the switch comes back online.

The behavior of this command varies according to platform type:

• When issued on a standalone (single-processor) switch, this command performs a cold reboot of the switch.
• When issued on an enterprise-class platform (Brocade DCX, DCX-4S, or 48000) with two CPs (active and standby), the following rules apply:
 - When the Standby CP reboots, it goes down and there is no failover because there is no traffic on that switch. When the Standby CP comes up again, it is temporarily no longer in sync with the Active CP.
 - When the Active CP reboots, it fails over to the Standby CP. The Standby CP becomes the new Active CP and traffic is disrupted.
 - When HA is disabled and fastBoot is issued on the Active CP, both the Active and Standby CPs reboot with the original mastership retained. The original Active CP remains the Active CP after the reboot, and the original Standby CP remains the Standby CP. After the reboot, HA is enabled.
 - When HA is disabled and fastBoot is issued on the Standby CP, the Standby CP reboots without prompting. It boots up with the default switch only, even if the Active CP has multiple logical switches configured. After the Standby CP boots up, HA is still disabled.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To reboot a standalone (single-processor) switch without executing POST on startup:

switch:admin> fastboot

Warning: This command would cause the switch to reboot and result in traffic disruption.
Are you sure you want to reboot the switch [y/n]? y

Broadcast message from root (pts/0) Sun Feb 28 19:49:45 2010...

The system is going down for reboot NOW !!
To reboot a DCX without executing POST on startup (in the example, HA is enabled):

```bash
switch:admin> fastboot
Warning: This command is being run on a control processor (CP) based system and will cause the active CP to reboot.
Are you sure you want to reboot the active CP [y/n]? y

Broadcast message from root (pts/0) Sun Feb 28 19:49:45 2010...

The system is going down for reboot NOW !!
```

To reboot a DCX without executing POST on startup (in the example, HA is disabled):

```bash
switch:admin> fastboot
This command is being run on a control processor (CP) based system. Because HA is disabled, it will cause both active CP and the standby CP to reboot. After reboot, the HA will be enabled.

Do you want to continue [y/n] y

Broadcast message from root (pts/0) Sun Feb 28 19:49:45 2010...

The system is going down for reboot NOW !!
```

SEE ALSO diagDisablePost, diagEnablePost, reBoot, haDisable, haEnable, haFailover
fcipHelp

Displays FCIP command information.

SYNOPSIS
fciphelp

DESCRIPTION
Use this command to display a listing of Fibre Channel over IP (FCIP) commands with short descriptions for each command. FCIP commands require an FCIP license.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
None

EXAMPLES
To display FCIP command help information:

switch:admin> fciphelp
bladecfggmemode Configure 1GigE/10GigE port configuration for blade
fciphelp Print FCIP help info
licenseslotcfg Configure licenses on a slot basis
portcfg Create/Delete a new ip interface/route/arp entry on the GigE port
portcfggemediatype Configure media type for GigE port
portcmd Execute commands (ping etc) on the GigE port
portshow Show configured ip interfaces/routes/arp entries or fcip tunnels on the GigE Port

SEE ALSO
portCfg, portCmd, portShow
fcipLedTest

Exercises the GbE port LEDs on the Brocade 7800 and FX8-24.

SYNOPSIS

fcipledtest [slot | all]

DESCRIPTION

Use this command to exercise the GbE port LEDs on the Brocade 7800 and FX8-24. This test cycles through the port LEDs by lighting GREEN and then flashing GREEN on all ports for 3 seconds. As the test continues the ports turn AMBER and then flashing AMBER for 3 seconds. The LEDs turn off when the test has finished.

You must disable the switch before running this command.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

slot

Tests all GbE ports in the specified slot. This operand is optional; if omitted, all GbE ports are tested. This operand is valid only on chassis-based platforms.

all

Tests all ports on the switch.

EXAMPLES

To test the LEDs on slot 4 of Brocade DCX with an FX8-24 blade.

switch:admin> fcipledtest 4
PASSED.

SEE ALSO

ceePortLedTest, portLedTest, switchDisable, switchEnable
fcipPathTest

Tests the data path of the FCIP complex.

SYNOPSIS

fcippathtest

[--slot slot]

[-lb_mode mode]

[-nframes count]

DESCRIPTION

Use this command to verify the data paths in the FCIP complex. All data path modes run tests by comparing Fibre Channel frames or data packets transmitted from and received by the network processor due to the designated loopback.

This command is supported only on the Brocade 7800/FX8-24 platforms.

Executing this command causes the switch or blade to reboot.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

`--slot slot`

Specifies the slot number on which the diagnostic operates. The default is 0 and operates on fixed-port-count products.

`-lb_mode mode`

Specifies the loopback mode for the test. By default, this test uses the External (SERDES) loopback (2). Valid values are as follows:

1 Port loopback (loopback plugs)
2 External (SERDES) loopback
7 Backend bypass and port loopback

`-nframes count`

Specifies the number of frames to send. The test progresses until the specified number of frames is transmitted on each port. The default value is 100.

DIAGNOSTICS

When it detects failures, the test may report one or more of the following error messages:

PATH_TEST_ERR
PATH_TEST_CHIP_INIT_ERR
PATH_TEST_IMAGE_ERR
PATH_TEST_TIMEOUT_ERR
PATH_TEST_HEARTBEAT_ERR
PATH_TEST_INVALID_RESULT
PATH_TEST_GE_PORT_ENABLE_ERR
PATH_TEST_GE_PORT_DISABLE_ERR
To run the test on slot 2:

```
switch:admin> fcippathtest --slot 2
Running fcippathtest ..............
Test Complete: fcippathtest Pass 10 of 10
Duration 0 hr, 1 min & 50 sec (0:1:50:942).
passed.
```

SEE ALSO None
fcoe

Manages and displays FCoE configuration.

SYNOPSIS

fcoe --cfgshow [slot/port]
fcoe --disable [slot/port]
fcoe --enable [slot/port]
fcoe --loginshow [slot/port]
fcoe --fcmapset -vlan vid fcmapid
fcoe --fcmapunset -vlan vid
fcoe --fipcfg -advintvl intv1
fcoe --fipcfgshow
fcoe --resetlogin [-teport [slot/port] | -device wwn]
fcoe --help

DESCRIPTION

Use this command to configure and display the status of FCoE ports, FCoE Initialization Protocol (FIP), and FCMAP settings.

Unlike regular FC ports, FCoE ports are embedded interfaces that are not directly associated with an external physical port on the switch. Although show commands such as switchShow display FCoE ports as "ports," configuration of these ports through the regular FC CLI is disabled. Only the FCoE CLI commands can be used.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands.

slot

Specifies the slot number on bladed systems, followed by a slash (/).

port

Specifies the port number. On the Brocade FCoE 10-24 blade, there are 24 configurable FCoE ports numbered 0 to 23. Use switchShow for a list of valid FCoE ports.

--help

Displays the command usage.

--cfgshow

Displays the configuration of a specified embedded FCoE port. If a port is not specified, the command displays all port configurations.

--disable

Disables the specified FCoE port.

--enable

Enables the specified FCoE port.
--loginshow Displays information about the devices logged in to the specified FCoE port.

--fcmapset Configures the FCMAP values for Fabric Provided MAC Addresses (FPMA) for the specified VLANs.

 -vlan vid Specifies the VLAN for which to set the FCMAP.
 fcmapid Specifies the FCMAP to be set.

--fcmapunset Unsets the FCMAP for a specified VLAN. Devices previously logged in are disconnected.

 -vlan vid Specifies the VLAN ID for which the FCMAP is unset.

--fipcfg Configures FIP multicast advertisement intervals.

 -advintvl intvl Specifies the interval in seconds. The minimum interval value is 0 and the maximum value is 90. A value of 0 cancels the previous advertisement interval value. A value of 1 to 90 is valid for changing the interval.

--fipcfgshow Displays FIP configurations.

--resetlogin Clears the logins that occurred through a front end port or from a device specified by the Enode’s VN_Port WWN.

 -teport [slot]port Specifies the slot or port number.
 -device wwn Specifies the device WWN.

EXAMPLES

To display the FCoE ports on the Brocade FCoE10-24:

```
switch:admin> switchshow -slot 8
switchName: sw0
switchType: 77.3
switchState: Online
switchMode: Native
switchRole: Subordinate
switchDomain: 2
switchId: fffc02
switchWwn: 10:00:00:05:1e:75:af:00
zoning: ON (longevity_cfg)
switchBeacon: OFF
FC Router: OFF
Fabric Name: f1_2010_11_16_21_29_26__
Allow XISL Use: OFF
LS Attributes: [FID: 128, Base Switch: 
  No, Default Switch: Yes, Address Mode 0]
```

```
+------------+-----------+---------+----------+-------------+
<table>
<thead>
<tr>
<th>Slot</th>
<th>Blade</th>
<th>ID</th>
<th>Model Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>AP BLADE</td>
<td>74</td>
<td>FCOE10-24</td>
<td>ENABLED</td>
</tr>
</tbody>
</table>
```
To display devices logged in to FCoE port 2/0 on the Brocade FCoE10-24:

```bash
switch:admin> fcoe --loginshow 2/0
Number of connected devices: 1

Peer Type Connect Info Device WWN Device MAC
FCOE_DEVICE Direct 10:00:00:05:1e:8f:fb:12 00:05:1e:8f:fb:12
```

To display the configuration for FCoE port 2/0 on the Brocade FCoE10-24:

```bash
switch:admin> fcoe --cfgshow 2/0
Slot: 2, Port: 0, Status: Enabled, 
Port WWN: 20:40:00:05:1e:92:de:00,
DeviceCount: 1, Type: VF-Port, MAC: 00:05:1e:7b:34:e0
VF_ID: 128, Fabric Name: 10:00:00:05:1e:35:bb:32
```

<table>
<thead>
<tr>
<th>Index</th>
<th>Slot</th>
<th>Port</th>
<th>Address</th>
<th>Media</th>
<th>Speed</th>
<th>State</th>
<th>Proto</th>
</tr>
</thead>
<tbody>
<tr>
<td>192</td>
<td>8</td>
<td>0</td>
<td>02c000</td>
<td>--</td>
<td>10G</td>
<td>Online</td>
<td>FCoE VF-Port 0 VN-Port(s)</td>
</tr>
<tr>
<td>193</td>
<td>8</td>
<td>1</td>
<td>02c100</td>
<td>--</td>
<td>10G</td>
<td>Online</td>
<td>FCoE VF-Port 0 VN-Port(s)</td>
</tr>
<tr>
<td>194</td>
<td>8</td>
<td>2</td>
<td>02c200</td>
<td>--</td>
<td>10G</td>
<td>Online</td>
<td>FCoE VF-Port 0 VN-Port(s)</td>
</tr>
<tr>
<td>195</td>
<td>8</td>
<td>3</td>
<td>02c300</td>
<td>--</td>
<td>10G</td>
<td>Online</td>
<td>FCoE VF-Port 0 VN-Port(s)</td>
</tr>
<tr>
<td>196</td>
<td>8</td>
<td>4</td>
<td>02c400</td>
<td>--</td>
<td>10G</td>
<td>Online</td>
<td>FCoE VF-Port 0 VN-Port(s)</td>
</tr>
<tr>
<td>197</td>
<td>8</td>
<td>5</td>
<td>02c500</td>
<td>--</td>
<td>10G</td>
<td>Online</td>
<td>FCoE VF-Port 0 VN-Port(s)</td>
</tr>
<tr>
<td>198</td>
<td>8</td>
<td>6</td>
<td>02c600</td>
<td>--</td>
<td>10G</td>
<td>Online</td>
<td>FCoE VF-Port 0 VN-Port(s)</td>
</tr>
<tr>
<td>199</td>
<td>8</td>
<td>7</td>
<td>02c700</td>
<td>--</td>
<td>10G</td>
<td>Online</td>
<td>FCoE VF-Port 0 VN-Port(s)</td>
</tr>
<tr>
<td>200</td>
<td>8</td>
<td>8</td>
<td>02c800</td>
<td>--</td>
<td>10G</td>
<td>Online</td>
<td>FCoE VF-Port 0 VN-Port(s)</td>
</tr>
<tr>
<td>201</td>
<td>8</td>
<td>9</td>
<td>02c900</td>
<td>--</td>
<td>10G</td>
<td>Online</td>
<td>FCoE VF-Port 0 VN-Port(s)</td>
</tr>
<tr>
<td>202</td>
<td>8</td>
<td>10</td>
<td>02ca00</td>
<td>--</td>
<td>10G</td>
<td>Online</td>
<td>FCoE VF-Port 0 VN-Port(s)</td>
</tr>
<tr>
<td>203</td>
<td>8</td>
<td>11</td>
<td>02cb00</td>
<td>--</td>
<td>10G</td>
<td>Online</td>
<td>FCoE VF-Port 0 VN-Port(s)</td>
</tr>
<tr>
<td>204</td>
<td>8</td>
<td>12</td>
<td>02cc00</td>
<td>--</td>
<td>10G</td>
<td>Online</td>
<td>FCoE VF-Port 0 VN-Port(s)</td>
</tr>
<tr>
<td>205</td>
<td>8</td>
<td>13</td>
<td>02cd00</td>
<td>--</td>
<td>10G</td>
<td>Online</td>
<td>FCoE VF-Port 0 VN-Port(s)</td>
</tr>
<tr>
<td>206</td>
<td>8</td>
<td>14</td>
<td>02ce00</td>
<td>--</td>
<td>10G</td>
<td>Online</td>
<td>FCoE VF-Port 0 VN-Port(s)</td>
</tr>
<tr>
<td>207</td>
<td>8</td>
<td>15</td>
<td>02cf00</td>
<td>--</td>
<td>10G</td>
<td>Online</td>
<td>FCoE VF-Port 0 VN-Port(s)</td>
</tr>
<tr>
<td>208</td>
<td>8</td>
<td>16</td>
<td>02d000</td>
<td>--</td>
<td>10G</td>
<td>Online</td>
<td>FCoE VF-Port 0 VN-Port(s)</td>
</tr>
<tr>
<td>209</td>
<td>8</td>
<td>17</td>
<td>02d100</td>
<td>--</td>
<td>10G</td>
<td>Online</td>
<td>FCoE VF-Port 0 VN-Port(s)</td>
</tr>
<tr>
<td>210</td>
<td>8</td>
<td>18</td>
<td>02d200</td>
<td>--</td>
<td>10G</td>
<td>Online</td>
<td>FCoE VF-Port 0 VN-Port(s)</td>
</tr>
<tr>
<td>211</td>
<td>8</td>
<td>19</td>
<td>02d300</td>
<td>--</td>
<td>10G</td>
<td>Online</td>
<td>FCoE VF-Port 0 VN-Port(s)</td>
</tr>
<tr>
<td>212</td>
<td>8</td>
<td>20</td>
<td>02d400</td>
<td>--</td>
<td>10G</td>
<td>Online</td>
<td>FCoE VF-Port 0 VN-Port(s)</td>
</tr>
<tr>
<td>213</td>
<td>8</td>
<td>21</td>
<td>02d500</td>
<td>--</td>
<td>10G</td>
<td>Online</td>
<td>FCoE VF-Port 0 VN-Port(s)</td>
</tr>
<tr>
<td>214</td>
<td>8</td>
<td>22</td>
<td>02d600</td>
<td>--</td>
<td>10G</td>
<td>Online</td>
<td>FCoE VF-Port 0 VN-Port(s)</td>
</tr>
<tr>
<td>215</td>
<td>8</td>
<td>23</td>
<td>02d700</td>
<td>--</td>
<td>10G</td>
<td>Online</td>
<td>FCoE VF-Port 0 VN-Port(s)</td>
</tr>
</tbody>
</table>
To display FIP and FCMAP configuration on the Brocade FCoE10-24:

```
switch:admin> fcoe --fipcfgshow
FIP Unsolicited Advertisement Interval = 8
FIP Keep Alive Timeout Disabled.
========================================
VLAN fcmap
========================================
1002 0x0efc00 [Default fcmap]
========================================
```

SEE ALSO
`fcoeLoginGroup`, `fcoeLoginCfg`
fcoelogincfg

Manages or displays the FCoE login configuration.

SYNOPSIS

fcoelogincfg --show
 [-switch swwn | -logingroup lgname]
 [-saved] | [-mergestatus]

fcoelogincfg --save

fcoelogincfg --transshow

fcoelogincfg --transabort

fcoelogincfg --purge -conflicting [-nonexisting]

fcoelogincfg --purge -nonexisting [-conflicting]

fcoelogincfg --enable

fcoelogincfg --disable

fcoelogincfg --help

DESCRIPTION

Use this command to save, abort, or display the current FCoE login configuration, including ongoing transactions and the effective (saved) configuration.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

The FCoE Login management feature is not supported in Access Gateway mode.

OPERANDS

This command has the following operands.

--help
 Displays the command usage.

--show
 Displays the state of the FCoE login configuration including current transactions and effective (saved) configuration.

 -switch swwn
 Displays the login groups for the specified switch.

 -logingroup lgname
 Displays the login group configuration for the specified login group.

 -saved
 Displays only the effective configuration.

 -mergestatus
 Displays the status of the last configuration merge during the last fabric merge. This operand also displays conflicting login groups and login groups for nonexisting switches.

--save
 Saves and applies FCoE login configuration changes as the effective configuration fabric-wide.
--transshow
Displays the current configuration transaction in progress fabric-wide.

--transabort
Aborts the FCoE login configuration transaction currently in progress.

--purge
Purges the specified entries from the effective configuration. Specify one or both of the following operands:

- conflicting
Purges all conflicting login groups and conflicting VN_Port mappings from the effective configuration.

- nonexisting
Purges all login groups for nonexisting switches from the effective configuration.

--enable
Enables the FCoE login configuration management on the switch. This allows only configured Enode VN_Ports to log in. Use the fcoeLoginGroup command to configure allowed Enode VN_Ports.

--disable
Disables the FCoE login configuration management on the switch. This allows unrestricted login on Enode V_Ports.

EXAMPLES
To configure a login group and save the configuration:

switch:admin> fcoelogingroup --create login_def_allowall
-sel -allowall

switch:admin> fcoelogincfg --save

To display the saved configuration:

switch:admin> fcoelogincfg --show

No ongoing transaction

Effective Configuration

Login Configuration
Switch WWN Login group
10:00:00:05:1e:76:5c:80 login_def_allowall(active)

To display the current FCoE login configuration for the switch only:

switch:admin> fcoelogincfg --show -switch \
10:00:00:05:1e:76:5c:80

No ongoing transaction

Effective Configuration

Loginigroup name : login_def_allowall(active)
Switch wwn : 10:00:00:05:1e:76:5c:80
All devices are allowed
To perform a clean-up of the effective configuration:

```
switch:admin> fcoelogincfg --purge -conflicting \
    -nonexisting
switch:admin>
```

To disable the FCoE login configuration management on the switch:

```
switch:admin> fcoelogincfg --disable

switch:admin> fcoelogincfg --show
Login management is disabled.

Effective Configuration
************************
Login management is disabled.
```

SEE ALSO fcoeLoginGroup
fcoeLoginGroup

Creates and manages FCoE login group configuration.

SYNOPSIS
fcoelogingroup --create lgname
 -self | -switch swwn [-allowall | member[;member] ...]

fcoelogingroup --delete lgname

fcoelogingroup --add lgname member[;member] ...

fcoelogingroup --remove lgname wwn

fcoelogingroup --rename lgname newlgname

fcoelogingroup --help

DESCRIPTION
Use this command to create or modify the FCoE login management configuration fabric-wide. You can create or delete a login group, add Virtual N_Port (VN_Port) WWNs to a login group, or remove VN_Port WWNs from a login group.

NOTES
The configuration changes effected by this command are kept in a transaction buffer until you save the new configuration with the fabric-wide fcoelogincfg --save command.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
This command has the following operands.

--help
 Displays the command usage.

--create
 Creates a login group with the specified name and associates it with a specified switch.

 lgname
 Specifies the name of the login group for this switch. The maximum length is a 64-byte string.

 -self
 Specifies the WWN of the current switch. When this operand is specified, the login group is associated with the current switch.

 -switch swwn
 Specifies the WWN of the switch for which to create the login group.

 -allowall
 Allows all VN_Port devices to log in to the switch.

 member
 Identifies the WWN of the VN_Port. The WWN must be specified in hex format as xx.xx.xx.xx.xx.xx.xx.xx. If more than one member is specified, members must be separated by a semicolon. Only specified members are allowed to log in to the switch.

--delete
 Deletes a login group.
lgname
Specifies the name of the login group.

--add
Adds VN_Port devices to the login group.

lgname
Specifies the name of the login group to which VN_Port devices are to be added.

member
Identifies the WWN of the VN_Port. The WWN must be specified in hex as xx.xx.xx.xx.xx.xx.xx.xx. If more than one member is specified, members must be separated by a semicolon. Only specified members are allowed to log in to the switch.

--remove
Removes VN_Port devices from the login group.

lgname
Specifies the name of the login group from which VN_Port devices are to be removed.

wwn
Identifies the WWN of the VN_Port. The WWN must be specified in hex format as xx.xx.xx.xx.xx.xx.x. Only specified members are allowed to log in to the switch.

--rename
Renames the specified login group. The following operands are required:

lgname
Specifies the current name of the login group.

new/lgname
Specifies the new name for the login group.

EXAMPLES
To create a login group:
```
```

To add a VN_Port device to the login group:
```
switch:admin> fcoelogingroup --add mylg "12:00:00:00:00:00:1e:34"
```

To remove a VN_Port device from the login group:
```
switch:admin> fcoelogingroup --remove mylg "12:00:00:00:00:00:1e:34"
```

To delete a login group:
```
switch:admin> fcoelogingroup --delete mylg
```

SEE ALSO
fcoelogingroup --delete mylg
fcPing

Sends a Fibre Channel Extended Link Service (ELS) Echo request to a pair of ports or to a single
destination, or executes a SuperPing.

SYNOPSIS

fcping

[--number frames]
[--length size]
[--interval wait]
[--pattern pattern]
[--bypasszone]
[--quiet]
[source] destination

fcping --allpaths

[-printisl]
[-maxtries M]
[-covcount N]
[-delay D]
[-framelength len]
[-errstats]
[-vc]

destination

fcping --help

DESCRIPTION

Use this command to send a Fibre Channel ELS Echo request to a pair of ports (a source and a
destination), to a single device, or to execute a SuperPing that exercises all interswitch links (ISLs) and
internal links in different paths that route to the destination device.

• When you use fcPing with a source and a destination, the command performs a zoning check
between the two ports. In addition, two Fibre Channel ELS requests are generated. The first ELS
request is from the domain controller to the source port identifier. The second ELS request is from
the domain controller to the destination port identifier. The ELS Echo request elicits an ELS Echo
response from a port identifier in the fabric and is useful for validating link connectivity.
The source and destination port identifiers can be specified as a 24-bit Fibre Channel port identifier
(PISD), a port World Wide Name, or a node World Wide Name. The two port identifiers are then
used to determine if the identifiers are zoned together.

• When you use fcPing to probe a single destination, an ELS Echo is sent to the specified destination
and a response obtained. The destination can be a switch WWN, a domain ID, or a switch domain
controller ID. No zoning check is performed when a single device is probed.

• When you use fcPing with the --allpaths option, the command exercises a "SuperPing." A
SuperPing exercises all ISLs and the internal links included in the paths that route to the destination.
It collects statistical data of all the covered paths and their port and provides optional parameters to
selectively display the data. SuperPing takes only one argument, that is, the destination port
identifier. To execute a SuperPing for two destination, you must issue the fcping --allpaths
command separately for each destination.

SuperPing facilitates troubleshooting of links that experience problems. When an echo frame is
dropped, all the ISLs and internal links potentially traversed by this frame are marked as failures. If a
fabric topology is considered fully redundant, that is, at each hop there are multiple paths to reach a
destination, a high percentage of errors are recorded on the link that experiences errors.
Logical Fabrics: When executed in a Logical Fabric from a switch to a destination device connected through the base fabric, SuperPing exercises all paths in the base fabric along with the ISLs in the logical fabric. The path output indicates the LISLs and the base switch. Refer to the Examples section for an illustration.

NOTES

The ELS Echo may not be supported on all devices. In such cases, the response could be either an ELS reject or a request timeout.

By default, fcPing sends five ELS Echo requests to each port. When a device does not respond to the ELS Echo request, further debugging may be needed to determine, whether the device does not support ELS Echo, or whether the request is rejected for some other reason. Do not assume that the device is not connected.

The execution of SuperPing requires that all switches in the fabric run Fabric OS v6.4.0 or later. For switches running earlier versions of Fabric OS, the collected data is incomplete.

If a fabric reconfiguration occurs while SuperPing is in progress, the command reports an error message. Exit the command and rerun the test after the fabric becomes stable again.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

- `destination`
 Specifies the destination as follows:
 - When using fcPing between a source and a destination, specify the destination as port WWN or a node WWN.
 - When using fcPing to ping a single device, specify the destination as a PID, a switch WWN, a domain ID, or a switch domain controller ID.
 - When using fcPing with the `--allpaths` option, specify the destination as a PID, a switch WWN, or a domain ID.

- `source`
 Specifies the source port ID, port WWN, or node WWN. This operand is optional; it is not valid with the SuperPing command (`--allpaths`).

The following operands are valid only when fcPing is executed without the `--allpaths` option (legacy mode):

- `--number frames`
 Specifies the number of ELS Echo requests to send. The default value is 5.

- `--length size`
 Specifies the frame size of the requests in bytes. The default value is 0. Without data, the Fibre Channel Echo request frame size is 12 bytes. The total byte count includes four bytes from the Echo request header and eight bytes from the timestamp. The maximum allowed value is 2,036 bytes. The length must be word-aligned.

- `--interval wait`
 Specifies the interval, in seconds, between successive ELS Echo requests. The default value is 0 seconds.

- `--pattern pattern`
 Specifies up to 16 "pad" bytes, which are used to fill out the request frame payload sent. This is useful for diagnosing data-dependent problems in the fabric link. The pattern bytes are specified as hexadecimal characters. For example, `--pattern ff` fills the request frame with instances of the number 1. If a non-byte-aligned pattern is specified, the upper nibble of the last pattern byte is filled with zeros. For example, `--pattern 123` fills the payload with a pattern of 0x1203.
--bypasszone
Bypasses the zone check.

--quiet
Suppresses the diagnostic output. Only zoning information, if applicable, and the summary line are displayed.

The following operands are valid only when fcPing is executed to perform a SuperPing:

--allpaths [args] destination
Executes a SuperPing that covers all available paths to the specified destination. The number of actual paths covered depends on two other parameters that you can optionally specify. When you issue fcping --allpaths for a destination without any other options, SuperPing covers all ISLs in the routes between source to destination but does exercise all possible combinations of end-to-end paths. This operand is required when executing fcPing as SuperPing.

The following operands are optional and valid only with the --allpaths option:

-printisl
Displays statistical data for each ISL and internal port along the paths traversed by SuperPing. This information displays in addition to the path display.

-covcount N
Specifies the minimum number of times each ISL is exercised by the SuperPing command. The command sends N frames and checks if each ISL is exercised at least N times. When the condition is met, superPing exits and prints the statistics. The default value is 5.

-maxtries M
Specifies the maximum number of frames to be sent before SuperPing exits. If both -maxtries and -covcount are specified, SuperPing checks the ISL coverage and keeps resending frames until the minimum coverage condition is met or until the maximum number of echo frames specified in maxtries has been sent. For example, assuming a coverage count of 100 and a Maxtries value of 300, SuperPing will send 100 frames at a time and checks if each ISL is covered at least 100 times. If not, SuperPing will keep sending 100 frames at a time to check for coverage up to 3 times for a maximum of 300 frames (3*100 = 300) on each egress port. If this value is set too low in relation to the specified coverage count, not all ISLs may be covered. The default value is 100.

-delay D
Includes a delay of D milliseconds between each echo frame sent.

-framelength len
Specifies the size of the data to send.

-errstats
Collects error statistics of each user port that is part of ISLs covered through SuperPing to reach destination domain.

-vc
Displays the ISL and internal port statistics per VC.

--help
Displays the command usage.
EXAMPLES

To display one device that accepts the request and another device that rejects the request:

```bash
switch:admin> fcping 10:00:00:00:c9:29:0e:c4 21:00:00:20:37:25:ad:05
Source: 10:00:00:00:c9:29:0e:c4
Destination: 21:00:00:20:37:25:ad:05
Zone Check: Not Zoned

Pinging 10:00:00:00:c9:29:0e:c4 [0x208000] with 12 bytes of data:
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1162 usec
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1013 usec
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1442 usec
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1052 usec
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1012 usec
5 frames sent, 5 frames received, 0 frames rejected, 0 frames timeout
Round-trip min/avg/max = 1012/1136/1442 usec

Pinging 21:00:00:20:37:25:ad:05 [0x211e8] with 12 bytes of data:
Request rejected
Request rejected
Request rejected
Request rejected
Request rejected
5 frames sent, 0 frames received, 5 frames rejected, 0 frames timeout
Round-trip min/avg/max = 0/0/0 usec
```

To display one device that accepts the request and another device that does not respond to the request:

```bash
switch:admin> fcping 0x020800 22:00:00:04:cf:75:63:85
Source: 0x020800
Destination: 22:00:00:04:cf:75:63:85
Zone Check: Zoned

Pinging 0x020800 with 12 bytes of data:
received reply from 0x020800: 12 bytes time:1159 usec
received reply from 0x020800: 12 bytes time:1006 usec
received reply from 0x020800: 12 bytes time:1008 usec
received reply from 0x020800: 12 bytes time:1038 usec
received reply from 0x020800: 12 bytes time:1010 usec
5 frames sent, 5 frames received, 0 frames rejected, 0 frames timeout
Round-trip min/avg/max = 1006/1044/1159 usec

Pinging 22:00:00:04:cf:75:63:85 [0x0217d9] with 12 bytes of data:
Request timed out
5 frames sent, 0 frames received, 0 frames rejected, 0 frames timeout
Round-trip min/avg/max = 0/0/0 usec
```

To use `fcPing` with a single destination:

```bash
switch:admin> fcping 20:03:00:05:33:7e:97:e9
Pinging 20:03:00:05:33:7e:97:e9 [0x022300] with 12 bytes of data:
Request rejected
Request rejected by 0x022300: Command not supported: time: 1159 usec
Request rejected by 0x022300: Command not supported: time: 1006 usec
Request rejected by 0x022300: Command not supported: time: 1008 usec
```

To display one device that accepts the request and another device that rejects the request:

```bash
switch:admin> fcping 10:00:00:00:c9:29:0e:c4 21:00:00:20:37:25:ad:05
Source: 10:00:00:00:c9:29:0e:c4
Destination: 21:00:00:20:37:25:ad:05
Zone Check: Not Zoned

Pinging 10:00:00:00:c9:29:0e:c4 [0x208000] with 12 bytes of data:
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1162 usec
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1013 usec
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1442 usec
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1052 usec
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1012 usec
5 frames sent, 5 frames received, 0 frames rejected, 0 frames timeout
Round-trip min/avg/max = 1012/1136/1442 usec

Pinging 21:00:00:20:37:25:ad:05 [0x211e8] with 12 bytes of data:
Request rejected
Request rejected
Request rejected
Request rejected
Request rejected
5 frames sent, 0 frames received, 5 frames rejected, 0 frames timeout
Round-trip min/avg/max = 0/0/0 usec
```

To display one device that accepts the request and another device that does not respond to the request:

```bash
switch:admin> fcping 0x020800 22:00:00:04:cf:75:63:85
Source: 0x020800
Destination: 22:00:00:04:cf:75:63:85
Zone Check: Zoned

Pinging 0x020800 with 12 bytes of data:
received reply from 0x020800: 12 bytes time:1159 usec
received reply from 0x020800: 12 bytes time:1006 usec
received reply from 0x020800: 12 bytes time:1008 usec
received reply from 0x020800: 12 bytes time:1038 usec
received reply from 0x020800: 12 bytes time:1010 usec
5 frames sent, 5 frames received, 0 frames rejected, 0 frames timeout
Round-trip min/avg/max = 1006/1044/1159 usec

Pinging 22:00:00:04:cf:75:63:85 [0x0217d9] with 12 bytes of data:
Request timed out
5 frames sent, 0 frames received, 0 frames rejected, 0 frames timeout
Round-trip min/avg/max = 0/0/0 usec
```

To use `fcPing` with a single destination:

```bash
switch:admin> fcping 20:03:00:05:33:7e:97:e9
Pinging 20:03:00:05:33:7e:97:e9 [0x022300] with 12 bytes of data:
Request rejected
Request rejected by 0x022300: Command not supported: time: 1159 usec
Request rejected by 0x022300: Command not supported: time: 1006 usec
Request rejected by 0x022300: Command not supported: time: 1008 usec
```
To use `fcPing` with a single destination (in the example, the destination is a switch WWN):

```
switch:admin> fabricshow
Switch ID  Worldwide Name    Enet IP Addr  FC IP Addr  Name
-----------------------------------------------
6: fffc06 10:00:00:05:1e:34:2b:66 10.202.90.201 0.0.0.0  "mps_daz_1"
55:fffc37 10:00:00:05:1e:34:01:f5 10.202.90.226 0.0.0.0  pulsar055
```

```
switch:admin> fcping 10:00:00:05:1e:34:2b:66
Destination: 10:00:00:05:1e:34:2b:66
Pinging 10:00:00:05:1e:34:2b:66 [fffc06] with 12 bytes of data:
received reply from 10:00:00:05:1e:34:2b:66 : 12 bytes time:1162 usec
received reply from 10:00:00:05:1e:34:2b:66 : 12 bytes time:1013 usec
received reply from 10:00:00:05:1e:34:2b:66 : 12 bytes time:1442 usec
received reply from 10:00:00:05:1e:34:2b:66 : 12 bytes time:1052 usec
received reply from 10:00:00:05:1e:34:2b:66 : 12 bytes time:1012 usec
5 frames sent, 5 frames received, 0 frames rejected, 0 frames timeout
Round-trip min/avg/max = 1012/1136/1442 usec
```

To use `fcPing` with a single destination (in the example, the destination is a device node WWN):

```
switch:admin> nsshow
{
 Type Pid COS PortName          NodeName        TTL(sec)
 N 370500;3:20:07:00:05:1e:35:10:7f;10:00:00:05:1e:35:10:7f; na
 Fabric Port Name: 20:05:00:05:1e:34:01:f5
 Permanent Port Name: 20:07:00:05:1e:35:10:7f
 Port Index: 5
 Share Area: No
 Device Shared in Other AD: No
 Redirect: No
 Partial: NO
 N 370501; 3:10:00:00:00:c9:3f:7c:b8;20:00:00:00:c9:3f:7c:b8; na
 FC4s: FCP
 NodeSymb: [44] "Emulex LP1050 FV1.81A1 DV5-5.20A9 DELL1750-3"
 Fabric Port Name: 20:05:00:05:1e:34:01:f5
 Permanent Port Name: 20:07:00:05:1e:35:10:7f
 Port Index: 5
 Share Area: No
 Device Shared in Other AD: No
 Redirect: No
 Partial: NO
 The Local Name Server has 2 entries }
```

```
switch:admin> fcping 20:00:00:00:c9:3f:7c:b8
Destination: 20:00:00:00:c9:3f:7c:b8
Pinging 20:00:00:00:c9:3f:7c:b8 [0x370501] with 12 bytes of data:
received reply from 20:00:00:00:c9:3f:7c:b8:12 bytes time:825 usec
received reply from 20:00:00:00:c9:3f:7c:b8:12 bytes time:713 usec
```
received reply from 20:00:00:00:c9:3f:7c:b8:12 bytes time:714 usec
received reply from 20:00:00:00:c9:3f:7c:b8:12 bytes time:741 usec
received reply from 20:00:00:00:c9:3f:7c:b8:12 bytes time:880 usec
5 frames sent, 5 frames received, 0 frames rejected, 0 frames timeout
Round-trip min/avg/max = 713/774/880 usec

To execute a SuperPing testing all ISLs to a specified destination (in the example, two paths are tested, and each hop is displayed in Domain/Index format):

```
switch:admin> fcping --allpaths 165
Pinging(size:12 bytes) destination domain 165 through all paths
PATH SWITCH1-->     SWITCH2-->            SWITCH3-->     |
--------------------------------------------------------------------
SWITCH4                  STATUS
-------------------------
(165/99,165/0)[128] SUCCESS
2(165/99,165/0)[128] SUCCESS
```

To execute a SuperPing in a logical fabric (in the example, domains 10 and 40 in FID 1 are connected through the base fabric (FID 2)):

```
switch:admin: fcping --allpaths 40
Pinging(size:12 bytes) destination domain 30 through all paths
PATH SWITCH1-->  SWITCH2-->
-----------------------------------------------------------------------
1.(10/EMB,10/4)[128] (20/5,20/EMB )[128] (1/EMB, 1/6)[2] |
Successfully completed superping for all paths
SWITCH3-->                       SWITCH4         STATUS
-----------------------------------------------------------------------
(2/7,2/EMB)[2] (30/EMB,30/8)[128] (40/9, 40/EMB)[128] SUCCESS
Successfully completed superping for all paths
```

To execute a SuperPing and print statistical coverage of each ISL and internal port along the potential paths (in the example, a few errors are recorded on the ISLs 3/205->2/25, 3/204->2/27, 2/42->101/3, and 2/1->101/8, but the internal port analysis shows that errors are recorded on the internal port 0/284 in domain 2, which is the potential faulty link):

```
switch:admin> fcping --allpaths -printisl 101
Pinging(size:12 bytes) destination domain 101 through all paths
PATH     SWITCH1-->           SWITCH2-->         |
------------------------------------------------
2.   ( 3/EMB, 3/205)[128] ( 2/25 , 2/1 )[128] |
3.   ( 3/EMB, 3/205)[128] ( 2/25 , 2/42 )[128] |
5.   ( 3/EMB, 3/204)[128] ( 2/27 , 2/1 )[128] |
SWITCH3                  STATUS
---------------------------------
(101/16 ,101/EMB)[128] SUCCESS
```
To execute a superPing with a coverage count of 1000 and a maxtries value of 5000 (in the example, the ISL (3/204->204/27), could not be covered 1000 times):

```
switch:admin> fcping --allpaths --covcount 1000 \
-maxtries 5000-printisl 165
```

```
Pinging(size:12 bytes) destination domain 165 through all paths
|
PATH SWITCH1--> SWITCH2--> SWITCH3--> SWITCH4
----------------------------------------------
```

```
switch:admin> fcping --allpaths --covcount 1000 \
-maxtries 5000-printisl 165
```

```
Pinging(size:12 bytes) destination domain 165 through all paths
|
PATH SWITCH1--> SWITCH2--> SWITCH3--> SWITCH4
----------------------------------------------

SWITCH4 STATUS
-------------------------
(165/99,165/0)[128] SUCCESS
(165/99,165/0)[128] SUCCESS
```

Successfully completed superping for all paths

ISL COVERAGE

```
SNO    ISL                  STATUS
---------------------------------------------
1    ( 3/205--->207/25 )    SUCCESS(4025/4025)
2    ( 3/204--->207/27 )    SUCCESS(5/5)
3    (207/42--->101/3 )     SUCCESS(4030/4030)
4    (101/16 --165/99 )    SUCCESS(4030/4030)
```
INTERNAL PORT COVERAGE

<table>
<thead>
<tr>
<th>SNO</th>
<th>DOMAIN</th>
<th>INTRNL_PORT</th>
<th>STATUS</th>
</tr>
</thead>
</table>

SEE ALSO None
fcpLogClear

Clears the FCPD debug information log.

SYNOPSIS

fcplogclear

DESCRIPTION

Use this command to clear the debug information logged by the Fibre Channel Protocol daemon (FCPD).

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To clear the FCPD debug information log:

switch:admin> fcplogclear

SEE ALSO

fcpLogDisable, fcpLogEnable, fcpLogShow
fcpLogDisable

Disables the FCPD debug information log.

SYNOPSIS
fcplogdisable

DESCRIPTION
Use this command to disable the logging of debug information by the Fibre Channel Protocol daemon (FCPD).

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
None

EXAMPLES
To disable the FCPD debug information log:

 switch:admin> fcplogdisable

SEE ALSO
fcpLogClear, fcpLogEnable, fcpLogShow
fcpLogEnable

Enables the FCPD debug information log.

SYNOPSIS
fcplogenable

DESCRIPTION
Use this command to enable Fibre Channel Protocol daemon (FCPD) logging. Debug information logging is enabled by default.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
None

EXAMPLES
To enable the FCPD debug information log:

 switch:admin> fcplogenable

SEE ALSO
fcpLogClear, fcpLogDisable, fcpLogShow
fcpLogShow

Displays the FCPD debug information log.

SYNOPSIS

fcplogshow

DESCRIPTION

Use this command to display the debug information logged at various stages during the Fibre Channel Protocol daemon (FCPD) device probing.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display the FCPD debug information log:

switch:admin> fcplogshow
Switch 0; Sat Dec 18 14:22:05 2010
14:22:05.799269 Flush or Probe rcvd, port 15, \n Line: 16777862, scn_type: 2
14:22:05.799279 Probe flush, port:15, \n Line:16780554, flag:0
14:22:17.469561 Flush or Probe rcvd, port 15, \n Line: 16777862, scn_type: 1
14:22:17.469567 Probe Msg Rcvd, port: 15, Line: 16777899, \n prev_state: 0, msg_scn_arg1: 0
14:22:17.470618 fcpStartProbe, port: 15, line: 16778347, \n async_state: 1, origin: 0, probe_state: 0, opt_code: 0
14:22:17.471052 fcpStartProbe, port: 15, line: 16778413, \n async_state: 1073741824, origin: 0, probe_state: 0, opt_code: 0
14:22:17.471057 Probe flush, port:15, Line:16780554, flag:1
(output truncated)

SEE ALSO

fcpLogClear, fcpLogDisable, fcpLogEnable
fcpProbeShow

Displays the Fibre Channel Protocol (FCP) probe information.

SYNOPSIS

fcpProbeShow [slot!/]port

DESCRIPTION

Use this command to display the Fibre Channel Protocol daemon (FCPD) device probing information for
the devices attached to the specified F_Port or FL_Port. This information includes the number of
successful logins and SCSI INQUIRY commands sent over this port and a list of the attached devices.

For switches running Fabric OS v7.0.0 or later, this command includes probing information for NPIV
devices. In addition, this command displays the list of devices connected to a port and the number of
successful PLOGI, PRLI, INQUIRies, and current probe state.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS

This command has the following operands:

slot

For bladed systems only, specify the slot number of the port to display, followed by
a slash (/).

port

Specify the port number to display, relative to its slot for bladed systems. Use
switchShow to list valid ports. This operand is required.

EXAMPLES

To display the FCP probe information:

switch:admin> fcpProbeShow 31

port 0 is FV-Port and it is online.
node probed: 3
successful PLOGIs: 3
successful PRLIs: 3
successful INQUIRies: 3
successful LOGOs: 3
outstanding IUs: 0
probing state: 3
probing TOV: 0
probing count: 0
probing next: 0
pmap: 0x00000000, 0x00000000, 0x00000000, 0x00000000
update map: 0x40000000, 0x00000000, 0x00000000, 0x00000000
npi v pmap: 0x00000000 0x00000000 0x00000000 0x00000000 \ 0x00000000 0x00000000 0x00000000 0x00000000
npi v update map: 0x00000000 0x00000000 0x00000000 0x00000000 \ 0x00000000 0x00000000 0x00000000 0x00000000

list of devices(may include old NPIV devices):
0x500e8: SEAGATE ST318452FC 0005
0x500e4: SEAGATE ST318452FC 0001
0x500e2: SEAGATE ST318452FC 0005

SEE ALSO

portLoginShow, portLogShow
fcpRlsProbe

Initiates the Fibre Channel Protocol (FCP) Read Link Status (RLS) probing for F_Port and displays the RLS information.

SYNOPSIS

```
fcpRlsProbe --start [slot[/]port_list
fcpRlsProbe --show [slot[/]port
fcpRlsProbe --help
```

DESCRIPTION

Use this command to initiate the FCP RLS probing or to display the RLS information. This information describes the number of link failures, loss-of-signal, loss-of-sync, CRC errors, and other failure events detected on the specified port.

Use the `fcpRlsProbe --start` command to read the error status block for F/FL-Ports. This command will send a RLS ELS probe to the device on the specified port and caches the RLS information. Use the `fcpRlsProbe --show` command to display the cached RLS information. For the command to send RLS probe to the device you must enable the following parameter: Disable Device Probing = 0 (Enables device probing. By default Device probing is enabled).

For this command to gather and display F_Port error statistics, apart from enabling the device probing, you must enable RLS Probing using the `fcpRlsProbe --start` command or use the `configure` command, "Disable RLS Probing". By default, RLS probing is disabled.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

```
slot
```

Specifies the slot number, if applicable, followed by a slash (/).

```
port_list
```

Specifies a port number. You can specify a port or range of ports.

```
--start
```

Sends the ELS RLS to the device and gets the RLS information.

```
--show
```

Displays the RLS information.

```
--help
```

Displays the command usage.

EXAMPLES

To start the RLS probing:

```
switch:admin> fcpRlsprobe --start 1
RLS probing initiated...
Please use the fcpRlsprobe --show port command to view the RLS info.
```

To view the RLS information:

```
switch:admin> fcpRlsprobe --show 1
Rls Probing Statistics for port 1
====================================
AL_PA 0x0
---------
RLS Probe Status : SUCCESS
```
fcpRlsProbe

Last Updated : Fri May 18 08:44:11 2012

link fail loss sync loss sig prtc err bad word crc err

 0 6 6 0 65555 0

SEE ALSO fcpRlsShow
fcpRlsShow

Displays the Fibre Channel Protocol (FCP) Read Link Status (RLS) information.

SYNOPSIS

fcpRlsShow [slot]/port

DESCRIPTION

Use this command to display the FCP RLS information for an F_Port or FL_Port. This information describes the number of loss-of-signal, loss-of-sync, CRC errors, and other failure events detected on the specified port.

For this command to gather and display F_Port error statistics,
- you must enable the configuration parameter: Disable Device Probing = 0 (Enables device probing. By default Device probing is enabled).
- you must enable RLS Probing in the following ways: Use the fcpRlsprobe --start command which enables RLS Probing or use the configure command "Disable RLS Probing" to enable RLS probing. Disable RLS Probing = Off (Enables RLS Probing) by default RLS probing is disabled.

Use the fcpRlsprobe --show command to view the RLS information.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

slot

For bladed systems only, specifies the slot number of the port to display, followed by a slash (/).

port

Specifies the port number to display, relative to its slot for bladed systems. Use switchShow for a listing of valid ports. This operand is required.

EXAMPLES

To display the FCP RLS information:

 switch:admin> fcpRlsShow 9
 RLS Probing Statistics for port 9
 ==================================
 AL_PA 0x1
 =========
 RLS Probe Status : SUCCESS
 Last Updated : Mar 4 03:17:50 2012

 link fail loss sync loss sig prtc err bad word crc err

 1138 65047 1138 0 4996278 71
 AL_PA 0x2
 =========
 RLS Probe Status : FAIL (RLS Send timed out)
 Last Updated : Mar 4 03:17:50 2012
 AL_PA 0x3
 =========
 RLS Probe Status : SUCCESS
fcpRlsShow

<table>
<thead>
<tr>
<th>Link fail</th>
<th>Loss sync</th>
<th>Loss sig</th>
<th>PRTC err</th>
<th>Bad word</th>
<th>CRC err</th>
</tr>
</thead>
<tbody>
<tr>
<td>147</td>
<td>1035</td>
<td>118</td>
<td>0</td>
<td>306278</td>
<td>72</td>
</tr>
</tbody>
</table>

SEE ALSO
[portLoginShow](#), [portShow](#)
fcrBcastConfig

Displays or sets the broadcast frame forwarding option.

SYNOPSIS
fcrbcastconfig --show
fcrbcastconfig --enable -f fabric_id
fcrbcastconfig --disable -f fabric_id
fcrbcastconfig --help

DESCRIPTION
Use this command to enable or disable the broadcast frame option or to display the current configuration. If no operands are specified, this command displays the usage. By default, frame forward option is disabled. Use the --show option to display the current settings on the switch.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
This command has the following operands:
--show
 Shows the current broadcast configuration as enabled or disabled. If broadcast frame forwarding is disabled for selected FIDs, only the enabled FIDs in the current configuration are displayed.

--enable
 Enables the frame forwarding option for a specified fabric ID.

--disable
 Disables the frame forwarding option for a specified fabric ID.

 -f fabric_id
 Specifies the fabric ID to be disabled or enabled. Valid values are 1 to 128. This operand is required with the --enable and --disable options.

--help
 Displays the command usage.

EXAMPLES
To display the current configuration:
 fcr:admin> fcrbcastconfig --show
 Broadcast configuration is disabled for all FID

To enable broadcast frame forwarding for FID 33, 28, and 2:
 fcr:admin> fcrbcastconfig --enable -f 33
 fcr:admin> fcrbcastconfig --enable -f 28
 fcr:admin> fcrbcastconfig --enable -f 2

To display the new configuration:
 fcr:admin> fcrbcastconfig --show
 Broadcast configuration is enabled for FID: 2 33 128

To disable broadcast frame forwarding for FID 33:
 fcr:admin> fcrbcastconfig --disable -f 33
To display the new configuration:

```
switch:admin> fcrbcastconfig --show
Broadcast configuration is enabled for FID: 2 128
```

SEE ALSO `bcastShow`, `portRouteShow`
fcrConfigure

Displays or sets FC Router configuration parameters.

SYNOPSIS

fcrconfigure --bbfid
fcrconfigure --enable -shortestifl
fcrconfigure --disable -shortestifl
fcrconfigure --show
fcrconfigure --help

DESCRIPTION

Use this command to change the backbone fabric ID, or to enable or disable the shortest inter-fabric link (IFL) mode. If no operands are specified, this command displays the usage. Use the --show option to display the current settings on the switch.

Before you configure the backbone fabric ID using the --bbfid option, you must disable FC routing by using the fosConfig command and disable the switch using the switchDisable command.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

--bbfid

Specifies the Backbone Fabric ID. This is an interactive option. A fabric ID uniquely identifies a fabric in FC Router configurations. The backbone fabric is the fabric attached to the U_Ports of the switch, for example, E_Ports or F_Ports. The backbone fabric ID must be unique across all fabrics connected to the FC Router. Use the switchShow command to display the current Backbone Fabric ID.

--enable -shortestifl

Enables the shortest IFL mode in FC Router.

When the shortest IFL mode is enabled, FC Router can choose a lowest-cost IFL path in the backbone fabric. This feature is useful when an FC Router has multiple connections to the source edge fabric and the backbone fabric has multiple FC Routers connected through FCIP links (VE_Ports) and FC links (E_Ports).

Because a domain in an edge fabric can choose any equal cost path to reach the translate domain, frames can be transmitted through FCIP links even though FC links are present in the backbone fabric. When the shortest IFL mode is enabled, the FCIP path in the backbone fabric is avoided while reaching the destination edge fabric.

You should identify the FCIP links in the backbone fabric and then the direction of the FCIP path (across the backbone fabric) from the source to the destination edge fabric. Once the direction of the FCIP path is identified, set the cost of the FCIP link greater than or equal to 10000 by using the linkCost command. The link cost must be set for all FC Routers in the identified FCIP link path. Likewise, identify and set the cost for other FCIP paths of all destination edge fabrics.
After you identify the FCIP links between FC Routers for all fabrics and updated the cost of all FCIP links, enable the shortest IFL mode in all the FC Routers in the backbone fabric using this option. If the FCIP link is the only available path from the source to the destination edge fabric, then traffic will flow through that FCIP link only.

--disable -shortestifl
Disables the shortest IFL mode in FC Router.

--show
Shows the current Backbone Fabric ID and the status of the shortest IFL mode as enabled or disabled.

--help
Displays the command usage.

EXAMPLES
To configure FC Router parameters:
```
fcr:admin> fcrconfigure --bbfid
Backbone fabric ID parameter set. <cr> to skip this parameter
Please make sure new Backbone Fabric ID does not conflict with any configured EX-Port's Fabric ID
Backbone fabric ID: (1-128)[128]32
```

To enable shortest IFL mode:
```
fcr:admin> fcrconfigure --enable -shortestifl
Shortest IFL path is enabled.
```

To disable shortest IFL mode:
```
fcr:admin> fcrconfigure --disable -shortestifl
Shortest IFL path is disabled
```

To display the current configuration:
```
fcr:admin> fcrconfigure --show
Backbone fabric ID: 32
Shortest IFL feature is disabled
```

SEE ALSO
fosConfig, switchDisable, switchEnable, switchShow, linkCost
fcrEdgeShow

Displays the FIDs of all configured EX_Ports.

SYNOPSIS

fcredgeshow

fcredgeshow [-fid FabricID]

fcredgeshow --help

DESCRIPTION

Use this command without operand to display information about all Fabric IDs (FIDs) that have been created on the chassis and are assigned to EX_Ports.

When a FID is specified, fcredgeshow displays information for all EX_Ports configured with the specified FID.

For each FID, the command output includes the following:

FID
Fabric ID of the EX_Port.

EX-port
EX_Port number of the switch.

E_Port
Port number for the remote E_Port.

PWWN
Neighbor switch port WWN.

SWWN
Neighbor switch WWN.

Flags
encryption, compression and fec features

The command output depends on the EX_Port configuration:

• If the EX_Port is online, the command displays the FID, the EX_Port to which it is assigned, the E_Port, the port WWN, the switch WWN and Port flags. Inter Chassis Link (ICL) EX_Ports do not support encryption and compression.

• If the EX_Port is offline, the command displays the FID, the EX_Port to which it is assigned, and an "OFFLINE" message.

• IF no EX_Ports are configured in the switch, the command displays "No EX-port Configured".

• If no EX_Ports are configured within the specified FID, the command displays the following message: "No EX-ports with FID FabricID."

OPERANDS

This command has the following operands:

-fid FabricID
Specifies the FID for which to display the configured EX_Ports.

--help
Displays the command usage.
EXAMPLES

To display the EX_Ports configured in the switch:

switch:admin> fcredgeshow
FID EX-port E-port Neighbor Switch (PWWN, SWWN) Flags

25 1/13 24 20:f4:00:05:1e:38:a4:cb 10:00:00:05:1e:38:a4:cb FEC \
 ENCRYPTION COMPRESSION
35 1/12 299 2e:2b:00:05:1e:40:44:02 10:00:00:05:1e:40:44:02 ENCRYPTION \
 COMPRESSION
11 5/13 273 2e:11:00:05:33:b3:39:00 10:00:00:05:33:b3:39:00 FEC

To display the EX_Ports configured with a specified FID:

switch:admin> fcredgeshow -fid 25
FID EX-port E-port Neighbor Switch (PWWN, SWWN) Flags

25 11 244 20:f4:00:05:1e:38:a4:cb 10:00:00:05:1e:38:a4:cb FEC \
 ENCRYPTION COMPRESSION

To display a FID for which no EX_Ports are configured:

switch:admin> fcredgeshow -fid 29
No EX-ports with FID 29

SEE ALSO fcrPhyDevShow, fcrProxyDevShow, fcrRouteShow, lsanZoneShow, switchShow, fcrFabricShow
fcrFabricShow

Displays the FC Routers on a backbone fabric.

SYNOPSIS

fcrfabricshow

fcrfabricshow --name

fcrfabricshow --help

DESCRIPTION

Use this command to display information about FC Routers that exist in an FC Router backbone fabric. The existing syntax is maintained for IPv6 support. When IPv6 addresses are not configured, the output of fcrFabricShow displays the IPv4 format. Use the --name option to display the fabric name along with EX-port, FID, and switch name.

The message "No active FC Routers found" is displayed if no active FC Routers are present on the backbone fabric.

The following information is displayed for each FC Router found on the backbone fabric:

WWN
- The world wide name of the FC Router.

Domain ID
- The domain ID of the FC Router. This domain ID is relevant only on the backbone fabric.

Info
- The Ethernet IP address and switch name of the FC Router. When IPv6 addresses are configured, only the static IP address displays for each FC Router found on the backbone fabric.

EX_Ports
- A listing of active EX_Ports for the FC Router and information about these EX_Ports. This information includes:
 - **EX_Port**
 - The port number for the EX_Port. An asterisk (*) at the end of the line indicates that the EX_Port is a Remote Router Port.
 - **FID**
 - The fabric ID of the EX_Port.

Neighbor Switch Info
- (WWN, enet IP, name)
 - The WWN, Ethernet IP address, and switch name of the switch attached to the EX_Port.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operand.

--name
- Displays the FC Routers on a backbone fabric with edge fabric names.

--help
- Displays the command usage.
EXAMPLES

To display the FC Routers in the backbone fabric:

```
switch:admin> fcrfabricshow
```

```
FC Router WWN: 10:00:00:05:1e:41:59:81, Dom ID: 2, Info: 10.33.36.8, "swd77"
EX_Port  FID Neighbor Switch Info (enet IP, WWN, name)
-----------------------------------------------
12       5  10.33.35.81 10:00:00:05:1e:34:01:d0 "B10_4"
```

```
FC Router WWN: 10:00:00:05:1e:41:1c:73, Dom ID: 4, Info: 10.33.36.12, "ttv12"
EX_Port  FID Neighbor Switch Info (enet IP, WWN, name)
-----------------------------------------------
9        2  10.33.35.80 10:00:00:05:1e:38:01:e7 "B10_3"
10       2  10.33.35.80 10:00:00:05:1e:38:01:e7 "B10_3"
```

```
FC Router WWN: 10:00:00:05:1e:39:51:67, Dom ID: 5, Info: 10.33.36.96, "Scimitar"
EX_Port  FID Neighbor Switch Info (enet IP, WWN, name)
-----------------------------------------------
151      2  10.33.35.80 10:00:00:05:1e:38:01:e7 "B10_3"*
```

To display the fabric name along with EX-port, FID, and switch name:

```
switch:admin> fcrfabricshow --name
```

```
FC Router WWN: 10:00:00:05:33:13:70:3e, Dom ID: 1, Info: 10.17.33.129, "U34"
EX_Port  FID Neighbor Switch Info (swname, fabricname)
-----------------------------------------------
16       22 "SPIRIT-2" "FOSFCR"
17       22 "SPIRIT-2" "FOSFCR"
18       22 "SPIRIT-2" "FOSFCR"
```

```
FC Router WWN: 10:00:00:05:33:13:74:3e, Dom ID: 2, Info: 10.17.33.128, "U35"
EX_Port  FID Neighbor Switch Info (swname, fabricname)
-----------------------------------------------
7        33 "STINGER-U33" "BODCFCR"
4        33 "STINGER-U33" "BODCFCR"
5        33 "STINGER-U33" "BODCFCR"
6        33 "STINGER-U33" "BODCFCR"
```

SEE ALSO fcrPhyDevShow, fcrProxyDevShow, fcrRouteShow, lsanZoneShow, switchShow
fcrIclPathBWMonitor

Sets or displays FC Router ICL bandwidth monitor parameters for EX_Ports.

SYNOPSIS

```
fcrIclPathBWMonitor --enable
fcrIclPathBWMonitor --disable
fcrIclPathBWMonitor --show
fcrIclPathBWMonitor --help
```

DESCRIPTION

Use this command to enable or disable the Inter Chassis Link (ICL) EX_Ports bandwidth Monitor feature on an FC Router, or to display the current status of ICL bandwidth feature and the ICL slot bandwidth assigned to connected edge fabrics. If no operands are specified, this command displays the usage. By default, this feature is disabled.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

- **--enable**

 Enables the ICL EX_Port bandwidth Monitor feature on an FC Router. In the enable mode, FC Router will periodically check for bandwidth imbalances from each ICL slot of FC Router to each ICL slot of neighbor switch connected through EX_Ports. A RASLog message will be generated when bandwidth imbalance is detected or resolved to other fabric.

- **--disable**

 Disables the ICL EX_Port bandwidth Monitor feature on an FC Router.

- **--show**

 Displays the current ICL EX_Port bandwidth Monitor feature status and bandwidth from each slot to connected edge fabric.

- **--help**

 Displays the command usage.

EXAMPLES

To enable ICL EX_Port bandwidth Monitor:

```
fcr:admin> fcrIclPathBWMonitor --enable
ICL bandwidth balance Monitor functionality is enabled
```

To disable ICL EX_Port bandwidth Monitor:

```
fcr:admin> fcrIclPathBWMonitor --disable
ICL bandwidth balance Monitor functionality is disabled
```
To display the current configuration:

 fcr:admin> fcrclpathbwmonitor --show
 ICL Path Bandwidth state :Enabled

 FABRIC SLOT-3 BW SLOT-6 BW STATE
 ===============================
 48 128 128 BALANCED
 126 64 128 UNBALANCED

SEE ALSO fosConfig, switchDisable, switchEnable, switchShow
fcrLsan

Configures and displays LSAN policies.

SYNOPSIS

fcrLsan
fcrLsan --add -enforce tag | -speed tag
fcrLsan --remove -enforce tag | -speed tag
fcrLsan --show -enforce | -speed | all
fcrLsan --help

DESCRIPTION

Use this command to add or remove LSAN tags, or to display existing tags in the configuration. LSAN tagging optimizes an FC Router's behavior based on a specified subset of LSANS. This feature improves scalability and performance related to LSAN zone size and the speed with which they are imported or exported.

This command supports two types of LSAN tags: enforced tags and speed tags.

- Enforced LSAN tags filter zones accepted by the FC Router from the edge fabric by matching the zones to the configured tags. Only matching zones are accepted into the local database for export and import. For example, if you configure an enforced LSAN tag "BRCD" on a router, only zones with names starting with "lsan_BRCD" are accepted. If multiple tags are configured, any matching zones are accepted. A maximum of eight LSAN enforce tags are configurable per FC Router switch.

- A speed tag is a flag to indicate to the FCR that the targets in the LSANs matching the tag need to be imported permanently when host and target are zoned together, even if the host is not present. This mechanism facilitates a speedy discovery process by reducing instances of failure related to timeouts. Once the devices that belong to the target edge fabric are defined as speed LSANS, the import or export can occur with a minimum amount of delay when hosts reboot or are added to the zone database.

The following restrictions apply when configuring LSAN tags:

- The FC router must run Fabric OS v6.2.0 or later.
- The switch must be disabled when you configure enforce tags. Speed tags can be configured while the switch is online.
- You must change the LSAN name in the edge fabric or the backbone fabric and propagate the LSAN to the FCR. Note that enforce tags are not supported in the backbone fabric.
- The speed tags must be set in all related FC Routers in order for import and export to proceed correctly. However, only LSANS on the target edge fabric must append the tag.

When executed without operands, fcrLsan displays the command usage.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

--add

Adds the specified tag to the LSAN tag configuration.

--remove

Removes the specified tag from the LSAN tag configuration.
--show
Displays the specified tag from the LSAN tag configuration.

--help
Displays the command usage.

-enforce tag
Accepts only the LSANs from the edge fabric that matches the specified tag string into the local FCR database. A valid tag is a string of a maximum of eight characters. The maximum configurable enforced tags is eight.

-speed tag
Allows the FCR to always import these target devices to the hosts specified in the LSANs that match the speed tag. Only one speed tag is allowed per FC router.

-all
When used with the **--show** option, this command displays all LSAN tags in the FCR LSAN tag database.

EXAMPLES
To add an LSAN enforcement tag named "brocade":
```bash
switch:admin> switchdisable
switch:admin> fcrlsan --add -enforce brocade
LSAN tag set successfully
```
To add a speed tag named "mcdt":
```bash
switch:admin> fcrlsan --add -speed mcdt
LSAN tag set successfully
```
To remove the LSAN enforcement tag "brocade":
```bash
switch:admin> fcrlsan --remove -enforce brocade
LSAN tag removed successfully
```
To remove the speed tag "mcdt":
```bash
switch:admin> fcrlsan --remove -speed mcdt
LSAN tag removed successfully
```
To display the information from the cache:
```bash
switch:admin> fcrlsan --show -enforce
Total LSAN tags : 2
ENFORCE : brocade
ENFORCE : cisco

switch:admin> fcrlsan --show -speed
Total LSAN tags : 1
SPEED: mcdt

switch:admin> fcrlsan --show -all
Total LSAN tags : 3
ENFORCE : brocade
ENFORCE : cisco
SPEED: mcdt
```

SEE ALSO
`fcrFabricShow`, `lsanZoneShow`, `fcrPhyDevShow`, `fcrProxyDevShow`, `fcrRouteShow`, `switchShow`
fcrLsanCount

 Displays or sets the maximum LSAN count.

SYNOPSIS fcrlsancount [max_lsan_count]

DESCRIPTION Use this command to set or display the maximum number of LSAN zones that can be configured on the edge fabric. By default, the maximum LSAN count is set to 3000, which is also the minimum. This command allows you to create up to 5000 LSANs on your edge fabric, if needed to support additional devices. The maximum number of supported LSAN devices is 10,000.

When executed without operand, this command displays the current LSAN zone limit.

This command assumes that all FCRs in the same LSAN fabric matrix or backbone have the same maximum LSAN count defined in order to protect the FCRs from running into indefinite state. Asymmetric LSAN configurations due to different maximum LSAN counts may lead to different devices being imported on different FCRs.

Because the maximum number of LSANs is configured per switch, if there is a different maximum LSAN count on the switches throughout the meta-SAN, the device import or export will not be identical on the FCRs. You should therefore enter the same maximum LSAN count for all the FCR switches in the same backbone that support this feature. Verify the configured maximum limit against the LSANs configured using the fcrResourceShow command.

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS This command has the following operands:

max_lsan_count Specifies the maximum LSAN count.

EXAMPLES To display the current LSAN limit:

switch:admin> fcrlsancount
LSAN Zone Limit: 3000

To increase the LSAN zone limit:

switch:admin> fcrlsancount 5000
LSAN Zone Limit: 5000

SEE ALSO fcrResourceShow
fcrLsanMatrix

Creates, modifies, and displays the LSAN fabric matrix or the FCR matrix.

SYNOPSIS

fcrLsanmatrix

fcrLsanmatrix --add -lsan FID FID | -fcr wwn wwn
fcrLsanmatrix --remove -lsan FID FID | -fcr wwn wwn
fcrLsanmatrix --apply -lsan | -fcr | -all
fcrLsanmatrix --cancel -lsan | -fcr | -all
fcrLsanmatrix --display -lsan | -fcr | -all
fcrLsanmatrix --fabricview -lsan | -fcr
fcrLsanmatrix --verify -lsan | -fcr
fcrLsanmatrix --quickmode -lsan | -fcr
fcrLsanmatrix --help

DESCRIPTION

Use this command to create, modify, remove, and manage Logical SAN (LSAN) Zone bindings between edge fabrics or between FC routers. LSAN Zone bindings specify pairs of edge fabrics or FCRs that can access each other and share LSAN Zone and device database information.

This command follows a transaction model. Modifications to the LSAN fabric matrix or to the FC router matrix are saved nonpersistently in a cache until you save the changes persistently with the --apply option.

When used with the -lsan option, this command manages the LSAN matrix information. An LSAN fabric pair binds two edge fabrics specified by their Fabric IDs. Every paired edge fabric implies two-way communications. The paired edge fabrics have access only to the edge fabrics associated with them by this command. The edge fabrics that are not specified in the LSAN fabric matrix have access to the remaining unspecified edge fabrics. Using this information, the FCR switch maintains the remote LSAN Zone and the device state database only if it is associated with its local edge fabrics.

For example, if the edge fabrics with FIDs 1, 2, 3, 4, and 5 are online, all edge fabrics have two-way communication. This is the default behavior. If you pair the edge fabrics 1 and 2 with the --add -lsan command, the default access between the edge fabrics is changed as follows:

- Fabric 1 can access only fabric 2.
- Fabric 2 can access only fabric 1.
- The fabrics 3, 4, and 5 can access each other, but cannot access Fabric 1 or 2.

The LSAN matrix information is automatically distributed to all switches in the fabric. The FIDs entered are not required to be online when you set up the LSAN fabric matrix.

When used with the -fcr option, this command manages the FC router matrix. This database consists of FC router pairs that can talk to each other. All edge fabrics connected to a defined pair of FCRs are allowed to import devices to each other.

Once a fabric is removed from an FCR, the communication with other fabrics of the two FCRs is also removed. It is advisable to update the matrix to reflect the change. If FCR Binding is enabled in the edge fabrics, the edge fabrics can still communicate with the backbone fabric. The LSAN matrix provides a higher level of granularity than the FCR matrix. Therefore, communication between two fabrics could pass the FCR matrix, but fail due to restriction of the FID matrix.
NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

If no operands are specified, this command displays the persistent LSAN Zone matrix information. The following operands are optional:

--add -lsan FID FID | -fcr wwn wwn

Adds the pair of edge fabrics or FCR members that can access each other to the LSAN matrix cache. Edge fabrics are specified by their Fabric IDs. FCRs are specified by their world wide names (WWNs). If the FCR is online, the domain ID of the switch can be used in place of the WWN. If you specify --add with zero (0) value for FID or 00:00:00:00:00:00:00:00 for wwn, the command returns the cache to default mode.

--remove -lsan FID FID | -fcr wwn wwn

Removes the specified pair of FIDs or FCRs from the cache. When you remove a fabric or FCR pair from the LSAN matrix, the edge fabrics assume the default behavior.

--apply -lsan | -fcr | -all

Applies the information from the cache to persistent memory. This operation succeeds only if there is no effect on the existing import/export devices. Otherwise, this command generates an error message. See the Diagnostics section for more information.

--cancel -lsan | -fcr

 Cancels changes made to the cache that were not applied. This command effectively reverts to the persistently stored information.

--display -lsan | -fcr | -all

Displays the information saved in the cache.

--fabricview -lsan | -fcr

Displays all static and default/dynamic fabric bindings in the backbone.

--verify -lsan | -fcr

Verifies if the LSAN Zone information previously entered and stored in the cache can be successfully applied. The data is considered acceptable if the apply operation does not cause any traffic disruption.

--quickmode

Derives the LSAN Zone matrix from the imported or exported devices.

DIAGNOSTICS

Error message (1)

LSAN Matrix in the cache conflicts with existing import/export devices and may disrupt traffic. Please refer to the man page for the corrective action.

Corrective actions:

• Any new router added to the backbone fabric automatically triggers a matrix merge. If a router does not support the matrix merge feature, the router cannot join the backbone fabric. Make sure that all legacy FCR switches in the backbone support the matrix merge feature, otherwise the feature is not supported.

• Use fcrLsanMatrix --fabricview -lsan | -fcr to confirm that all the switches in the backbone have the same LSAN and FCR Binding matrix. If not, there are two solutions. The first solution is to modify one FCR or both to make them the same and then activate the FCRs. The second solution is to zero out the database of one FCR to signal that this FCR accepts the database from the other FCR once the change is activated.
To zero out the database, execute the following commands:

- `fcrlsanmatrix --add -lsan 0 0`
- `fcrlsanmatrix --add -fcr 00:00:00:00:00:00:00:00 00:00:00:00:00:00:00:00`
- `fcrlsanmatrix --apply -all`

• In a dual backbone configuration, execute `fcrlsanmatrix --fabricview` on the FCR switches to confirm that the shared edge fabric FIDs have the same access in both backbones.

• Execute `fcrlsanmatrix --display -lsan | -fcr and fcrrproxydevshow -a`. Check that the LSAN Binding matrix in the cache is not in conflict with the existing import/export devices that are displayed on the FCR switch. If there is a conflict, do one of the following:
 - Update the LSAN/FCR Binding matrix in the cache to allow access for the FIDs that have imported devices.
 - Remove the conflicting import/export devices by updating the LSAN zone in the edge fabrics.
 - Disable the conflicting devices.

Error message (2)

There may be other FCR switches in the backbone that do not support the LSAN Binding feature or do not have the same `fcrlsanmatrix` settings.

Please refer to the man page for the corrective action.

Corrective actions:

• Verify that all FCR switches in the backbone support the LSAN Binding features.
• Execute `fcrlsanmatrix --fabricview` to confirm that all the switches in the backbone have the same LSAN Binding matrix. If not, clear the LSAN Binding feature on all the switches and reapply the same LSAN Binding matrix on all the FCR switches in the backbone.
• In a dual backbone configuration, use `fcrlsanmatrix --fabricview` on the FCR switches to confirm that the shared edge fabric FIDs have the same access in both backbones.

Refer to the Fabric OS Message Reference manual for further diagnostic information.

EXAMPLES

To add the LSAN Zone Matrix data (For the following example, assume that the backbone has the following online edge fabrics (FIDs): 1, 2, 4, 5, 7, 8, and 10. Currently, FIDs 14 and 19 are not available.):

```
switch:admin> fcrlsanmatrix --add -lsan 4 5
switch:admin> fcrlsanmatrix --add -lsan 4 7
switch:admin> fcrlsanmatrix --add -lsan 10 14
switch:admin> fcrlsanmatrix --add -lsan 10 19
```

To remove an entry from the LSAN matrix:

```
switch:admin> fcrlsanmatrix --remove -lsan 10 14
```

To display the information from the cache:

```
switch:admin> fcrlsanmatrix --display -lsan

Fabric ID 1          Fabric ID 2
-------------------------------
  4                  5
  4                  7
 10                 19
```

To apply the changes persistently:

```
switch:admin> fcrlsanmatrix --apply -lsan
```
To view the persistent changes:

```
switch:admin> fcrlsanmatrix -lsan
LSAN MATRIX is activated
Fabric ID 1     Fabric ID 2
---------------------------
 4              5
 4              7
10             19
```

To view the LSAN Zone static and default/dynamic binding in the backbone where online fabrics are: 1, 2, 4, 5, 7, 8, 10:

```
switch:admin> fcrlsanmatrix --fabricview -lsan
LSAN MATRIX is activated
Fabric ID 1     Fabric ID 2
---------------------------
 4              5
 4              7
10             19
Default LSAN Matrix:
  1  2  8
```

To display all proxy devices for all FC Routers in the same backbone fabric whether or not they are relevant to this FC Router:

```
switch:admin> fcrproxydevshow -a
Proxy Created in Fabric  WWN       Proxy Created in Fabric PID   Exists PID   State
52  10:00:00:06:2b:0e:4d:e5  01f001    78    4e0000  Imported
52  10:32:16:90:28:dd:d0:03  0bf001    82    2a0900  Imported
52  10:32:16:91:24:dd:d0:07  0bf002    82    520c00  Imported
52  10:32:16:91:25:dd:d0:06  01f002    78    4e3000  Imported
78  10:00:00:06:2b:0d:29:31  09f0002   52    482200  Imported
78  10:00:00:06:2b:0d:29:30  09f0001   52    48a100  Imported
78  10:00:00:06:2b:0d:2f:ed  03f002   82    520200  Imported
78  10:00:00:06:2b:0d:33:4d  01f001    78    4e1800  Imported
82  10:00:00:06:2b:0e:4d:c9  03f001    52    482000  Imported
Total devices displayed: 12
```

To display the information from the cache:

```
switch:admin> fcrlsanmatrix --display -lsan
Fabric ID 1     Fabric ID 2
---------------------------
 52              78
 52              82
 78              82
```

To apply the changes persistently:

```
switch:admin> fcrlsanmatrix --apply -lsan
```
To view all the static and the default/dynamic fabric binding in the backbone:

```
switch:admin> fcrlsanmatrix --fabricview -lsan
LSAN MATRIX is activated

Fabric ID 1          Fabric ID 2
---------------------------
52                78
52                82
78                82

Default LSAN Matrix:
57 91
```

To add FCR Bindings to the FCR matrix:

```
switch:admin> fcrlsanmatrix --add -fcr 10:00:00:60:69:e2:09:fa \  
10:00:00:60:69:e2:09:fb

switch:admin> fcrlsanmatrix --add -fcr 10:00:00:60:69:e2:09:fb \  
10:00:00:60:69:e2:09:fc
```

To remove an entry from the FCR matrix:

```
switch:admin> fcrlsanmatrix --remove -fcr 10:00:00:60:69:e2:09:fb \  
10:00:00:60:69:e2:09:fc
```

To display the information from the cache:

```
switch:admin> fcrlsanmatrix --display --fcr

CACHE FCR PAIRS
==================
FCR               FCR
-------------------
10:00:00:60:69:e2:09:fa (2)       10:00:00:60:69:e2:09:fb (unknown)
```

To apply the changes persistently:

```
switch:admin> fcrlsanmatrix --apply -fcr
```

To view the persistent changes:

```
switch:admin> fcrlsanmatrix --fabricview -fcr

SAVED FCR PAIRS
================
FCR               FCR
-------------------
10:00:00:60:69:e2:09:fa (2)       10:00:00:60:69:e2:09:fb (unknown)
```

SEE ALSO
`fcrFabricShow`, `IsanZoneShow`, `fcrPhyDevShow`, `fcrProxyDevShow`, `fcrRouteShow`, `switchShow`
fcrPhyDevShow

Displays the FC Router physical device information.

SYNOPSIS
fcrphydevshow [-a][-f FID][-w wwn][-c][-d] [-h]

DESCRIPTION
Use this command to display the physical (real) devices that are configured to be exported to other fabrics. A device is considered to be configured to be exported to another fabric if it is a member of an LSAN zone. The device is displayed only if it is discovered in the EX_Port-attached fabric and backbone fabric's name server (for instance, the device is online).

Physical device information is available only for physical devices that exist in fabrics attached to EX_Ports of FC Routers on the same backbone fabric as the current FC Router.

The default output displays only physical device information relevant to the current FC Router. Relevant physical devices include physical devices that are configured to be exported from fabrics attached to the current FC Router's EX_Ports.

The physical devices are listed by fabric.

The -f and -w operands allow searching for physical devices based on fabric ID or port world wide name.

"No device found" is displayed if there is no physical device information available at the current FC Router.

Each line of the output displays:

Device Exists in Fabric
The fabric in which the physical device exists.

WWN
The world wide name of the device port.

Physical PID
The port ID of the physical device. This port ID is only relevant on the fabric specified by the "Device Exists in Fabric" column.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
This command has the following operands:
-a
Displays all physical devices for all FC Routers in the same backbone fabric whether or not they are relevant to the current FC Router.

-a -f FID
Displays the physical devices in the specified fabric for all FC Routers in the same backbone fabric whether or not they are relevant to the current FC Router.

-w wwn
Displays the physical devices with the specified port WWN.

-c
Clears login-related counters.

-d
Displays the following login-related counters. Counters are cleared upon reboot or failover.

 login try
 The number of times the device attempted to log in.
fcrPhyDevShow

- **local failure**
 the number of times the device login failed because of missing LSAN zones within the device fabric.

- **remote failure**
 the number of times the device login failed due to missing LSAN zones within the remote fabric.

- **-h**
 Displays command usage.

EXAMPLES
To display the physical devices relevant to an FC Router:

```bash
fcr:admin> fcrphydevshow
Device   WWN            Physical
Exists   PID
in Fabric-----------------------------------------
          -----------------------------------------
  2 10:00:00:00:c9:2b:6a:68  c70000
  3 50:05:07:65:05:84:09:0e  0100ef
  3 50:05:07:65:05:84:0b:83  0100e8
```

Total devices displayed: 3

SEE ALSO fcrFabricShow, fcrProxyDevShow, fcrRouteShow, lsanZoneShow, switchShow
fcrProxyConfig

Displays or configures proxy devices presented by an FC Router.

SYNOPSIS

fcrproxyconfig

[-s importedFID devWWN slot]

[-r importedFID devWWN]

DESCRIPTION

Use this command to display or set the persistent configuration of proxy devices presented by the local
FC Router.

When used without operand, this command displays the persistent proxy device configuration;
otherwise, it sets the specified attributes to its new value.

The proxy device must be inactive prior to setting or clearing persistent attributes. Disabling EX_Ports
(using the portDisable command) attached to the relevant edge fabric, removing the device from the
appropriate LSAN zones, or disabling the physical device are valid methods of ensuring a proxy device is
inactive.

Persistent proxy device configuration attributes apply to the local FC Router. Multiple FC Routers
attached to the same edge fabric coordinate to present the same proxy devices. As a result, persistent
proxy device configurations must be consistent across all FC Routers attached to the same edge fabric
or unpredictable results may occur. If the proxy device configuration is not altered, no action is required.
If the configuration is altered, then care must be taken to ensure consistency across all FC Routers
attached to the same edge fabric.

When used without operands, this command displays the following information:

importedFID

The imported fabric ID of the proxy device.

devWWN

The port world wide name of the device.

Slot

The slot used for the device WWN. The device WWN-to-slot association is
persistently stored. The slot format is XXYYH, where XX specifies the translate
domain area_ID (valid values include F0H through FFH) and YY specifies the Port
ID value or the low 8-bits of the proxy device address (valid values include 01H
through 7FH). The address of the proxy device is derived from the PID format (for
example, native, core, or extended edge) and the proxy device slot.
If no proxy device WWN is stored in any slot for all edge fabrics, the following message is displayed: "All slots empty."

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
This command has the following operands:

- **-s importedFID devWWN slot**
 Adds the specified devWWN (format: xx:xx:xx:xx:xx:xx:xx:xx) to the specified slot (format XXYYH, where XX is the translate domain area_ID [F0H through FFH] and YY is the port_ID [01H through 7FH]) for the edge fabric specified (1 through 128). The following messages may be displayed:

 - "WWN does not exist in any proxy device slot." The WWN does not exist in any slot for the specified edge fabric.
 - "Too many proxy slots configured. Remove some unused proxy device WWNs from their slots using the -r operand and try again." All slots are used for the specified edge fabric.
 - "The specified slot already contains a WWN, overwrite? [y]" The specified slot already contains an entry. You are then prompted for confirmation.

- **-r importedFID devWWN**
 Removes the specified devWWN (format: XX:XX:XX:XX:XX:XX:XX:XX) from its slot for the edge fabric specified by importedFID (1 through 128). If the WWN does not exist in any slot for the specified edge fabric, the following message is displayed: "WWN does not exist in any proxy device slot."

EXAMPLES
To display the persistent proxy device configuration:

```
switch:admin> fcrproxyconfig
Imported FID        Device WWN          Slot
 002          50:05:07:65:05:84:08:d7    f001
 002          50:05:07:65:05:84:0a:7b    f002
 002          22:00:00:20:37:c3:11:71    f001
 002          22:00:00:20:37:c3:1a:8a    f002
 003          10:00:00:00:c9:2b:6a:2c    f001
```

To persistently configure device WWN 00:11:22:33:44:55:66:77 to use slot f101h in fabric 5:

```
switch:admin> fcrproxyconfig -s 5 \
```

To remove device WWN 00:11:22:33:44:55:66:77 from its persistent slot in fabric 5:

```
switch:admin> fcrproxyconfig -r 5 \
WWN deleted from proxy device slot
```

SEE ALSO
fcrPhyDevShow, fcrProxyDevShow, fcrXlateConfig, lsanZoneShow, switchShow
fcrProxyDevShow

Displays FC Router proxy device information.

SYNOPSIS
fcrproxydevshow [-a][-f fabricid][-w wwn]

DESCRIPTION
Use this command to display the proxy devices presented by FC Router EX_Ports and information about
the proxy devices. A proxy device is a virtual device presented in to a fabric by an FC Router. A proxy
device represents a real device on another fabric. When a proxy device is created in a fabric, the real
Fibre Channel device is considered to be imported in to this fabric. The presence of a proxy device is
required for inter-fabric device communication. The proxy device appears to the fabric as a real Fibre
Channel device. It has a name server entry and is assigned a valid port ID.

Proxy device information is available only for proxy devices that are presented by FC Routers on the
same backbone fabric as this FC Router.

The default output displays only proxy device information relevant to this FC Router. Relevant proxy
devices include proxy devices created by this FC Router (devices imported by this FC Router).

The proxy devices are listed by fabric. Search parameters -f and -w allow searching for proxy devices
based on fabric ID or port WWN.

"No proxy device found" is displayed if there is no proxy device information available on this FC Router.

This command displays the following information:

Proxy Created in Fabric
The fabric in which the proxy device has been created.

WWN
The WWN of the device port.

Proxy PID
The port ID of the proxy device. The port ID is only relevant on the fabric specified
by the "Proxy Created in Fabric" column.

Device Exists in Fabric
The fabric in which the physical device represented by this proxy device exists.

Physical PID
The port ID of the physical device. The port ID is relevant only on the fabric
specified by the "Device Exists in Fabric" column.

State
State includes:

- **Imported**
 Proxy device has been imported into the fabric.

- **Initializing**
 The proxy device is being initialized and will soon be imported into the fabric.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS
This command has the following operands:

- **-a**
 Display all proxy devices for all FC Routers in the same backbone fabric whether
 or not they are relevant to this FC Router.
fcrProxyDevShow

-a -f fabricid

Display the proxy devices in the specified fabric for all FC Routers in the same backbone fabric whether or not they are relevant to this FC Router.

-f fabricid

Display the proxy devices in the specified fabric that are relevant to this FC Router.

-w wwn

Displays proxy devices with the specified port WWN.

EXAMPLES
To display the proxy devices relevant to this FC Router:

```
switch:admin> fcrproxydevshow
Proxy Created          WWN         Proxy  Device  Physical State
                      in Fabric                         in Fabric
---------------------------------------------------------
2   50:05:07:65:05:84:09:0e 01f001    3   0100ef Imported
2   50:05:07:65:05:84:0b:83 01f000    3   0100e8 Imported
3   10:00:00:00:c9:2b:6a:68 02f000    2   c70000 Imported
Total devices displayed: 3
```

SEE ALSO fcrFabricShow, fcrRouteShow, IsanZoneShow, switchShow
fcrResourceShow

Displays FC Router physical resource usage.

SYNOPSIS
fcrresourceshow

DESCRIPTION
Use this command to display the FC Router-available resources. The maximum number allowed versus
the currently used is displayed for various resources. The command output includes:

LSAN Zones
The maximum versus the currently used LSAN zones.

LSAN Devices
The maximum versus the currently used LSAN device database entries. Each
proxy or physical device constitutes an entry.

Proxy Device Slots
The maximum versus the currently used proxy device slots. A proxy device is
presented to an edge fabric as being connected to a translate domain slot. A slot
is the port number and AL_PA combination. The slot-to-device WWN association
is persistently stored.

Phantom Node WWNs
The maximum versus the currently allocated phantom switch node WWNs. The
phantom switch requires node WWNs for fabric-shortest-path-first (FSPF) and
manageability purposes. Phantom node names are allocated from the pool
sequentially and are not reused until the pool is exhausted and rolls over. The last
allocated phantom node WWN is persistently stored. If the switch is disabled, the
phantom node WWNs are not returned to the pool until the system reboots,
because the phantom switch could still be accessible through other switches.
Across a switch reboot, the allocation starts from the next usable WWN from the
pool and not from the beginning.

Phantom Port WWNs
The maximum versus the currently used phantom domain port WWNs. Phantom
domain ports require port WWNs for manageability purposes. Phantom domain
ports include ports connecting front and translate domains (virtual ISLs), translate
domain ports for proxy devices, and EX_Ports. Phantom port names are allocated
from the pool sequentially and are not resumed until the pool is exhausted and
rolls over. The last allocated phantom port WWN is persistently stored. If the
switch is disabled, phantom port WWNs are not returned to the pool until the
system reboots, because the phantom switch might still be accessible through
other switches. Across the switch reboot, the allocation starts from the next usable
WWN base from the pool and not from the beginning.

Port Limits
Displays resources for each physical port (EX_Port), which include the following:

Max Proxy Devices
The maximum versus the currently used proxy device.

Max NR_Ports
The maximum versus the currently used NR_Port entries. Destination NR_Port
entries are stored at every physical port for routing decision purposes.

NOTES
Only configured EX/VEX_Ports are displayed

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.
OPERANDS None

EXAMPLES To display the resource usage for the local FC Router:

 switch:admin> fcrresourceshow

 Daemon Limits:
 Max Allowed Currently Used

 LSAN Zones: 3000 22
 LSAN Devices: 10000 1208
 Proxy Device Slots: 10000 2

 WWN Pool Size Allocated

 Phantom Node WWN: 8192 3790
 Phantom Port WWN: 32768 6446

 Port Limits:
 Max proxy devices: 2000
 Max NR_Ports: 1000

 Currently Used(column 1: proxy, column 2: NR_Ports):
 48 | 0
 49 | 0
 50 | 0
 52 | 0
 53 | 0
 54 | 0
 60 | 0
 63 | 1
 176| 1
 177| 1
 183| 1
 190| 0

SEE ALSO fcrFabricShow, fcrProxyDevShow, fcrRouteShow, lsanZoneShow, switchShow
fcrRouterPortCost

Displays or sets an FC Router port cost.

SYNOPSIS
fcrrouterportcost [[slot]/port] [cost]

DESCRIPTION
Use this command to set or display the cost of the FC Router ports. You can set the cost of the link to one of two fixed values: 1000 or 10000. The option 0 sets the cost of the link to the default value based on link type (EX/VEX). The router module chooses the router port path based on the minimum cost per fabric ID (FID) connection. If multiple paths exist with the same minimum cost, the load is shared over these paths.

Every inter-fabric link (IFL) has a default cost. For an EX_Port IFL, the default cost is 1000. For a VEX_Port, the default cost is 10000. If the cost is set to 0, the link cost defaults to 1000 for an EX_Port and to 10000 for a VEX_Port.

when used without operands, this command displays the current link costs for all ports on the switch.

NOTES
Before setting the cost, ensure that admin is enabled for the EX_Port/VEX_Port with portCfgEXPort or portCfgVEXPort. The cost can be set only on a disabled port.

The bandwidth of an inter-fabric link (IFL) is unrelated to its default cost. In other words, 1 Gbps, 2 Gbps, 4 Gbps, and 8 Gbps EX_Port IFLs have the same cost value of 1000 as their FC Router port.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
This command has the following operands:

slot
For bladed systems only, specifies the slot number of the port whose cost is to be displayed or changed, followed by a slash (/).

port
 Specifies the number of the port whose cost is to be displayed or changed. This value is relative to the slot for bladed systems. Use switchShow for a list of valid ports. If a port is not specified, this command displays the costs of all ports.

cost
Specifies the new cost of the link connected to the specified port. This operand is optional; if omitted, this command displays the cost of the specified port. The cost of the link can be changed only when the specified port is disabled. Valid values for cost are 0, 1000 or 10000.

EXAMPLES
To display the cost of all EX_Ports:

switch:admin> fcrrouterportcost
Port Cost

7/3 1000
7/4 1000
7/9 1000
7/10 10000
7/16 10000
10/0 10000
To display the cost on an EX_Port:

```
switch:admin> fcrRouterPortCost 7/10 0

switch:admin> fcrRouterPortCost 7/10
Port       Cost
------------
7/10        1000
```

To set the cost of an EX_Port and display the result:

```
switch:admin> fcrRouterPortCost 7/10 10000

switch:admin> fcrRouterPortCost 7/10
Port       Cost
------------
7/10        10000
```

To set the default cost on the EX_Port:

```
switch:admin> fcrRouterPortCost 7/10 0

switch:admin> fcrRouterPortCost 7/10
Port       Cost
------------
7/10        1000
```

SEE ALSO
switchShow, fcrRouteShow, portCfgEXPort
fcrRouteShow

Displays FC Router route information.

SYNOPSIS fcrouteshow

DESCRIPTION Use this command to display routes through the FC Router backbone fabric to accessible destination fabrics. An FC Router backbone fabric is the fabric that contains the E_Ports of this platform and routes inter-fabric traffic between imported fabrics, creating a meta-SAN.

There are FC Router ports that reside on the backbone fabric. These ports are known as NR_Ports. NR_Ports send and receive inter-fabric traffic. For the AP7420, there is a one-to-one relationship between an NR_Port on a backbone fabric and an EX_Port. NR_Port technology enables EX_Ports to exchange traffic across an intermediate fabric. NR_Ports are addressable entities on the backbone fabric and have port IDs relevant to the backbone fabric.

Because cascaded backbone/intermediate fabrics are currently not supported, an NR_Port provides a path to a single fabric with a single FC Router protocol cost. Multiple NR_Ports can provide paths to the same destination fabric.

"No routes found" is displayed if there is no route information available at this FC Router. There is no route information available if no EX_Ports are configured at this FC Router.

The output includes:

Destination Fabric ID
The destination fabric.

NR_Port PID
The port ID of the NR_Port. The port ID is relevant only on the backbone fabric. This NR_Port has a route to the destination fabric identified by the "Destination Fabric ID" column.

FCRP Cost
The FC Router protocol cost (for routing decisions) for this NR_Port. The FCRP cost is the same (1000) for all NR_Ports.

WWN of the Principal Switch in the Dest. Fabric
The world wide name of the principal switch in the destination fabric.

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS None

EXAMPLES To display the route information:

```
switch:admin> fcrouteshow

Destination Fabric Id  NR_Port PID  FCRP Cost  WWN of Principal Switch in the Dest. Fabric
-----------------------------------------------
4 640000     1000    10:00:00:60:69:c0:05:d1
4 640100     1000    10:00:00:60:69:c0:05:d1
5 640200     1000    10:00:00:60:69:c0:20:ed
5 640300     1000    10:00:00:60:69:c0:20:ed
```

SEE ALSO fcrFabricShow, fcrPhyDevShow, fcrProxyDevShow, IsanZoneShow, switchShow
fcrXlateConfig

Configures a translate (xlate) domain's domain ID and state of persistence for both the EX_Port-attached fabric and the backbone fabric.

SYNOPSIS

fcrxlateconfig

fcrxlateconfig importedFID exportedFID preferredDomainID

fcrxlateconfig --remove | -r importedFID exportedFID

fcrxlateconfig --enable persistxd

fcrxlateconfig --disable persistxd

fcrxlateconfig --show stalexd importedFID

fcrxlateconfig --delete stalexd importedFID staleXlateDomainID

fcrxlateconfig --help

DESCRIPTION

Use this command to display a translate (xlate) domain ID or change the preferred domain ID and its state of persistence.

A translate domain is a phantom domain created by an FC Router. FC Routers emulate proxy devices representing real devices in remote fabrics. These proxy devices are emulated to be connected to translate domains. Translate domains are presented to a fabric as residing topologically behind front phantom domains (domains created by an EX_Port). In the case of backbone fabrics, translate domains are topologically behind an E_Port. In every EX_Port-attached edge fabric and backbone fabric, there can be a translate domain for every FC Router-accessible remote fabric.

During a fabric build, the translate domain requests a domain ID from the principal switch in the EX_Port-attached edge fabric. The domain ID requested is the preferred domain ID. You can set the preferred domain ID when the translate domain is not active and is persistently saved. The principal switch attempts to provide the translate domain with the requested domain ID, but it may not provide it if there are domain ID conflicts with other domains in the fabric. If the requested domain ID (such as the preferred domain ID) is unavailable, the domain ID assignment is completely at the discretion of the principal switch. The assignment domain ID is persistently stored and is used as the preferred domain ID in the future.

By default, FCR creates the translate domain for a remote fabric if a valid persistent translate domain ID is configured in the local fabric, even if no devices are imported or exported across the edge fabrics. Disabling the persistxd parameter prevents the xlate domain from being created. Enabling the persistxd parameter from a disabled state re-enables the FCR default behavior.

If the remote edge fabric becomes unreachable, the translate domains created in other edge fabrics for this remote edge fabric become stale. Use the --show stalexd option to identify translate domains that have become stale, and delete them in a nondisruptive manner with the --delete stalexd option.

When executed without operands, fcrxlateconfig displays for each translate domain the imported FID, the exported FID, the domain ID and the xlate WWN.
NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

Information displayed is not related to the entire backbone. The FC Router displays only connections to an edge fabric for which there are translate domain IDs. Any changes you intend to make using this command should be issued on the switches to which the edge fabrics are directly attached. In a Virtual Fabric environment, this is the base switch.

OPERANDS

This command has the following operands:

fcrXlateConfig

Sets the preferred domain ID (1-239) to preferredDomainID for the translate phantom domain and saves the configuration persistently. The translate domain must be inactive to set the preferred domain ID. The following operands are required:

importedFID

Specifies the fabric ID (1 through 128) of the fabric that contains the translate domain.

exportedFID

Specifies the fabric ID (1 through 128) of the remote fabric represented by this translate domain.

preferredDomainID

Specifies the preferred domain ID (1 through 239) of the translate phantom domain.

--remove | -r

Removes the preferred domain ID of the translate phantom domain. The translate domain must be inactive to remove the preferred domain ID. The following operands are required:

importedFID

Specifies the fabric ID (1 through 128) of the fabric that contains the translate domain.

exportedFID

Specifies the fabric ID (1 through 128) of the remote fabric represented by this translate domain.

preferredDomainID

Specifies the preferred domain ID (1 through 239) of the translate phantom.

--enable persistxd

Enables translate domain persistence. When persistxd is enabled, the translate domain is created based on the persistent translate domain ID configuration. If a valid persistent translate domain ID is configured for a given importedFID and exportedFID pair, a translate domain for the exportedFID is created, even if no devices need to be imported or exported across the edge fabrics represented by importedFID and exportedFID. By default, persistxd is enabled.

--disable persistxd

Disables translate domain persistence. When persistxd is disabled, the translate domain is not created, even if a valid persistent translate domain ID is configured for the importedFID and exportedFID pair, so long as no devices are imported or exported across the edge fabrics represented by importedFID and exportedFID. Once devices need to be imported or exported across the edge fabrics, the translate domain is created.
--show stalexd [importedFID]
Displays stale translate domains associated with the specified Fabric ID (1-128). A translate domain becomes stale when the remote edge fabric for which this translate domain was created in the specified edge fabric becomes unreachable. When issued without specifying an imported FID, this command lists all stale translate domains in all edge fabrics connected to the FCR.

--delete stalexd importedFID staleXlateDomainID
Deletes the specified stale translate domain from the edge fabric specified by its fabric ID. This command must be executed in the FCR that owns the stale translate domain.

EXAMPLES
To display the translate domain configuration and the state of the persistxd parameter:

switch:admin> fcrxlateconfig
ImportedFid ExportedFid Domain OwnerDid XlateWWN
001 002 004 000001 N/A
001 005 003 N/A N/A
Persist XD state: Enabled

To set the preferred domain ID of the translate domain created in fabric 2, which represents the remote fabric 3, to a value of 8:

switch:admin> fcrxlateconfig 2 3 8
xlate domain already configured, overwrite?(n) y

To clear the preferred domain ID of the translate domain created in fabric 2, which represents remote fabric 3:

switch:admin> fcrxlateconfig -r 2 3
xlate domain deleted

To enable translate domain persistence:

fcr:admin> fcrxlateconfig --enable persistxd
Persist XD is enabled

To disable translate domain persistence:

fcr:admin> fcrxlateconfig --disable persistxd
Persist XD is disabled

To identify and remove stale translate domains in a single backbone multiple FCR configuration:

fcr:admin> fcrxlateconfig --show stalexd
Imported FID Stale XD Owner Domain

012 002 007 (this FCR)
013 002 001 (other FCR)

To remove the stale translate domain (only the translate domain owned by the current owner can be removed; note that trailing zeros must be removed from the FID and Xlate domain ID.):

fcr:admin> fcrxlateconfig --delete stalexd 12 2
Xlate domain 2 is deleted

SEE ALSO portCfgEXPort, portCfgVEXPort, portDisable, portEnable, portShow
fddCfg

Manages the fabric data distribution configuration parameters.

SYNOPSIS

```
fddcfg --showall
fddcfg --localaccept policy_list
fddcfg --localreject policy_list
fddcfg --fabwideset policy_list
```

DESCRIPTION

Use this command to manage the fabric data distribution configuration parameters. These parameters control the fabric-wide consistency policy.

Switches can be locally configured to allow or reject a security policy. Supported policies include the following:

- **SCC**: Switch Connection Control policy
- **DCC**: Device Connection Control policy
- **SCC**: Switch Connection Control policy
- **PWD**: Password policy
- **FCS**: Fabric Configuration Server policy
- **PWD**: Fabric Element Authentication policy
- **IPFILTER**: IP Filter policy

Automatic distribution of a fabric-wide consistency policy is limited to SCC, DCC, and FCS policies. Use the `--fabwideset` parameter to enforce these policies fabric-wide in tolerant or strict mode. In strict mode, fabric-wide enforcement of FCS consistency policy is possible in mixed fabrics. However, switches that do not support the policies ignore them.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

- `--showall` Displays the accept/reject configuration of all policy sets and the fabric-wide consistency policy on the switch.

- `--localaccept policy_list` Configures the switch to accept distributions of the specified policies. The policies in `policy_list` must be separated by semicolons and enclosed in quotation marks; for example, "SCC;DCC;FCS".
fddCfg

- `--localreject policy_list`
 Configures the switch to reject distributions of the specified policies in `policy_list`. However, a database cannot be rejected if it is specified in the fabric-wide consistency policy. The policies in `policy_list` must be separated by semicolons and enclosed in quotation marks; for example, "SCC;DCC".

- `--fabwideset policy_list`
 Sets the fabric-wide consistency policy. A database that is set to reject distributions cannot be specified in the fabric-wide consistency policy. To set the fabric-wide consistency policy as strict, use the strictness indicator "S". To set the fabric-wide consistency policy as tolerant, omit the "S". A valid policy set should be of the form "SCC:S;DCC;FCS". To set the fabric-wide policy to NULL (default) or no fabric-wide consistency, use the policy Set "". Supported policies are Switch Connection Control (SCC), Device Connection Control (DCC), and Fabric Configuration Server (FCS). All members specified in a given policy set are automatically distributed to all participating switches in the fabric that support the policy. Refer to the DESCRIPTION section for specific exceptions. In the presence of a fabric-wide FCS consistency policy, this command can only be run from the primary FCS switch.

EXAMPLES

To display the fabric-wide consistency policy and the accept/reject configuration for all databases:

```
switch:admin> fddcfg --showall
Local Switch Configuration for all Databases:-
DATABASE - Accept/Reject
-------------------------
SCC  -   accept
DCC  -   accept
PWD  -   accept
FCS  -   accept
AUTH -   accept
IPFILTER - accept
Fabric Wide Consistency Policy: "SCC:S;DCC;FCS"
```

To configure the switch to accept distribution of the SCC policy set and PWD database:

```
switch:admin> fddcfg --localaccept "SCC;PWD"
Local Switch Configured to accept policies.
```

To configure this switch to reject distribution of SCC and DCC policy sets:

```
switch:admin> fddcfg --localreject "SCC;DCC"
Local Switch Configured to reject policies.
```

To set the fabric-wide consistency policy to "strict" for SCC and "tolerant" for DCC and FCS:

```
switch:admin> fddcfg --fabwideset "SCC:S;DCC;FCS"
```

SEE ALSO

`distribute`
fdmiCacheShow

Displays abbreviated remote FDMI device information, according to remote domain ID.

SYNOPSIS

fdmicacheshow

DESCRIPTION

Use this command to display FDMI cache information for remote domains only.

The state of each remote domain, identified by its domain ID, is shown to be unknown, known, unsupported, or error.

The revision of the switch also displays, followed by the world wide name of the switch.

For HBAs, only the HBA identifiers and registered port lists are displayed. No detailed HBA attributes are displayed. For registered ports, only port identifier and corresponding HBA are shown; no detailed port attributes are displayed.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display the FDMI cache:

 switch:admin> fdmicacheshow
 Switch entry for domain 3
 state: known
 version: v310
 wwn: 10:00:00:69:69:90:03:c7

 HBAs:
 10:00:00:00:c9:25:9b:96

 Ports: 1
 10:00:00:00:c9:25:9b:96

 Total count of devices on the switch is 1

SEE ALSO

fdmiShow
fdmiShow

Displays detailed FDMI information.

SYNOPSIS

 fdmishow

DESCRIPTION

Use this command to display Fabric-Device Management Interface (FDMI) information for all Host Bus Adapters (HBAs) and ports.

Detailed FDMI information is displayed for local HBAs and ports.

Only abbreviated FDMI information is shown for HBA and ports on remote switches.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display FDMI information on a local switch:

 switch:admin> fdmishow
 Local HBA database contains:
 10:00:8c:7c:ff:01:eb:00
 Ports: 1
 10:00:8c:7c:ff:01:eb:00
 Port attributes:
 FC4 Types: 0x00000100
 Supported Speed: 0x0000003a
 Frame Size: 0x00000840
 Device Name: bfa
 Host Name: X3650050014
 Node Name: 20:00:8c:7c:ff:01:eb:00
 Port Name: 10:00:8c:7c:ff:01:eb:00
 Port Type: 0x0
 Port Symb Name: port2
 Class of Service: 0x08000000
 Fabric Name: 10:00:00:05:1e:e5:e8:00
 FC4 Active Type: 0x00000100
 Port State: 0x00000005
 Discovered Ports: 0x00000002
 Port Identifier: 0x00030200
 HBA attributes:
 Node Name: 20:00:8c:7c:ff:01:eb:00
 Manufacturer: Brocade
 Serial Number: BUK0406G041
 Model: Brocade-1860-2p
 Model Description: Brocade-1860-2p
 Hardware Version: Rev-A
 Driver Version: 3.2.0.0705
 Option ROM Version: 3.2.0.0_alpha_bld02_20120831_0705
 Firmware Version: 3.2.0.0_alpha_bld02_20120831_0705
 OS Name and Version: Windows Server 2008 R2 Standard | N/A
 Max CT Payload Length: 0x00000840
 Symbolic Name: Brocade-1860-2p | 3.2.0.0705 | X3650050014 |
Number of Ports: 2
Fabric Name: 10:00:00:05:1e:e5:e8:00
Bios Version: 3.2.0.0_alpha_bld02_20120831_0705
Bios State: TRUE
Vendor Identifier: BROCADE
Vendor Info: 0x31000000

Local Port database contains:
10:00:8c:7c:ff:01:eb:00

Remote HBA database contains:
10:00:00:05:1e:ea:05:fa
Ports: 1
10:00:00:05:1e:ea:05:fa

Remote Port database contains:
10:00:00:05:1e:ea:05:fa

SEE ALSO fdmiCacheShow
ficonCfg

Configures the specified FICON database.

SYNOPSIS

ficoncfg --set database port
ficoncfg --reset database
ficoncfg --help

DESCRIPTION

Use this command to configure a FICON database on a specified port. Refer to ficonShow for a description of the database content.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

port

Specifies the port to be configured. You can specify the port by its port index number or by a hexadecimal number that contains the Area field (middle byte) of the three-byte Fibre Channel Port Address. Use switchShow for a listing of valid port index numbers.

--set

Sets the configuration entry.

--reset

Resets the configuration entry to its default value.

database

Specifies the name of the FICON database. The only database currently supported is the following:

LIRR

Devices registered to receive link incident reports.

EXAMPLES

To set the LIRR database on a port using a decimal index number:

switch:user> ficoncfg --set LIRR 27

To reset the LIRR

switch:user> ficoncfg --reset LIRR

To set the LIRR database using a hexadecimal index number that contains the Area field (middle byte) of the three-byte Fibre Channel Port Address:

switch:user> ficoncfg --set LIRR 0x1b
switch:user> ficonshow LIRR
The Local LIRR database has 0 entries.

Current LIRR device port number: 27 (0x1b)

SEE ALSO

ficonHelp, ficonShow
ficonClear

Clears the records from the specified FICON database.

SYNOPSIS

ficonclear database

DESCRIPTION

Use this command to remove records from the local FICON database. The command effect depends on
the specified database.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS

This command has the following operand:

database

Specifies the name of the FICON database. The databases include the following:

RLIR

Remove all entries from the link incidents database including implicit link incidents
(ILIR).

RNID

Remove all the "not current" entries from the device node identification database
(the entries are for devices that were previously connected but are no longer
online). Note that "current" entries are not removed from the RNID database.

EXAMPLES

To clear the RLIR database:

switch:user> ficonclear RLIR
successfully clear local RLIR Database.

To clear the RNID database:

switch:user> ficonclear RNID
successfully clear not current
entries from local RNID Database.

SEE ALSO

ficonHelp, ficonShow
ficonCupSet

Sets FICON-CUP parameters for a switch.

SYNOPSIS

ficoncupset fmsmode enable | disable
ficoncupset modereg bitname 0 | 1
ficoncupset MIHPTO seconds
ficoncupset CRP PID CHID

DESCRIPTION

Use this command to set FICON-CUP (Control Unit Port) parameters for a switch. All parameters can be set while the switch is online. Changes made by this command take effect immediately. A reboot is not required.

Use ficonCupShow to display current settings.

NOTES

A FICON License is required to enable FMSMODE and to manage ports with FICON CUP. Without a license, FICON CUP traffic will not be allowed.

When FMSMODE is enabled, port names are truncated to 24 characters to be FICON compliant, and a 24-character limit is imposed on all newly created port names.

FICON Management Server (FMS) mode cannot be enabled if port ID (PID) Format 2 is used. Refer to the Fabric OS Administrator's Guide for information on PID formats.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

fmsmode

Configures the FICON Management Server (FMS) mode for the switch. Specify one of the following modes:

enable

Enables the FICON Management Server mode. When you enable the switch, you must wait until all ports have come online before enabling fmsmode.

disable

Disables the FICON Management Server mode.

modereg

Set a bit in the FICON-CUP mode register. The following operands are required:

bitname 0 | 1

Specifies a given bit value to be (1) set or not set (0). Valid values for bitname are

POSC

Programmed offline state control

ASM

Active=saved mode

DCAM

Director clock alert mode

ACP

Alternate control prohibited
HCP

Host control prohibited

MIHPTO

Sets the missing interrupt handler primary timeout (MIHPTO) value for the CUP. The following operand is required:

- **seconds**

 Specifies the timeout value in seconds. Provide a decimal value in the range between 15 and 600 seconds. The default timeout value is 180 seconds. If a value greater than 63 seconds is specified, the timeout value is rounded down to the closest value divisible by 10. For example, an MIHPTO timeout value of 86 defaults to 80.

CRP PID CHID

Sets the current reporting path (CRP). The reporting path is a CUP mechanism for sending FRU-failure reports to a FICON logical path via FICON protocol. The logical path between the PID and the CHID must exist and be in operational state for this command to succeed. Use ficonCupShow with the LP option to display the logical paths on the switch. The following operands are required:

- **PID**
 Specifies the Port identifier, which is a three-byte Fibre Channel Port Address.

- **CHID**
 Specifies the Channel ID (CHID). The CHID is the Logical Partition (LPAR) identifier supplied as part of the FICON protocol header. The CHID is a 1-byte value in hexadecimal format. The first nibble indicating the Channel Subsystem identifier (a value between 0 and 3) and the second the LPAR within that CSS (a value between 0 and F).

EXAMPLES

To enable FMS mode for the switch:

```
switch:admin> ficoncupset fmsmode enable
fmsmode for the switch is now Enabled
```

To set the ASM bit in the mode register for the switch:

```
switch:admin> ficoncupset modereg ASM 1
Active=Saved Mode bit is set to 1
```

To set the MIHPTO value to 60 seconds:

```
switch:admin> ficoncupset MIHPTO 60
MIHPTO has been changed to 60 seconds
```

To set the current reporting path:

```
switch:admin> ficoncupset CRP 082300 1A
```

To display the current reporting path:

```
switch:admin> ficoncupshow LP
FICON CUP Logical Paths for CUP 0x08FE00

<table>
<thead>
<tr>
<th>LP</th>
<th>Reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID</td>
<td>CHID</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>082300</td>
<td>1A</td>
</tr>
<tr>
<td>082300</td>
<td>1B</td>
</tr>
</tbody>
</table>
```
ficonCupSet

082300 1C Oper
082400 1A Reset
082400 1B Reset
612400 1E Reset Prim
612400 1F Reset

SEE ALSO ficonCupShow
ficonCupShow

Displays FICON-CUP parameters for a switch.

SYNOPSIS

ficoncupshow fmsmode
ficoncupshow modereg [bitname]

ficoncupshow MIHPTO

ficoncupshow DD_LOG

ficoncupshow diag_info

ficoncupshow hlthchk_log

ficoncupshow LP

DESCRIPTION

Use this command to display FICON-CUP (Control Unit Port) parameters for a switch.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

fmsmode

Display the FICON Management Server (FMS) mode for the switch.

modereg

Display the FICON-CUP mode register. If no operand is specified, all mode register bit settings are displayed. If a mode register bit name is specified, then only the value of that bit is displayed. A value of 1 indicates that a given mode register bit is set, and 0 indicates that it is not set.

The following operand is optional:

bitname

Displays the specified mode register bit as either set (1) or not set (0). Valid values for bitname include the following:

POSC Programmed offline state control
UAM User alert mode
ASM Active=saved mode
DCAM Director clock alert mode
ACP Alternate control prohibited
HCP Host control prohibited
ficonCupShow

MIHPTO
Displays the FICON-CUP missing interrupt handler primary timeout (MIHPTO) value in seconds.

DD_LOG
Displays the latest Director Diagnostics Log.

diag_info
Displays diagnostic information for the logical switch such as whether Diagnostic Interval has been set for CUP Diagnostics (if so, then Statistics Sampling is running), along with additional information about Statistics Sampling by the CUP, the detected CUP Diagnostic capabilities and settings for other switches in the fabric.

hlthchk_log
Displays the HealthCheck Logs for the logical switch. It displays Sense Data returned to the FICON host for Asynchronous Error Reporting events generated by the CUP for Congestion, Latency, or Port Fencing events which have been detected by the switch.

LP
Displays the logical paths on the switch. For each entry, the command displays the port identifier (PID), the LPAR identifier (CHID), reporting state (operational or reset (=nonoperational)), and reporting path state (current, primary, or alternate).

EXAMPLES

To display the FMS mode for the switch:

```
switch:user> ficoncupshow fmsmode
fmsmode for the switch: Enabled
```

To display the mode register for the switch:

```
switch:user> ficoncupshow modereg
POSC  UAM  ASM  DCAM  ACP  HCP
-------------------------------
 1    0    1     1    1    0
```

To display the ASM bit in the mode register for the switch:

```
switch:user> ficoncupshow modereg ASM
ASM
---
1
```

To display the MIHPTO value for the CUP:

```
switch:user> ficoncupshow MIHPTO
MIHPTO for the CUP: 60 seconds
```

To display the logical paths for the switch:

```
switch:user> ficoncupshow LP
FICON CUP Logical Paths for CUP 0x08FE00
   LP      Operational  Reporting
PID     CHID    State        Path State
------  ----    ----         ------
082300  1A      Oper***      Current
082300  1B      Oper
```
SEE ALSO ficonCupSet, ficonHelp
ficonHelp

Displays a list of FICON support commands.

SYNOPSIS ficonhelp

DESCRIPTION Use this command to display a list of FICON support commands with descriptions.

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS None

EXAMPLES To display a list of FICON commands:

switch:admin> ficonhelp
ficonconfig Manage FICON configuration
ficonclear Clears contents of the specified FICON
management database
ficoncupset Sets FICON-CUP parameters for a switch
ficoncupshow Displays FICON-CUP parameters for a switch
ficonhelp Displays FICON commands
ficonshow Displays contents of the specified FICON
management database

SEE ALSO None
ficonShow

Displays the contents of the specified FICON database.

SYNOPSIS

ficonshow database [fabric | table | port port_index]

DESCRIPTION

Use this command to display the contents of a FICON database. The ficonShow database operand is the name of the database to display. If the fabric operand is absent, the command displays the members of the named database that are local to the switch on which the command was issued. If the fabric operand is present, it must be entered exactly as shown, and this specifies that all members are displayed, both local and remote.

The following information may be displayed, depending on which database you enter and which operands you use with the command:

Domain

Displays the domain ID.

Fabric WWN

Displays the fabric WWN.

Flag

Indicates if the node is valid, not valid, or not current. Flag values are as follows:

- 0x00 Indicates the node ID of the storage port is valid.
- 0x10 Indicates the node ID of the channel port is valid.
- 0x20 Indicates the node ID of the storage port is not current.
- 0x30 Indicates the node ID of the channel port is not current.
- 0x40 Indicates the node ID of the storage port for the RNID switch for RLIR is not valid.
- 0x50 Indicates the node ID of the channel port is not valid.

Fmt

Displays the record-registration format.

FRU Failure Description

Indicates the FRU failure type as one of the following:

- WWN card [unit number] The WWN card
- Power Supply [unit number] The Power Supply card
- Hardware Slot [unit number] The Hardware Slot
- Blower [unit number] The Blower

FRU Part Number

Displays the FRU part number.

FRU Serial Number

Displays the FRU serial number.
Incident Count
Displays the incident count. This number increases by 1 for each incident within
the individual switch.

Link Incident Description
Same as Link Incident Type.

Link Incident Type
Indicates the link incident type as one of the following:
- Bit-error-rate threshold exceeded
- Loss of signal or synchronization
- NOS recognized
- Primitive sequence timeout
- Invalid primitive sequence for port state

Listener PID
Same as PID.

Listener Port Type
Same as Port Type.

Listener Port WWN
Displays the channel HBA port world wide name.

Listener Type
Indicates the listener type as follows:
- Conditional
 This port receives a link incident record if no other recipients from the established
 registration list have been chosen.
- Unconditional
 This port is always chosen as a recipient of a link incident record.

Manufacturer
Displays the manufacturer name or code.

Model Number
Displays the model number.

Node Parameters
Same as Parameters.

Parameters
Displays the node type for the switch in three bytes, 0xAABBCC:
- Byte AA 0x20
 FC-SB-2 and updates
- Byte BB 0x0a
 Switch
- Byte CC 0x00
 Port number. It is dynamically assigned whenever a link incident occurs.

Parm
Displays the incident node parameters type in three bytes, 0xAABBCC:
- Byte AA
 Possible values include the following:
 - 0x00
 Reserved.
 - 0x20
 FC-SB-2 and updates.
Byte BB

Possible values include the following:

- **0x00**: Unspecified class.
- **0x01**: Direct access storage device, if it is a storage port; otherwise, not channel-to-channel capable.
- **0x02**: Magnetic tape, if it is a storage port; otherwise, a reserved field for a channel port.
- **0x03**: Input unit record, if it is a storage port; otherwise, a reserved field for a channel port.
- **0x04**: Output unit, if it is a storage port; otherwise, a reserved field for a channel port.
- **0x05**: Reserved field for a channel port.
- **0x06**: Controller, if it is a storage port; otherwise, a reserved field for a channel port.
- **0x07**: Terminal - Full screen if it is a storage port; otherwise, a reserved field for a channel port.
- **0x08**: Terminal - Line mode if it is a storage port; otherwise, an emulated control unit support only.
- **0x09**: Reserved.
- **0x10**: Switch, if it is a switch device; otherwise, reserved.
- **0x0b-0xff**: Reserved.

Byte CC

Possible values include the following:

- **0x00**: If storage CU port has registered with the switch.
ficonShow

0xID
CHPID if channel port has registered with the switch.

0xPN
If switch has registered with the channel, PN represents the FL port number.

Part Number
Displays the switch chassis part number.

PID
Displays the 24-bit Fibre Channel port address in 0xDDAAPP format. DD is Domain ID. AA is Area ID. PP is AL_PA ID.

Plant of Manufacture
Displays the manufacturer plant name or code.

Port
Physical port number.

Port Status
Displays the status of the port as one of the following:
- Link degraded but operational
- Link not operational

Port Type
Displays the port type as one of the following:
- U Unknown
- N N_Port
- NL NL_Port

Protocol
Displays whether the traffic is using FICON or FCP.

Registered Node WWN
Displays the device's node world wide name associated with the device HBA.

Registered Port WWN
Displays the device's channel or storage CU port world wide name associated with the device HBA.

Sequence Number
Displays the sequence number of the self-describing node.

Serial Number
Displays the switch serial number.

Switch node WWN
Displays the switch node world wide name.

Switch Port WWN
Displays the switch port world wide name.

Switch WWN
Displays the switch WWN.

Tag
Displays the physical identifier for the self-describing node interface.

TS Format
Displays the Time Server format.
Time Stamp
Displays the timestamp, expressed in date format.

Type
Same as Port Type.

Type Number
Displays the type number of the self-describing node. It also describes the machine type.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
This command has the following operands:

- `database`
 Specify the database to display. This operand is required. Valid values include the following:
 - `RNID`
 Device node identification.
 - `LIRR`
 Devices registered to receive link incident reports. Entries can have the following flags:
 - `-C*`
 A user-configured LIRR entry defined as current (set with the `ficonCfg` command).
 - `-C`
 A LIRR entry defined by the management server demon as current based on order.
 - `-S`
 A LIRR entry defined by the management server demon as secondary.
 - `SwitchRNID`
 Switch node identification.
 - `RLIR`
 Link incident reports.
 - `ILIR`
 Implicit link incident reports.
 - `fabric`
 Displays FICON database information for the entire fabric. This operand is optional; if omitted, only local members of the named database are displayed.
 - `table`
 Displays RNID data in table format.
 - `port`
 Displays RNID data for the specified port.
 - `port_index`
 Specifies the port index number in decimal or the area field (middle byte) of the Fibre Channel Address (PID) in hexadecimal format.
EXAMPLES

To display the local RNID database:

```
switch:admin> ficonshow RNID
{
{Fmt Type PID Registered Port WWN     Registered  Node WWN     
 0x18 N 502b00 50:05:07:64:01:00:15:8d 50:05:07:64:00:cl:69:ca          
    flag Parm 
  0x10 0x200110
  Type number:          002064
  Model number:         101
  Manufacturer:         IBM
  Plant of Manufacture: 02
  Sequence Number:      000000169CA
  tag:                  102b
}
{Fmt Type PID Registered Port WWN     Registered  Node WWN     
 0x18 N 502e00 50:05:07:64:01:40:0f:ca 50:05:07:64:00:cl:69:ca          
    flag Parm 
  0x10 0x200105
  Type number:          002064
  Model number:         101
  Manufacturer:         IBM
  Plant of Manufacture: 02
  Sequence Number:      000000169CA
  tag:                  052e
}
}
```

To display the local RNID database in tabular format:

```
switch:admin> ficonshow RNID table
{
{Fmt Registered Port WWN     Registered  Node WWN
  Type PID     0x18 N 50:05:07:64:01:00:15:8d 50:05:07:64:00:cl:69:ca
  0x18 N 50:05:07:64:01:40:0f:ca 50:05:07:64:00:cl:69:ca
  0x18 N 50:05:07:64:01:40:0f:ca 50:05:07:64:00:cl:69:ca
  0x18 E 20:86:00:05:33:0d:b7:05 10:00:00:05:33:0d:b7:05
  0x18 E 20:87:00:05:33:0d:b7:05 10:00:00:05:33:0d:b7:05
  0x18 E 25:6000:20:6e:00:05:33:0d:b7:05 10:00:00:05:33:0d:b7:05
  flag Parm      Type   Mod Manf Plant Sequence#    Tag
  0x10 0x3101DB 002817 M15 IBM  02    0000000D01B6 40DB
  0x10 0x310138 002817 M15 IBM  02    0000000D01B6 4038
  0x10 0x3101D4 002817 M15 IBM  02    0000000D01B6 40D4
  0x10 0x3101D7 002817 M15 IBM  02    0000000D01B6 40D7
  0x10 0x3101D6 002817 M15 IBM  02    0000000D01B6 40D6
  0x10 0x3101D5 002817 M15 IBM  02    0000000D01B6 40D5
  0x10 0x3101D0 002817 M15 IBM  02    0000000D01B6 40D8
  0x10 0x3101D9 002817 M15 IBM  02    0000000D01B6 40D9
  0x00 0x200A00 SLKWRM DCX BRD CA 5FT00X39C19A 22FF
  0x00 0x200A00 SLKWRM DCX BRD CA 5FT00X39C19A 22FF
  0x00 0x200A00 SLKWRM DCX BRD CA 5FT00X39C19A 22FF
}
```

11 valid entries, 0 not current entries
The Local RNID database has 11 entries.
To display RNID data for the specified port:

```
switch:admin> ficonshow RNID port 0x08
{Fmt  Type PID    Registered Port WWN     Registered  Node WWN  \
  0x18 E    010800 20:08:00:05:1e:57:b1:86 10:00:00:05:1e:57:b1:86\n  flag Parm
  0x00 0x200a00

Type number:          BROCAD
Model number:         510
Manufacturer:         BRD
Plant of Manufacture: CA
Sequence Number:      0ALM0632D038
tag:                  03ff
}
```

To display the local LIRR database:

```
switch:admin> ficonshow LIRR
{Fmt  Type PID    Listener Port WWN
  0x18 N    255800 50:05:07:60:28:bf:3e:98
  0x18 N    255a00 50:05:07:60:28:bf:2c:9e
  0x18 N    255b00 50:05:07:60:28:bf:3f:0b
  0x18 N    255c00 50:05:07:60:28:bf:3f:0a
  0x18 N    255d00 50:05:07:60:28:bf:2c:9f
  0x18 N    255e00 50:05:07:60:28:bf:3f:0a
  0x18 N    255f00 50:05:07:60:28:bf:18:64

Switch Port WWN         Listener Type
20:58:00:05:33:0d:b7:05 Conditional-S
20:5a:00:05:33:0d:b7:05 Conditional
20:5b:00:05:33:0d:b7:05 Conditional
20:5c:00:05:33:0d:b7:05 Conditional
20:5d:00:05:33:0d:b7:05 Conditional
20:5e:00:05:33:0d:b7:05 Conditional
20:5f:00:05:33:0d:b7:05 Conditional-C*
}
The Local LIRR database has 7 entries.

Current LIRR device port number: 95 (0x5f)
```

To display the local and remote LIRR database:

```
switch:admin> ficonshow LIRR fabric
{Fmt  Type PID    Listener Port WWN
  0x18 N    502d00 50:05:07:64:01:40:11:79
  0x18 N    510d00 50:05:07:64:01:00:15:8c
  0x18 N    510f00 50:05:07:64:01:00:14:62

Switch Port WWN         Listener Type
20:2d:00:60:69:80:1e:4e Conditional-C
20:0d:00:60:69:80:1e:4f Conditional-S
20:0f:00:60:69:80:1e:4f Conditional
}
The LIRR database has 3 entries.

Current LIRR device port number: Not configured
To display the local Switch RNID database:

```
switch:admin> ficonshow switchrnid
{
 {Switch WWN flag Parm
 10:00:00:60:69:80:1e:4e 0x00 0x200a00
 Type number: SLKWRM
 Model number: 48K
 Manufacturer: BRD
 Plant of Manufacture: CA
 Sequence Number: ORB030000082
 tag: 00ff
 }
}
The Local switch RNID database has 1 entries.
```

To display the local RLIR database:

```
switch:user> ficonshow RLIR
{
 {Fmt Type PID Port Incident Count TS Format Time Stamp
 0x18 N 502e00 46 1 Time server Mon Jan 13 04:29:33 2003
 Port Status: Link not operational
 Link Failure Type: Loss of signal or synchronization
 }
 {Registered Port WWN Registered Node WWN Flag Node Parameters
 50:05:07:64:01:40:0f:ca 50:05:07:64:00:cl:69:ca 0x50 0x200105
 Type Number: 002064
 Model Number: 101
 Manufacturer: IBM
 Plant of Manufacture: 02
 Sequence Number: 0000000169CA
 tag: 2e00
 }
 {Switch Port WWN Switch Node WWN Flag Node Parameters
 20:2e:00:60:69:80:1e:4e 10:00:00:60:69:80:1e:4e 0x00 0x200a2e
 Switch Part Number: 060-0001501-05
 Switch Serial Number: 0FT02X801B4E
 Domain: 20480
 }
}
The local RLIR database has 1 entry.
```

**SEE ALSO**  
`ficonClear`
fipsCfg

Configures FIPS (Federal Information Processing Standards) mode.

SYNOPSIS

fipscfg --enable fips | selftests | bootprom
    [-nowarn]
fipscfg --disable selftests | bootprom
    [-nowarn]
fipscfg --zeroize [-nowarn]
fipscfg --show | --showall
fipscfg --force fips
fipscfg --verify fips

DESCRIPTION

Use this command to configure FIPS mode on the switch. In this mode, only FIPS-compliant algorithms are allowed. As part of FIPS 140-2 level-2 compliance, passwords, shared secrets and the private keys used in SSL/TLS, system login, etc., need to be zeroized. Power-up self tests are executed when the switch is powered on to check for the consistency of the algorithms implemented on the switch.

This command prompts for confirmation before FIPS configuration changes take effect. Specifying no cancels the operation. The -nowarn option overrides the prompting.

NOTES

Certain services and functions, such as FTP, HTTP, remote procedure calls (RPC), root account, boot prom access, etc., must be blocked before the system can enter FIPS mode.

LDAP should not be configured while FIPS is enabled.

The system must be rebooted for FIPS mode changes to take effect.

Refer to the Fabric OS Administrator's Guide for information on configuring your system for FIPS 140-2 level-2 compliance.

FIPS mode cannot be modified through configDownload.

FIPS is not supported on all platforms. For FIPS-compliant hardware, refer to the Fabric OS Administrator's Guide.

In a Virtual Fabric environment, FIPS is treated as chassis-wide configuration and applies to all logical switches in the chassis. Chassis permissions are required to configure FIPS.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

--help
    Prints command usage.

--disable selftests [-nowarn]
    Disables selftests mode.

--enable [fips | selftests] [-nowarn]
    Enables FIPS or selftests mode. Selftests must be enabled before FIPS mode is enabled.
fipsCfg

--zeroize [-nowarn] Erases all passwords, shared secrets, private keys, etc. in the system.

--show | --showall Displays the current FIPS configuration.

--force fips This option enables FIPS mode even if prerequisites are not met, except under
the following two conditions:
• In a dual-CP system if HA is not in sync between the two CPs.
• If selftests is in a disabled state.

--verify fips Scans the prerequisites for enabling FIPS and print the failure/success cases.

--disable | --enable bootprom [-nowarn] Disables or enables the Boot Programmable Read-Only Memory (Boot PROM) on
the switch. Boot PROM access is blocked in FIPS mode. Disabling Boot PROM
requires root permission. Enabling Boot PROM does not require root permission.

EXAM PLES

To display the current FIPS configuration:

switch:admin> fipscfg --show
FIPS mode is : Disabled
FIPS Selftests mode/status is : Disabled/None

To enable selftests:

switch admin> fipscfg --enable selftests
You are enabling selftests.
Do you want to continue? (yes, y, no, n) [no] : yes
FIPS Selftests mode/status has been set to : Enabled/None

To verify FIPS prerequisites:

switch:admin> fipscfg --verify fips
Standby firmware supports FIPS
SELF tests check has passed
Root account is enabled.
Radius check has passed

Authentication check has passed
SNMP is in read only mode.
Bootprom access is disabled.
Firmwaredownload signature verification is enabled.
cfgload.secure parameter value is 1.

To enable FIPS after prerequisites have been met:

switch:admin> fipscfg --enable fips
You are enabling FIPS.
Do you want to continue? (yes, y, no, n) [no] : yes
FIPS mode has been set to : Enabled
Please reboot the system

switch:admin> fipscfg --show
FIPS mode is : Enabled
To attempt enabling FIPS when prerequisites are not met:

    switch:admin> fipscfg --enable fips
    SelfTests mode is not enabled.
    Root account is enabled.
    Authentication uses MD5 hash algorithm.
    Authentication uses DH group 0.
    Telnet port number <23> for the policy <default_ipv4> \ 
in is permit state.
    HTTP port number <80> for the policy <default_ipv4> \ 
in is permit state.
    RPC port number <898> for the policy <default_ipv4> \ 
in is permit state.
    Telnet port number <23> for the policy <default_ipv6>\ 
in is permit state.
    HTTP port number <80> for the policy <default_ipv6> \ 
in is permit state.
    RPC port number <898> for the policy <default_ipv6> \ 
in is permit state.
    SNMP is not in read only mode.
    Bootprom access is enabled.

    FIPS mode cannot be configured at this time

To back out of a zeroizing operation:

    switch:admin> fipscfg --zeroize
    You are Zeroizing FIPS configuration.
    Do you want to continue? (yes, y, no, n) [no]: no
    Operation cancelled.

    switch:admin> fipscfg --zeroize
    You are Zeroizing FIPS configuration.
    Do you want to continue? (yes, y, no, n) [no]: yes
    Executing 'secauthsecret --remove --all':
    This command deletes database of DH-CHAP secret keys.\\
    If a fabric requires authentication, deleting this \ 
database may cause switch to segment from the fabric.
    Do you want to remove secret key database? \\
    (yes, y, no, n): [no]
    Operation cancelled...
    Executing 'pkiremove':
    WARNING!!!

    Removing pki objects will impair the security functionality 
    of this fibre channel switch. If you want secure mode enabled, 
you will need to get the switch certificate again.
    About to remove Pki objects.
    ARE YOU SURE (yes, y, no, n): [no]
    Operation cancelled.
    Executing 'passwddefault':
    Password policies are already set to default.
    Executing 'seccertutil delkey':
    Deleting the key pair will automatically do the following:
1. Delete all existing CSRs.
2. Delete all existing certificates.
3. Reset the certificate filename to none.
4. Disable secure protocols.

Continue (yes, y, no, n): [no]
Operation cancelled.
Zeroizing Radius configuration:
RADIUS configuration does not exist.
LDAP configuration does not exist.
Zeroizing IPSec static SA configuration.
Zeroizing SSH key.
Permission denied to perform this operation.
Failed to zeroize SSH public key.

To disable bootprom:

switch:root> fipsCfg --disable bootprom
You are disabling bootprom.
Do you want to continue? (yes, y, no, n) [no] : no
Operation cancelled.

SEE ALSO  None
firmwareCommit

Commits switch firmware.

SYNOPSIS

firmwarecommit

DESCRIPTION

Use this command to commit a firmware download to a CP. This command copies an updated firmware image to the secondary partition and commits both partitions of the CP to an updated version of the firmware. This must be done after each firmware download and after the switch has been rebooted and a sanity check is performed to make sure the new image is fine.

For switches that have nonvolatile memory set into two equal partitions, the primary partition is where the system boots from; the secondary partition is where a copy of the firmware is stored, in case the primary partition is damaged.

To maintain the integrity of the firmware image in the nonvolatile memory, the firmwareDownload command updates the secondary partition only. When firmwareDownload completes successfully and the CP is rebooted, the system switches the primary partition (with the old firmware) to the secondary, and the secondary partition (with the new firmware) to the primary.

The default behavior of the firmwareDownload command is to automatically run the firmwareCommit command after the reboot. If you decide to disable the autocommit option when running firmwareDownload, you must execute one of the following two commands after the CP is rebooted:

- firmwareCommit copies the primary partition (with new firmware) to the secondary and commits the new firmware to both partitions of the CP.
- firmwareRestore copies the secondary partition (with the old firmware) to the primary and backs out of the new firmware download. The firmwareRestore command can be run only if autocommit was disabled during the firmware download. Autocommit can be disabled only when you run firmwareDownload in single mode.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To commit a new version of the firmware:

switch:admin> firmwarecommit
Validating primary partition...
Doing firmwarecommit now.
Please wait ...
Replicating kernel image
.............
FirmwredCommit completes successfully.

SEE ALSO

firmwareDownload, firmwareRestore
firmwareDownload

Downloads firmware from a remote host, a local directory, or a USB device.

SYNOPSIS

To invoke the command in interactive mode:

    firmwareDownload

To download FOS firmware over a network:

    firmwareDownload [-s [-b | -n]] [-p ftp | scp | sftp] [ -c ] host, user, pfile, passwd

To download SAS/SA firmware over a network (deprecated):

    firmwareDownload -a sas | dmm | application
                        [-t slot[,slot]...] [-p ftp | scp | sftp] [ -c ] [ -e ]
                        host, user, pfile, passwd

To download SAS firmware over a network and remove the existing SA firmware at the same time (deprecated):

    firmwareDownload -a sas [-t slot[,slot]...] [-p ftp | scp | sftp] [ -c ] [ -e ]
                        host, user, pfile, passwd

To download FOS firmware from a USB device:

    firmwareDownload [-s [-b | -n]] [-U] [ -c ] pfile

To download SAS/SA firmware from a USB device (deprecated):

    firmwareDownload -a sas | dmm | application
                        [-t slot[,slot]...] [-U] [ -c ] pfile

To download SAS firmware from a USB device and remove the existing SA firmware at the same time (deprecated):

    firmwareDownload -a sas [-t slot[,slot]...] [-U] [ -c ] [ -e ] pfile

DESCRIPTION

Use this command to download switch firmware from an FTP or SSH server or local NFS directory to nonvolatile storage. Switch firmware can also be downloaded from an external USB device on platforms that support USB.

The new firmware is downloaded as a bundle of packages. Package names are defined in a *.plist file along with other firmware information (time stamp, platform code, version, etc.). These packages are made available periodically to add features or to remedy defects. Contact customer support to obtain information about available firmware versions.

On enterprise-class platforms, this command, by default, downloads the firmware image to both control processors (CPs) in rollover mode to prevent disruption to application services. This operation depends on High Availability (HA) support. If HAs not available, use the -s option to upgrade the CPs one at a time.
All systems supported by this firmware have two partitions of nonvolatile storage (primary and secondary) to store two firmware images. This command always downloads the new image to the secondary partition and then swaps partitions so the secondary partition becomes the primary.

By default, `firmwareDownload` reboots the system and activates the new image. Finally, the command performs a `firmwareCommit` automatically to copy the new image to the other partition. In systems with blade processors (BPs), after the new CP firmware is downloaded to the system and activated, the BP firmware is downloaded to the BP processors if there is a mismatch between the BP and CP firmware.

By default, `firmwareDownload` performs a full install, autoreboot, and autocommit. These modes are selectable only in single CP (-s) mode, in which case autoreboot is OFF by default.

For each standalone switch in your fabric, complete all firmware download changes before issuing the `firmwareDownload` command on the next switch to ensure a nondisruptive download.

If `firmwareDownload` is interrupted due to an unexpected reboot as a result of a software error or power failure, the command automatically recovers the corrupted secondary partition. Wait for the recovery to complete before starting another firmware download.

**NOTES**

Firmware download and subsequent POST failure may occur on some platforms, if the firmware commit operation coincides with the execution of POST. The recommended work around is to disable POST (`diagDisablePost`) before you initiate a firmware download and re-enable POST (`diagEnablePost`) after the firmware commit operation has completed.

Firmware download procedures may vary depending on which Fabric OS version you are migrating from. See the *Fabric OS Administrator's Guide* for restrictions on changing Fabric OS versions.

On certain occasions, you may see messages in the console output of `firmwareDownload`. These are internal messages generated by the Linux utilities. You can safely ignore these messages. For relevant Brocade-generated firmware download messages, refer to the *Fabric OS Message Reference*(SULB module).

To correlate Brocade blade names with blade IDs, use the `slotShow` command.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

The following operands are optional. When invoked without operands, the command goes into interactive mode.

-`-U`

Downloads the firmware from an attached USB device. This option is valid only on platforms that support a USB port. Refer to your specific Hardware Reference Guide for details. The USB device must be enabled prior to firmware download with the `usbStorage` command. Firmware must be stored under the default firmware directory in the USB file system. On a dual-CP chassis, the USB device must be attached to the active CP. When downloading firmware from a USB device, the `-p` option is ignored.

-`-s`

Enables single-CP mode. This mode supports selectively enabling or disabling a full install, autoreboot, and autocommit on bladed and nonbladed systems. On enterprise-class platforms, this mode supports upgrading a single CP. When downloading the main Fabric OS firmware, this option disables autoreboot, unless overridden by the `-b` option.

-`-b`

Enables autoreboot mode. When single CP mode is enabled and this operand is not specified, `reboot` must be run manually to activate the downloaded image. If autoreboot mode is enabled, the switch reboots automatically after the firmware has been downloaded.
-n
Disables autocommit mode. When autocommit mode is disabled, the firmwareCommit command must be executed manually to propagate the downloaded image to both partitions of the storage device.

host
Specify a valid FTP or SSH server name or IP address. IPV4 and IPV6 addresses are supported. The firmware is downloaded from the specified host. If a host is not specified, the firmware is considered accessible on a local directory. To mention an FTP server by name, a DNS server must first be set up with the dnsConfig command. If DNS is enabled and a server name is specified, firmwareDownload automatically determines whether IPV4 or IPV6 should be used.

user
Specify a user name for FTP or SSH server access. This operand can be omitted, if the firmware is accessible on a local directory, a USB device, or by anonymous FTP server access. A user name other than "anonymous" is required for SSH server access.

pfie
Specify a fully qualified path for the firmware pfile. Absolute path names may be specified using forward slashes (/).

passwd
Specify a password. This operand can be omitted, if the firmware is accessible through a local directory or an attached USB device, or if no password is required by the FTP server. This operand is required when accessing an SSH server. In Fabric OS v7.0.0 or later, you can omit the password if the switch is configured as follows:

- The switch must be configured with public key authentication. Refer to the sshUtil help page for more information.
- You select a secure protocol (SCP or SFTP).
- The private key is installed on the switch, and the public key is exported to the remote host. Refer to the Fabric OS Administrator's Guide for configuration procedures.

-p scp | ftp | sftp
Specify the file transfer protocol. Valid values are ftp (file transfer protocol), sftp (secure file transfer protocol), and scp (secure copy protocol). Values are not case-sensitive. If -p is not specified, firmwareCommit determines the protocol automatically by checking the config.security parameter.

-a fos | sas | application
Specify the type of firmware to be downloaded. Accepted values are fos, sas, or any valid application name. Values are not case-sensitive. This operand is no longer supported as of Fabric OS v7.0.0.

-t slot[,slot]
Specify the target slots for the firmware download. Valid values are a list of slot numbers separated by commas.

-c
Disables version compatibility checking. By default, firmwareDownload checks if the firmware being downloaded is compatible with other running firmware images in the system. If the firmware version is not compatible, firmwareDownload fails. If this option is specified, version compatibility checking is disabled.
firmwareDownload

-e

Removes all of the installed SA images in the system during SAS firmware download. By default, downloading a SAS image does not remove the installed SA images. If this option is specified, the installed SA images are removed. This option is only valid with the -a sas option. This operand is no longer supported as of Fabric OS v7.0.0.

-o

Bypasses the checking of Coordinated HotCode Load (HCL). On single CP systems in InterOp fabrics, the HCL protocol is used to ensure data traffic is not disrupted during firmware upgrades. This option allows firmwareDownload to continue even if HCL is not supported in the fabric or the protocol fails. Using this option may cause traffic disruption for some switches in the fabric. This operand is no longer supported as of Fabric OS v7.0.0.

DIAGNOSTICS

The command checks the network connection and other system parameters before initiating firmwareDownload. It may fail if at least one of the following conditions is encountered:

- The host is not reachable from the switch.
- The user does not have permission on the host.
- The password is not specified correctly.
- Indicated firmware does not exist on the host, or is not in the right format, or is corrupted.
- The FTP or SSH service is not running on the host.
- The platform is not supported by the firmware indicated.
- The USB device may not be plugged in correctly. On standalone switches, the device must be plugged into the switch USB port. On enterprise-class platforms, the USB device must be plugged into the Active CP.
- The USB device is not enabled. Use the usbStorage command on the switch to enable the USB device. On enterprise-class platforms, the command must be run on the Active CP to enable the USB device.

For additional system messages, refer to the Fabric OS Message Reference.

EXAMPLES

To download the firmware to both CPs on a dual-CP chassis with an attached USB device (You would execute the same command on a single-CP switch with USB support. Output may vary depending on platform.):

```
switch:admin> firmwaredownload -U v7.0.0
```

Checking system settings for firmwaredownload...
Protocol selected: USB
Trying address-->AF_INET IP: 127.1.1.8, flags : 2
System settings check passed.

Checking version compatibility...
Version compatibility check passed.

This command will upgrade the firmware on both CP blades. If you want to upgrade firmware on a single CP only, please use -s option.

You may run firmwaredownloadstatus to get the status of this command.

This command will cause a warm/non-disruptive boot on the active CP, but will require that existing telnet, secure telnet or SSH sessions be restarted.
To download firmware interactively:

```
switch:admin> firmwaredownload
Server Name or IP Address: 192.168.32.10
User Name: admin
File Name: ~admin/dist/FOS7.0.0/
Network Protocol[1-auto-select, 2-FTP, 3-SCP, 4-SFTP] [1]:
Password:********
```

To download firmware without a password using public key authentication:

```
switch:admin> firmwaredownload
Server Name or IP Address: 10.38.17.17
User Name: admin
File Name: /users/home25/admin/dist
Network Protocol[1-auto-select, 2-FTP, 3-SCP, 4-SFTP] [1]: 3
Verifying if the public key authentication is available.
Please wait ...Success.

Do Auto-Commit after Reboot [Y]: y
Reboot system after download [N]: y
Server IP: 10.38.17.17, Protocol IPv4
Checking system settings for firmwaredownload...
System settings check passed.
```

SEE ALSO firmwareCommit, firmwareDownloadStatus, firmwareKeyShow, firmwareRestore, firmwareShow, reBoot, slotShow, version
firmwareDownloadStatus

Displays the status of a firmware download.

SYNOPSIS
firmwareDownloadStatus

DESCRIPTION
Use this command to display an event log that records the progress and status of events during a firmware download. The event log is created by the firmware download process and is kept until you issue another firmwareDownload command. A timestamp is associated with each event. When downloading Fabric OS firmware, the event logs in the two control processors (CPs) are synchronized and you can run this command from either CP.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
None

EXAMPLES
To display the status of a firmware download on a switch:

switch:admin> firmwareDownloadStatus
[1]: Tue Mar 29 21:43:14 2011
Firmware is being downloaded to the switch. This step may take up to 30 minutes.

Firmware has been downloaded to the secondary partition of the switch.

[3]: Tue Mar 29 22:06:57 2011
The firmware commit operation has started. This may take up to 10 minutes.

[4]: Tue Mar 29 22:10:19 2011
The commit operation has completed successfully.

[5]: Tue Mar 29 22:10:19 2011
Firmwaresdownload command has completed successfully. Use firmwareshow to verify the firmware versions.

To display the status of a firmware download on a chassis:

switch:admin> firmwareDownloadStatus
[1]: Fri Mar 25 13:12:56 2011
Slot 7 (CP1, active): Firmware is being downloaded to the switch. This step may take up to 30 minutes.

Slot 7 (CP1, active): Firmware has been downloaded to the secondary partition of the switch.

[3]: Fri Mar 25 16:38:55 2011
Slot 7 (CP1, active): Firmwarerestore is entered. System will reboot and a firmware commit operation will start upon boot up.

[4]: Fri Mar 25 16:49:12 2011
Slot 7 (CP1, standby): The firmware commit operation has started. This may take up to 10 minutes.
firmwareDownloadStatus

[5]: Fri Mar 25 16:58:44 2011
Slot 7 (CP1, standby): Firmware commit operation has started to restore the secondary partition.

[6]: Fri Mar 25 16:58:45 2011
Slot 7 (CP1, standby): The firmware commit operation has started. This may take up to 10 minutes.

[7]: Fri Mar 25 17:05:34 2011
Slot 7 (CP1, standby): The commit operation has completed successfully.

SEE ALSO  firmwareCommit, firmwareDownload, firmwareRestore, firmwareShow
firmwareKeyShow

Displays the public key used for signed firmware validation.

SYNOPSIS

firmwarekeyshow

DESCRIPTION

This command displays the contents of the public key used for validating the integrity of firmware images when signed firmware validation is enabled.

NOTES

A firmware key should be installed on every switch as a part of the Fabric OS installation. The presence of a firmware key does not imply that the firmware signature is checked during firmwareDownload. Signed Firmware Download must be enabled before the public key can be used for signature validation.

Use the configure command to enable Signed Firmware Download.

If Signed Firmware Download is enabled, and if the validation succeeds, firmware download proceeds normally. If the firmware is not signed or if the signature validation fails, signed firmware download fails.

Refer to the Fabric OS Administrator's Guide for complete details on upgrading or downgrading firmware.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display the public key used for signed firmware validation:

switch:admin> firmwarekeyshow
------BEGIN PUBLIC KEY------
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDjuQpMk4FrcePvVZ12iAakFNv9k42ShFDMPGIIems1Ywd155U7LTdFiVwoViTLevtIDh0Iz1d1b9w+DDAaCjGz
XegkeTn/8wDgHgwotPz4WTD9UGJ9M0Vs52roITiuk1psh084LXKgxt+1gdaeKCZy8p8rQZLpyputx6rgw1DAQAB
------END PUBLIC KEY------

SEE ALSO

firmwareDownload, configureChassis
firmwareRestore

Restores the former active firmware image.

SYNOPSIS    firmwarerestore

DESCRIPTION  Use this command to restore the former active Fabric OS firmware image. This command can only be run if autocommit was disabled during the firmwareDownload process.

After a firmwareDownload and a reboot (with autocommit disabled), the downloaded firmware becomes active. If you do not want to commit the firmware and want to restore the former firmware, issue the firmwareRestore command. After running firmwareRestore, you can run firmwareDownload again.

This command reboots the system and makes the former firmware active. After the switch reboots, both primary and secondary partitions restore the previous firmware.

This command only takes action if the system is booted after a firmwareDownload; otherwise, the process terminates with an error.

NOTES       The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS    None

EXAMPLES   To restore the former active firmware image:

    switch:admin> firmwarerestore
    Restore old image to be active ...
    Restore both primary and secondary image after reboot.
    The system is going down for reboot NOW !!
    Broadcast message from root (ttyS0) Fri Oct 22 23:48:54 2010...

       Doing firmwarecommit now.
       Please wait ...

SEE ALSO   firmwareCommit, firmwareDownload
firmwareShow

Displays the firmware version and download history.

SYNOPSIS

firmwareshow

firmwareshow --history

firmwareshow --help

DESCRIPTION

Use this command to display the firmware versions and the firmware download history. The command shows the firmware versions on both the primary and secondary partitions of the storage device. When this command is issued while a firmware download is in process, an appropriate warning message is displayed.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

--history

Displays the contents of the firmware download log. For each firmware download record, the command displays the date and time, the switch name, the slot number, port ID, and firmware version.

--help

Displays the command usage.

EXAMPLES

To display the firmware versions on a Brocade DCX 8510-8 while a firmware download is in progress:

switch:admin> firmwareshow
  Slot Name  Appl Primary/Secondary Versions   Status
  -----------------------------------------------
  6  CP0   FOS      v7.2.0                   STANDBY
      v7.2.0
  7  CP1   FOS      v7.2.0                   ACTIVE *
      v7.2.0

WARNING: Firmwaredownload is in progress.

To display the firmware version on a standalone switch:

switch:admin> firmwareshow
  Appl   Primary/Secondary Versions
  FOS    v7.2.0
  v7.2.0
To display the firmware download history:

```
switch:admin> firmwareShow --history
Firmware version history

Sno Date & Time Switch Name Slot PID FOS Version
1 Fri Feb 18 12:58:06 2011 CDCX16 7 1556 Fabos Version v7.0.0d
2 Wed Feb 16 07:27:38 2011 CDCX16 7 1560 Fabos Version v7.0.0c
```

SEE ALSO  firmwareDownload, firmwareDownloadStatus
flow

Creates, manages, and displays flows in Flow Vision.

SYNOPSIS

flow --create flow_name [feature feature_list]
    port_options frame_options [config_options]

flow --activate flow_name [feature feature_list]

flow --deactivate flow_name [feature feature_list]

flow --control [flow_name] [feature feature_list]
    -devicelMode mode | -portlMode mode
    -simport port_num [-enable | -disable]
    [-size payload_size | -pattern pattern_string]
    [-enable_wrap | -disable_wrap]

flow --reset flow_name [feature feature_list]

flow --show [flow_name] [feature feature_list]
    [port_options frame_options]
    [-count iterations | -time interval | -verbose]
    [-sortby field] [-ctrlcfg]

flow --delete flow_name

flow --help

DESCRIPTION

Use this command to perform the following functions:
• Create a flow
• Activate or deactivate features for a flow
• Clear the data collected for a particular feature of a flow
• Change the control parameters for a feature or a flow
• Display the flow statistics
• Delete a flow

Each of these functions is documented in a separate section that includes function, synopsis, description, operands, and examples.

A flow is a set of related Fibre Channel (FC) frames or packets that share similar traits, such as an ingress port, egress port, or frame options that can uniquely differentiate one set of related frames or packets from a different set of frames. A flow is defined by a combination of ingress port, egress port, source device, and destination device parameters. Flow Vision supports Flow Monitor, Flow Generator, and Flow Mirror features to monitor, simulate, and capture the network traffic respectively. You can create up to 512 flows on Brocade director and 128 flow on switch-based system. For more information on Flow Vision, refer to the Fabric OS Administrator's Guide.

NOTES

This command requires either a Fabric Vision license or a Fabric Watch and an Advanced Performance Monitoring licenses.

The Port Mirror or Advanced Performance Monitor with Flow Vision are mutually exclusive.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.
FUNCTION  Creating a flow

SYNOPSIS  flow --create flow_name -feature feature_list
            port_options frame_options [config_options]

DESCRIPTION  Use this command to create a flow and by default activate the flow for the specified features. This
command validates the flow definition before creating a flow. If the flow definition is not supported by any
specified feature or if the flow definition is a duplicate of an existing active flow, the operation will
terminate with an appropriate error message. For more information on duplicate flows, refer to the Fabric
OS Administrator's Guide.

The following rules apply for creating a flow:

- You must specify at least one port options (-ingrport or -egrport) but not both.
- You must specify the source device (-srcdev), the destination device (-dstdev), or both. The source
device and the destination device can be learned using a wildcard ("*").
- The ingress port and egress port must reside in the local switch.
- The source device and destination device can reside either in the local or remote switch.
- You can create 512 flows on a Brocade director and 128 flows on switch-based system. Note that
each flow discovered when using "*" as a source device or destination device will count as one of
these flows. These system-discovered flows will impact the number of user-defined flows allowed to
be active.
- The configuration options -noactivate, -noconfig, and -bidir are optional.
- You can create up to 64 monitor flows and four generator flows per port.
- You can activate one mirror flow per chassis.

OPERANDS  The --create command has the following operands:

  flow_name
          Specifies the name of the flow. Each flow name must be a unique string
          composed of a maximum of 20 alphanumeric or underscore characters. The flow
          name is case-insensitive and is always stored as lowercase.

  -feature feature_list
          Specifies a comma-separated list of features to activate for the flow. Specify "all"
          to activate all features for a flow. Valid values for feature_list include the following:

          monitor
          Activates the Flow Monitor feature for a flow. The Flow Monitor feature monitors
          and provides statistics for the specified flow.

          The following configuration considerations apply for the Flow Monitor feature:

          - The ingress port and egress port can be an SIM Port, F_Port, E_Port, or
            EX_Port (Gen 5 port) on the local switch. The ingress port must be a Gen 5
            port and egress port can be a Gen 4 port or Gen 5 port. The SIM Port must be
            a Gen 5 port.
          - VE_Port, VEX_Port, FCoE ports, and GigE are not supported.
          - The source device and destination device can be a host or target switch, or a
            wildcard ("*"). Using the wildcard ("*") enables Flow Vision to learn (discover)
            all flows on an F_Port and displays statistics for each learnt flow. The learning
            mode is supported only on Gen 5 F_Ports and trunked F_Ports.
You can use WWN or Fibre Channel ID (FCID) for the -srcdev and -dstdev operands when creating Flow Monitor on EX_Ports. If the Flow Monitor feature is configured on the ingress port using FCID addressing mode, you must specify the real SID of the source device and the proxy ID of the destination device. If the Flow Monitor feature is configured on the egress port using FCID addressing mode, you must specify the proxy ID of the source device and real DID of the destination device.

- Inter Fabric Link (IFL) flows can be monitored only on EX_Ports in a Fibre Channel router (FCR).
- You can activate the Flow Monitor feature for a maximum of 64 flows per port.
- Access Gateway (AG) mode is supported

**generator**

Activates the Flow Generator feature for a flow. The Flow Generator is a traffic flow diagnostics feature that generates traffic at line rate in the fabric to validate connectivity, hardware components, and network performance. You must configure the ingress or egress ports and the source and destination devices to be SIM ports before activating a flow using the Flow Generator feature.

You can modify the frame size and payload pattern using the --control options after creating the flow.

The following configuration considerations apply for the Flow Monitor feature:
- The Flow Generator feature is not supported on a base switch or ICL port.
- AG mode is not supported.
- You can activate the Flow Generator feature on four flows per port.
- The -frametype, -lun, and -bidir options are not supported with the Flow Generator feature.

**mirror**

Activates the Flow Mirror feature for a flow. The Flow Mirror captures network traffic in a flow and sends it to the switch CPU for traffic analysis. This feature mirrors only the flows that are in active state. The logging mechanism of the frames can be modified by using the --control -enable_wrap | -disable_wrap options.

For a switch-based system, a maximum of 256 frames per second are mirrored. For a chassis-based system, a maximum of 1024 frames per second are mirrored. A maximum of 1280 frames are stored for switch-based systems and 5000 frames are stored for chassis-based systems.

The following configuration considerations apply for the Flow Mirror feature:
- The ingress port or the egress port must be an F_Port, which is 8G or less, on the local switch.
- The Flow Mirror feature is supported only on Gen 5 ports.
- EX_Ports, XISL ports, DISL ports, E_Ports, trunked E_Ports, and trunked F_Ports are not supported.
- AG mode is not supported.
- The Flow Mirror feature can be active on only one flow per chassis.

**port_options**

Specifies the options to configure the ingress or egress ports.

- **-ingrport** port

  Specifies the ingress port. The port can be in either [slot[/]port or D,I (Domain, Index) format depending on the port mode configured using the -portIdMode operand.
-egrport port

Specifies the egress port. The port can be in either [slot/]port or D,I format depending on the port mode configured using the -portIdMode operand.

The -ingrport and -egrport options are mutually exclusive; that is, you can specify only one of the options. The learning mode ("*") is not supported.

frame_options

Specifies the options that represent the content of the FC frame or attributes of the frame.

-srcdev device_id

Specifies the 3-byte source ID of the originator device. The device_id can be in PID or PWWN format depending on the device ID mode configured using the -deviceldMode operand. The PID format is 0xDDAAPP, where DD is the Domain ID, AA is the Area ID and PP is the AL_PA ID. The PWWN format is "XX:XX:XX:XX:XX:XX:XX:XX". Specify "**" to enumerate all originator devices.

-dstdev device_id

Specifies the 3-byte destination ID of the destination device. The device_id can be in PID or PWWN format depending on the device ID mode configured using the -deviceldMode operand. The PID format is 0xDDAAPP, where DD is the Domain ID, AA is the Area ID and PP is the AL_PA ID. The PWWN format is "XX:XX:XX:XX:XX:XX:XX:XX". Specify "**" to enumerate all destination devices.

-lun LUN_id

Specifies the LUN identification in decimal or hexadecimal (2-byte value) format. The valid range for LUN_id is from 0 through 65535 (0x0000 to 0xFFFF). The LUN parameter includes the addressing method and fields associated with the respective addressing method. If the most significant byte (MSB) is not specified in the flow definition, 0x00 is used. This operand is not supported by the Flow Generator feature.

-frametype type

Specifies the predefined frame type. Valid values for type include the following: SCSI, SCSIRead, SCSIWrite, SCSI2Reserve, SCSI3Reserve, scsicmdsts, ABTS, BAACC, SCSI2Release, SCSI3Release, SCSI2Tur, SCSI3ResvRelease, SCSI2ResvRelease, SCSI3GoodStatus, SCSCheckStatus, SCSIResvConflict, SCSIInqury, SCSIxFerry, and BARJT. This operand is not supported by the Flow Generator feature.

config_options

Specifies the flow configuration options.

-bidir

Configures the features to act on both incoming and outgoing directions on bidirectional traffic. For example, the Flow Mirror feature mirrors the frames on both directions: traffic originating from the source device and traffic that is destined to the source device. This operand is not supported by the Flow Generator feature.

-noactivate

Allows a flow to be created, but suppresses activation of a flow.

-noconfig

Overrides the default behavior, which automatically saves the flow in the persistent configuration when you create a flow. The flow will be lost when the system is rebooted.
EXAMPLES

To create a flow on ingress port (1/10) for traffic from the source device (0x020a00) to the destination device (0x030000) and activate the flow for the Flow Mirror and Flow Monitor features:

```
switch:admin> flow --create myflow1 -feature mirror,monitor
-ingrport 1/10 -srcdev 0x020a00 -dstdev 0x030000
```

To create a flow to monitor SCSI frames going through an egress port:

```
switch:admin> flow --create scsicsflow -feature monitor
-egrpport 1/9 -frametype scsicheckstatus
```

To create a flow to monitor statistics from a particular source to destination on a specified LUN:

```
switch:admin> flow --create lunFlow -feature monitor
-srcdev 0x010502 -dstdev 0x030700 -ingrport 1/5 -lun 4
```

To create a flow from source device (0x010203) to destination device (0x020304) for Flow Generator feature without saving the flow:

```
switch:admin> flow --create myflow2 -feature generator
-srcdev 0x010203 -dstdev 0x020304 -ingrport 2/3 -noconfig
```

To create a flow from source device (0x01ba00) to destination device (0x01c000) for Flow Generator feature without activating the flow:

```
switch:admin> flow --create myflow3 -feature generator
-srcdev 0x01ba00 -dstdev 0x01c000 -ingrport 2/18 -noactivate
```

To create a flow to monitor bidirectional traffic from a particular source to destination:

```
switch:admin> flow --create endtoendflow -feature monitor
-ingrport 2/5 -srcdev 010500 -dstdev 040900 -bidir
```

To create a flow to monitor traffic from source devices to destination devices in learning mode:

```
switch:admin> flow --create flowLearn -feature monitor
-ingrport 3/5 -srcdev "" -dstdev ""
```

To create a flow to mirror ingress and egress traffic flowing through a port to an embedded port:

```
switch:admin> flow --create myflow4 -feature mirror
-ingrport 1/20 -srcdev 0x010203 -lun 0x02 -bidir
```

To create a flow to generate traffic from the source device (0x020a00) to all destination devices that are zoned with the source device:

```
switch:admin> flow --create myflow5 -feature generator
-ingrport 1/10 -srcdev 0x020a00 -dstdev ""
```

FUNCTION
Activating features or flow

SYNOPSIS
flow --activate flow_name -feature feature_list
**DESCRIPTION**

Use this command to activate a flow if it is not in the active state or configure the specified features for a flow. Use this command if you created a flow using the -noactivate operand or if none of the features are activated for the flow. Note that the flows are not enforced until they are active and the flows cannot be activated without configuring the features. If one or more of the flow parameters are not supported by any specified feature, the flow will not be activated and the operation will fail with an appropriate error message.

**OPERANDS**

The --activate command has the following operands:

- **flow_name**
  Specifies the name of the flow on which the specified features must be activated. Specify "all" to activate the specified features for all flows.

- **feature_list**
  Specifies a comma-separated list of features to activate for a flow. Specify "all" to activate all features for a flow. Valid values for feature_list include the following: `monitor`, `generator`, and `mirror`.

**EXAMPLES**

To activate Flow Mirror feature for a flow:

```
switch:admin> flow --activate myflow2 -feature mirror
```

**FUNCTION**

Deactivating features

**SYNOPSIS**

```
flow --deactivate flow_name -feature feature_list
```

**DESCRIPTION**

Use this command to deactivate the specified features for a flow. All data associated with the deactivated feature will be cleared.

**OPERANDS**

The --deactivate command has the following operands:

- **flow_name**
  Specifies the name of the flow on which the specified features must be deactivated. Specify "all" to deactivate the specified features for all flows.

- **feature_list**
  Specifies a comma-separated list of features to deactivate for the flow. Specify "all" to deactivate all features for a flow. Valid values for feature_list include the following: `monitor`, `generator`, and `mirror`.

**EXAMPLES**

To deactivate the Flow Mirror feature for a flow:

```
switch:admin> flow --deactivate myflow2 -feature mirror
```

**FUNCTION**

Changing the control parameters

**SYNOPSIS**

```
```
**DESCRIPTION**

Use this command to modify the port or device addressing mode and to change the control parameters of a flow or features.

**OPERANDS**

The `--control` command has the following operands:

- **flow_name**
  Specifies the flow name. Specify "all" to modify the control parameters for all flows. If a flow name is not specified, the default values of the control parameters, `-size` and `-pattern` will be modified; the flows which are already present does not intake the modified control parameters. The modified control parameters will apply to all flows created in future.

- **feature feature_list**
  Specifies a comma-separated list of features on which the control parameters should be applied. Valid values for `feature_list` include the following: `generator` and `mirror`.

- **deviceIdMode mode**
  Specifies the mode for addressing the devices. The valid values for `mode` are `pid` and `wwn`. The default mode is `pid`.

- **portIdMode mode**
  Specifies the mode for addressing the ports. The valid values for `mode` are `slotport` and `index`. The default mode is `slotport`.

- **simport port**
  Enables or disables a port as a SIM port. The `port` can be in `[slot]/port or D,I format depending on the port ID mode configured using the `-portIdMode` operand. You can specify a single port or a range of ports in `[slot]/port, slot/port-port, slot/* (all ports in slot), */ (all ports in switch or logical switch), port, port-port, and * (all ports in switch or logical switch) formats. The flow name is not required for enabling or disabling a port as SIM port.

- **enable**
  Enables the port as a SIM port.

- **disable**
  Disables the SIM port configuration on the port.

The following operands are specific to the flow `generator` feature:

- **size payload_size**
  Specifies the size of the frame payload. The frame size must be specified in multiples of 4, for example, 64, 68, 120, or 320 characters. The valid range is from 64 through 2048 characters; 0 for random size. The default payload size is 2048 bytes.

- **pattern pattern_string**
  Specifies the ASCII pattern of the payload. The valid range is from 1 through 32 bytes; 0 for random pattern. The default is random pattern.

The following operands are specific to the flow `mirror` feature. You can use these operands only if the Flow Mirror feature is not activated for a flow. The flow name is not required for enabling or disabling this option.

- **enable_wrap**
  Enables the wrapping of mirrored frame logs. This is the default value. The Flow Mirror flow must be deactivated before using this command. The statistics of the Flow Mirror flow are reset during this operation.
-disable_wrap

Disables the wrapping of mirrored frame logs. The Flow Mirror flow must be deactivated before using this command. The statistics of the Flow Mirror flow are reset during this operation.

EXAMPLES

To change the device addressing mode to WWN:

switch:admin> flow --control -deviceidmode wwn

To change the port addressing mode to index:

switch:admin> flow --control -portidmode index

To configure the ports from 1 to 40 in slot 1 as SIM port:

switch:admin> flow --control -simport 1/1-40 -enable

To remove the SIM port configuration on port 20 in slot 1:

switch:admin> flow --control -simport 1/20 -disable

To modify the size and pattern for a flow:

switch:admin> flow --control myflow2 -feature generator

- size 100 -pattern "1234"

To disable wrapping of frame logs for the Flow Mirror feature:

switch:admin> flow --control -feature mirror -disable_wrap

FUNCTION

Clearing feature data

SYNOPSIS

flow --reset flow_name -feature feature_list

DESCRIPTION

Use this command to clear the data of the specified flow and feature combination. All the data collected for the flow and feature combination will be cleared.

OPERANDS

The --reset command has the following operands:

flow_name

Specifies the name of the flow on which the feature data must be cleared. Specify "all" to reset all flows.

feature_list

Specifies a comma-separated list of features. Specify "all" to reset all features for a flow. Valid values for feature_list include the following: monitor, generator, and mirror.

EXAMPLES

To clear all the mirrored frames for a flow:

switch:admin> flow --reset myflow1 -feature mirror

FUNCTION

Displaying flow data

SYNOPSIS

flow --show [flow_name] [-feature feature_list] [port_options frame_options] [-count iterations] [-time interval] [-verbose] [-sortby field] [-ctrCfg]
DESCRIPTION
Displays the flow definitions and frame statistics. When used without operand, the --show command displays the list of all flows configured in Flow Vision.

The show on demand feature allows you to display the statistics of the features without creating a flow. To display the statistics of the features without creating a flow, you must specify the operands without a flow name and provide a flow definition. The flow will run for a time interval of 6 seconds and the data will be displayed for the specified features.

OPERANDS
The --show command has the following operands:

flow_name
Displays the parameters and flow statistics for the specified flow. Specify "all" to display all flows.

-feature feature_list
Displays the statistics for the specified features. Specify "all" to display statistics of all features.

port_options
Specifies the ingress or egress port options.

-ingrport port
Specifies the ingress port. The port can be in either [slot/]port or D,I (Domain, Index) format depending on the port mode configured using the -portIdMode operand.

-egrport port
Specifies the egress port. The port can be in either [slot/]port or D,I format depending on the port mode configured using the -portIdMode operand.

frame_options
Specifies the options that represent the content of the FC frame or attributes of the frame.

-srcdev device_id
Specifies the 3-byte source ID of the originator device. The device_id can be in PID or PWNN format depending on the device ID mode configured using the -deviceIdMode operand. The PID format is 0xDDAAPP, where DD is the Domain ID, AA is the Area ID and PP is the AL_PA ID. The PWNN format is "XX:XX:XX:XX:XX:XX:XX:XX". Specify "*" to enumerate all originator devices.

-dstdev device_id
Specifies the 3-byte destination ID of the destination device. The device_id can be in PID or PWNN format depending on the device ID mode configured using the -deviceIdMode operand. The PID format is 0xDDAAPP, where DD is the Domain ID, AA is the Area ID and PP is the AL_PA ID. The PWNN format is "XX:XX:XX:XX:XX:XX:XX:XX". Specify "*" to enumerate all destination devices.

-lun LUN_id
Specifies the LUN identification in decimal or hexadecimal (2-byte value) format. The valid range for LUN_id is from 0 through 65535 (0x0000 to 0xFFFF). The LUN ID includes the addressing mode. If the most significant byte (MSB) is not specified, 0x00 is used. This operand is not supported by the Flow Generator feature.
-frametype type

Specifies the predefined frame type. Valid values for type include the following:
SCSI, SCSIRead, SCSIWrite, SCSiRW, SCSi2Reserve, SCSi3Reserve,
scsicmdsts, ABTS, BAACC, SCSi2Release, SCSi3Release, SCStur,
SCSi2ReserveRelease, SCSi3ReserveRelease, SCStGoodStatus,
SCSiCheckStatus, SCSiResvConflict, SCSiInquiry, SCSiXferrdy, and BARJT.
This operand is not supported by the Flow Generator feature.

-count value

Specifies the number of times the output must be repeated. The default value is 1
and the maximum value is 10.

-time time_interval

Displays the flow information for the specified time interval until it is terminated
with Ctrl + C. Values are in seconds. The time interval must be specified in
multiples of 5, for example, 5, 10, 15, or 20 seconds.

-verbose

Displays the flow or feature statistics in verbose mode.

-sortby field

Displays the sub-flows for a feature in the specified order. The field can be
columnX, where X is the column number. The value of X can be from 1 to
maximum number of columns present in the --show output. For the Flow Mirror
feature, the sub-flows may or may not be present but the mirrored frames can be
sorted. The -sortby option can be applied if only one feature is specified with the
--show command.

ctrlcfg

Displays the control parameters.

EXAMPLES

To display all flows in Flow Vision:

```bash
switch:admin> flow --show
```

```
+---------------------------------+---------------------------------+-----------+-----------+-----------+-----------+-----------+-----------+
<table>
<thead>
<tr>
<th>Flow Name</th>
<th>Feature</th>
<th>SrcDev</th>
<th>DstDev</th>
<th>IngrPt</th>
<th>EgrPt</th>
</tr>
</thead>
<tbody>
<tr>
<td>myflow1</td>
<td>mon+</td>
<td>020a00</td>
<td>030000</td>
<td>1/10</td>
<td>-</td>
</tr>
<tr>
<td>scsicsflow</td>
<td>mon+</td>
<td>520a00</td>
<td>520b00</td>
<td>-</td>
<td>1/9</td>
</tr>
<tr>
<td>lunFlow</td>
<td>mon+</td>
<td>010502</td>
<td>030700</td>
<td>1/5</td>
<td>-</td>
</tr>
<tr>
<td>myflow2</td>
<td>gen+</td>
<td>010203</td>
<td>020304</td>
<td>2/3</td>
<td>-</td>
</tr>
<tr>
<td>myflow3</td>
<td>gen</td>
<td>01ba00</td>
<td>01c000</td>
<td>1/18</td>
<td>-</td>
</tr>
<tr>
<td>endtoendflow</td>
<td>mon+</td>
<td>010500</td>
<td>040900</td>
<td>2/5</td>
<td>-</td>
</tr>
<tr>
<td>flowLearn</td>
<td>mon+</td>
<td>*</td>
<td>*</td>
<td>3/5</td>
<td>-</td>
</tr>
<tr>
<td>myflow4</td>
<td>mir+</td>
<td>010203</td>
<td>-</td>
<td>1/20</td>
<td>-</td>
</tr>
<tr>
<td>myflow5</td>
<td>gen+</td>
<td>020a00</td>
<td>*</td>
<td>1/10</td>
<td>-</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>BiDir</td>
<td>LUN</td>
<td>FrameType</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>-</td>
<td>sstatc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>-</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>0x02</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
+ Denotes feature is currently activated for the flow
```
To display the flow definition and statistics of a flow:

```
switch:admin> flow --show myflow2
==
Name : myflow2 Features: gen(Active)
Definition: IngrPort(3),SrcDev(0x010203),DstDev(0x020304)

Flow Generator (Active):
--
| SrcDev | DstDev |
--
| 0x010203 | 0x020304 |

Number of frames generated from IngrPort : 1.50G
==
```

To display the statistics of the Flow Monitor feature:

```
switch:admin> flow --show myflow1 -feature monitor
==
Name : myflow1 Features: mon(Active)
Definition: IngrPort(10),SrcDev(0x020a00),DstDev(0x030000)

Flow Monitor (Active):
Monitor time: | Tue Jun 25 04:20:06 PDT 2013 |
--
| Frame Count | Frames Per Sec. | Byte count
| Tx / Rx / Total | Tx / Rx / Total | Tx / Rx / Total
--
| 18.20G/ 0 / 18.20G|786.52k/ 0 /786.52k| 73.48T/ 0 / 73.48T |
--

```

To display the monitor statistics from a particular source to destination on a specified LUN:

```
switch:admin> flow --show lunFlow
===
Name : lunFlow Features: sts(Active)
Definition: IngrPort(5),SrcDev(0x010502),DstDev(0x030700),Lun(4)
Flow Stats:
Stats time: | Thu Jun 06 15:15:39 UTC 2013 |

| I/O Count | I/O Per Sec.(IOPS) | I/O bytes Transferred
| Reads / Writes/ Total | Reads / Writes/ Total | Reads / Writes/ Total |

| 44.92k / 44.94k / 89.85k | 2.00k / 2.00k / 4.01k | 5.88M / 5.89M / 11.77M |

```

```
To display the Flow Monitor statistics for bidirectional traffic:

```
switch:admin> flow --show endtoendflow -feature monitor
```

```
Name : endtoendflow
Features: sts(Active)
Definition: IngrPort(1,5),SrcDev(010500),DstDev(040900),BiDir
Flow Stats:
Stats time: | Thu Jun 06 15:15:39 UTC 2013 |
---------------------------------------------------------
| Frame Count         | Frames Per Sec.         | Byte count           |
| Tx / Rx / Total     | Tx / Rx / Total         | Tx / Rx / Total      |
---------------------------------------------------------
| 2.92M/ 2.96M/ 5.88M | 159.31k/161.78k/321.10k | 5.99G/ 5.99G/ 11.99G |
---------------------------------------------------------
| Throughput(Bps)         | Frame Size(Bytes) |
| Tx / Rx / Total         | Tx / Rx          |
---------------------------------------------------------
| 327.15M/327.28M/654.44M | 2052 / 2020      |
```

To display the monitor statistics for a flow:

```
switch:admin> flow --show flowLearn -feature monitor
```

```
<table>
<thead>
<tr>
<th>SID(*)</th>
<th>DID(*)</th>
<th>Rx Frames Count</th>
<th>Rx Frames per Sec.</th>
<th>Rx Bytes Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>010500</td>
<td>030700</td>
<td>2.92M</td>
<td>159.31k</td>
<td>5.99G</td>
</tr>
<tr>
<td>010501</td>
<td>030700</td>
<td>1.92M</td>
<td>100.22k</td>
<td>4.91G</td>
</tr>
<tr>
<td>010502</td>
<td>030700</td>
<td>0.92M</td>
<td>51.81k</td>
<td>2.36G</td>
</tr>
<tr>
<td>010500</td>
<td>040900</td>
<td>2.92M</td>
<td>259.31k</td>
<td>7.89G</td>
</tr>
<tr>
<td>010501</td>
<td>040900</td>
<td>1.92M</td>
<td>159.31k</td>
<td>3.72G</td>
</tr>
<tr>
<td>010502</td>
<td>040900</td>
<td>0.92M</td>
<td>159.31k</td>
<td>1.08G</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>12.72M</td>
<td>770.37k</td>
<td>25.86G</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>Rx Throughput(Bps)</th>
<th>Avg Rx Frm Sz(Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>627.15M</td>
<td>2052</td>
</tr>
</tbody>
</table>
```
To display the statistics for the Flow Mirror feature in learning mode:

```
switch:admin> flow --show mirFlow -feature mirror
Name : mirFlow       Features: mir(Active)
Definition: EgrPort(17),DstDev(0x051100),BiDir
Flow Mirror:  
------------------------------------------------------------ 
| SID(*) | DID(*) | OXID | RXID | SOF   | EOF  | Frame_type |
------------------------------------------------------------ 
| 051600 | 051100 | 0883 | ffff | SOFi3 | EOFt | SCSIRead   |
| 051600 | 051100 | 0191 | 0bce | SOFn3 | EOFn | Data       |
| 051600 | 051100 | 0c8f | ffff | SOFi3 | EOFt | SCSIWrite  |
| 051600 | 051100 | 0017 | 0bce | SOFn3 | EOFt | Data       |
| 051600 | 051100 | 0191 | 0bce | SOFn3 | EOFt | Data       |
------------------------------------------------------------ 
| Dir| Time-Stamp |
------------------------ | Tx  | Jun 10 11:08:10 |
| Tx | Jun 10 11:08:10 |
| Tx | Jun 10 11:08:10 |
| Tx | Jun 10 11:08:10 |
| Tx | Jun 10 11:08:10 |
```

To display the statistics for the Flow Mirror feature in verbose mode:

```
switch:admin> flow --show mirFlow1 -feature mirror -verbose
Name : flow_verbose Features: mir(Active)
Definition: EgrPort(1/5),SrcDev(010200),DstDev(*),BiDir
Flow Mirror:  
-------------------------------------------------------------------------------Time-Stamp | Dir | SOF   | EOF  | Frame_Type | Frame Contents            |
-------------------------------------------------------------------------------Jun 04 08:27:04 | Tx  | SOFi3 | EOFt | SCSITxRdy   | 05040500 00010200 08890000 07ce01ca 00000000 00000000 00000018 00000000 |
Jun 04 08:27:04 | Rx  | SOFi3 | EOFt | SCSITxRdy   | 05040500 00010200 08890000 07ce01ca 00000000 00000000 00000018 00000000 |
Jun 04 08:27:04 | Rx  | SOPn3 | EOFt | Data       | 01010200 00040500 08900008 089a0f71 00000000 00000000 00000000 00000000 00000000 00000000 00000000 |
Jun 04 08:27:04 | Rx  | SOPn3 | EOFt | SCSITxRdy   | 05040500 00010200 08890000 07ce01ca 00000000 00000000 00000018 00000000 |
Jun 04 08:27:04 | Tx  | SOPn3 | EOFt | SCSITxRdy   | 05040500 00010200 08890000 07ce01ca 00000000 00000000 00000018 00000000 |
```

To display the feature statistics in sorted order:

```
switch:admin> flow --show myflow -feature monitor -sortby column1
Stats time:  | Fri Jun 07 03:56:24 MDT 2013 |
==================================================================
Name      : myflow Features: gen(Active),sts(Active)
Definition: EgrPort(4,8),SrcDev(0x*),DstDev(0x040800)
```
Flow Stats:

<table>
<thead>
<tr>
<th>SID(*)</th>
<th>Tx Frames Count</th>
<th>Tx Frames per Sec.</th>
<th>Tx Bytes Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>40600</td>
<td>11.99M</td>
<td>169.68k</td>
<td>25.08G</td>
</tr>
<tr>
<td>40700</td>
<td>11.99M</td>
<td>169.86k</td>
<td>25.08G</td>
</tr>
<tr>
<td>40900</td>
<td>28.49M</td>
<td>403.22k</td>
<td>59.38G</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tx Throughput(Bps)</th>
<th>Avg Tx Frm Sz(Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>354.97M</td>
<td>2088</td>
</tr>
<tr>
<td>355.35M</td>
<td>2088</td>
</tr>
<tr>
<td>124.48M</td>
<td>2080</td>
</tr>
</tbody>
</table>

To display the SCSI frame statistics for the Flow Monitor feature:

```
switch:admin> flow --show scsicsflow -feature monitor
```

Frame Statistics

<table>
<thead>
<tr>
<th>Tx Frames Count</th>
<th>Tx Frames per Sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>238</td>
<td>5</td>
</tr>
</tbody>
</table>

To display the control parameters:

```
switch:admin> flow --show -ctrlcfg
```

SimPort Information

<table>
<thead>
<tr>
<th>Slot</th>
<th>Port</th>
<th>PID</th>
<th>PWWN</th>
<th>SID Frame Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>050200</td>
<td>20:02:00:05:1e:e2:8e:00</td>
<td>OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19.46K</td>
</tr>
</tbody>
</table>

To display the control parameters for the Flow Generator feature:

```
switch:admin> flow --show -ctrlcfg -feature generator
```

Control Parameters of Generator

Size: 1024
Pattern: SCSITur

To display the statistics for the Flow Mirror feature on ingress port (1/10) without creating a flow (show on demand):

```
switch:admin> flow --show -srcdev 0x030000 -ingrport 1/10 -feature mirror
```

FUNCTION Deleting a flow

SYNOPSIS flow --delete flow_name
Description
Use this command to delete the specified flow from Flow Vision. All the data associated with the flow will be cleared.

Operands
The --delete command has the following operands:

flow_name

Specifies the name of the flow to delete. Specify "all" to delete all flows.

Examples
To delete a flow:

switch:admin> flow --delete myflow1

Function
Displaying the command help

Synopsis
flow --help [operand] [...]

Description
Use this command to display the command usage.

Operands
operand

Displays the syntax and usage guidelines for the specified operand or sub-option.

Examples
To display the command usage:

switch:admin> flow --help

To display the command usage for an operand:

switch:admin> flow --help --create

Description - Create a flow definition for Flow Vision features
SYNTAX: flow --create <flowname> --feature <list>

<flowname> : Unique string of characters to identify a flow
-feature <list> : Comma separated list of Flow Vision features
 (mirror, monitor and generator)

<Port options>
-ingrport <portID>: Switch receive port on which feature(s) is applied
-egrport <portID>: Switch transmit port on which feature(s) is applied
flow

<Frame options>
- srcdev <devID> : FC device that is flow source (SID or PWWN)
- dstdev <devID> : FC device that is flow destination (DID or PWWN)
- lun <LUN ID> : SCSI LUN identifier
- frametype <ftyp>: Frame type applicable to the flow

<Config options>
- bidir : Applies Flow Vision features for both directions of flow
- noactivate : Creates flow without activating the flow
- noconfig : Creates flow without saving persistently

To display the command usage for an operand and sub-option:
switch:admin> flow --help --create --frametype
-frametype <ftyp>: FC frame types applicable to the flow.
<ftyp> can be one of scsi, srd, swr, srdr, sres2, sres3, scsirel2, str, scsiresrel2, scsigooodstatus, scscheckstatus, scsirel3, scsiresrel3, srescnfl, sinq, sxfr, scmdsts, abts, bacc, barjt.

SEE ALSO None
fmMonitor

Manages frame monitor configuration.

SYNOPSIS

fmmonitor --create frame_type -pat bit_pattern
 [-port port_list] [-highth value]
 [-action actions] [-timebase time_base] [-nosave]

fmmonitor --delete frame_type

fmmonitor --show [frame_type] [-port port_list | -all]
 [-timeinterval interval]

fmmonitor --change frame_type [-pat bit_pattern]
 [-highth value] [-action actions] [-timebase time_base]

fmmonitor --addmonitor frame_type [-port port_list] [-nosave]

fmmonitor --delmonitor frame_type [-port port_list] [-nosave]

fmmonitor --clear frame_type -port port_list

fmmonitor --save frame_type

fmmonitor --help

DESCRIPTION

Use this command to configure, install, and display frame monitors across port ranges on a switch. This command supports predefined and user-defined names for frame types defined by their offset, bit mask, and frame values. For each frame type you can configure a threshold and specify one or more alert mechanisms, such as RAS log, SNMP trap and email.

Frame monitors count the number of frames transmitted through a port that match specific values in the first 64 bytes of the frame. Because the entire Fibre Channel frame header and many upper protocol (for example, SCSI) headers fall within the first 64 bytes of a frame, frame monitors can detect different types of traffic transmitted through a port. Each frame monitor keeps a timestamp of its last refresh. It also keeps a generation count, which is incremented each time the monitor is cleared.

Frame monitors generate alerts whenever the frame count for a certain frame type crosses the threshold configured for that frame type. You can configure high thresholds for every frame type, specify actions to be taken when the threshold is exceeded, and configure how often the data are sampled. When you create a new frame type without specifying the events, a generic filter monitor configuration for generating events is applied.

The fmMonitor command supports basic Fabric Watch configurations for frame monitors. Use thConfig with the FILTER class for more advanced configurations.

When you create, add, or delete a monitor, the changes are saved persistently by default. Use the -nosave option with --create, --addmonitor, and --delmonitor to override the default behavior.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

The number of monitors supported per port is platform-specific. Refer to the Fabric OS Administrator's Guide for more information.
This command requires an Advanced Performance Monitoring license. A Fabric Watch license is optional. Without a Fabric Watch license, you cannot use the alert mechanism, but you can still configure frame monitors and observe the counters.

Frame Monitor types and bit patterns are not case sensitive.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, mirror ports, GbE ports, and FCoE ports.

OPERANDS

--create

Creates a user-defined frame type to be monitored. A frame type is defined by a unique name and bit pattern.

--change

Modifies an existing frame type configuration.

frame_type

Specifies a name for the frame type. The name is a user-defined string of up to 10 characters. Strings exceeding the character limit are truncated. The string must be included in double quotation marks. Spaces are not permitted. This operand is required with all configuration and display options.

Use the **--change** option to modify an existing frame type that you created earlier by changing, for example, the bit pattern, the ports where the frames should be monitored, or the alert mechanism. You can also use the **--change** option to modify one of the predefined frame types supported with this command. You can modify the ports where the frames should be monitored or change the default threshold and alert mechanism. You cannot change the bit pattern of a predefined frame type. Frame Types are not case sensitive. They are capitalized here for readability only.

Predefined frame types include the following:

ABTS

Specifies a frame of type ABTS (Abort Sequence Basic Link Service command) with a bit pattern of "4,0xFF,0x81;12,0xFF,0x0;"

BA_ACC

Specifies a frame of type BA_ACC (Abort Accept) with a bit pattern of "4,0xFF,0x84;12,0xFF,0x00;"

IP

Specifies a frame of type IP with a bit pattern of "12,0xFF,0x05;".

SCSI

Specifies a frame of type SCSI with a bit pattern of "12,0xFF,0x08;".

SCSI_READ

Specifies a frame of type SCSI Read with a bit pattern of "12,0xFF,0x08;4,0xFF,0x06; 40,0xFF,0x08,0x28;".

SCSI_WRITE

Specifies a frame of type SCSI Write with a bit pattern of "12,0xFF,0x08;4,0xFF,0x06; 40,0xFF,0x08,0x0A,0x2A;".

SCSI_RW

Specifies a frame of type SCSI Write with a bit pattern of "12,0xFF,0x08;4,0xFF,0x06; 40,0xFF,0x08,0x28,0x0A,0x2A;".

SCSI2_reserve

Specifies a frame of type SCSI-2 Reserve with a bit pattern of "12,0xFF,0x08;4,0xFF,0x06;40,0xFF,0x16,0x56;".
SCSI3_RESERVE

Specifies a frame of type SCSI-3 Reserve with a bit pattern of "12,0xFF,0x08;4,0xFF,0x06; 40,0xFF,0x5F;41,0xFF,0x01;".

-pat bit_pattern

Specifies a unique combination of values in the first 64 bytes of a frame. The syntax for the bit patterns is as follows: "offset,bitmask,value;[offset, bitmask,value;] ...;" for example, "12,0xFF,0x08;4,0xFF,0x06;40,0xFF,0x08, 0x28;". This example monitors for SCSI read command traffic transmitted from a port by filtering on offset 12 with a value of 0x08 (SCSI-FCP), on offset 4 with value 0x06 (unsolicited command), and on offset 40 with values of 0x08 or 0x28 (read command). Each pattern must end with a semicolon (;) and the combined pattern must be enclosed in double quotation marks. This operand is required with the --create option. It is optional with the --change option.

The pattern components are as follows:

Offset

Specifies the offset within the frame. Offset 0 is the first byte of the start-of-frame (SOF) delimiter, and offset 4 is the first byte of the frame header. The offset must be in decimal format. Valid values for offset are 0, and 4 to 63. Offset 0 is a special case that can be used to monitor the first four bytes SOFx frames. The end-of-frame (EOF) delimiter cannot be monitored. A maximum of six offsets can be specified for each filter, and each offset can match up to four values. The count is incremented by one, if a frame has a matching value in all the offsets specified by the filter.

bitmask

Specifies the mask value to be applied to frame contents.

value

Specifies the values that need to be captured from the frame contents.

In SOFx frames the offset is specified as 0x0; The value is specified as one of the following. For example, the value of 0x6 matches frames of type SOFi3:

0

SOFf

1

SOFc1

2

SOFi1

3

SOFn1

4

SOFi2

5

SOFn2

6

SOFi3

7

SOFn3
-port port_list

Specifies one or more ports on which to install the monitor for the specified frame type. This operand is optional; if omitted, the monitor is installed on all eligible ports. A port list can consist of the following:

- One or more single ports, preceded by a slot number followed by a slash (/) on bladed systems. Multiple ports must be separated by a comma, for example, 8 or 5/8 or 3,5,8.
- One or more port ranges where the beginning and end port are separated by a dash, for example, 8-13 or 5/8-13, or 3/4-9. A port range cannot span multiple slots.

-highth value

Sets the high threshold value for the specified frame monitor. This operand is optional. High threshold values and defaults are platform-specific. Refer to the Fabric Watch Administrator’s Guide for more information.

-timebase time_base

Specifies the time interval between two samples to be compared. Valid intervals include the following:

- day
 Samples are compared once a day.
- hour
 Samples are compared once every hour.
- minute
 Samples are compared once every minute.

-action value

Specifies the action triggered if the frame count for the specified frame type exceeds the configured high threshold. Valid actions include snmp, raslog, email or none. This operand is optional; if omitted, defaults are used (snmp, raslog). Note that fmMonitor only supports specification of high thresholds and the actions taken when the frame count exceeds the configured high threshold. Use the thConfig command with the filter class operand to configure and display other Fabric Watch thresholds, and the actions to be taken when the counters fall below or in-between configured Fabric Watch thresholds.

-nosave

Overrides the default behavior, which automatically saves the frame monitor and port configuration persistently when you create, modify, or delete a monitor. When you specify -nosave, the port configuration is not saved and will be erased upon reboot. However, the frame monitor configuration (type, bit pattern, thresholds etc.) will still be saved persistently. This operand is valid only with the --create, --addmonitor, and --delmonitor options. The CFG column in the show command display indicates "not saved" when -nosave is specified; otherwise it indicates "saved".

--save frame_type

Saves the set of ports on which the specified frame type is monitored to the persistent configuration. If a frame type is not specified, this command saves the port configurations of all existing frame types. This operation removes the configuration for ports not monitored.

--addmonitor frame_type -port port_list

Installs an existing frame monitor on the specified ports.

--delmonitor frame_type -port port_list

Removes an existing frame monitor from the specified ports.
---delete frame_type

Deletes an existing frame type. This command removes the entire configuration, including configured threshold and associated actions. It also removes any frame monitors of the specified type from all ports. This operand is not valid with predefined frame types.

---clear frame_type -port port_list

Clears the ports on which the specified frame type is monitored from the persistent configuration.

---show

Displays the specified frame type configuration. When used without operand, the --show command displays the configured frame types along with their bit patterns. The following operands are optional:

frame_type

Displays the following information for the specified frame type: Port number, Frame type, frame count, configured high threshold, configured alerts, time base and configuration status (saved or N/A). The count field displays one of the following:

- A decimal number indicates the number of frames of the specified type.
- N/A indicates that a frame monitor configuration exists, but it is not assigned to any specific port.
- A dash ("-"") indicates that a frame monitor is not installed on the port, but there is a configuration for frame monitor on these ports.

This operand is optional; if omitted, this command lists all configured frame types on the switch along with their bit patterns. The following operands are exclusive:

-port port_list

Specifies the ports for which to display the frame type configurations. Refer to the description above for valid values.

all

Displays information for all ports and frame types.

-timeinterval interval

Displays the number of frames per second captured by the monitor during the specified time interval. Values are in seconds. The time interval must be specified in multiples of 5, for example, 5, 10, 15, or 20 seconds.

--help

Displays the command usage.

EXAMPLES

To create a custom frame type using default thresholds and report actions: The following custom frame monitor checks all incoming frames at offset 17, applies a mask of 0x0FF to the byte, and looks for a matching value of 0x07. It also monitors the incoming frames at offset 7, applies a mask of 0x0FF to the byte, and looks for matching values of 0x4F or 0x01. The counter is incremented when the monitor detects a frame where byte 17 is 0x07, and byte 7 is 0x4F or 0x01. The thresholds, alerting mechanism, action and threshold level for this custom frame type will be imported from a generic filter monitor configuration.:

```
switch:admin> fmmonitor --create MyFrameMonitor
   -pat "17,0x0FF,0x07;7,0x0FF,0x4F,0x01"
```

To add E-mail alerts to the previously created frame type:

```
switch:admin> fmmonitor --change MyFrameMonitor
   -action email
```
To install a SCSI frame monitor on ports 3-12:

```
switch:admin> fmmonitor --addmonitor SCSI -port 3-12
```

To save the port configuration persistently:

```
switch:admin> fmmonitor --save SCSI
```

To delete the custom frame monitor "MyFrameMonitor" from all ports:

```
switch:admin> fmmonitor --delmonitor MyFrameMonitor
```

To delete the entire frame type configuration:

```
switch:admin> fmmonitor --delete MyFrameMonitor
```

To clear the counters for the SCSI2_READ monitor from ports 7-10:

```
switch:admin> fmmonitor --clear SCSI2_READ -port 7-10
```

To display the existing frame types and associated bit patterns on the switch:

```
switch:admin> fmmonitor --show

<table>
<thead>
<tr>
<th>FRAME_TYPE</th>
<th>BIT PATTERN</th>
</tr>
</thead>
<tbody>
<tr>
<td>scsi</td>
<td>12,0xFF,0x08;</td>
</tr>
<tr>
<td>scsiwrite</td>
<td>12,0xFF,0x08;4,0xFF,0x06;</td>
</tr>
<tr>
<td>scsi2reserve</td>
<td>12,0xFF,0x08;4,0xFF,0x06;</td>
</tr>
<tr>
<td>scsi3reserve</td>
<td>12,0xFF,0x08;4,0xFF,0x06;</td>
</tr>
<tr>
<td>ip</td>
<td>12,0xFF,0x05;</td>
</tr>
<tr>
<td>abts</td>
<td>4,0xFF,0x81;</td>
</tr>
<tr>
<td>baacc</td>
<td>4,0xFF,0x84;</td>
</tr>
</tbody>
</table>
```

To display configuration details for the predefine SCSI frame monitor (Use thConfig filter class to set and display other Fabric Watch thresholds for frame monitors):

```
switch:admin> fmmonitor --show scsi

<table>
<thead>
<tr>
<th>Port</th>
<th>Frame Type</th>
<th>Count</th>
<th>HIGHThres</th>
<th>Actions</th>
<th>TIMEBASE</th>
<th>CFG</th>
</tr>
</thead>
<tbody>
<tr>
<td>000002</td>
<td>scsi</td>
<td>0000000000000123</td>
<td>10</td>
<td>Raslog</td>
<td>None</td>
<td>saved</td>
</tr>
<tr>
<td>000003</td>
<td>scsi</td>
<td>0000000000000124</td>
<td>10</td>
<td>Raslog</td>
<td>None</td>
<td>saved</td>
</tr>
</tbody>
</table>

To display all configured frame types for all ports:

```
switch:admin> fmmonitor --show all

<table>
<thead>
<tr>
<th>Port</th>
<th>Frame Type</th>
<th>Count</th>
<th>HIGH</th>
<th>Actions</th>
<th>TIMEBASE</th>
<th>CFG</th>
</tr>
</thead>
<tbody>
<tr>
<td>000002</td>
<td>scsi</td>
<td>0000000000000123</td>
<td>10</td>
<td>Raslog</td>
<td>None</td>
<td>saved</td>
</tr>
<tr>
<td>000003</td>
<td>scsi</td>
<td>0000000000000124</td>
<td>10</td>
<td>Raslog</td>
<td>None</td>
<td>saved</td>
</tr>
<tr>
<td></td>
<td>scsi</td>
<td>N/A</td>
<td>0</td>
<td>None</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>scsiwrite</td>
<td>N/A</td>
<td>0</td>
<td>None</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>scsi</td>
<td>N/A</td>
<td>0</td>
<td>None</td>
<td>None</td>
<td>N/A</td>
</tr>
</tbody>
</table>
To display the number of frames of type ISCSI_RW per second during a five-second interval:

```
switch:admin> fmmonitor --show SCSI_RW -port 1/0-47 -timeinterval 5
```

```
2011-02-18 15:52:02
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
========================================================================
slot 1: 630 0 0 0 0 0 0 0 0 0 630 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
========================================================================
slot 1: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
========================================================================
slot 1: 210 840 210 0 0 0 0 0 0 0 0 0 0 0 0 0
2011-02-18 15:52:07
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
========================================================================
slot 1: 630 0 0 0 0 0 0 0 0 0 630 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
========================================================================
slot 1: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
========================================================================
slot 1: 210 840 210 0 0 0 0 0 0 0 0 0 0 0 0 0
(output truncated)
```

SEE ALSO
portThConfig, thConfig
fosConfig

Displays or modifies Fabric OS features.

SYNOPSIS

fosconfig --enable feature
fosconfig --disable feature
fosconfig --show

DESCRIPTION

Use this command to enable or disable a feature, or to display the current operating status of features on a switch. This command can be run while the switch is online.

The following features are supported (refer to the Notes for limitations):

- FC Routing service (see fcrConfigure)
- iSCSI service (not supported in Fabric OS v7.0.0 and later).
- iSNS client service (not supported in Fabric OS v7.0.0 and later).
- Virtual Fabrics (see IfCfg and IsCfg)
- Ethernet switching service

NOTES

The features described may not be supported on all platforms. If you attempt to enable a feature that is not supported on your platform, an error message stating "Command not supported on this platform" is displayed.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

--enable feature

Enables a feature on the switch. Valid values for feature include the following:

fcr

Enables the FC Routing service on the switch. The FC Routing service is disabled by default. Use fosConfig --show to determine if FCR is enabled or disabled.

When enabling FCR, you may encounter one of the following system messages:

"FC Routing service is in the process of being disabled, please try again after a few minutes." This means that a command to disable the FC Routing service is still in progress. Wait a few minutes and try again.

"FC Routing service is already enabled." This means that the FC Routing service is already enabled.

iSCSI

Not supported in Fabric OS v7.0.0 and later.

iSNSC

Not supported in Fabric OS v7.0.0 and later.

vf

Enables Virtual Fabrics. By default, Virtual Fabrics are disabled. Before enabling the Virtual Fabrics, ensure that there are no Administrative Domains (ADs) in effect. Administrative Domains must be disabled before enabling Virtual Fabrics. This command prompts for confirmation, because the chassis reboots after this command is executed.
fosConfig

ethsw

Enables the Ethernet switch service on the switch. The Ethernet switch service is disabled by default. Enabling the Ethernet switch service does not disrupt the FC traffic.

--disable feature

Disables a feature on the switch. Valid values for feature include the following:

fcr

Disables the FC Routing service on the switch. All enabled EX_Ports and VEX_Ports on the switch must be offline for this command to succeed.

To use this command to disable the FC Routing service only instead of disabling the switch, issue this command, then change the BB fabric ID using fcrConfigure.

When disabling the FCR service, you may encounter the following system messages:

"Please disable all EX/VEX_Ports first before running this command." This means that there were EX_Ports or VEX_Ports online when this command was issued. Take these ports offline and try the command again.

"FC Routing service is already disabled" - This means that the FC Routing service is already disabled.

iSCSI

Not supported in Fabric OS v7.0.0 or later.

iSNSC

Not supported in Fabric OS v7.0.0 or later.

vf

Disables Virtual Fabrics on the switch. This command prompts for confirmation, because the chassis reboots after this command is executed.

ethsw

Disables the Ethernet switch service. Ethernet switching is disabled by default. This operation reboots the switch and is therefore disruptive.

--show

Displays the current operating status of features on the switch.

EXAMPLES

To display the operating status of the services on a Brocade 6510:

switch:admin> fosconfig --show

FC Routing service: disabled
iSCSI service: Service not supported on this Platform
iSNS client service: Service not supported on this Platform
Virtual Fabric: enabled
Ethernet Switch Service: Service not supported on this Platform

To disable the FC Routing service:

switch:admin> fosconfig --disable fcr

FC Routing service is disabled

To enable the FC Routing service:

switch:admin> fosconfig --enable fcr

FC Routing service is enabled
To enable Virtual Fabrics:

```
switch:admin> fosconfig --enable vf
WARNING: This is a disruptive operation that \ 
          requires a reboot to take effect.
          All EX ports will be disabled upon reboot.
          Would you like to continue [Y/N]? y
```

To disable Virtual Fabrics:

```
switch:admin> fosconfig --disable vf
WARNING: This is a disruptive operation that \ 
          requires a reboot to take effect.
          Would you like to continue [Y/N]? y
```

To enable the Ethernet Switching service:

```
switch:admin> fosconfig --enable ethsw
WARNING: This operation will enable the \ 
          Ethernet Switch Service on this switch.
          Would you like to continue [Y/N]: y
          Enabling the Ethernet Switch Service. Please wait ...  
          Create Ethernet switch instance 0
          All service instances in sync.
          The Ethernet Switch Service has been enabled.
          Please enable all of the Blades with ID 74 now.
```

To disable the Ethernet Switching service:

```
switch:admin> fosconfig --disable ethsw
WARNING: This is a disruptive operation that \ 
          requires a reboot to take effect.
          Would you like to continue [Y/N]: y
          The Ethernet Switch Service has been disabled.
          Your system is being rebooted now.
          The system is coming up, please wait...
```

SEE ALSO
 fcrConfigure, switchShow
fosExec

Executes a command in a specified logical switch context.

SYNOPSIS

fosexec --fid FID -cmd "cmd [args]"
fosexec --fid all [-force] -cmd "cmd [args]"

DESCRIPTION

Use this command to execute any Fabric OS command on a specified logical switch context or on all logical switches. The target logical switch is identified by its fabric ID (FID). When used with the --fid all option, the specified command is executed in all logical switches.

The FIDs must be part of the FID permission list associated with the user account. If you execute fosexec --fid all and you do not have permission to one or more of the logical switches (FIDs), the command prompts for confirmation to continue with the execution of the command in the FIDs for which you do have permission. You can override the prompt for confirmation with the -force option. Refer to userConfig help for more information on logical switch access permissions.

Executing chassis-level commands through fosexec --fid all results in redundant output.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

--fid FID

Specifies the Fabric ID of the logical switch for which the command is executed.

--fid all

Executes the specified command in all logical switch contexts configured on the physical switch.

-force

Executes the specified command on all logical switches in your permission list without prompting for confirmation.

-cmd "cmd [args]"

Specifies the command to be executed including command options if applicable. The entire command string must be enclosed in double quotation marks.

EXAMPLES

To display switch information for a logical switch with FID 10:

switch:admin> fosexec --fid 10 -cmd "switchshow"

"switchshow" on FID 10
switchName: switch_10
switchType: 66.1
switchState: Online
switchMode: Native
switchRole: Subordinate
switchDomain: 1
switchId: fffc01
switchWwn: 10:00:00:05:1e:41:5f:c2
zoning: ON (1san_cfg)
switchBeacon: OFF
FC Router: OFF
Allow XISL Use: ON
LS Attributes: [FID: 10, Base Switch: No, \
Default Switch: No, Address Mode 0

<table>
<thead>
<tr>
<th>Index</th>
<th>Slot</th>
<th>Port</th>
<th>Address</th>
<th>Media</th>
<th>Speed</th>
<th>State</th>
<th>Proto</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>640000</td>
<td>--</td>
<td>N8</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>640100</td>
<td>--</td>
<td>N8</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>640200</td>
<td>--</td>
<td>N8</td>
<td>No_Module</td>
<td>FC</td>
</tr>
</tbody>
</table>

To enable port 5/0 on all logical switches:

```
switch:admin> fosexec --fid all -cmd "portenable 5/0"
```

"portenable" on FID 128:

"portenable" on FID 10:
A port or ports is/are not part of this switch.

"portenable" on FID 20:
A port or ports is/are not part of this switch.

To display the firmware version for all logical switches:

```
switch:user> fosexec --fid all -cmd "firmwareshow -v"
```

LF permission does not exist for one or more logical switches.
Would you like to continue [Y/N] : y

"firmwareshow" on FID 10:
Appl Primary/Secondary Versions

```
FOS      v7.0.0
v7.0.0
```

"firmwareshow" on FID 20:
Appl Primary/Secondary Versions

```
FOS      v7.0.0
v7.0.0
```
To display the switch name for all logical switches without confirmation:

```
switch:user> fosexec --fid all -force -cmd "switchname"
```

"switchname" on FID 10:

```
switch_10
```

"switchname" on FID 20:

```
switch_20
```

SEE ALSO setContext, userConfig
frameLog

Displays information about discarded frames.

SYNOPSIS

framelog --disable
framelog --enable
framelog --clear
framelog --show [-txport [slot[/]port]
 [-rxport [slot[/]port]
 [-sid source_PID][-did destination_PID]
 [-mode summary | dump] [-n num_items]

DESCRIPTION

Use this command to disable or re-enable the frame log, and to display detailed information about the
discarded frames logged by the frame log. The frame log stores information about frames discarded due
to certain reasons. Frame log sees information about only 20 discarded frames per second per chip on
the chassis. The only discard reason currently supported is timeout.

When frame drops occur on a switch, the frame log can help you identify to which flows the dropped
frames belong and zero in on the affected applications by finding out the end-points of the dropped
frame.

Use the --show option to display detailed information about the discarded frames that match the filter
criteria provided by this command. The --show option supports two viewing modes: summary and dump
mode. In summary mode, the command aggregates similar frames (those that have the same log
timestamp, TX port, RX port, SID, DID, SFID and DFID) without displaying the raw frame contents. In
dump mode, the command displays the raw frame contents, but the frames are not aggregated in the
manner of the summary mode. In either mode, you can specify additional filters to customize the number
and properties of the frames for closer examination.

When viewed in summary mode, the frame log displays the following information:

Log timestamp

The date and time when the frames described in this line of output were
discarded. This value is accurate to within one second, that is, the displayed
frames were not necessarily dropped at precisely the same time.

TX port

Egress port where the frames were bound to exit the chassis. A port displayed as
-1 (or -1/-1 on slot-based systems) indicates an internal port.

RX port

Ingress port where the frames entered the chassis. A port displayed as -1 (or -1/-1
on slot-based systems indicates an internal port.

SID

Source port ID in hexadecimal PID format.

DID

Destination port ID in hexadecimal PID format.

SFID

Source Fabric ID

DFID

Destination Fabric ID
Type

Reason for the frame discard. Frames can be discarded for a variety of reasons. The only discard reason currently handled by the frame log is timeout.

Count

The number of discarded frames logged in the frame log that have the log timestamp, TX port, RX port, SID, DID, SFID and DFID values listed on this line of output. Note that this count may be less than the actual number of such frames discarded, because the frame log cannot log the details of all discarded frames.

When viewed in dump mode, the frame log displays the following information:

Log timestamp

The date and time when the frames described in this line of output were discarded.

TX port

Egress port where the frames were bound to exit the chassis. A port displayed as -1 (or -1/-1 on slot-based systems) indicates an internal port.

RX port

Ingress port where the frames were bound to enter the chassis. A port displayed as -1 (or -1/-1 on slot-based systems indicates an internal port.

Type

Reason for the frame discard. Frames can be discarded for a variety of reasons. The only discard reason currently handled by the frame log is timeout.

Frame contents

The first 64 bytes of the frame contents in hexadecimal format.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

The Frame Log operation is chassis-wide.

OPERANDS

This command has the following operands:

--disable

Disables logging of discarded frames, which is enabled by default. This command clears the history of discarded frames and gathering of new information ceases. When frame logging is disabled, only the --help and --enable operations are permitted.

--enable

Enables logging of discarded frames after the feature was disabled.

--clear

Clears the stored history of discarded frames. This operation is permitted only when the feature is enabled.
--show
Prints a listing of details about stored frames that match the specified filter criteria. This operation is permitted only when the feature is enabled. You can specify one or more of the following options to filter the output. When used without operands, the --show command displays the unfiltered output. This option supports specifying that the TX port or RX port of displayed frames should be a backend port.

-txport [slot]/port
Displays only the frames that were bound to exit by the specified egress port. The -txport option accepts argument "-1" (for fixed-port switches) or "-1/-1" (for modular switches). These stand for "any backend port". Using this notation, you can select specifically those discarded frames that have a backend port in the TX port field. Individual backend ports cannot be specified, only the quality of being a backend port can be specified.

-rxport [slot]/port
Displays only the frames that entered the chassis on the specified port. The -rxport option accepts argument "-1" (for fixed-port switches) or "-1/-1" (for modular switches). These stand for "any backend port". Using this notation, you can select specifically those discarded frames that have a backend port in the RX port field. Individual backend ports cannot be specified, only the quality of being a backend port can be specified.

-sid source_PID
Displays only the frames with the specified 24-bit source address in the FC header. The port ID (PID) must be written in hexadecimal and must be prefixed by 0x.

-did destination_PID
Displays only the frames with the specified 24-bit destination address in the FC header. The port ID (PID) must be written in hexadecimal and must be prefixed by 0x.

-sfid fabric_ID
Displays only the frames with the specified fabric ID as the source fabric ID.

-sdfid fabric_ID
Displays only the frames with the specified fabric ID as the destination fabric ID.

-mode summary | dump
Specifies the command output mode. In dump mode, the command prints the 64 bytes of frame contents. In summary mode, the frame contents are not displayed. Summary mode is the default.

-n num_items
Displays the specified number of items. In summary mode, an item is a record of frames with the same values of log timestamp, TX port, RX port, SID, DID, SFID and DFID. Note that more frames may be represented in the lines of output than specified in the num_items value, because one line can aggregate multiple frames in summary mode. In dump mode, each item represents a single frame. The default value of num_items is 20. The maximum value in summary mode is 1200, and in dump mode it is 12,000.

EXAMPLES
To display eight lines of an unfiltered frame log view in summary mode:

switch:user> framelog --show -mode summary -n 8

===
Mon Jan 31 23:54:59 UTC 2011
===
Log TX RX

Fabric OS Command Reference
53-1002921-02
frameLog

<table>
<thead>
<tr>
<th>timestamp</th>
<th>port</th>
<th>port SID</th>
<th>DID</th>
<th>SFID</th>
<th>DFID</th>
<th>Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 31 23:49:37</td>
<td>2</td>
<td>0xfffffd</td>
<td>0xfffffd</td>
<td>1</td>
<td>1</td>
<td>timeout</td>
<td>1</td>
</tr>
<tr>
<td>Jan 31 23:49:37</td>
<td>1</td>
<td>0x051500</td>
<td>0x060100</td>
<td>1</td>
<td>1</td>
<td>timeout</td>
<td>4</td>
</tr>
<tr>
<td>Jan 31 23:49:37</td>
<td>0</td>
<td>0x051700</td>
<td>0x060000</td>
<td>1</td>
<td>1</td>
<td>timeout</td>
<td>4</td>
</tr>
<tr>
<td>Jan 31 23:49:36</td>
<td>1</td>
<td>0x051500</td>
<td>0x060100</td>
<td>1</td>
<td>1</td>
<td>timeout</td>
<td>3</td>
</tr>
<tr>
<td>Jan 31 23:49:36</td>
<td>0</td>
<td>0x051700</td>
<td>0x060000</td>
<td>1</td>
<td>1</td>
<td>timeout</td>
<td>3</td>
</tr>
<tr>
<td>Jan 31 23:49:35</td>
<td>1</td>
<td>0x051500</td>
<td>0x060100</td>
<td>1</td>
<td>1</td>
<td>timeout</td>
<td>2</td>
</tr>
</tbody>
</table>

To display the frame contents in dump mode:

switch:user> frameLog --show -mode dump -n 4

SEE ALSO

None
fspfShow

Displays Fabric Shortest Path First (FSPF) protocol information.

SYNOPSIS

fspfshow

DESCRIPTION

Use this command to display FSPF protocol information and internal data structures of the FSPF module. The command displays the following fields:

- **version**
 - Version of the FSPF protocol.

- **domainID**
 - Domain number of the local switch.

- **switchOnline**
 - State of the local switch.

- **domainValid**
 - TRUE if the domain of the local switch is currently confirmed.

- **isl_ports**
 - Bit map of all ISL ports. Bit positions correspond to the default areas of the ports. Bit 0 refers to default area of the switch, bit 1 refers to default area 1, and so forth.

- **trunk_ports**
 - Bit map of all trunk slave ports.

- **f_ports**
 - Bit map of all FX_Ports.

- **seg_ports**
 - Bit map of all segmented ports.

- **active_ports**
 - Bit map of all online ports.

- **minLSArrival**
 - FSPF constant.

- **minLSInterval**
 - FSPF constant.

- **LSoriginCount**
 - Internal variable.

- **startTime**
 - Start time of the FSPF task from boot time, in milliseconds.

- **fspfQ**
 - FSPF input message queue.

- **fabP**
 - Pointer to fabric data structure.

- **agingTID**
 - Aging timer ID.

- **agingTo**
 - Aging time out value in milliseconds.

- **lsrDlyTID**
 - Link State Record delay timer ID.
fspfShow

IsrDelayTo
Link State Record delay time out value in milliseconds.

IsrDelayCount
Counter of delayed Link State Records.

ddb_sem
FSPF semaphore ID.

event_sch
FSPF scheduled events bit map.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
None

EXAMPLES
To display FSPF protocol information:

```
switch:admin> fspfshow
```

```
version         = 2
domainID        = 35
switchOnline    = TRUE
domainValid     = TRUE
isl_ports[0]    = 0x00000000
isl_ports[1]    = 0x09020800
isl_ports[2]    = 0x00000000
isl_ports[3]    = 0x00000000
isl_ports[4]    = 0x00000000
isl_ports[5]    = 0x00000000
isl_ports[6]    = 0x00000000
isl_ports[7]    = 0x00000000
isl_ports[8]    = 0x00000000
isl_ports[9]    = 0x00000000
isl_ports[10]   = 0x00000000
isl_ports[11]   = 0x00000000
isl_ports[12]   = 0x00000000
trunk_ports[0]  = 0x00000000
trunk_ports[1]  = 0xf60c0000
trunk_ports[2]  = 0x00000000
trunk_ports[3]  = 0x00000000
trunk_ports[4]  = 0x00000000
trunk_ports[5]  = 0x00000000
trunk_ports[6]  = 0x00000000
trunk_ports[7]  = 0x00000000
trunk_ports[8]  = 0x00000000
trunk_ports[9]  = 0x00000000
trunk_ports[10] = 0x00000000
trunk_ports[11] = 0x00000000
trunk_ports[12] = 0x00000000
f_ports[0]      = 0x05030401
f_ports[1]      = 0x00000000
f_ports[2]      = 0x000008307
f_ports[3]      = 0x00000000
f_ports[4]      = 0x00000000
f_ports[5]      = 0x00000000
f_ports[6]      = 0x00000000
f_ports[7]      = 0x00000000
f_ports[8]      = 0x00000000
```
fspfShow

fspfShow:

f_ports[9] = 0x00000000
f_ports[10] = 0x00000000
f_ports[11] = 0x00000000
f_ports[12] = 0x00000000
seg_ports[0] = 0x000000002
seg_ports[1] = 0x000000000
seg_ports[2] = 0x000000000
seg_ports[3] = 0x000000000
seg_ports[4] = 0x000000000
seg_ports[5] = 0x000000000
seg_ports[6] = 0x000000000
seg_ports[7] = 0x000000000
seg_ports[8] = 0x000000000
seg_ports[9] = 0x000000000
seg_ports[10] = 0x000000000
seg_ports[11] = 0x000000000
seg_ports[12] = 0x000000000
active_ports[0] = 0x05030403
active_ports[1] = 0xff0e0800
active_ports[2] = 0x00008307
active_ports[3] = 0x00000000
active_ports[4] = 0x00000000
active_ports[5] = 0x00000000
active_ports[6] = 0x00000000
active_ports[7] = 0x00000000
active_ports[8] = 0x00000000
active_ports[9] = 0x00000000
active_ports[10] = 0x00000000
active_ports[11] = 0x00000000
active_ports[12] = 0x00000000
minLSArrival = 3000
minLSInterval = 5000
LSoriginCount = 0
startTime = 0
fspfQ = 0x10db7998
fabP = 0x10dc19a0
agingTID = 0x10ee21b0
agingTo = 10000
lsrDlyTID = 0x10ee32e8
lsrDelayTo = 5000
lsrDelayCount = 0
ddb_sem = 0x10dc19b0

fabP:
event_sch = 0x0

SEE ALSO bcastShow, topologyShow, uRouteShow
fwAlarmsFilterSet

Enables or disables alarms for Fabric Watch.

SYNOPSIS

fwalarmsfilterset [mode]

DESCRIPTION

Use this command to configure alarm filtering for Fabric Watch. By turning off the alarms, all nonenvironment class alarms are suppressed. By turning on the alarms, all class alarms are generated.

NOTES

This command requires a Fabric Watch license.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operand:

mode

Specify 1 to enable the alarms, 0 to disable the alarms. If no operand is specified, the default value is 0 (alarms deactivated). This operand is optional; if omitted, this command disables the alarms.

EXAMPLES

To enable alarms in Fabric Watch:

switch:admin> fwalarmsfilterset
FW: Alarms are already disabled
switch:admin> fwalarmsfilterset 1
FW: Alarms are already enabled

SEE ALSO

fwAlarmsFilterShow
fwAlarmsFilterShow

Displays alarm filtering for Fabric Watch.

SYNOPSIS

fwalarmsfiltershow

DESCRIPTION

Use this command to display whether alarm filtering is enabled or disabled.

NOTES

This command requires a Fabric Watch license.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display the status of alarm filtering in Fabric Watch:

switch:user> fwalarmsfiltershow
FW: Alarms are enabled

switch:user> fwalarmsfiltershow
FW: Alarms are disabled

SEE ALSO

fwAlarmsFilterSet
fwClassInit

Initializes all classes under Fabric Watch.

SYNOPSIS
fwclassinit

DESCRIPTION
Use this command to initialize all classes under Fabric Watch. The command should only be used after installing a Fabric Watch license to start licensed Fabric Watch classes. Refer to the Fabric Watch Administrator’s Guide for a list of supported Fabric Watch classes.

NOTES
This command requires a Fabric Watch license.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
None

EXAMPLES
To initialize all classes under Fabric Watch:

switch:admin> fwclassinit
fwClassInit: Fabric Watch is updating...
fwClassInit: Fabric Watch has been updated.

SEE ALSO
fwConfigReload, fwHelp, portFencing, portThConfig, thConfig, sysMonitor
fwConfigReload

Reloads the Fabric Watch configuration.

SYNOPSIS fwconfigreload

DESCRIPTION Use this command to reload the Fabric Watch configuration. This command should only be used after downloading a new Fabric Watch configuration file from a host.

NOTES This command requires a Fabric Watch license.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS None

EXAMPLES To reload the saved Fabric Watch configuration:

switch:admin> fwconfigreload
fwConfigReload: Fabric Watch configuration reloaded

SEE ALSO configDownload, configUpload, fwClassInit, fwHelp
fwFruCfg

Displays or modifies FRU state alert configuration.

SYNOPSIS fwFruCfg [--show]

DESCRIPTION Use this command to configure states and actions for field-replaceable units (FRUs) and small
form-factor pluggables (SFPs). Based on these configuration settings, Fabric Watch generates actions
when a FRU or SFP state changes. For SFPs, Fabric Watch monitors state changes in following events:
SFP inserted, SFP removed, SFP faulty. When used without operand, this command interactively
prompts for user input. To configure email alerts, use fwMailCfg. This command is not applicable to
platforms that do not support FRUs or SFPs.

NOTES This command requires a Fabric Watch license.
The OFF state (8) is only applicable to FANs on the Brocade DCX and DCX-4S chassis and on the
Brocade 5300 switch.
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS This command has the following operand:

--show Displays the current FRU configuration setting. This operand is optional; if
omitted, the configuration prompt displays.

EXAMPLES To change the FRU state alert configuration:

switch:admin> fwFruCfg

The current FRU configuration:

<table>
<thead>
<tr>
<th>Alarm State</th>
<th>Alarm Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot</td>
<td>1</td>
</tr>
<tr>
<td>Power Supply</td>
<td>1</td>
</tr>
<tr>
<td>Fan</td>
<td>1</td>
</tr>
<tr>
<td>WWN</td>
<td>1</td>
</tr>
<tr>
<td>SFP</td>
<td>0</td>
</tr>
</tbody>
</table>

Note that the value 0 for a parameter means that
it is NOT used in the calculation

Configurable Alarm States are:
Absent-1, Inserted-2, On-4, Off-8, Faulty-16

Configurable Alarm Actions are:
Errlog-1, E-mail-16
Slot Alarm State: (0..31) [1]
Slot Alarm Action: (0..17) [1]
Power Supply Alarm State: (0..31) [1]
Power Supply Alarm Action: (0..17) [1]
Fan Alarm State: (0..31) [1]
Fan Alarm Action: (0..17) [1]
fwFruCfg

WWN Alarm State: (0..31) [1]
WWN Alarm Action: (0..17) [1]
SFP Alarm State: (0..19) [0]
SFP Alarm Action: (0..17) [0]
Fru configuration left unchanged

SEE ALSO fwHelp, fwMailCfg, sfpShow
fwHelp

Displays Fabric Watch command information.

SYNOPSIS fwhelp

DESCRIPTION Use this command to display the commands that configure Fabric Watch.

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS None

EXAMPLES To display a summary of Fabric Watch commands:

 switch:user> fwhelp

 fanshow Print fan status
 fmcconfig Configure Frame Monitors
 fwalarmsfilterset Configure alarms filtering for Fabric Watch
 fwalarmsfiltershow Show alarms filtering for Fabric Watch
 fwcassinit Initialize all Fabric Watch classes
 fwconfigreload Reload Fabric Watch configuration
 fwfrucfg Configure FRU state and notification
 fwhelp Print Fabric Watch help info
 fwmailcfg Configure Fabric Watch Email Alert
 fwportdetailshow Create a report with detailed port information
 fwsamshow Show availability monitor information
 fwset Set port persistence time
 fwsettocustom Set boundary & alarm level to custom
 fwsettodefault Set boundary & alarm level to default
 portfencing Configure Fabric Watch port fencing feature
 portthconfig Configure Fabric Watch port threshold monitor
 sensorshow Display sensor readings
 switchstatuspolicyset Set policy parameters for overall switch status
 switchstatuspolicyshow Print policy parameters for overall switch status
 switchstatusshow Print overall switch status
 sysmonitor Configure system memory usage monitor
 tempshow Print temperature readings
 thconfig Configure Fabric Watch thresholds
 thmonitor Configure Fabric Watch threshold monitors

SEE ALSO None
fwMailCfg

Displays and configures Fabric Watch email alerts.

SYNOPSIS
fwmailcfg

DESCRIPTION
Use this command to display or modify the configuration and status of the Fabric Watch email alert on
the switch.

Switch elements monitored by Fabric Watch are divided into classes, and e-mail alerts are based on the
classes. Each class can configure up to five e-mail addresses as the alert message's receiver. Multiple
e-mail addresses must be separated by a comma. The e-mail addresses must conform to standard
syntax string@domain.suffix. Default domains are not automatically appended. Invalid e-mail addresses
are rejected. "NONE" is the default address and a valid input parameter.

In Access Gateway mode, only the following classes are supported.
 • Environment class
 • SFP class
 • Port class
 • F/FL Port (Optical) class
 • F/FL Port (Copper) class (embedded platforms only)
 • Resource class

For an e-mail alert to function correctly, add the CP0 and CP1 IP addresses and host names to DNS and
also set the domain name and name server. The ipAddrShow and dnsConfig commands can be used
to set and verify this information.

NOTES
This command requires a Fabric Watch license.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS
None

EXAMPLES
To configure email settings:

switch:admin> fwmailcfg
1 : Show Mail Configuration Information
2 : Disable Email Alert
3 : Enable Email Alert
4 : Send Test Mail
5 : Set Recipient Mail Address for Email Alert
6 : Relay Host IP Configuration
7 : Quit
Select an item => : (1..7) [7]1

Config Show Menu

1 : Environment class
2 : SFP class
3 : Port class
4 : Fabric class
5 : E-Port class
6 : F/FL Port (Optical) class
7 : Alpa Performance Monitor class
8 : End-to-End Performance Monitor class
9 : Filter Performance Monitor class
10 : Security class
11 : Resource Monitor class
12 : FRU Class
13 : Quit
Select an item => : (0..13) [11]
Mail Recipient information
--
Email Alert = disabled
Mail Recipients = NONE
--
1 : Show Mail Configuration Information
2 : Disable Email Alert
3 : Enable Email Alert
4 : Send Test Mail
5 : Set Recipient Mail Address for Email Alert
6 : Relay Host IP Configuration
7 : Quit
Select an item => : (1..7) [7]
5
Mail Config Menu

1 : Environment class
2 : SFP class
3 : Port class
4 : Fabric class
5 : E-Port class
6 : F/FL Port (Optical) class
7 : Alpa Performance Monitor class
8 : End-to-End Performance Monitor class
9 : Filter Performance Monitor class
10 : Security class
11 : Resource Monitor class
12 : FRU Class
13 : Quit
Select an item => : (0..13) [11]
Mail To: [NONE] dino@switchcorp.com,sys@switchcorp.com,\
info@switchcorp.com,dduck@disneyland.com,mm@gmail.com
Email Alert configuration succeeded!

To configure Fabric Watch e-mail alerts in Access Gateway mode:

switch:admin> fwmailcfg
1 : Show Mail Configuration Information
2 : Disable Email Alert
3 : Enable Email Alert
4 : Send Test Mail
5 : Set Recipient Mail Address for Email Alert
6 : Relay Host IP Configuration
7 : Quit
Select an item => : (1..7) [7]
Config Show Menu

1 : Environment class
2 : SFP class
3 : Port class
Mail Recipient Information

Email Alert = disabled
Mail Recipient = NONE

1 : Show Mail Configuration Information
2 : Disable Email Alert
3 : Enable Email Alert
4 : Send Test Mail
5 : Set Recipient Mail Address for Email Alert
6 : Quit
Select an item => : (1..6) [6] 5

Mail Config Menu

1 : Environment class
2 : SFP class
3 : Port class
4 : F/FL Port (Optical) class
5 : Resource class
6 : Quit
Select an item => : (1..6) [6] 1
Mail To: [NONE] jpaul@brocade.com

Email Alert configuration succeeded!

SEE ALSO dnsConfig, fwHelp, ipAddrSet, ipAddrShow
fwPortDetailShow

Displays the port information for specified user ports.

SYNOPSIS
fwportdetailshow [--p port] | [--s portState]

DESCRIPTION
Use this command to print the overall status of a specified port. The output of this command is different for IPv4 and IPv6 addresses. The overall status is calculated based on the following contributors:

Port Errors
- LFA: The number of link loss occurrences exceeding the limit for the time period.
- LSY: The number of sync loss occurrences exceeding the limit for the time period.
- LSI: The number of signal loss occurrences exceeding the limit for the time period.
- PER: The number of protocol errors exceeding the limit for the time period.
- INW: The number of invalid words exceeding the limit for the time period.
- CRC: The number of invalid CRC errors exceeding the limit for the time period.
- PSC: The port hardware state changed too often.
- BLP: Buffer limited port.

SFP Errors
- STM: The SFP temperature is out of range.
- SRX: The SFP receive power is out of range.
- STX: The SFP transmit power is out of range.
- SCU: The SFP current is out of range.
- SVO: The SFP voltage is out of range.

Overall status
- Healthy: Every contributor is healthy.
- Marginal: One or more contributors are in this status.
- Faulty: Faulty hardware.
- Offline: The port has no connectivity or is disabled.

If the overall status is not healthy, the contributing factors also are listed.
When used without operands, this command displays information for all ports.

NOTES

This command requires a Fabric Watch license.

Port errors are not supported for virtual ports and SFP errors are not applicable for virtual ports.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

- `--p port`
 Displays a port detail report for the specified port.

- `--s portState`
 Displays a port detail report for the specified `portState`. Valid `portState` entries include the following:

 - `h`
 Report based on all healthy ports.

 - `m`
 Report based on all marginal ports.

 - `f`
 Report based on all faulty ports.

 - `o`
 Report based on all offline ports.

EXAMPLES

To retrieve a port detail report for a switch configured with an IPv6 address:

```
switch:user> fwportdetailshow
Port Detail Report                  
Switch Name:    switch
IP address:     1080::8:800:200C:417A
Port Exception report [by All]
--- Port-Errors -------------------
Port# Type  State   Dur(H:M) LFA LSY LSI PER INW \\
-----------------------------------------
000    U  OFFLINE   080:24   -   -   -   -   -   \
001    E  HEALTHY   073:22   -   -   -   -   -   \
002    L  HEALTHY   080:24   -   -   -   -   -   \
003    U  OFFLINE   080:24   -   -   -   -   -   \
004    U  OFFLINE   002:53   -   -   -   -   -   \\
-----SFP-Errors-----
CRC PSC BLP STM SRX STX SCU SVO
-------------------------------------------
-   -   -   -   -   -   -   -   -   -   -
-   -   -   -   -   -   -   -   -   -   -
-   -   -   -   -   -   -   -   -   -   -
-   -   -   -   -   -   -   -   -   -   -
(output truncated)
```
To retrieve a port detail report for all ports in healthy state:

```
switch:user> fwportdetailshow --s h
```

```
Port Detail Report

Report time: 05/21/2007 11:22:58 PM
Switch Name:  switch
IP address:  192.168.163.237
Port Exception report [by Healthy]

--------Port-Errors------------
Port#  Type  State  Dur(H:M)  LFA  LSY  LSI  PER  INW
------------------------------------------------
001    F    HEALTHY  409:09  -    -    -    -    -
014    F    HEALTHY  409:09  -    -    -    -    -
015    E    HEALTHY  409:09  -    -    -    -    -

-----SFP-Errors-----
CRC  PSC  BLP  STM  SRX  STX  SCU  SVO
------------------------------------
-    -    -    -    -    -    -
-    -    -    -    -    -
-    -    -    -    -

SEE ALSO  switchStatusShow
```
fwSamShow

Generates switch availability monitor (SAM) report.

SYNOPSIS

fwsamshow

DESCRIPTION

Use this command to display a switch availability monitor (SAM) report. This report displays uptime and
downtime for each port and enables you to check if a particular port is failing more often than the others.
The information displayed includes total uptime, total downtime, number of faulty occurrences, and total
percent of downtime for each port.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

This command requires a Fabric Watch license.

OPERANDS

None

EXAMPLES

To generate a SAM report on an eighty-port switch:

```
switch:user> fwsamshow

Total    Total
Port Type  Up Time  Down Time   Occurrence Offline Time
(Percent) Percent)   (Times)     (Percent)
========================================================
0     U       0        0           0         100
1     U       0        0           0         100
2     U       0        0           0         100
3     U       0        0           0         100
4     U       0        0           0         100
5     U       0        0           0         100
6     F     100        0           0           0
7     U       0        0           0         100
8     U       0        0           0         100
9     U       0        0           0         100
10    U       0        0           0         100
11    U       0        0           0         100
12    U       0        0           0         100
13    U       0        0           0         100
14    U       0        0           0         100
15    U       0        0           0         100
16    F     100        0           0           0
17    F     100        0           0           0
18    F     100        0           0           0
19    F     100        0           0           0
20    U       0        0        100       100
21    U       0        0           0         100
22    U       0        0           0         100
23    U       0        0           0         100
(output truncated)
```

SEE ALSO

portShow, switchShow
fwSet

Sets port persistence time.

SYNOPSIS

fwset --port --persistence seconds

DESCRIPTION

Use this command to set port persistence time, a parameter controlled by Fabric Watch. Port persistence time specifies the time in seconds during which a port must persistently be in a marginal state before being labeled as such. Port persistence is a switch-wide parameter. Use portThConfig to display port persistence time.

NOTES

This command requires a Fabric Watch license.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

--port --persistence seconds

Specifies the time, in seconds, during which a port must be persistently in a marginal state before being recognized as such.

EXAMPLES

To set the port persistence time to 18 seconds:

switch:user> fwset --port --persistence 18

SEE ALSO

fwHelp, portThConfig
fwSetToCustom

Sets Fabric Watch thresholds and alarm levels to custom values.

SYNOPSIS

fwSetToCustom

DESCRIPTION

Use this command to set threshold and alarm levels to custom values for all Fabric Watch classes and areas.

Fabric Watch uses two types of settings: factory default settings and user-defined custom settings.

- Factory default settings are automatically enabled. These settings vary depending on hardware platform, and cannot be modified.
- For some Fabric Watch parameters, you can create custom configurations to suit your unique environment.

The `fwSetToCustom` command allows you to switch from default to custom settings. The command assumes that a set of user-defined thresholds have been configured prior to executing the `fwSetToCustom` command. If no user-defined settings exist, this command reapplies the default values.

Use the advanced configuration option provided with the `portThConfig`, `thConfig`, and `sysMonitor` commands to view and modify custom and default values for specified classes and areas in Fabric Watch. For specific configuration procedures, refer to the Fabric Watch Administrator's Guide.

NOTES

This command requires a Fabric Watch license.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To apply configured custom settings to all Fabric Watch classes and areas:

```
switch:admin> fwSetToCustom
Committing configuration...done.
```

To view the current Fabric Watch configuration for the environment class:

```
switch:admin> sysMonitor --show env
Class: ENV
Area : TEMP
ThLevel : Cust (Applied)
ActLevel: Cust (Applied)
High :
  Custom:
  TimeBase: None
  Value : 90
  Trigger : Above Action: Raslog,SNMP
  Trigger : Below Action: None

Default:
  TimeBase: None
  Value : 65
  Trigger : Above Action: Raslog,SNMP
  Trigger : Below Action: None

Low:
  Custom:
  TimeBase: None
  Value : 32
```
fwSetToCustom

Trigger : Above Action: None
Trigger : Below Action: Raslog,SNMP

Default:
TimeBase: None
Value : 0
Trigger : Above Action: None
Trigger : Below Action: Raslog,SNMP

Buffer:
Custom:
Value : 20
Default:
Value : 10

Class: RESOURCE
Area : FLASH
ThLevel : Cust (Applied)
ActLevel: Def
High :
Custom:
TimeBase: None
Value : 110
Trigger : Above Action: Raslog,SNMP
Trigger : Below Action: Raslog

Default:
TimeBase: None
Value : 90
Trigger : Above Action: Raslog,SNMP
Trigger : Below Action: Raslog

Low:
Custom:
TimeBase: None
Value : 15
Trigger : Above Action: None
Trigger : Below Action: Raslog,SNMP

Default:
TimeBase: None
Value : 0
Trigger : Above Action: None
Trigger : Below Action: Raslog,SNMP

Buffer:
Custom:
Value : 20
Default:
Value : 0

SEE ALSO fwSetToDefault, fwHelp, portThConfig, thConfig, sysMonitor
fwSetToDefault

Returns Fabric Watch thresholds and alarm levels to default values.

SYNOPSIS fwSetToDefault

DESCRIPTION Use this command to return Fabric Watch thresholds and alarm levels to defaults for all classes and areas in Fabric Watch.

Fabric Watch uses two types of settings: factory default settings and user-defined custom settings.

- Factory default settings are automatically enabled. These settings vary depending on hardware platform and cannot be modified.
- For some settings, you can create custom threshold configurations to suit your unique environment.

The `fwSetToDefault` command reapplyes the Fabric Watch default configuration for all classes and areas. Use the advanced configuration option provided with the `portThConfig`, `thConfig`, and `sysMonitor` commands to view and modify custom and default values for specified classes and areas in Fabric Watch. For specific configuration procedures, refer to the Fabric Watch Administrator's Guide.

NOTES This command requires a Fabric Watch license.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS None

EXAMPLES To return alarm levels to default values:

```
switch:admin> fwSetToDefault
Committing configuration... done.
```

To view the current Fabric Watch configuration for the environment class:

```
switch:admin> sysMonitor --show env
Class: ENV
    Area:  TEMP
    ThLevel:  Def
    ActLevel:  Def
High:
    Custom:  
        TimeBase:  None
        Value : 90
        Trigger : Above Action: Raslog,SNMP
        Trigger : Below Action: None
    Default:  
        TimeBase:  None
        Value : 65
        Trigger : Above Action: Raslog,SNMP
        Trigger : Below Action: Raslog,SNMP
Low:
    Custom:  
        TimeBase:  None
        Value : 32
        Trigger : Above Action: None
        Trigger : Below Action: Raslog,SNMP
    Default:  
        TimeBase:  None
```
fwSetToDefault

Value : 0
Trigger : Above Action: None
Trigger : Below Action: Raslog, SNMP

Buffer:
Custom:
Value : 20
Default:
Value : 10

Class: RESOURCE
Area : FLASH
ThLevel : Def
ActLevel: Def
High :
Custom:
TimeBase: None
Value : 110
Trigger : Above Action: Raslog, SNMP
Trigger : Below Action: Raslog
Default:
TimeBase: None
Value : 90
Trigger : Above Action: Raslog, SNMP
Trigger : Below Action: Raslog
Low :
Custom:
TimeBase: None
Value : 15
Trigger : Above Action: None
Trigger : Below Action: Raslog, SNMP
Default:
TimeBase: None
Value : 0
Trigger : Above Action: None
Trigger : Below Action: Raslog, SNMP

Buffer:
Custom:
Value : 20
Default:
Value : 0

SEE ALSO fwSetToCustom, fwHelp, portThConfig, thConfig, sysMonitor
gePortErrShow

Displays error statistics of Gigabit Ethernet (GbE) port and XGE ports.

SYNOPSIS
geporterrshow
geporterrshow --help

DESCRIPTION
Use this command to display error statistics of Gigabit Ethernet (GbE) ports on the Brocade 7800 extension switch and on the Brocade FX8-24 extension blade. Values for the following parameters are displayed:

frames tx
Number of frames transmitted (Tx).

frames rx
Number of frames received (Rx).

crc err
Number of CRC errors.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
This command has the following operand:

--help
Displays command usage.

EXAMPLES
To display error statistics:

switch:admin> geporterrshow
frames crc
 tx rx err
====================
1/ge0 : 0 0 0
1/ge1 : 0 0 0
1/ge2 : 0 0 0
1/ge3 : 0 0 0
1/ge4 : 0 0 0
1/ge5 : 0 0 0
1/ge6 : 0 0 0
1/ge7 : 0 0 0
1/ge8 : 0 0 0
1/ge9 : 0 0 0

SEE ALSO
portCfgShow, portErrShow
h

Displays shell history.

SYNOPSIS

h

history

DESCRIPTION

Use this command to view the shell history. The shell history mechanism is similar to the UNIX shell history facility. The h command displays the 20 most recent commands typed into the shell; the oldest commands are replaced as new ones are entered.

OPERANDS

None

EXAMPLES

To display previous shell commands:

switch:admin> h
1 version
2 switchshow
3 portdisable 2
4 portenable 2
5 switchshow

SEE ALSO

None
haDisable

Disables the High Availability feature.

SYNOPSIS

 hadisable

DESCRIPTION

Use this command to disable the High Availability (HA) feature on a switch. If the HA feature is already disabled, this command does nothing.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To disable the High Availability feature:

 switch:admin> hadisable
 HA is disabled

SEE ALSO

haEnable, haShow
haDump

Displays High Availability status information.

SYNOPSIS

haDump

DESCRIPTION

Use this command to display information about the status of the High Availability (HA) feature on a switch or a chassis. This command displays the following information:

• Time Stamp
• Local CP state (slot number and CP ID)
• Remote CP state (slot number and CP ID)
• Type of recovery (warm or cold)
• High Availability (enabled or disabled)
• Heartbeat (up or down)
• Health of standby CP
• HA synchronization status
• IP and Fibre Channel addresses configured for the switch or chassis.
• Additional internal HA state information, subject to change.

The health of the standby CP is defined as follows:

Healthy

The standby CP is running and the background health diagnostic has not detected any errors.

Failed

The standby CP is running, but the background health diagnostic has discovered a problem with the blade. Check the logs to determine an appropriate course of action. Failover is disabled until the standby CP is repaired. Information about the failing device in the standby CP is displayed.

Unknown

The standby CP health state is unknown because the standby CP does not exist, heartbeat is down, or Health Monitor detects a configuration file error.

The High Availability synchronization status is defined as follows:

HA State synchronized

The system is currently fully synchronized. If a failover becomes necessary, it is nondisruptive.

HA State not in sync

The system is unable to synchronize the two control processors (CPs) because the standby CP is faulty, an haSyncStop command was issued, or a system error occurred. If a failover becomes necessary at this time, active CP reboots and the failover is disruptive.
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
None

EXAMPLES
To view information about the High Availability feature status on a Brocade DCX 8510-8:

 switch:admin> hadump

 TIME_STAMP: Mar 30 12:57:35.109173

 Local CP (Slot 7, CP1): Active, Warm Recovered
 Remote CP (Slot 6, CP0): Standby, Healthy
 HA enabled, Heartbeat Up, HA State synchronized

 CHASSIS
 Ethernet IP Address: 10.20.114.57
 Ethernet Subnetmask: 255.255.240.0

 CP0
 Ethernet IP Address: 10.20.114.58
 Ethernet Subnetmask: 255.255.240.0
 Host Name: cp0
 Gateway IP Address: 10.20.112.1

 CP1
 Ethernet IP Address: 10.20.114.59
 Ethernet Subnetmask: 255.255.240.0
 Host Name: cp1
 Gateway IP Address: 10.20.112.1

 Backplane IP address of CP0 : 10.0.0.5
 Backplane IP address of CP1 : 10.0.0.6
 IPv6 Autoconfiguration Enabled: Yes
 Local IPv6 Addresses:
 IPv6 Gateways:

 TIME_STAMP: Mar 30 12:57:37.31282

 == Service ==
 chassis0:0(8.0)
 major: 8 part: 0
 lo: 0 role: 2
 id: 0 dump: 3
 epoch: 3 log: 0
 block: 0 bits: 321
 recov: 0 index: 14
 upper: 14 coldnum: 3
 warmnum: 14 stbynum: 4
 stat: 4 prevstat: 4
 sv_winsz: 64 nscm: 10
 == Config ==
 (Output truncated)

SEE ALSO
haFailover, haShow
haEnable

Enables the High Availability feature.

SYNOPSIS

 haenable

DESCRIPTION

Use this command to enable the High Availability (HA) feature on a switch. If the HA feature is already enabled, this command has no effect.

If the HA feature is disabled, this command enables it. The standby CP reboots as part of the process. The command displays a warning message and prompts for confirmation before rebooting the CP.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To enable the High Availability feature on a Brocade DCX 8510-8:

 switch:admin> haenable
 Warning: This command will enable the HA. It will reboot the standby CP and require all telnet, secure telnet, and SSH sessions to the standby CP to be restarted
 Are you sure you want to go ahead [y/n]? y

To verify that High Availability is enabled:

 switch:admin> hashow
 Local CP (Slot 7, CP1): Active, Warm Recovered
 Remote CP (Slot 6, CP0): Standby, Healthy
 HA enabled, Heartbeat Up, HA State synchronized

SEE ALSO

 haDisable, reBoot
haFailover

Forces the failover mechanism so that the standby control processor (CP) becomes the active CP.

SYNOPSIS

hafailover

DESCRIPTION

Use this command to force the failover mechanism to occur so that the standby CP becomes the active CP. In case the active and standby CPs are not synchronized or the system is not in redundant mode, the command aborts.

NOTES

When High Availability (HA) synchronization is enabled and the CPs are in sync, the port traffic light does not flash during the failover, even while traffic is continuing to flow.

This command is supported only on dual-CP systems.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To force the failover of the active CP to the standby CP in the switch:

```
switch:admin> hafailover
Local CP (Slot 7, CP1): Active, Warm Recovered
Remote CP (Slot 6, CP0): Standby, Healthy
HA enabled, Heartbeat Up, HA State synchronized
Warning: This command is being run on a redundant control processor(CP) system, and this operation will cause the active CP to reset.
Therefore all existing telnet sessions are required to be restarted.

Are you sure you want to fail over to the standby CP [y/n]?
```

SEE ALSO

haDisable, haEnable, haShow
haShow

Displays control processor (CP) status.

SYNOPSIS

hashow

DESCRIPTION

Use this command to display the control processor status. The display includes the following information:

- Local CP state (slot number and CP ID), warm or cold, recovering or recovered.
- Remote CP state (slot number and CP ID).
- High Availability (enabled or disabled).
- Heartbeat (up or down).
- Health of standby CP
- HA synchronization status

The health of the standby CP is defined as follows:

Healthy

The standby CP is running and the background health diagnostic has not detected any errors.

Failed

The standby CP is running, but the background health diagnostic has discovered a problem with the blade. Check the logs to determine the appropriate action. Failover is disabled until the standby CP is repaired. Information about the failing device in the standby CP is displayed.

Unknown

The standby CP health state is unknown because of one of the following reasons: the standby CP does not exist, Heartbeat is down, or the Health Monitor has detected a configuration file error.

The High Availability synchronization status is defined as follows:

HA State synchronized

The system is currently fully synchronized. If a failover becomes necessary, it is nondisruptive.

HA State not in sync

The system is unable to synchronize the two CPs. This may be caused by one or more of the following conditions:

- The haFailover command was issued. In this case the "HA State not in sync" state is transitory.
- The standby CP is faulty.
- The haSyncStop command was issued.
- A system error occurred.

If a failover becomes necessary while the CPs are not in sync, the standby CP reboots, and the failover is disruptive.

NOTES

This command may not be supported on nonbladed systems.

Slot numbers for CP1 and CP0 vary depending on the hardware platform. On the Brocade DCX and DCX 8510-8, CP0 is in slot 6 and CP1 is in slot 7. On the Brocade DCX-4S, and DCX 8510-4, CP0 is in slot 4 and CP1 is in slot 5.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.
haShow

OPERANDS None

EXAMPLES To display CP status on a Brocade DCX 8510-8 with a healthy standby CP:

 switch:admin> hashow
 Local CP (Slot 7, CP1) : Active, Warm Recovered
 Remote CP (Slot 6, CP0) : Standby, Healthy
 HA Enabled, Heartbeat Up, HA State Synchronized

SEE ALSO haDisable, haEnable, haFailover
haSyncStart

Enables High Availability state synchronization.

SYNOPSIS

hasyncstart

DESCRIPTION

Use this command to enable the High Availability (HA) state synchronization.

After issuing haSyncStop, the switch does not go back to sync start unless you perform one of the following actions: reboot the active CP, reboot the standby CP, insert a new standby CP (blade), or issue the haSyncStart command. The time it takes for the HA sync to complete depends on the system configuration. The HA sync timeout is set to 10 minutes.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

EXAMPLES

To enable the HA state synchronization:

switch:admin> hasyncstart

SEE ALSO

haFailover, haShow, haSyncStop
haSyncStop

Disables High Availability state synchronization.

SYNOPSIS

hasyncstop

DESCRIPTION

Use this command to temporarily disable High Availability (HA) synchronization. After issuing **haSyncStop**, the switch does not go back to sync start unless you perform one of the following actions: reboot the active CP, reboot the standby CP, insert a new standby CP (blade), or issue the **haSyncStart** command. The time it takes for the HA sync to complete depends on the system configuration. The HA sync timeout is set to 10 minutes.

NOTES

Disabling HA synchronization may cause failover to be disruptive.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To disable the HA state synchronizing process:

```
switch:admin> hasyncstop
```

SEE ALSO

haFailover, haShow, haSyncStart
help

Displays command help information.

SYNOPSIS

```
help [command]
help [-p | -page]
help --help
```

DESCRIPTION

Use this command without operands to display an alphabetical listing of commands for which help is available. When used without an operand, the command listing displays without page break.

Pipe the output through the Unix `grep` command to filter the output.

Use the `-page` operand to display the commands for which help is available one page at a time. Press `Enter` to go to the next page. When using help with the `-page` option, you can search for specific strings by entering a forward slash, followed by a text string, for example `/zone`.

The help listing includes only commands that are available to the current user; command availability may vary depending on the following conditions:

- Login user role
- License key
- Hardware platform

To access help information for a specific command, enter the command name as an operand. Commands ending in "Help" display grouped commands for a particular subsystem; for example, the `diagHelp` command displays a list of diagnostic commands.

OPERANDS

This command has the following operands:

- **command**
 Specifies the name of the command for which to display help information. This operand is optional.

- **-p | -page**
 Displays help output with page breaks.

- **--help**
 Displays the command usage.

EXAMPLES

To display a listing of commands for which help is available (with page breaks):

```
switch:admin> help -p
```
Tuning policy

auditcfg Modifies and displays audit log filter configuration.
auditdump Display audit log
(output truncated)

To search for the string "zone" while paging is enabled (enter /zone after issuing the command):

```
switch:admin> help -p
```

aaaconfig Configure RADIUS for AAA services
ad Specifies all administration domain (AD)-level operations
ag Configure the Access Gateway feature
agshow Displays the Access Gateway information registere with the fabric
aliadd Add a member to a zone alias
alicreate Create a zone alias
alidelete Delete a zone alias
aliremove Remove a member from a zone alias
alishow Print zone alias information
aptpolicy Get and set Advanced Performance Tuning policy
auditcfg Modifies and displays audit log filter configuration.
auditdump Display audit log
authutil Get and set configuration
backplanetest Backplane connection test for multi-blade systems.
backport Test for back-end ASIC pair to ASIC pair links.
bannerset Set security banner
bannershow Display security banner
bcastshow Display broadcast routing information
Type <CR> or <SPACE BAR> to continue, <q> to stop
/zzone
aliadd Add a member to a zone alias
alicreate Create a zone alias
alidelete Delete a zone alias
aliremove Remove a member from a zone alias
alishow Print zone alias information
aptpolicy Get and set Advanced Performance Tuning policy
auditcfg Modifies and displays audit log filter configuration.
(output truncated)

To filter the output with the `grep` command:

```
switch:admin> help | grep errshow
errshow            Print error log
porterrshow        Print port summary
```

SEE ALSO diagHelp, fwHelp, perfHelp, routeHelp, zoneHelp
historyLastShow

Displays the latest entry in the field replaceable unit (FRU) history log.

SYNOPSIS

historylastshow

DESCRIPTION

Use this command to display the latest entry of the history log, which records insertion and removal events for field-replaceable units (FRUs), such as blades, power supplies, fans, and world wide name (WWN) cards. The type of FRU supported depends on the hardware platform.

Each history record contains three lines of information. The first line of each record contains the following fields:

Object type
On standalone platforms: FAN, POWER SUPPLY, WWN (WWN card), or UNKNOWN. On enterprise-class platforms: FAN, POWER SUPPLY, CORE BLADE (core switch blade), AP BLADE (application processor), SW BLADE (port blade), CP BLADE (control processor), WWN (WWN card), or UNKNOWN.

Object number
Slot number for blades. Unit number for all other object types.

Event type
Inserted, Removed, or Invalid.

Time of the event
Format: Day Month dd hh:mm:ss yyyy.

The second and third lines of a record contain the factory part number and factory serial number, if applicable.

Factory Part Number
xx-yyyyyyyy-zz or Not available.

Factory Serial Number
xxxxxxxxxxxxxx or Not available.

The size of the history log depends on the hardware platform. The Brocade DCX supports a maximum log size of 50 entries. Because the WWNs are completely separate FRUs in the DCX, they have redundant data in these units. All other platforms that contain FRUs support 28 history log entries.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display the latest FRU insertion or removal event:

switch:admin> historylastshow

POWER SUPPLY Unit 2 Inserted at Tue Aug 14 15:52:10 2001
Factory Part Number: 60-0001536-02
Factory Serial Number: 1013456800

Records: 11

SEE ALSO

historyShow
historyMode

Displays the mode of the field replaceable unit (FRU) history log.

SYNOPSIS

historymode

DESCRIPTION

Use this command to display the mode of the history buffer, which records the insertion and removal of FRUs on a switch or chassis.

This command supports two modes of handling new log entries once the history buffer has reached its maximum size:

Rotating mode

Any new entry exceeding the maximum buffer size overwrites the oldest entry in the log. This is the default mode.

First-in mode

Any new entry exceeding the maximum buffer size is discarded. The original entries in the buffer is preserved.

The history mode is a factory setting that cannot be modified. The size of the history buffer depends on the hardware platform. The Brocade DCX backbone supports a maximum log size of 50 entries. Because the WWNs are completely separate FRUs in the DCX, they have redundant data in these units. All other platforms containing FRUs support 28 history log entries.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display the mode of the history log:

switch:admin> historymode

History Mode is: Rotating.

SEE ALSO

historyLastShow, historyShow
historyShow

Displays the entire field replaceable unit (FRU) history log.

SYNOPSIS

historyshow

DESCRIPTION

Use this command to display the entire history log, which records insertion and removal events for field-replaceable units (FRUs), such as blades, power supplies, fans, and world wide name (WWN) cards. The type of FRU supported depends on the hardware platform.

Each history record contains three lines of information. The first line of each record contains the following:

Object type

On standalone platforms: FAN, POWER SUPPLY, WWN (WWN card), or UNKNOWN.

On enterprise-class platforms: FAN, POWER SUPPLY, CORE BLADE (core switch blade), SW BLADE (port blade), AP BLADE (application processor), CP BLADE (control processor), WWN (WWN card), or UNKNOWN.

Object number

Slot number for blades. Unit number for all other object types.

Event type

Inserted, Removed, or Invalid

Time of the event

Format: Day Month dd hh:mm:ss yyyy

The second and third lines of a record contain the factory part number and factory serial number, if applicable:

Factory Part Number

xx-yyyyyyy-zz or Not available

Factory Serial Number

xxxxxxxxxxxx or Not available

The size of the history buffer depends on the HW platform. The Brocade DCX supports a maximum log size of 50 entries. Because the WWNs are completely separate FRUs in the DCX, they have redundant data in these units. All other platforms that contain FRUs support 28 history log entries.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display the history log of FRUs and removal events on a standalone switch:

switch:admin> historyshow

FAN Unit 3 Removed at Tue Aug 14 10:05:37 1970
Factory Part Number: 20-123456-12
Factory Serial Number: 1013456800

POWER SUPPLY Unit 1 Inserted at Tue Aug 14 10:52:10 1970
Factory Part Number: 60-0001536-02
Factory Serial Number: Not Available
FAN Unit 3 Inserted at Tue Aug 14 10:23:45 2001
Factory Part Number: 20-123456-12
Factory Serial Number: 1013456800

WWN Unit 1 Inserted at Tue Aug 14 11:03:45 2001
Factory Part Number: 40-0000031-03
Factory Serial Number: 1013456800

SW BLADE Slot 3 Removed at Tue Aug 14 12:10:09 2001
Factory Part Number: 60-0001532-03
Factory Serial Number: 1013456800

CP BLADE Slot 6 Removed at Tue Aug 14 13:45:07 2001
Factory Part Number: 60-0001604-02
Factory Serial Number: FP00X600128

SW BLADE Slot 3 Inserted at Tue Aug 14 13:53:40 2001
Factory Part Number: 60-0001532-03
Factory Serial Number: 1013456800

CP BLADE Slot 6 Inserted at Tue Aug 14 13:59:50 2001
Factory Part Number: 60-0001604-02
Factory Serial Number: FP00X600128

POWER SUPPLY Unit 2 Inserted at Tue Aug 14 15:52:10 2001
Factory Part Number: 60-0001536-02
Factory Serial Number: 1013456800

Records: 11

SEE ALSO historyLastShow
Displays a process summary.

SYNOPSIS
i [processID]

DESCRIPTION
Use this command to display information about a specified process or about all processes running on the local switch. One line is displayed per process. Fields displayed with this command include the

F
 Process flags:
 ALIGNWARN 001 print alignment warning messages
 STARTING 002 being created
 EXITING 004 getting shut down
 PTRACED 010 set if ptrace (0) has been called
 TRACESYS 020 tracing system calls
 FORKNOEXEC 040 forked but did not exec
 SUPERPRIV 100 used super-user privileges
 DUMPCORE 200 dumped core
 SIGNAL 400 killed by a signal

S
 Process state codes:
 D Uninterruptible sleep (usually IO)
 R Runable (on run queue)
 S Sleeping
 T Traced or stopped
 Z A defunct ("zombie") process

UID The effective user ID number of the process
PID The process ID of the process
PPID The process ID of the parent process
C Processor utilization for scheduling
PRI Priority number of the process; higher numbers mean lower priority
NI Nice value used in priority computation
ADDR Memory address of the process
SZ The total size of the process in virtual memory, in pages
WCHAN The address of an event for which a process is sleeping (if blank, process is running)
TTY The controlling terminal of the process (? displayed for no controlling terminal)
TIME The cumulative execution time for the process
CMD The command name of the process.

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS This command has the following operand:
 processID
 Specifies the process name or process ID for the process to display.

EXAMPLES To display information about process ID 433:
 switch:admin> i 433
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
 000 S 0 433 1 0 69 0 - 1283 5c64 ? 00:00:02 fabricd

SEE ALSO diagHelp, routeHelp
iclCfg

Enables or disables Inter-chassis links (ICL).

SYNOPSIS

iclcfg --enable slot/icl_group
iclcfg --disable slot/icl_group
iclcfg --persistentenable slot/icl_group
iclcfg --persistentdisable slot/icl_group
iclcfg --help

DESCRIPTION

Use this command to enable or disable an inter-chassis link (ICL) or to enable or disable an ICL persistently. The command enables or disables the ICL by enabling or disabling the ports associated with the link. Persistently disabled ports remain disabled across reboots and power cycles. This command is supported only on the Brocade DCX and the Brocade DCX-S4.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command must be executed on the active CP.

OPERANDS

This command has the following operands:

slot

Specifies the slot number of the ICL group to be enabled or disabled, followed by a slash (/). The slot on the DCX can be either 5 or 8. On the DCX-4S, valid slots are 3 and 6.

icl_group

Specifies the ICL port group to be disabled or enabled. An ICL group represents a range of ports. Specify 0 to enable or disable ports 0 to 15. Specify 1 to enable or disable ports 16 to 31.

--enable

Enables the ICL for the specified port group.

--disable

Disables the ICL for the specified port group.

--persistentenable

Persistently enables the ICL for the specified port group.

--persistentdisable

Persistently disables the ICL for the specified port group.

--help

Displays the command usage.

EXAMPLES

To disable the ICL for ports 16-31:

switch:user> iclcfg --disable 8/1

To enable the ICL for ports 16-31:

switch:user> iclcfg --enable 8/1
To disable the ICL for ports 16-31 persistently:

```
switch:user> iclcfg --persistentdisable 8/1
```

To enable the ICL for ports 16-31 persistently:

```
switch:user> iclcfg --persistentenable 8/1
```

SEE ALSO None
ifModeSet

Sets the link operating mode for a network interface.

SYNOPSIS

ifmodeset ["interface"]

ifmodeset interface -an [on | off] -speed [speed] -cap [full | half]

ifmodeset --help

DESCRIPTION

Use this command to set the link operating mode for a network interface.

An operating mode is confirmed with a y or yes at the prompt. If the operating mode selected differs from the current mode, the change is saved and the command exits.

Changing the link mode is not supported for all network interfaces or for all Ethernet network interfaces. On the CP of a Brocade DCX or DCX-S4, this command supports eth0 and eth3 as interface parameters. On all other platforms, only eth0 is supported.

When selecting autonegotiation, you can choose the specific link operating modes that are advertised to the link partner. At least one common link operating mode must be advertised by both sides of the link.

When forcing the link operating mode, both sides of the link must be forced to the same mode. The link does not work reliably if one side is set to autonegotiate and the other side is set to forced mode.

Exercise care when using this command. Forcing the link to an operating mode not supported by the network equipment to which it is attached might result in an inability to communicate with the system through its Ethernet interface. It is recommended that this command be used only from the serial console port. When used through an interface other than the serial console port, the command displays a warning message and prompts for verification before continuing. This warning is not displayed and you are not prompted when the command is used through the serial console port.

For dual-CP systems, the ifModeSet command affects only the CP you are currently logged in to. To set the link operating mode on the active CP, you must issue this command on the active CP; to set the link operating mode on the standby CP, you must issue this command on the standby CP. During failover, the link operating mode is retained separately for each CP, because the physical links might be set to operate in different modes.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

"interface"

Specify the name of the interface, optionally enclosed in double quotation marks. When issued on a Brocade DCX or a DCX-S4 CP, valid interfaces are eth0 and eth3. On all other platforms, only eth0 is supported.

-an

Configures auto negotiation.

 on | off

Sets auto negotiation on or off.

-speed speed

Configures the speed. You can configure 1000, 100, or 10 as the speed. Note that 1000 Mbps speed can be configured only when auto negotiation is on.

-capability

Configures whether the capability of operation is full duplex or half duplex.
ifModeSet

--help

Displays the command usage.

EXAMPLES

To advertise all modes of operation, when not entering this command through the serial console port, follow this scenario for the ifModeSet command:

```
switch:admin> ifmodeset eth0
Exercise care when using this command. Forcing the link to an operating mode not supported by the network equipment to which it is attached may result in an inability to communicate with the system through its ethernet interface.

It is recommended that you only use this command from the serial console port.
Are you sure you really want to do this? (yes, y, no, n): [no] y
Proceed with caution.
Auto-negotiate (yes, y, no, n): [no] y
Advertise 1000 Mbps / Full Duplex (yes, y, no, n): [yes] y
Advertise 100 Mbps / Full Duplex (yes, y, no, n): [yes] y
Advertise 100 Mbps / Half Duplex (yes, y, no, n): [yes] y
Advertise 10 Mbps / Full Duplex (yes, y, no, n): [yes] y
Advertise 10 Mbps / Half Duplex (yes, y, no, n): [yes] y
Committing configuration...done.
```

To force the link for the eth0 interface from autonegotiation to 10 Mbps half-duplex operation, when entering this command through the serial console port:

```
switch:admin> ifmodeset eth0
Auto-negotiate (yes, y, no, n): [yes] n
Force 100 Mbps / Full Duplex (yes, y, no, n): [no] n
Force 100 Mbps / Half Duplex (yes, y, no, n): [no] n
Force 10 Mbps / Full Duplex (yes, y, no, n): [no] n
Force 10 Mbps / Half Duplex (yes, y, no, n): [no] y
Committing configuration...done.
```

SEE ALSO

ifModeShow
ifModeShow

Displays the link operating mode and MAC address for a network interface.

SYNOPSIS

ifmodeshow interface

DESCRIPTION

Use this command to display the link operating mode and MAC address for a network interface.

On the CP of a Brocade DCX or DCX-S4, this command supports eth0 and eth3 as interface parameters. On all other platforms, only eth0 is supported.

The CP on a Brocade DCX or DCX-S4 has two external physical Ethernet management ports, eth1 and eth3. Both interfaces are bonded together to form a single logical interface, bond0.

The management port IP addresses are assigned to the logical interface, bond0. Link layer Ethernet operations are applied to the physical interfaces, eth0 and eth3.

Ethernet bonding provides link layer redundancy using the active-standby failover model. The two Ethernet ports must be part of the same subnet. By default, all traffic is transmitted over the active Ethernet port, eth0. The second Ethernet port, eth3, acts as a standby interface and no traffic is transmitted over it. When the active Ethernet port is disconnected, the alternate Ethernet port becomes active. When the system reboots, the Ethernet port eth0 is always made active if it is connected.

When executed with the bond0 operand, ifModeShow displays the active Ethernet port.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operand:

interface

Specifies the name of the interface, optionally enclosed in double quotation marks. Valid interfaces include the following:

eth0 | eth3

Displays the link operating mode of the specified interface. The value eth3 is valid only on the CP of a Brocade DCX or DCX-4S.

bond0

Displays the active Ethernet port. This operand is valid only on the CP of a DCX or a DCX-S4.

EXAMPLES

To display the link operating mode for the eth0 Ethernet interface:

switch:admin> ifmodeshow eth0
Link mode: negotiated 100baseTx-HD, link ok
MAC Address: 00:60:69:D0:24:40

To display the link operating mode for the eth3 Ethernet interface (in the example, the management port is disconnected):

switch:admin> ifmodeshow eth3
Link mode: no link
MAC Address: 00:05:1E:40:62:30
To display the active interface:

 ras010:root> ifmodeshow bond0
 Currently Active Slave: eth0

SEE ALSO

 ifModeSet
iflShow

Displays the interfabric link (IFL) information.

SYNOPSIS

iflshow

iflshow --help

DESCRIPTION

Use this command to display the current connection and information of the interfabric links (IFL) on an edge switch. The command output includes the following information:

- **E-Port**
 Port number of the local switch to which FC Router switch is connected

- **Ex-Port**
 Port number of FC Router switch

- **FCR WWN**
 WWN of the FC Router switch

- **FCR FID**
 Fabric ID of FC Router switch

- **FCR Name**
 Switch name of FC Router

- **Speed**
 IFL connection speed, if applicable. Connection speed not applicable to VE_Ports. For these port types, speed displays as `-'.

- **BW**
 Bandwidth of the link.

 - **TRUNK** - Trunking enabled, if applicable
 - **QOS** - QoS enabled, if applicable
 - **ENCRYPT** - Encryption enabled, if applicable
 - **COMPRESS** - Compression enabled, if applicable
 - **CR_RECOV** - Credit recovery enabled, if applicable
 - **FEC** - Forward Error Correction enabled, if applicable

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operand:

- **--help**

 Displays the command usage.
EXAMPLES

To display the interfabric links:

```bash
classic:admin> iflshow
```

<table>
<thead>
<tr>
<th>#</th>
<th>Port</th>
<th>Port</th>
<th>FCR WWN</th>
<th>FID</th>
<th>Name</th>
<th>Speed</th>
<th>BW</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>10:00:00:05:1e:8b:68:10</td>
<td>8</td>
<td>fcr1</td>
<td>4G</td>
<td>4G</td>
<td>TRUNK</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>13</td>
<td>10:00:00:05:1e:a1:e3:3a</td>
<td>15</td>
<td>fcr2</td>
<td>4G</td>
<td>4G</td>
<td>TRUNK</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>15</td>
<td>10:00:00:05:1e:a1:e1:f9</td>
<td>12</td>
<td>sw87</td>
<td>4G</td>
<td>4G</td>
<td>TRUNK QOS</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>16</td>
<td>10:00:50:eb:1a:00:00:02</td>
<td>4</td>
<td>fcr3</td>
<td>-</td>
<td>4G</td>
<td></td>
</tr>
</tbody>
</table>

SEE ALSO

`fcrEdgeShow`, `fcrFabricShow`
interfaceShow

Displays FSPF interface information.

SYNOPSIS

interfaceShow [slot[/]port]

DESCRIPTION

Use this command to display the two data structures associated with FSPF interfaces (E_Ports) on the switch:

- The permanently allocated interface descriptor block (IDB).
- The neighbor data structure. This data structure is allocated when a switch port becomes an E_Port. The neighbor data structure contains all the information relating to the switch that is connected to an adjacent switch.

This command displays the content of both data structures, if they have been allocated.

The following fields are displayed:

idbP
 Pointer to IDB.

nghbP
 Pointer to neighbor data structure.

ifNo
 Interface number.

masterPort
 Port number of the trunk master port, if present, of the trunk group of which this port is a part.

prgm_if_id
 Internal variable

curr_if_id
 Internal variable

prgmCnt
 Number of remote domains the link has been programmed to reach for routing traffic.

defaultCost
 Default cost of sending a frame over the interswitch link (ISL) connection to this interface.

cost
 Cost of sending a frame over the ISL connected to this interface. A value of 1000 indicates a 1-Gbps link. A value of 500 indicates a 2-Gbps link. For links with a bandwidth greater than 2 Gbps, the cost is 500. For links with less than 1 Gbps, the cost is 2000. Refer to linkCost for more information.

ifBw
 The rounded bandwidth of the interface, in Gbps.

totalBw
 The summed total bandwidth for the entire trunk and ISL, in Gbps.

delay
 Conventional delay incurred by a frame transmitted on this ISL. A fixed value required by the FSPF protocol.

lastScn
 Type of the last State Change Notification received on this interface.
lastScnTime Time the last State Change Notification was received on this interface.

upCount Number of times this interface came up, with respect to FSPF.

lastUpTime Last time this interface came up.

downCount Number of times this interface went down.

lastDownTime Last time this interface went down.

downReason Type of last State Change Notification that caused this interface to go down.

iState Current state of this interface. The state can be UP or DOWN. An interface in

DOWN state does not have an allocated neighbor data structure and cannot be

used to route traffic to other switches.

state Current state of this interface. This E_Port is used to route traffic to other switches

only if the state is NB_ST_FULL.

lastTransition Time the last state changed on this interface.

nghbCap Neighbor capabilities. Should be 0.

nghbId Domain ID of the neighbor (adjacent) switch.

idbNo IDB number. Should be equal to port.

remPort Port number on the remote switch connected to this port.

nflags Internal FSPF flags.

initCount Number of times this neighbor was initialized without the interface going down.

lastInit Time of the last initializing state, NB_ST_INIT, on this interface.

firstHlo Time of the first hello sent on this interface.

nbstFull Time of the last finishing state, NB_ST_FULL, on this interface.

&dbRetransList Pointer to the database retransmission list.

&lsrRetransList Pointer to the link state records (LSR) retransmission list.

&lsrAckList Pointer to the link state acknowledgements (LSA) retransmission list.

inactTID Inactivity timer ID.
Enterprise Fabric OS Command Reference

interfaceShow

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>helloTID</td>
<td>Hello timer ID.</td>
</tr>
<tr>
<td>dbRtxTID</td>
<td>Database retransmission timer ID.</td>
</tr>
<tr>
<td>lsrRtxTID</td>
<td>LSR retransmission timer ID.</td>
</tr>
<tr>
<td>inactTo</td>
<td>Inactivity timeout value, in milliseconds. When this timeout expires, the adjacency with the neighbor switch is broken and new paths are computed to all possible destination switches in the fabric.</td>
</tr>
<tr>
<td>helloTo</td>
<td>Hello timeout value, in milliseconds. When this timeout expires, a Hello frame is sent to the neighbor switch through this port.</td>
</tr>
<tr>
<td>rXmitTo</td>
<td>Retransmission timeout value, in milliseconds. It is used to transmit topology information to the neighbor switch. If no acknowledgement is received within this value, the frame is retransmitted.</td>
</tr>
<tr>
<td>nCmdAcc</td>
<td>Total number of commands accepted from the neighbor switch. Number includes Hellos, Link State Updates (LSUs), and LSAs.</td>
</tr>
<tr>
<td>nInvCmd</td>
<td>Number of invalid commands received from the neighbor switch. Usually commands with an FSPF version number higher than the one running on the local switch.</td>
</tr>
<tr>
<td>nHloIn</td>
<td>Number of Hello frames received from the neighbor switch.</td>
</tr>
<tr>
<td>nInvHlo</td>
<td>Number of invalid Hello frames (Hello frames with invalid parameters) received from the neighbor switch.</td>
</tr>
<tr>
<td>nLsuIn</td>
<td>Number of LSUs received from the neighbor switch.</td>
</tr>
<tr>
<td>nLsaIn</td>
<td>Number of LSAs received from the neighbor switch.</td>
</tr>
<tr>
<td>attHloOut</td>
<td>Number of attempted transmissions of Hello frames to the neighbor switch.</td>
</tr>
<tr>
<td>nHloOut</td>
<td>Number of Hello frames transmitted to the neighbor switch.</td>
</tr>
<tr>
<td>attLsuOut</td>
<td>Number of attempted transmissions of LSUs to the neighbor switch.</td>
</tr>
<tr>
<td>nLsuOut</td>
<td>Number of LSUs transmitted to the neighbor switch.</td>
</tr>
<tr>
<td>attLsaOut</td>
<td>Number of attempted transmissions of LSAs to the neighbor switch.</td>
</tr>
<tr>
<td>nLsaOut</td>
<td>Number of LSAs transmitted to the neighbor switch.</td>
</tr>
<tr>
<td>StuckCnt</td>
<td>Number of HLO timeouts that occurred before the port changed to the NB_ST_FULL state.</td>
</tr>
</tbody>
</table>
state

Substate of the port. The port can be in one of the following 12 substates:

INIT (0)
The port is initializing.

ROUTABLE (1)
The port is ready to receive frames.

ROUTABLE_WAIT (2)
The port is waiting for notification from the neighbor.

ROUTABLE_SEND (3)
The port is preparing for local route update; negotiates for the necessary locks before updating the routes.

ROUTABLE_TIMER (4)
The request for one or more locks failed; delay for a short interval before retrying.

DONE (5)
The port is online and in use.

DECOM_START (6)
The decommissioning request is sent to the neighbor and waiting for a response.

DECOM_WAIT (7)
Waiting for neighbor to remove routes using the interswitch link (ISL).

DECOM_SEND (8)
Preparing to update routes of the local port; negotiates for the necessary before updating the routes.

DECOM_TIMER (9)
The request for one or more locks failed; delay for a short interval before retrying.

DECOM_DONE (10)
The local routes are updated; waiting for acknowledgement from the neighbor.

DECOM_BLOCK (11)
The local routes are updated; the neighbor sent acknowledgement.

chassis_lock
Internal variable

lock_request
Internal variable

nbr_lock_lock
Internal variable

r_rdy_rcvd
Indicates if the neighbor has reported as ready to receive frames.

nbr_r_rdy_flags
Internal flags reported by the neighbor.

lock_busy_cnt
Number of times a lock has reported as busy.

decom_active
Indicates if a decommissioning request is active on the port.

decom_initiator
Indicates if the local port is the decommissioning request initiator.

decom_active_port
Indicates the port for which the decommissioning request is active.
decom_trunk_member

Indicates if decommissioning request is for a multi-link trunk.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
This command has the following operands:

slot
For bladed systems only, specify the slot number of the port to be displayed, followed by a slash (/).

port
Specify the number of the port to be displayed, relative to its slot for bladed systems. Use switchShow for a list of valid ports. This operand is optional; if omitted, the interface information for all ports is displayed.

When invoked without operands, this command displays the interface information for all ports on the switch (including non-E_Ports).

EXAMPLES
To display FSPF interface information:

switch:user> interfaceshow 1/19

idbP = 0x102651a0

Interface 131 data structure:

nghbP = 0x10b968f0
ifNo = 131
masterPort = 131
prgm_if_id = 0x43120021
curr_if_id = 0x43120021
prgmCnt = 1
defaultCost = 500
cost = 500
ifBw = 8G
totalBw = 24G
delay = 1
lastScn = 0
lastScnTime = Jan 01 00:00:00.000
upCount = 0
lastUpTime = Jan 01 00:00:00.000
downCount = 0
lastDownTime = Jan 01 00:00:00.000
downReason = 0
iState = UP

Neighbor 131 data structure:

state = NB_ST_FULL
lastTransition = Jun 04 05:05:02.592
nghbCap = 0x0
ngbhId = 188
idbNo = 131
remPort = 243
nflags = 0xf
initCount = 0
lastInit = Jun 04 05:05:02.592
firstHlo = Jun 04 05:05:21.474
interfaceShow

nbstFull = Jan 01 00:00:00.000
&dbRetransList = 0x10b96928
&lsrRetransList = 0x10b96930
&lsrAckList = 0x10b96938
inactTID = 0x10b96b08
helloTID = 0x10b97cb8
dbRtxTID = 0x10b98e68
lsrRtxTID = 0x10b9b1c8
inactTo = 160000
helloTo = 20000
rXmitTo = 5000
nCmdAcc = 38
nInvCmd = 0
nHloIn = 35
nInvHlo = 0
nLsuIn = 2
nLsaIn = 1
attHloOut = 35
nHloOut = 35
attLsuOut = 1
nLsuOut = 1
attLsaOut = 2
nLsaOut = 2
StuckCnt = 0

Port Sub-State Data:
state = DONE (5)
chassis_lock = 0
lock_request = 0
nbr_lock_lock = 0
r_rdy_rcvd = 0
nbr_r_rdy_flags = 0x0
lock_busy_cnt = 0
decom_active = 0
decom_initiator = 0
decom_active_port = -1
decom_trunk_member = 0

SEE ALSO nbrStateShow, portShow, switchShow
iodReset

Disables in-order delivery (IOD) on a switch.

SYNOPSIS

iodreset

DESCRIPTION

Use this command to disable in-order delivery enforcement on the local switch. IOD is disabled by default, and can only be disabled after it has been enabled with the iodSet command. This command disables the legacy IOD enforcement only.

Disabling IOD allows faster rerouting after a fabric topology change, but it may cause out-of-order delivery of frames during fabric topology changes.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To disable IOD enforcement:

 switch:admin> iodreset

 IOD is not set

SEE ALSO

iodSet, iodShow
iodSet

Enables in-order delivery (IOD).

SYNOPSIS

iodset

DESCRIPTION

Use this command to enforce in-order delivery of frames during a fabric topology change.

In a stable fabric, frames are always delivered in order, even when the traffic between switches is shared among multiple paths. However, when topology changes occur in the fabric (for instance, a link goes down), traffic is rerouted around the failure and some frames might be delivered out of order. This command ensures that frames are not delivered out-of-order, even during fabric topology changes. It enforces a sufficient delay between the event that causes an existing path to be removed and the establishment of a new path, so that frames are delivered in order. However, this also means that frames are dropped during the delay, causing I/O failures.

When used without operands, iodSet enables in-order-delivery of frames on a switch (legacy IOD behavior). Frame loss is unavoidable when a port goes down.

IOD is disabled by default. Use iodShow to display current settings. Use iodReSet to restore the default setting.

NOTES

You can no longer use this command to manage Lossless DLS. Use dlsSet instead. The following command options are deprecated in Fabric OS v6.4.0 and later:

- iodset --enable -lossLessDls
- iodset --disable -lossLessDls
- iodset --show

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

--help

Displays the command usage.

EXAMPLES

To display the default legacy IOD setting:

switch:admin> iodshow

IOD is not set

To enable IOD:

switch:admin> iodset

IOD is set

SEE ALSO

iodShow, iodReset
iodShow

Displays the in-order delivery (IOD) setting.

SYNOPSIS

iodshow

DESCRIPTION

Use this command to display the IOD setting on the switch. By default, IOD is disabled.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display the current setting of the IOD setting:

 switch:admin> iodshow

 IOD is not set

SEE ALSO

iodReset, iodSet
ipAddrSet

Sets the Ethernet and FC IP addresses.

SYNOPSIS

ipaddrset [-ipv6] [-add \textit{x.x.x.x}/\textit{n} | --delete]

ipaddrset [-cp \textit{cp_number} | -chassis]
 [-ipv6] [-add \textit{x.x.x.x}/\textit{n} | --delete]

ipaddrset [-slot \textit{slot} | -eth1] [-add \textit{x.x.x.x} | --delete]

ipaddrset [-slot \textit{slot} | -gate] [-add \textit{x.x.x.x} | --delete]

ipaddrset -ls \textit{FID} --add IPv4_address/prefix

ipaddrset -ls \textit{FID} --delete

ipaddrset -ipv6 [-auto | -noauto]

ipaddrset [-cp \textit{cp_number} | -chassis]

ipaddrset -cp \textit{cp_number} -ipv4 -add -host \textit{hostname}
 -ethip \textit{ipaddress} -ethmask \textit{mask}
 -gwyip \textit{gateway_ip}

ipaddrset -ipv4 -add -ethip \textit{ipaddress} -ethmask \textit{mask}
 -gwyip \textit{gateway_ip} -dhcp [ON | OFF]

ipaddrset -chassis -ipv4 -add
 -ethip \textit{ipaddress} -ethmask \textit{mask}

ipaddrset -ipv6 [-dhcpv6 | -nodhcpv6]

ipaddrset --clear

ipaddrset --help

DESCRIPTION

Use this command to configure the IP addresses on a switch, a control processor (CP), a blade
processor (BP), or a standalone application processor (AP). On platforms that support Logical Fabrics,
this command configures the IPv4 Fibre Channel addresses for the logical fabric IPFC network interface.
The IPFC (IP over Fibre Channel) protocol allows switches to send IP traffic over Fibre Channel rather
than through Ethernet connections.

This command supports an interactive legacy mode and a command line interface. Use the command
line interface to configure IPv6 addresses, to enable or disable stateless IPv6 autoconfiguration, to
assign a Fibre Channel IPv4 address and prefix to a logical switch IPFC network interface, and to
configure a service port on the CP blade of a Brocade DCX. When run interactively in legacy mode, this
command sets the Ethernet IPv4 address, subnet mask, and Gateway on a switch or a chassis.

Command usage depends on the type of IP address and on the platform on which the command is run.
Some of the platform- and IP address-specific features of the command are outlined below. For complete
details, refer to the Fabric OS Administrator's Guide.

Configuring IP Addresses using the command line interface
The command accepts the -ipv6 command line syntax with the --add or --delete option on all platforms that support IPv6 addresses. The --add option configures a single static IPv6 address and prefix for the specified managed entity (chassis, CP, or AP). The --delete option deletes a static IPv6 address and prefix for the specified managed entity. On modular platforms, the command can be executed only on the active CP.

- When using the command line syntax to add or delete IPv6 addresses, the managed entity is identified only on modular platforms. To set the CP IPv6 address, use the -cp option; to set the IP address for the entire chassis, use the -chassis option.
- When using the command line syntax to add or delete IPv6 addresses on standalone platforms, the implied entity is the single managed entity supported by the platform and must be left unspecified.
- Additionally, the -eth0, -eth1, and -gate command line options are available with the --add or --delete option on platforms with blade processors to set the BP Ethernet or Gateway addresses. On a chassis with a blade processor the values for the blade in can be set from the command line using the -slot option. The -slot option is not accepted in standalone application processors with a hidden blade, such as the AP7600.

- Use the -auto and -noauto options to enable or disable stateless IPv6 autoconfiguration.
- Use the -ls option with appropriate arguments to set or delete the IPv4 Fibre Channel address and prefix for the IPFC interface of a logical switch. In a Virtual Fabric environment, each logical fabric is represented by a separate IPFC network interface. Each of these network interfaces can be assigned a unique IPv4 FC address and prefix. The logical switches that make up a logical fabric are identified by the fabric ID (FID) that is assigned to each of the logical switch instances.

Setting IP addresses interactively (IPv4 Ethernet address only):

- To set the CP Ethernet IPv4 address, use the -cp option; to set the Ethernet IP address for the entire chassis, use the -chassis option. When setting the chassis IP address, the command prompts for the Ethernet IP address and Ethernet subnet mask. When setting the CP Ethernet IP address, the command prompts for the host name, Ethernet IP address, Ethernet subnet mask, and Gateway IP address. Valid switch and CP numbers depend on the platform on which the command is run. The command must be executed on the active CP.
- On most standalone platforms (with the exception of the AP7600), ipAddrSet runs interactively if invoked without operands. The command prompts for the Ethernet IP address, Ethernet subnet mask, and Gateway IP address. In addition, the command prompts for a specification of whether the Dynamic Host Control Protocol (DHCP) should be used to acquire the Ethernet IP address, Ethernet subnet mask and Gateway IP address. Valid entries are "On" to enable DHCP and "Off" to disable it. When DHCP is enabled, any user-configured Ethernet IP address, Ethernet subnet mask or Gateway IP address is ignored.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

When used in command line mode, the following operands are supported:

-ipv6

 Specifies IP address type as static IPv6 including prefix as needed.

--add x:x:x:x:x:x:n

 Sets the specified IPv6 address.

--delete [x:x:x:x:x:n]

 Deletes the specified IPv6 address. If no address is specified, any existing IPv6 addresses and prefixes are deleted from the specified or implied entity.
ipAddrSet

- **-cp cp_number**
 Specifies the CP on a chassis. Valid values are 0 or 1.

- **-chassis**
 Specifies the IPv6 address and prefix of a chassis.
 On platforms with blade processors, the following additional command line options are supported with the --add or --delete options:

- **-eth0 | -eth1**
 Specifies the local IPv4 address of the blade processor. A prefix is required.

- **-gate**
 Specifies the IPv4 address of the blade processor (BP) Gateway (no prefix).

- **-slot number**
 On a chassis with a blade processor (BP), specifies the slot number. On standalone platforms with a hidden BP, such as the AP76500, this parameter is not accepted.

- **-ipv6 [-auto | -noauto]**
 Enables or disables stateless IPv6 autoconfiguration on a switch or chassis. When autoconfiguration is enabled, the host automatically performs configuration of IPv6 addresses and periodic nondisruptive reconfiguration. By default, autoconfiguration is disabled.

- **-ls FID**
 Specifies the logical fabric ID for which to configure an IPFC network interface. The FID is a decimal number. A switch that is not in Virtual Fabric mode uses the -ls parameter with FID 128 (the effective, single Logical Fabric number on such switches) to set the IPv4 FC address. Note that setting the IP address for the logical switch is only for the IPFC interface, not for the Ethernet interface.

 --add
 Assigns a specified IPv4 FC address and prefix to the logical switch instance represented by the specified FID. This command replaces any existing FC IPv4 address.

 IPv4_address/prefix
 Specifies the IPv4 address and prefix for the IPFC network interface. The IP Address is represented by a dotted decimal number, followed by a slash and a prefix. This operand is required with the --add option.

 --delete
 Deletes the IPv4 FC address and prefix from a logical switch.

 -ls IFID
 Specifies the fabric ID that identifies the logical switch for which to delete the FC IPv4 address and prefix. This operand is required when deleting an FC IPv4 address from a logical switch. On a switch that is not in Virtual Fabric mode, use the -ls parameter with FID 128 (the effective, single Logical Fabric number on such switches) to delete the IPv4 FC address.

When used interactively to configure IPv4 addresses on a modular platform, ipAddrSet prompts for the following parameters:

- **-cp cp_number**
 Specifies the managed entity as a CP. Valid values include the following:

 0
 Sets the Ethernet IP address, Ethernet subnet mask, gateway IP address and host name of CP0.
Sets the Ethernet IP address, Ethernet subnet mask, gateway IP address and host name of CP1.

-chassis
 Specifies the managed entity as the chassis.

-ipv4
 Specifies IP address type as static IPv4.

-add
 Sets the specified IPv4 address.

-host hostname
 Sets the hostname.

-ethip ipaddress
 Sets the ethernet IP address.

-ethmask mask
 Sets the ethernet mask.

-gwyp gateway_ip
 Sets the gateway IP address.

-dhcp[ON | OFF]
 Enables or disables DHCP.

-dhcpv6
 Enables DHCPv6.

-nodhcpv6
 Disables DHCPv6.

--clear
 Clears all IP (IPv4 and IPv6) addresses on a management interface.

--help
 Displays command usage.

EXAMPLES

To configure an IPv6 address and prefix on a standalone platform:

```
switch:admin> ipaddrset -ipv6 --add \n  fec0:60:69bc:60:260:69ff:fed0:107/64
```

To configure an IPv6 address and prefix on a single CP of a chassis:

```
switch:admin> ipaddrset -cp 0 -ipv6 --add \n  1080::8:800:200C:417A/64
```

To delete any existing IPv6 address and prefix on CP0 on an enterprise-class platform:

```
switch:admin> ipaddrset cp 0 -ipv6 --delete
```

To configure an IPv4 FC address for the IPFC interface associated with a logical switch with fabric ID 123:

```
switch:admin> ipaddrset -ls 123 --add 11.1.2.4/24
IP address is being changed...Done.
```
To verify the IPv4 FC address for the logical switch:

```
switch:admin> ipaddrshow

CHASSIS
Ethernet IP Address: 10.32.220.10
Ethernet Subnetmask: 255.255.240.0

CP0
Ethernet IP Address: 10.32.220.11
Ethernet Subnetmask: 255.255.240.0
Host Name: cp0
Gateway IP Address: 10.32.208.1

CP1
Ethernet IP Address: 10.32.220.12
Ethernet Subnetmask: 255.255.240.0
Host Name: cp1
Gateway IP Address: 10.32.208.1
IPFC address for logical fabric ID 128: 1.2.3.4/24
Backplane IP address of CP0 : 10.0.0.5
Backplane IP address of CP1 : 10.0.0.6
```

To delete the IPv4 address for the IPFC interface associated with a logical switch with Virtual Fabric ID 67:

```
switch:admin> ipaddrset -ls 67 --delete
IP address is being changed...Done.
```

To configure an IPv4 FC address for the IPFC interface associated with a switch that is not in Virtual Fabric mode:

```
switch:admin> ipaddrset -ls 128 --add 10.32.72.70/24
IP address is being changed...Done.
```

To verify the changes:

```
switch:admin> ipaddrshow

SWITCH
Ethernet IP Address: 10.32.72.9
Ethernet Subnetmask: 255.255.240.0
Gateway IP Address: 10.32.64.1
DHCP: Off
IPFC address for virtual fabric ID 128: 10.32.72.70/24
```

To set the IPv4 address details for a switch chassis in interactive mode:

```
switch:admin> ipaddrset -chassis
Ethernet IP Address [192.168.166.148]:
Ethernet Subnetmask [255.255.255.0]:
Committing configuration...Done.
```

To enable DHCP on a standalone, non-AP platform:

```
switch:admin> ipaddrset
Ethernet IP Address [192.168.74.102]:
Ethernet Subnetmask [255.255.255.0]:
Gateway IP Address [192.168.74.1]:
DHCP [Off]: on
```
To enable DHCPv6 on a device:

```
switch:admin> ipaddrset -ipv6 -dhcpv6
```

To clear all IP address information on a management interface and verify the changes:

```
switch:admin> ipaddrset --clear
Warning: All management interface will be closed, \
    which will result in all network connections \ 
    being terminated.
Please initiate a connection to the serial console of \ 
    the switch to configure the management interface.
Would you like to continue with clearing the IP \ 
    configuration?(y/n)y
```

```
switch:admin> ipaddrshow
CHASSIS
Ethernet IP Address: none
Ethernet Subnetmask: none

CP0
Ethernet IP Address: none
Ethernet Subnetmask: none
Host Name: cp0
Gateway IP Address: none

CP1
Ethernet IP Address: none
Ethernet Subnetmask: none
Host Name: cp1
Gateway IP Address: none
```

SEE ALSO
ipAddrShow
ipAddrShow

Displays IP address information for a switch or control processor (CP).

SYNOPSIS

ipAddrShow

ipAddrShow [-cp cp_number] | -chassis

ipAddrShow -slot slot [-eth0 | -eth1 | -gate]

DESCRIPTION

Use this command to display the IP addresses configured in the system.

The -cp option displays the IP address for a specified CP on modular platforms, or use the command without arguments to display the IP address on a standalone switch, or the IP addresses for both CPs on a chassis.

On a standalone switch, the command displays the following information:

- Ethernet IP Address
- Ethernet Subnet mask
- The Gateway IP Address
- Dynamic Host Control Protocol (DHCP): on or Off
- IPv6 Autoconfiguration Enabled: Yes or No
- Local IPv6 Addresses
- IPv6 Gateway address
- DHCPv6: on or off

On modular platforms, the command displays the following information:

For the chassis:

- Ethernet IP Address
- Ethernet Subnet mask

For each CP:

- Ethernet IP Address
- Ethernet Subnet mask
- Host Name
- Gateway IP Address

If the IPFC network interface is configured for logical switches:

- IPFC address for Virtual Fabric ID

For each CP:

- Backplane IP address
- IPv6 Autoconfiguration Enabled: Yes or No. If enabled, the command displays:
 - All local IPv6 Addresses
 - Gateway IP addresses for both CPs

Local IPv6 addresses display the following identifiers:

- IP Address type:
 - static - A statically configured IPv6 address.
 - stateless - Acquired through stateless autoconfiguration.
- IP Address state:
ipAddrShow 2

- tentative
- preferred
- deprecated

Refer to the RFC 2462 specification for more information.

On modular platforms with intelligent blades, the addresses configured for each slot can be shown with the -slot option. On standalone platforms, all command options are ignored.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
This command has the following operands:

- **-cp** *cp_number*
 On dual-CP systems, specifies the CP card number to be displayed (0 or 1).

- **-chassis**
 On dual-CP systems, displays the IP addresses for the chassis.

- **-slot** *slot*
 Specifies the slot for a blade.

- **-eth0 | -eth1 | -gate**
 For a specified slot, shows only the selected Ethernet interface or the gateway. This operand is optional with the -slot option.

EXAMPLES
To display the IP addresses on a standalone switch:

```
switch:admin> ipaddrshow

SWITCH
Ethernet IP Address: 10.20.21.204
Ethernet Subnetmask: 255.255.240.0
Gateway IP Address: 10.20.16.1
DHCP: Off
IPv6 Autoconfiguration Enabled: Yes
Local IPv6 Addresses:
dhcpv6 fd00:60:69bc:82:a6f3:568b:a9cc:a149/64 preferred
stateless fd00:60:69bc:82:205:33ff:fe94:771f/64 preferred
IPv6 Gateways:
fe80::21b:edff:fe0b:2400
fe80::21b:edff:fe0b:7800
DHCPv6: On
```

To display all IP addresses on a Brocade DCX backbone:

```
switch:admin> ipaddrshow

Chassis
Ethernet IP Address: 10.33.60.85
Ethernet Subnetmask: 255.255.240.0

CP0
Ethernet IP Address: 10.33.60.86
Ethernet Subnetmask: 255.255.240.0
Host Name: cp0
Gateway IP Address: 10.33.48.1

CP1
Ethernet IP Address: 10.33.60.87
```
Ethernet Subnetmask: 255.255.240.0
Host Name: cp1
Gateway IP Address: 10.33.48.1

Backplane IP address of CP0: 10.0.0.5
Backplane IP address of CP1: 10.0.0.6
IPv6 Autoconfiguration Enabled: Yes
Local IPv6 Addresses:
chassis 0 stateless fd00:60:69bc:63:205:1eff:fe39:e45a/64 preferred
chassis 0 stateless fec0:60:69bc:63:205:1eff:fe39:e45a/64 preferred
cp 0 stateless fd00:60:69bc:63:205:1eff:fe40:6230/64 preferred
cp 0 stateless fec0:60:69bc:63:205:1eff:fe40:6230/64 preferred
cp 1 stateless fd00:60:69bc:63:205:1eff:fe39:ff2a/64 preferred
cp 1 stateless fec0:60:69bc:63:205:1eff:fe39:ff2a/64 preferred
IPv6 Gateways:
cp 0 fe80:60:69bc:63::3
cp 0 fe80:60:69bc:63::1
cp 0 fe80:60:69bc:63::2
cp 1 fe80:60:69bc:63::1
cp 1 fe80:60:69bc:63::2
cp 1 fe80:60:69bc:63::3

To display the IP addresses for a chassis:

switch:admin> ipaddrshow -chassis
CHASSIS
Ethernet IP Address: 10.32.220.10
Ethernet Subnetmask: 255.255.240.0
IPv6 Autoconfiguration Enabled: Yes
Local IPv6 Addresses:
chassis 0 stateless fd00:60:69bc:63:205:1eff:fe39:e45a/64 preferred
chassis 0 stateless fec0:60:69bc:63:205:1eff:fe39:e45a/64 preferred
IPv6 Gateways:

To display only the IP addresses for CP 1:

switch:admin> ipaddrshow

CP1
Ethernet IP Address: 10.33.60.87
Ethernet Subnetmask: 255.255.240.0
Host Name: cp1
Gateway IP Address: 10.33.48.1

SEE ALSO ipAddrSet
ipFilter

Manages the IP filter policies.

SYNOPSIS

ipfilter --create policyname -type ipv4 | ipv6

ipfilter --clone policyname -from src_policyname

ipfilter --show [-a] [policyname]

ipfilter --save [policyname]

ipfilter --activate policyname

ipfilter --delete policyname

ipfilter --addrule policyname -rule rule_number [-sip source_IP]
 -dp destination_port -proto protocol -act permit | deny
 [-type INPUT | FWD] [-dip destination_IP]

ipfilter --delrule policyname -rule rule_number

ipfilter --transabort

ipfilter --clrcounters

ipfilter --showcounters

DESCRIPTION

Use this command to manage IP filter policies. The ipFilter command and command options are noninteractive, except when prompting for a confirmation.

The IP filter policy sets up a packet filtering firewall to provide access control on the management IP interface. The IPv4 and IPv6 policies are either in the defined configuration or in the active configuration. Excluding the default policies, there can be a maximum of six policies in the defined configuration and one policy per IPv4 and IPv6 type in the active configuration.

The active policy must be the default policy or one of the policies in the defined configuration. Only the active policies are enforced. All of the ipFilter options except --show and --transabort, create a transaction owned by the management session initiating the commands.

An open transaction prevents other transactions from being created on different management sessions. The --create, --clone, --delete, --addrule, and --delrule operands modify policies in memory buffer, while operands, --save and --activate commit policies to the persistent configuration. The operands, --save and --activate, implicitly end the transaction if all policy changes are committed. The operand --transabort explicitly ends an open transaction and aborts policy changes in memory buffer. Closing the management session that owns the transaction also aborts policy changes and closes the transaction.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

In a Virtual Fabric environment, IP Filter policies are treated as chassis-wide configurations and apply to all logical switches in the chassis. Chassis permissions are required to manage IP Filter policies.
This command has the following operands:

`policyname`
Specifies an IP filter policy name. The policy name is a unique string composed of a maximum of 20 alphanumeric or underscore characters. The default_ipv4 and default_ipv6 names are reserved for default IP filter policies. The policy name is case-insensitive and is always stored as lower case. The policy type identifies the policy as an IPv4 or IPv6 filter. You can create a maximum of eight IP filter policies.

`--create policyname -type ipv4 | ipv6`
Creates an IP filter policy with the specified name and type. The policy created is stored in a temporary buffer and is lost if the policy is not saved to the persistent configuration.

`--clone policyname -from src_policyname`
Creates a replica of an existing IP filter policy. The cloned policy is stored in a temporary buffer and has the same rules as the original policy.

`--show [-a] [policyname]`
Displays the IP filter policy content for the specified policy name or all IP filter policies if `policyname` is not specified. For each IP filter policy, the policy name, type, persistent state, and policy rules are displayed. The policy rules are listed by the rule number in ascending order. The `-a` option displays the traffic type and the configured destination IP.

Command output displays without pagination. Use `command | more` to display the output with page breaks. If a temporary buffer exists for an IP filter policy, the `--show` operand displays the content in the temporary buffer, with the persistent state set to modified defined or modified active.

`--save [policyname]`
Saves one or all IP filter policies persistently as the defined configuration. This operand is optional. If a policy name is specified, only the specified IP filter policy in the temporary buffer is saved; otherwise, all IP filter policies in the temporary buffer is saved. Only the CLI session that owns the updated temporary buffer can run this command. Modification to an active policy cannot be saved without being applied. Therefore, the `-save` option is blocked for the active policies; instead use the `-activate` option.

`--activate policyname`
Activates the specified IP filter policy. IP filter policies are not enforced until they are activated. Only one IP filter policy per IPv4 and IPv6 type can be active. If there is a temporary buffer for the policy, the policy is saved to the defined configuration and activated at the same time. If there is no temporary buffer for the policy, the policy existing in the defined configuration becomes active. The policy to be activated replaces the existing active policy of the same type. Activating the default IP filter policies returns the IP management interface to its default state. An IP filter policy without any rule cannot be activated. This operand prompts for confirmation before proceeding.

`--delete policyname`
Deletes the specified IP filter policy. Deleting an IP filter policy removes it from the temporary buffer. To permanently delete the policy from the persistent database, issue the `ipfilter --save` command. An active IP filter policy cannot be deleted.

`--addrule policyname`
Adds a new rule to the specified IP filter policy. The change made to the specified IP filter policy is not saved to the persistent configuration until saved or activated.
The following arguments are supported with the --addrule option:

- **sip source_IP**
 Specifies the source IP address. For filters of type IPv4, the address must be a 32-bit address in dot notation, or a CIDR-style IPv4 prefix. For filters of type IPv6, the address must be a 128-bit IPv6 address in any format specified by RFC3513, or a CIDR-style IPv6 prefix. The source IP option is not supported for FORWARD traffic.

- **dp destination_port**
 Specifies the destination port number, a range of port numbers, or a service name. Note that blocking or permitting of ports 1024 and above is not allowed. These ports are used by various applications and services on the switch.

- **proto protocol**
 Specifies the protocol type, for example, tcp or udp.

- **act permit | deny**
 Specifies the permit or deny action associated with this rule. Blocking or permitting port 1024 and above is not allowed. Ports numbered 1024 and higher are used by applications for services such as FTP and blocking these ports may cause these applications to behave in unexpected ways. Blocking or permitting the RPC ports 111, 897, and 898 is not allowed.

- **rule rule_number**
 Adds a new rule at the specified rule index number. The rule number must be between 1 and the current maximum rule number plus one.

- **type INPUT | FWD**
 Specifies the type of traffic that is allowed for the specified IP address. Forwarding rules manage the bidirectional traffic between the external Ethernet interface (eth0/bond0) and the inband management interface (inbd+). INPUT traffic is the default type of traffic for IP filter rules.

- **dip destination_IP**
 Specifies the destination IP address. For filters of type IPv4, the address must be a 32-bit address in dot notation, or a CIDR-style IPv4 prefix. For filters of type IPv6, the address must be in a 128-bit IPv6 address in any format specified by RFC3513, or a CIDR-style IPv6 prefix. The destination IP option is not be supported for INPUT traffic type.

- **--delrule policymame -rule rule_number**
 Deletes a rule from the specified IP filter policy. Deleting a rule in the specified IP filter policy causes the rules following the deleted rule to shift up in rule order. The change to the specified IP filter policy is not saved to the persistent configuration until it is saved or activated.

- **--transabort**
 A transaction is associated with a CLI or manageability session, which is opened implicitly when you execute the --create, --addrule and --delrule subcommands. The --transabort command explicitly ends the transaction owned by the current CLI or manageability session. If a transaction is not ended, other CLI or manageability sessions are blocked on the subcommands that would open a new transaction.

- **--clrcounters**
 Clears the IP filter counters. This command requires root permissions.

- **--showcounters**
 Displays the IP filter counters. This command requires root permissions.
To create an IP filter for a policy with an IPv6 address:

```
switch:admin> ipfilter --create ex1 -type ipv6
```

To add a new rule to the policy and specify the source IP address, destination port, and protocol, and to permit the rule:

```
switch:admin> ipfilter --addrule ex1 \n    -sip fec0:60:69bc:60:260:69ff:fe80:d4a -dp 23 \n    -proto tcp -act permit
```

To display all existing IP filter policies:

```
switch:admin> ipfilter --show
```

```
Name: default_ipv4, Type: ipv4, State: active
Rule    Source IP      Protocol   Dest Port    Action
1     any            tcp         22          permit
2     any            tcp         23          permit
3     any            tcp         80          permit
4     any            tcp         443         permit
5     any            udp         161         permit
6     any            udp         123         permit
7     any            tcp         600 - 1023  permit
8     any            udp         600 - 1023  permit
Name: default_ipv6, Type: ipv6, State: active
Rule    Source IP   Protocol    Dest Port   Action
1     any           tcp          22         permit
2     any           tcp          23         permit
3     any           tcp          80         permit
4     any           tcp          443        permit
5     any           udp          161        permit
6     any           udp          123        permit
7     any           tcp          600 - 1023 permit
8     any           udp          600 - 1023 permit
```

To activate the IP Filter policy "ex1":

```
switch:admin> ipfilter --activate ex1
```

To display all IP Filter policies, including the activated policy:

```
switch:admin> ipfilter --show
```

```
Name: default_ipv4, Type: ipv4, State: active
Rule    Source IP            Protocol Dest Port  Action
1     any                    tcp       22        permit
2     any                    tcp       23        permit
3     any                    tcp       80        permit
4     any                    tcp      443        permit
5     any                    udp      161        permit
6     any                    udp      123        permit
7     any                    tcp      600 - 1023 permit
8     any                    udp      600 - 1023 permit
Name: default_ipv6, Type: ipv6, State: defined
Rule    Source IP           Protocol  Dest Port  Action
1     any                   tcp        22        permit
2     any                   tcp        23        permit
3     any                   tcp        80        permit
```

To activate the IP Filter policy "ex1":

```
switch:admin> ipfilter --activate ex1
```

To display all IP Filter policies, including the activated policy:

```
switch:admin> ipfilter --show
```

```
Name: default_ipv4, Type: ipv4, State: active
Rule    Source IP            Protocol Dest Port  Action
1     any                    tcp       22        permit
2     any                    tcp       23        permit
3     any                    tcp       80        permit
4     any                    tcp      443        permit
5     any                    udp      161        permit
6     any                    udp      123        permit
7     any                    tcp      600 - 1023 permit
8     any                    udp      600 - 1023 permit
Name: default_ipv6, Type: ipv6, State: defined
Rule    Source IP           Protocol  Dest Port  Action
1     any                   tcp        22        permit
2     any                   tcp        23        permit
3     any                   tcp        80        permit
```
To create an IPv4-type IP filter policy:

```plaintext
switch:admin> ipfilter --create ex2 -type ipv4
```

To add a rule to the created policy "ex2":

```plaintext
switch:admin> ipfilter --addrule ex2 -sip 10.32.69.99 -dp 23 -proto tcp -act permit
```

To display the IP filter policies, including the new policy:

```plaintext
switch:admin> ipfilter --show
```

To save the IP Filter policy "ex2" (the status of the policy changes from modified to defined after the policy is saved):

```plaintext
switch:admin> ipfilter --save ex2
```

```plaintext
switch:admin> ipfilter --show
```

```
Name: ex1, Type: ipv6, State: active
Rule Source IP Protocol Dest Port Action
1 fec0:60:69bc:60:260:69ff:fe80:d4a tcp 23 permit
```

```
4 any tcp 443 permit
5 any udp 161 permit
6 any udp 123 permit
7 any tcp 600 - 1023 permit
8 any udp 600 - 1023 permit
```

```
Name: ex2, Type: ipv4, State: defined (modified)
Rule Source IP Protocol Dest Port Action
1 10.32.69.99 tcp 23 permit
```
To add a rule for traffic of type FORWARD and to display the result:

```
switch:admin> ipfilter --addrule ex2 -rule 1 -sip 10.32.69.99 -dp 23 -proto tcp -act permit -type fwd -dip 10.32.69.90
```

```
switch:admin> ipfilter --show -a
Legends: [Proto-Protocol, P-Permit, D-Deny, FWD-FORWARD, I/P-INPUT]

Name: default_ipv4, Type: ipv4, State: active
Rule  Source_IP  Proto  Dest_Port  Action   Flow  Destination_IP
1   any         tcp    22     P        I/P    any
2   any         tcp    23     P        I/P    any
3   any         tcp    80     P        I/P    any
4   any         tcp    443    P        I/P    any
5   any         udp    161    P        I/P    any
6   any         udp    123    P        I/P    any
7   any         tcp    600-1023 P        I/P    any
8   any         udp    600-1023 P        I/P    any

Name: default_ipv6, Type: ipv6, State: active
Rule  Source_I  Proto  Dest_Port  Action   Flow  Destination_IP
1   any         tcp    22     P        I/P    any
2   any         tcp    23     P        I/P    any
3   any         tcp    80     P        I/P    any
4   any         tcp    443    P        I/P    any
5   any         udp    161    P        I/P    any
6   any         udp    123    P        I/P    any
7   any         tcp    600-1023 P        I/P    any
8   any         udp    600-1023 P        I/P    any

Name: ex2, Type: ipv4, State: defined (modified)
Rule  Source_IP  Proto  Dest_Port  Action   Flow  Destination_IP
1   10.32.69.99 tcp    23     P        FWD    10.32.69.99
```

SEE ALSO distribute
ipSecConfig

Configures Internet Protocol security (IPSec) policies for Ethernet management interfaces.

SYNOPSIS

ipsecconfig --enable [default] --disable

ipsecconfig --add | --modify type [subtype] [arguments]

ipsecconfig --delete [type] arguments

ipsecconfig --flush manual-sa

ipsecconfig --show type [subtype] arguments

ipsecconfig --help [command_type subtype]

DESCRIPTION

Use this command to configure the Internet Protocol Security (IPSec) feature for traffic flows on switch Ethernet management interfaces, or to display the current configuration.

Internet Protocol security (IPSec) is a framework of open standards that provides private, secure communication over Internet Protocol (IP) networks through the use of cryptographic security services.

IPSec uses different protocols to ensure the authentication, integrity, and confidentiality of the communication.

- **Encapsulating Security Payload (ESP)** provides confidentiality, data integrity and data source authentication of IP packets, and protection against replay attacks.
- **Authentication Header (AH)** provides data integrity, data source authentication, and protection against replay attacks, but unlike ESP, AH does not provide confidentiality.

IPSec can protect either the entire IP datagram or only the upper-layer protocols. The appropriate modes are called tunnel mode and transport mode.

- In tunnel mode the IP datagram is fully encapsulated by a new IP datagram using the IPSec protocol.
- In transport mode only the payload of the IP datagram is handled by the IPSec protocol; it inserts the IPSec header between the IP header and the upper-layer protocol header.

The IPSec key management supports Internet Key Exchange (IKE) or Manual key/SA entry.

- In IKE the IPSec protocol negotiates shared security parameters and keys. Security Associations (SAs) used in IKE use automatically generated keys for authentication negotiation between peers.
- Manual key/SA entry requires the keys to be generated and managed manually, and it is therefore suited for small static environments. For the selected authentication or encryption algorithms, the correct keys must be generated. The key length is determined by the algorithm selected. Refer to the Fabric OS Administrator's Guide for more information.

The following IPSec configuration tasks can be performed with this command:

- Enable or disable the IPSec policies.
- Configure IP address for both IPv4 and IPv6 format.
- Configure three types of policies and their respective components:
 - IPSec policy including selector, transform, SA-proposal, and SA.
 - IKE policy (automatic key management).
- Modify existing IPSec and IKE policies.
- Delete existing policies and SAs from the configuration database.
ipSecConfig

- Flush existing SAs from the kernel SA database (SADB).
- Display policy parameters.

Representation of IP addresses

When configuring IPSec policies, IP addresses and ports must be specified in the following format:

IP address

IPv4 addresses are expressed in dotted decimal notation consisting of numeric characters (0-9) and periods (.), for example, 203.178.141.194.

IPv6 addresses consist of hexadecimal digits (0-9afAF), colons (:) and a percent sign (%) if necessary, for example, 2001:200:0:8002:203:47ff:fea5:3085

network prefix

A network prefix is represented by a number followed by a slash (/), for example, 1/0.

NOTES

IPSec configuration changes take effect upon execution and are persistent across reboot.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command does not provide IPSec protection for traffic flows on external management interfaces of intelligent blades in a chassis, nor does it support protection of traffic flows on FCIP interfaces.

This command does not support manipulating preshared keys corresponding to the identity of the IKE peer or group of peers. Use `secCertUtil` to import, delete, or display the preshared keys in the local switch database.

The MD5 hash algorithm is blocked when FIPS mode is enabled.

Refer to the Examples section for specific use cases and associated command sequences. Refer to the Fabric OS Administrator's Guide for configuration procedures.

This command accepts abbreviated operands. The abbreviated string must contain the minimum number of characters necessary to uniquely identify the operand within the set of available operands.

OPERANDS

This command has the following operands:

- **--enable**
 Enables IPSec on the switch. Existing IPSec configurations are enabled by this command. IPSec is disabled by default. It must be enabled before you can configure the policies and parameters. The following operand is optional:

 - **default**
 Clears the existing policies (automatic key management and manual keyed entries) and resets the configuration databases to default values.

- **--disable**
 Disables IPSec on the switch. All active TCP sessions are terminated when you disable IPSec.

- **--add | --modify**
 Adds or modifies an IPSec or IKE policy in an existing enabled configuration. Not all parameters can be modified. Parameters that cannot be modified are indicated below. When modifying a policy the names and identifiers need to refer to valid existing entities. The syntax is as follows:

 --add | --modify type [subtype] [arguments]
type

Specifies the policy to be created. Supported policies include the following:

policy ips

Creates or modifies an IPSec policy. This policy determines the security services afforded to a packet and the treatment of a packet in the network. An IPSec policy allows classifying IP packets into different traffic flows and specifies the actions or transformations performed on IP packets on each of the traffic flows. The main components of an IPSec policy are: IP packet filter/selector (IP address, protocol, and port information) and transform set.

subtype

A subtype is required when configuring an IPSec policy. The subtype specifies the components to be configured. The following are required subtypes for the IPSec policy:

selector

Creates a selector that is applied to the IP data traffic. A selector consists of a set of parameters that identify the IP traffic that needs IPSec protection. To configure the selector, the following parameters must be specified:

-tag name

Specifies a name for the selector. This is a user-generated name. The name must be between 1 and 32 characters in length, and may include alphanumeric characters, dashes (-), and underscores (_).

direction in | out

Specifies traffic flow direction as inbound or outbound.

-local IP_address[prefixlength]

Specifies the source IPv4 or IPv6 address.

-remote IP_address[prefixlength]

Specifies the peer IPv4 or IPv6 address

-transform name

Specifies the transform to be included in the selector. You must create the transform before you can use it in the selector. Use ipsecConfig --show policy ips transform to display existing transforms.

-protocol protocol_name

Specifies the upper layer protocols to be selected for IPSec protection. Valid protocols include tcp, udp, icmp or any. When any is specified all existing protocols are selected for protection. This operand is optional.

transform

Creates the IPSec transform set. The transform set is a combination of IPSec protocols and cryptographic algorithms that are applied on the packet after it is matched to a selector. The transform set specifies the IPSec protocol, the IPSec mode, and the action to be performed on the IP packet. It also specifies the key management policy that is needed for the IPSec connection and the encryption and authentication algorithms to be used in security associations when IKE is used as key management protocol. The following operands are required:

-tag name

Specifies a name for the transform. This is a user-generated name. The name must be between 1 and 32 characters in length, and may include alphanumeric characters, dashes (-), and underscores (_).
-mode tunnel | transport
 Specifies the IPSec transform mode. In tunnel mode, the IP datagram is fully
 encapsulated by a new IP datagram using the IPSec protocol. In transport
 mode, only the payload of the IP datagram is handled by the IPSec protocol
 inserting the IPSec header between the IP header and the upper-layer
 protocol header.

-sa-proposal name
 Specifies the SA proposal to be included in the transform. You must create
 the SA proposal first before you can include it in the transform. Use
 ipsecConfig --show policy ips sa-proposal -a for a listing of existing SA
 proposals.

-action discard | bypass | protect
 Specifies the protective action the transform should take regarding the traffic
 flows.

-ike name
 Specifies the IKE policy to be included in the transform. This operand is
 optional. Use ipsecConfig --show policy ike -a for a listing of existing IKE
 policies.

-local IP_address[/prefixlength]
 Specifies the source IPv4 or IPv6 address. This operand is optional. If a local
 source IP address is defined, a remote peer IP address must also be defined.

-remote IP_address[/prefixlength]
 Specifies the peer IPv4 or IPv6 address. This operand is optional. If a remote
 peer IP address is defined, a local source IP address must also be defined.

sa-proposal
 Defines the security associations (SA) proposal, including name, SAs to be
 included and lifetime of the proposal. The following operands are supported:

-tag name
 Specifies a name for the SA proposal. This is a user-generated name. The
 name must be between 1 and 32 characters in length, and may include
 alphanumeric characters, dashes (-), and underscores (_).

-sa name[,name]
 Specifies the SAs to include in the SA proposal. The bundle consists of one
 or two SA names, separated by commas. For SA bundles, [AH, ESP] is the
 supported combination. The SAs must be created prior to being included in
 the SA proposal. This operand is required.

-lttime number
 Specifies the SA proposal's lifetime in seconds. This operand is optional. If a
 lifetime is not specified, the SA does not expire. If lifetime is specified both in
 seconds and in bytes, the SA expires when the first expiration criterion is met.

-ltbyte number
 Specifies the SA proposal's lifetime in bytes. The SA expires after the
 specified number of bytes have been transmitted. This operand is optional.

sa
 Defines the Security Association. An SA specifies the IPSec protocol (AH or
 ESP), the algorithms used for encryption and authentication, and the
 expiration definitions used in security associations of the traffic. IKE uses
 these values in negotiations to create IPSec SAs.

 You cannot modify an SA once it is created. Use ipsecConfig --flush
 manual-sa to remove all SA entries from the kernel SA database (SADB)
 and start over.
-tag name
Specifies a name for the SA. This is a user-generated name. The name must be
between 1 and 32 characters in length, and may include alphanumeric
characters, dashes (-), and underscores (_). This operand is required.

-protocol ah | esp
Specifies the IPSec protocol. Encapsulating Security Payload (ESP)
provides confidentiality, data integrity and data source authentication of IP
packets, and protection against replay attacks. Authentication Header (AH)
provides data integrity, data source authentication, and protection against
replay attacks but, unlike ESP, does not provide confidentiality. This operand
is required.

-auth algorithm
Specifies the authentication algorithm. This operand is required. Valid
algorithms include the following:

 hmac_md5
 MD5 authentication algorithm
 hmac_sha1
 SHA1 authentication algorithm

-enc algorithm
Specifies the encryption algorithm. This operand is required. Valid algorithms
include the following:

 3des_cbc
 3DES encryption algorithm
 blowfish_cbc
 Blowfish encryption algorithm
 null_enc
 Null encryption algorithm
 aes256_cb
 AES-256 algorithm

-spi number
Specifies the security parameter index (SPI) for the SA. This is a user-defined
index. Valid SPI numbers consist of numeric characters (0-9). This operand is
optional.

policy ike
Creates or modifies an IKE policy configuration. No subtype is required with this
command. The command defines the following IKE policy parameters: IKE
version, IP address of the remote entity, IP address of the local entity, encryption
algorithm, hash algorithm, PRF algorithm, DH group, authentication method, path
and filename of the preshared key. The syntax is as follows: ipsecConfig --add |
--modify ike arguments.

arguments
Valid arguments for policy ike include the following:

-tag name
Specifies a name for the IKE policy. This is a user-generated name. The
name must be between 1 and 32 characters in length, and may include
alphanumeric characters, dashes (-), and underscores (_). This operand is
required.

remote IP_address[/prefixlength]
Specifies the peer IPv4 or IPv6 address and prefix.
-id identifier
 Specifies the local identifier. The switch is identified by its IPv4 or IPv6 address.

-remoteid identifier
 Specifies the peer identifier. The remote peer is identified by its IPv4 or IPv6 address.

-enc algorithm
 Specifies the encryption algorithm. Valid encryption algorithms include the following:
 3des_cbc
 DES algorithm
 blowfish_cbc
 Blowfish algorithm
 aes128_cbc
 AES 128-bit algorithm
 aes256_cbc
 AES 256-bit algorithm

-hash algorithm
 Specifies the hash algorithm. Valid hash algorithms include the following:
 hmac_md5
 MD5 algorithm
 hmac_sha1
 SH1 algorithm

-prf algorithm
 Specifies the PRF algorithm. Valid PRF algorithms include the following:
 hmac_md5
 MD5 algorithm
 hmac_sha1
 SH1 algorithm

-auth psk | dss | rsasig
 Specifies the authentication method as one of the following:
 psk
 Authenticate using preshared keys.
 dss
 Authenticate using digital signature standard.
 rsasig
 Authenticate using an RSA signature.

-dh number
 Specifies the DH group number as one of the following:
 1
 Specifies DH group modp768.
 2
 Specifies DH group modp1024.
 14
 Specifies DH group modp2048.
The following operands are optional (use `secCertUtil` to import the key files to the local and remote systems):

- **-psk file**
 Specifies the preshared key filename.

- **-pubkey file**
 Specifies the public key filename (in X.509 PEM format).

- **-privkey file**
 Specifies the private key filename (in X.509 PEM format).

- **-peerpubkey file**
 Specifies the peer public key filename (in X.509 PEM format).

- **-lttime number**
 Specifies the key lifetime in seconds. If a lifetime is not specified, the keys do not expire. If a lifetime is specified both in seconds and in bytes, the keys expire when the first expiration criterion is met.

- **-ltbyte number**
 Specifies the key lifetime in bytes. The keys expire after the specified number of bytes have been transmitted.

- **-pfs on | off**
 Enables or disables Perfect Forward Secrecy (PFS). PFS is disabled by default. When PFS is disabled, IKE uses the initial master key it generates in Phase1 to generate the keys for SA connections in Phase2. When PFS is enabled, a new key is generated for keying the SAs. Enabling PFS may provide enhanced protection against keys compromise.

- **-version 1 | 2**
 Specifies the IKE version. This operand is optional. If not specified, IKEv2 is used (2). If 1 is specified, IKEv1 is selected. Use `-v 2` to revert to version 2 after version 1 was set.

manual-sa

Creates manually keyed SADB entries. When using this option, you must generate the keys manually. The lifetime of an SA entry created using this command is infinite. You cannot modify manually keyed SA entries. Use `ipsecConfig --flush`, or `ipsecConfig --delete` and recreate the entries. The syntax for creating an SADB entry is as follows:

```
ipsecconfig --add manual-sa arguments
```

arguments

Valid arguments for `manual-sa` include the following:

- **-sp number**
 Specifies the security parameter index (SPI) for the SA. This is a user-defined index. Valid SPI numbers consist of numeric characters (0-9).

- **-local ipaddress**
 Specifies the local IPv4 or IPv6 address.

- **-remote ipaddress**
 Specifies the remote IPv4 or IPv6 address.

- **-protocol protocol_name**
 Specifies the upper layer protocols to be selected for protection. Valid protocols include `tcp`, `udp`, `icmp` or `any`. When any is specified all existing protocols are selected for protection.
-ipsec ah | esp
 Specifies the IPSec protocol. Encapsulating Security Payload (ESP) provides confidentiality, data integrity and data source authentication of IP packets, and protection against replay attacks. Authentication Header (AH) provides data integrity, data source authentication, and protection against replay attacks but, unlike ESP, does not provide confidentiality.

-action discard | bypass | protect
 Specifies the IPSec protection type regarding the traffic flows.

-direction in | out
 Specifies traffic flow direction as inbound or outbound.

-mode tunnel | transport
 Specifies the IPSec mode. In tunnel mode, the IP datagram is fully encapsulated by a new IP datagram using the IPSec protocol. In transport mode, only the payload of the IP datagram is handled by the IPSec protocol; it inserts the IPSec header between the IP header and the upper-layer protocol header.

-enc algorithm
 Specifies the encryption algorithm. Valid encryption algorithms include the following:

 3des_cbc
 3DES algorithm

 null_enc
 Null encryption algorithm (cleartext)

-auth algorithm
 Specifies the authentication algorithm. Valid authentication algorithms include the following:

 hmac_md5
 MD5 algorithm

 hmac_sha1
 SH1 algorithm

-enc-key number
 Specifies the encryption key. This is a user-generated key based on the length of the key. Use the LINUX random key generator or any other comparable third party utility to generate the manual SA keys. Refer to the Fabric OS Administrator's Guide for details.

 - A 192-bit value for the 3des_cbc encryption algorithm, for example, 0x96358c90783bbfa3d7b196ceabe0536b
 - A zero-bit value for the null_enc encryption algorithm.

-auth-key number
 Specifies the authentication key. This is a user-generated key based on the length of the key. Valid keys include the following:

 - A 128-bit value for the hmac_md5 authentication algorithm.
 - A 160-bit value for the hmac_sha1 authentication algorithm.

The following operands are optional:

tunnel-local ipaddress
 Specifies the local tunnel IPv4 or IPv6 address.

tunnel-remote ipaddress
 Specifies the peer tunnel IPv4 or IPv6 address.
--delete
 Deletes a specified policy or all policies of a certain type from the configuration database. You can delete IPSec policies, IKE policies, and SADB entries. When deleting IPSec policies, you have the option to delete specific components only, such as the transform or the selector, and recreate these components without having to recreate the entire policy. The syntax for deleting a policy is as follows:

```
ipsecconfig --delete type [subtype] arguments
```

type
Specifies the policy to be deleted. Valid policy types include the following:

- **policy ips**
 Deletes a specified IPSec policy or all IPSec policies.

- **policy ike**
 Deletes a specified IKE policy or all configured IKE policies.

- **sa**
 Deletes a specified SADB entry or all manual SADB entries.

- **manual-sa**
 Deletes the SA policy entries used in manually keyed SA entries from the configuration database.

arguments
Specifies the selection as one of the following:

- **-a**
 Deletes all configuration information for the specified type and subtype.

- **-tag name**
 Deletes all configuration information for the specified policy type

--flush manual-sa
Flushes all SA entries (including manually keyed and automatically keyed SAs) from the kernel SADB. All active TCP sessions that are using IPSec protection are terminated when this command is executed. This command, unlike delete, does not remove the policies from the configuration database. Flushing any other policy parameters is not supported.

--show
Displays current IPSec or IKE configuration. The syntax for the display option is as follows:

```
--show type [subtype] arguments
```
type

Specifies the policy to be displayed. Valid values for type include the following:

policy ips

Displays the IPSec policy configuration. A policy subtype must be specified when displaying the IPSec policy configuration. Valid subtypes include the following:

selector

Displays IPSec selector parameters including IPSec policy name, IP address of the local entity, IP address of the remote entity, direction of traffic flow (inbound or outbound), upper layer protocol used, and IPSec transform index.

transform

Displays IPSec transform parameters including IPSec policy name, key management protocol (version) or manual SA, processing option for selected IP traffic, IPSec mode (tunnel or transport), IP address of the local entity, IP address of the remote entity, and SA proposal.

sa-proposal

Displays the parameters of the SA proposal, including proposal name, lifetime (in seconds and in byte units, or infinite), and associated SA definitions.

sa

Displays security association (SA) parameters for the specified IPSec policies including policy names, IPSec protocol used (AH or ESP), encryption and authentication algorithms.

policy ike

Displays the IKE policy configuration. No subtype is required with this command. The command displays the following IKE policy parameters: IKE version, IP address of the remote entity, IP address of the local entity, encryption algorithm, hash algorithm, PRF algorithm, DH group, authentication method, path and filename of the preshared key.

manual-sa

Displays the Security Associations in the local SADB. No subtype is required with this command.

arguments

Specifies the display selection as one of the following:

-a

Displays all configuration information for the specified type and subtype.

-tag name

Displays configuration information for the specified IPSec policy only.

--help

Displays the command usage. Optionally use --help with a specified command, type, and subtype to display the syntax for specific commands. Do not include a double dash when specifying the command.

EXAMPLES

Example 1

The following example illustrates how to secure traffic between two systems using AH protection with MD5 and configure IKE with preshared keys. The two systems are a switch, BROCADE300 (IPv4 address 10.33.74.13), and an external UNIX server (10.33.69.132).

1. On the system console, log in to the switch as Admin and enable IPSec.

 switch:admin> ipsecconfig --enable
2. Create an IPSec SA policy named AH01, which uses AH protection with MD5.

 switch:admin> ipsecconfig --add policy ips sa \
 -t AH01 -p ah -auth hmac_md5

3. Create an IPSec proposal IPSEC-AH to use AH01 as SA.

 switch:admin> ipsecconfig --add policy ips sa-proposal \
 -t IPSEC-AH -sa AH01

4. Configure the SA proposal's lifetime in time units.

 switch:admin> ipsecconfig --add policy ips sa-proposal \
 -t IPSEC-AH -lttime 280000 -sa AH01

5. Import the preshared key file (e.g., ipseckey.psk) using the seCcertUtil import command.

6. Configure an IKE policy for the remote peer.

 switch:admin> ipsecconfig --add policy ike -t IKE01 \
 -remote 10.33.69.132 -id 10.33.74.13 \
 -remoteid 10.33.69.132 -enc 3des_cbc \
 -hash hmac_md5 -prf hmac_md5 -auth psk \
 -dh modp1024 -psk ipseckey.psk

7. Create an IPSec transform named TRANSFORM01 to use transport mode to protect traffic identified for IPSec protection and use IKE01 as the key management policy.

 switch:admin> ipsecconfig --add policy ips transform \
 -t TRANSFORM01 -mode transport \
 -sa-proposal IPSEC-AH -action protect -ike IKE01

8. Create traffic selectors to select the outbound and inbound traffic that needs to be protected.

 switch:admin> ipsecconfig --add policy ips selector \
 -t SELECTOR-OUT -d out -l 10.33.74.13 -r 10.33.69.132 \
 -transform TRANSFORM01

 switch:admin> ipsecconfig --add policy ips selector \
 -t SELECTOR-IN -d in -l 10.33.69.132 -r 10.33.74.13 \
 -transform TRANSFORM01

9. Verify the IPSec SAs created using IKE for above traffic flow using ipsecConfig --show manual-sa -a. Refer to the "IPSec display commands" section for an example.

10. Perform the equivalent steps on the remote peer to complete the IPSec configuration. Refer to your server administration guide for instructions.

Example 2

The following example illustrates how to secure traffic between two systems using ESP protection with 3DES_CBC encryption and SHA1 authentication, and how to configure IKE with RSA Certificates signed by the certification authority (CA). The two systems are A SWITCH, BROCADE300 (IPv6 address fe80::220:1aff:fe34:2e82), and an external UNIX host (IPv6 address fe80::205:1fff:fe51:f09e).

1. On the system console, log in to the switch as Admin and enable IPSec.

 switch:admin> ipsecconfig --enable

2. Create an IPSec SA policy named ESP01, which uses ESP protection with 3DES and SHA1.

 switch:admin> ipsecconfig --add policy ips sa -t ESP01 \
 -p esp -enc 3des_cbc -auth hmac_sha1
3. Create an IPSec proposal IPSEC-ESP to use ESP01 as the SA.

 switch:admin> ipsecconfig --add policy ips sa-proposal \
 -t IPSEC-ESP -sa ESP01

4. Configure the SA proposal lifetime in seconds.

 switch:admin> ipsecconfig --add policy ips sa-proposal \
 -t IPSEC-ESP -lttime 280000 -sa ESP01

5. Import the public key for the BROCADE300 (Brocade300.pem), the private key for BROCADE300 (Brocade300-key.pem), and the public key of the external host (remote-peer.pem) in X.509 PEM format from the remote certificate server (10.6.103.139).

 switch:admin> seccertutil import -ipaddr 10.103.6.139 \
 -remotedir /root/certs -certname Brocade300.pem

 switch:admin> seccertutil import -ipaddr 10.103.6.139 \
 -remotedir /root/certs -certname Brocade300-key.pem

 switch:admin> seccertutil import -ipaddr 10.103.6.139 \
 -remotedir /root/certs -certname remote-peer.pem

6. Import the CA certificate that was used to sign the public certificates of BROCADE300 and the remote peer as IPSECCA.pem.

 switch:admin> seccertutil import -ipaddr 10.103.6.139 \
 -remotedir /root/certs -certname IPSECCA.pem

7. Configure an IKE policy for the remote peer UNIX host.

 switch:admin> ipsecconfig --add policy ike -t IKE01 -remote \
 fe80::205:1fff:fe51:f09e -id fe80::220:1aff:fe34:2e82 \
 -remotetid fe80::205:1fff:fe51:f09e \
 -enc 3des_cbc -hash hmac_md5 -prf hmac_md5 -auth rsasig \
 -dh modp1024 -pubkey "Brocade300.pem" \
 -privkey "Brocade300-key.pem" -peerpubkey "remote-peer.pem"

8. Create an IPSec transform TRANSFORM01 to use transport mode to protect traffic identified for IPSec protection and use IKE01 as the key management policy.

 switch:admin> ipsecconfig --add policy ips transform \
 -t TRANSFORM01 -mode transport -sa-proposal IPSEC-ESP \
 -action protect -ike IKE01

9. Create traffic selectors to select outbound and inbound TCP traffic that needs to be protected.

 switch:admin> ipsecconfig --add policy ips selector \
 -t SELECTOR-OUT -d out -l fe80::220:1aff:fe34:2e82 \
 -r fe80::205:1fff:fe51:f09e \
 -protocol "tcp" -transform TRANSFORM01

 switch:admin> ipsecconfig --add policy ips selector \
 -t SELECTOR-IN -d in -l fe80::205:1fff:fe51:f09e -r \
 fe80::220:1aff:fe34:2e82 -protocol "tcp" -t transform TRANSFORM01

10. Verify the IPSec SAs using ipSecConfig --show manual-sa -a. Refer to the “IPSec display commands” section for an example.

11. Perform the equivalent steps on the remote peer to complete the IPSec configuration. Refer to your server administration guide for instructions.
Example 3
The following example illustrates how to secure traffic between two systems using AH with SHA1 and ESP protection with 3DES and configure IKE with preshared keys. The two systems are a switch, a Brocade 300 (IP address 10.33.74.13), and an external UNIX host (IPv4 address 10.33.69.132).

1. On the system console, log in to the switch as Admin and enable IPSec.
   ```
   switch:admin> ipsecconfig --enable
   ```

2. Create an IPSec SA policy named AH01, which uses AH protection with SHA1.
   ```
   switch:admin> ipsecconfig --add policy ips sa \
   -t AH01 -p ah -auth hmac_sha1
   ```

3. Create an IPSec SA policy named ESP01, which uses ESP protection with 3DES.
   ```
   switch:admin> ipsecconfig --add policy ips sa \
   -t ESP01 -p esp -enc 3des_cbc
   ```

4. Create an IPSec proposal IPSEC-AHESP to use an AH01 and ESP01 bundle.
   ```
   switch:admin> ipsecconfig --add policy ips-proposal \
   -t IPSEC-AHESP -sa AH01,ESP01
   ```

5. Import the preshared key file (e.g., ipseckey.psk) using the secCertUtil import command.

6. Create an IKE policy for the remote peer.
   ```
   switch:admin> ipsecconfig --add policy ike -t IKE01 \
   -remote 10.33.69.132 -id 10.33.74.13 \ 
   -remoteid 10.33.69.132 -enc 3des_cbc \ 
   -hash hmac_md5 -prf hmac_md5 \ 
   -auth psk -dh modp1024 -psk ipseckey.psk
   ```

7. Create an IPSec transform TRANSFORM01 configured with transport mode to protect traffic identified for IPSec protection and use IKE01 as a key management policy.
   ```
   switch:admin> ipsecconfig --add policy ips transform \
   -t TRANSFORM01 -mode transport -sa-proposal IPSEC \ 
   -AHESP -action protect -ike IKE01
   ```

8. Create traffic selectors to protect outbound and inbound traffic.
   ```
   switch:admin> ipsecconfig --add policy ips selector \
   -t SELECTOR-OUT -d out -l 10.33.74.13 -r 10.33.69.132 \ 
   -transform TRANSFORM01
   ```
   ```
   switch:admin> ipsecconfig --add policy ips selector \
   -t SELECTOR-IN -d in -l 10.33.69.132 -r 10.33.74.13 \ 
   -transform TRANSFORM01
   ```

9. Verify the IPSec SAs using ipSecConfig --show manual-sa -a. Refer to the “IPSec display commands” section for an example.

10. Perform the equivalent steps on the remote peer to complete the IPSec configuration. Refer to your server administration guide for instructions.
Example 4
The following example illustrates how to secure traffic between two systems using protection with MD5 and Manually keyed SAs. The two systems are a switch, the BROCADE300 (IPv4 address 10.33.74.13), and an external UNIX host (IPv4 address 10.33.69.132).

1. On the system console, log in to the switch as Admin and enable IPsec.
   ```
   switch:admin> ipsecconfig --enable
   ```

2. Create an IPSec Manual SA that uses AH protection with MD5 for outbound traffic:
   ```
   switch:admin> ipsecconfig --add manual-sa -spi 0x300  
   -L 10.33.74.13 -R 10.33.69.132 -p any -d out -m transport 
   -ipsec ah -ac protect -auth hmac_md5 
   -auth-key "TAHITEST89ABCDEF"
   ```

3. Create an SA for inbound traffic.
   ```
   switch:admin> ipsecconfig --add manual-sa -spi 0x200  
   -L 10.33.69.132 -R 10.33.74.13 -p any -d in 
   -m transport -ipsec ah -ac protect -auth hmac_md5 
   -auth-key "TAHITEST89ABCDEF"
   ```

4. Verify the SAs using `ipsecConfig --show manual-sa -a`. Refer to the IPSec display commands section for an example.

5. Perform the equivalent steps on the remote peer to complete the IPSec configuration. Refer to your server administration guide for instructions.

IPSec display commands
To display the IPSec IKE Policy:
```
switch:admin> ipsecconfig --show policy ike -a
IKE-01 version:ikev2 remote:10.33.69.132
local-id:10.33.74.13 remote-id:10.33.69.132
encryption algorithm: 3des_cbc
hash algorithm: hmac_md5
prf algorithm: hmac_md5
dh group: 2 1
auth method:rsasig
public-key:="/etc/fabos/certs/sw0/thawkcert.pem"
private-key:="/etc/fabos/certs/sw0/thawkkey.pem"
peer-public-key:="/etc/fabos/certs/sw0/spiritcert.pem"
```

To display the outbound and inbound SAs in the kernel SA database:
```
switch:admin> ipsecconfig --show manual-sa -a
10.33.69.132[0] 10.33.74.13[0]
ah mode=transport spi=34560190(0x020f58be) reqid=0(0x00000000)A: hmac-md5 7e5aeb47 e0433649 e1376325 34a64e6e
seq=0x00000000 replay=32 flags=0x00000000 state=mature
diff: 11(s) hard: 2621440(s) soft: 2100388(s)
last: Oct 15 23:34:56 2008 hard: 0(s) soft: 0(s)
current: 256(bytes) hard: 0(bytes) soft: 0(bytes)
allocated: 4 hard: 0 soft: 0
sadb_seq=1 pid=10954 refcnt=0
```

516 Fabric OS Command Reference 53-1002921-02
To display a specified IPSec SA:

```
switch:admin> ipsecconfig --show policy ips
   sa -t sa-esp-1
   sa-esp-1        ipsec-protocol:esp
   encryption algorithm: aes128_cbc 3des_cbc
   authentication algorithm: hmac_sha1 hmac_md5
```

To display all IPSec SA proposals:

```
switch:admin> ipsecconfig --show policy ips
   sa-proposal -a
   ipsec-esp-a-b   SA(s) used:sa-esp-1 sa-ah-1
   lifetime in seconds:infinite
   lifetime in bytes:infinite
   ipsec-esp-def   SA(s) used:sa-esp-1
   lifetime in seconds:infinite
   lifetime in bytes:infinite
```

To display all IPSec transforms:

```
switch:admin> ipsecconfig --show policy ips transform -a
   policy-A-B      action:auto_ipsec   mode:transport
   local:10.33.69.132   remote:10.33.74.13
   sa-proposal:ipsec-esp-a-b
   ike-policy:remote-B
```

To display all IPSec traffic selectors:

```
switch:admin> ipsecconfig --show policy ips selector -a
   slt-A-B-any     local:10.33.69.132   remote:10.33.74.13
   direction:outbound   upper-layer-protocol:any
   transform-used:policy-A-B
   slt-B-A-any     local:10.33.74.13   remote:10.33.69.132
   direction:inbound   upper-layer-protocol:any
   transform-used:policy-A-B
```

Using the help command

To use the `--help` command with arguments to display the syntax of specific types and subtypes:

```
switch:admin> ipsecconfig --help add policy ips selector
Usage: ipsecConfig --add policy ips selector ARGUMENTS

ARGUMENTS
   -tag <name>              selector name
   -direction <in|out>      traffic flow direction
   -local <addr>            source IPv4 or IPv6 address
   -remote <addr>           peers IPv4 or IPv6 address
   -transform <name>        transform name
   [-protocol <name>]      protocol nam
```
switch:admin> ipseccfg --help modify policy ike
Usage: ipseccfg --modify policy ike ARGUMENTS

ARGUMENTS
 -tag <name> ike policy name
 -remote <addr> peers ipaddress
 -id <identifier> local identifier
 -remoteid <identifier> peers identifier
 -enc <ALGORITHM> encryption algorithm
 -hash <ALGORITHM> hash algorithm
 -prf <ALGORITHM> prf algorithm
 -dh <number> dh group number

ENCRYPTION ALGORITHM
 3des_cbc, aes128_cbc, aes256_cbc, null_enc

HASH ALGORITHM
 hmac_md5, hmac_sha1, aes_xcbc

PRF ALGORITHM
 hmac_md5, hmac_sha1, aes_xcbc

DH-GROUP
 modp768(1), modp1024(2), modp2048(14), modp8192(18)

REFERENCES

SEE ALSO None
islShow

Displays interswitch link (ISL) information.

SYNOPSIS

islshow

DESCRIPTION

Use this command to display the current connections and status of the interswitch link (ISL) for each port on a switch. The command output includes the following information:

- Node world wide name (WWN)
- Domain ID
- Switch name
- ISL connection speed, if applicable
- Bandwidth
- Trunking enabled, if applicable
- QOS - QoS enabled, if applicable
- ENCRYPT - Encryption enabled, if applicable
- COMPRESS - Compression enabled, if applicable
- CR_RECOV - Credit recovery enabled, if applicable
- FEC - Forward Error Correction enabled, if applicable
- D_PORT - D_Port enabled, if applicable

When issued on a switch that is part of a logical fabric configuration, the `islShow` command displays logical interswitch links (LISLs) along with regular ISLs. However, speed (sp) displays N/A for logical ports. The bandwidth (bw) displayed is the sum of the bandwidth of all extended ISLs (XISLs) that form the LISL. A shared ISL (XISL) connects the base switches and is shared by different logical fabrics. It allows devices to communicate with each other within the logical fabric.

Connection speed is not applicable to LE_Ports or VE_Ports. For these port types, speed displays as "sp:------".

Beginning with Fabric OS 7.1.0, this command will display the neighbor WWN information even when the ISL is segmented during exchange link parameter (ELP) or post ELP segmentation phase. In a fabric that has switches running Fabric OS 7.1.0 and pre-7.0.1 firmware, the neighbor information of the segmented links is displayed only on switches running Fabric OS 7.1.0 firmware. In a rare situation when ELP is not exchanged between two switches, the neighbor WWN information will be displayed only on the responder side that received ELP.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To execute `islshow` in a base fabric:

```
switch:user> islshow
1: 2->3 10:00:00:05:1e:43:00:00 100 DCX
   sp: 8.000G bw: 32.000G TRUNK QOS
2: 3->8 10:00:00:05:1e:41:8a:d5  30 B5300
   sp: 4.000G bw: 16.000G TRUNK QOS
3: 19->10 10:00:00:05:1e:41:43:ac  50 B300 sp:
   8.000G bw: 64.000G TRUNK
```
To execute `islshow` in a logical fabric:

```
switch:user> islshow
1: 33-> 29 10:00:00:60:69:80:4f:84  3 B3200 \
   sp:  2.000G bw:  4.000G TRUNK
2: 39->  7 10:00:00:60:69:45:68:04  4 B3850 \
   sp:  2.000G bw:  8.000G TRUNK
3:  41-> (incompatible)
4:  47-> (incompatible)
5:  95->  0 10:00:00:05:1e:01:0b:4a  15 B5100 \
   sp:  2.000G bw:  2.000G TRUNK
6:162->160 10:00:00:60:69:e2:09:fa  5 B2400 \
   sp:-------- bw:  0.001G
7:384-> 16 10:00:00:05:1e:37:02:73  39 DCX \
   sp:-------- bw:  10.000G
8:385-> 16 10:00:00:05:1e:37:02:73  43 B53000 \
   sp:-------- bw:  11.000G
```

To display interswitch links with encryption or compression enabled:

```
switch:user> islshow
1: 33-> 29 10:00:00:60:69:80:4f:84  3 B3200 \
   sp:  2.000G bw:  4.000G TRUNK ENCRYPT
2: 39->  7 10:00:00:60:69:45:68:04  4 B3850 \
   sp:  2.000G bw:  8.000G ENCRYPT COMPRESS
2: 38->  6 10:00:00:60:69:45:68:03  4 B3850 \
   sp:  2.000G bw:  8.000G COMPRESS
```

To display interswitch links with Credit Recovery and Forward Error correction enabled:

```
switch:user> islshow
1: 95-> 26 10:00:00:05:33:7e:69:c4   1 sw0  \
   sp: 16.000G bw: 16.000G CR_RECOV FEC
2:164-> 28 10:00:00:05:33:7e:69:c4   1 sw0  \
   sp: 16.000G bw: 16.000G TRUNK QOS CR_RECOV FEC
3:165-> 30 10:00:00:05:33:7e:69:c4   1 sw0  \
   sp: 16.000G bw: 16.000G QOS CR_RECOV FEC
4:166-> 31 10:00:00:05:33:7e:69:c4   1 sw0  \
   sp:  4.000G bw:  4.000G QOS CR_RECOV
5:167-> 29 10:00:00:05:33:7e:69:c4   1 sw0  \
   sp: 16.000G bw: 16.000G CR_RECOV FEC
6:340-> 27 10:00:00:05:33:7e:69:c4   1 sw0  \
   sp: 16.000G bw: 16.000G QOS CR_RECOV FEC
7:341-> 25 10:00:00:05:33:7e:69:c4   1 sw0  \
   sp: 16.000G bw: 16.000G QOS CR_RECOV FEC
8:342-> 32 10:00:00:05:33:7e:69:c4   1 sw0  \
   sp:  4.000G bw:  4.000G QOS CR_RECOV
9:343-> 24 10:00:00:05:33:7e:69:c4   1 sw0  \
   sp: 16.000G bw: 16.000G CR_RECOV FEC
```

To display interswitch links with D_Port enabled:

```
switch:user> islshow
1: 11-> 39 10:00:00:05:1e:e5:e4:00  1 D-Port_DCX \
   sp:  8.000G bw:  8.000G D_PORT
2: 24->343 10:00:00:05:1e:e5:e4:00  1 D-Port_DCX \
   sp: 16.000G bw: 16.000G CR_RECOV FEC
3: 25->341 10:00:00:05:1e:e5:e4:00  1 D-Port_DCX \
   sp: 16.000G bw: 16.000G CR_RECOV FEC
4: 26-> 95 10:00:00:05:1e:e5:e4:00  1 D-Port_DCX \
   sp: 16.000G bw: 16.000G CR_RECOV FEC
```
To display the neighbor switch WWN for the segmented ISLs during ELP and post ELP phase:

```
switch:user> islshow
[...]
1:9-> 2 10:00:00:05:1e:a3:00:59 (incompatible)
[...]
```

SEE ALSO switchShow, trunkShow
itemList

Lists parameter syntax information.

SYNOPSIS

 item_list = element | element white item_list

 element = item | item - item

 item = num | slot [white]/ [white] num

 slot = num

 num = hex | int

 int = int digit | digit

 hex = 0x hex digit | hex hex digit

 digit = 0|1|2|3|4|5|6|7|8|9

 hex digit = digit [A|B|C|D|E|F|a|b|c|d|e|f

 white = *["\t\f\r ,"]

DESCRIPTION

All kernel diagnostics have at least one item list parameter to specify which ports to test. The normal
default value for this parameter is to select everything.

This is not a command; rather, it is a common parameter to many commands.

If you want to restrict the items to be tested to a smaller set, the parameter value is an item list with the
following characteristics:

- It is a comma-separated list of items.
- Each item in the list can be a single element or a range of elements separated by a dash character
 or a combination of both. For example,”0,3,4-6,1”, ”0,1,3,4,5,6”, and ”0 3 4 - 6 1” each select items
 0, 1, 3, 4, 5, 6, and 7.
- Spaces and tab stops are skipped.
- Each item might be proceeded by an optional slot number followed by a slash (”/”).

Besides the syntax rules, there are also some grammatical restrictions on the slot numbers:

- Once specified, a slot selection applies to all items to the right of the slot selections until the next slot
 selection or the end of the item list. For example,”1/0 - 15” and ”1/0 - 1/15” are equivalent.
- If no slot number is specified, user port lists are specified by area number. For instance,”0, 16, 32”
 and ”1/0, 2/0, 3/0” specify the same ports on a 16-port/blade system. On that same system,”1/0, 16,
 32” is not a valid list: even though it is legal syntax, the ports do not exist.
- If no slot number is specified, all lists except user port lists use the default slot 0.
- No list type except for user port lists may specify multiple conflicting slot numbers. For instance,”1/0,
 2/0, 3/0” is a valid user port list but is not valid for any other type of list.

In the case of conflicting settings within a single item list, an error is generated, as described earlier. In
the case of multiple item list parameters, the last one on the command line overrides previous settings.

The exact type of list varies, depending on the test and the parameter; however, the most common are
blade ports and user ports. A list of blade ports is most commonly used by ASIC-level tests such as
turboRamTest and represents which ports on the current blade (specified with --slot number) are
tested. A list of user ports is used by higher-level tests to specify which user-accessible external ports
within the current switch (selected during Telnet login) are tested. When specified in an item list, user ports might be specified by either the area portion of the ports Fibre Channel address or with slot/port notation. For nonblade systems, the port number on the silkscreen is the area number, so the two notations are identical.

For item list parameters, the parameter type is PT_LIST and the list type is one of the following:

<table>
<thead>
<tr>
<th>Type</th>
<th>Grouping</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPORTS</td>
<td>Blade</td>
<td>Blade ports, internal and external ports.</td>
</tr>
<tr>
<td>UPORTS</td>
<td>Switch</td>
<td>User ports, ports with external connections.</td>
</tr>
<tr>
<td>QUADS</td>
<td>Blade</td>
<td>Quadrants, group of (normally 4) ports.</td>
</tr>
<tr>
<td>CHIPS</td>
<td>Blade</td>
<td>Chips, Asics within a blade.</td>
</tr>
<tr>
<td>MINIS</td>
<td>Blade</td>
<td>Mini switches.</td>
</tr>
<tr>
<td>SLOTS</td>
<td>Chassis</td>
<td>Slots.</td>
</tr>
<tr>
<td>INDEX</td>
<td>N/A</td>
<td>Anything.</td>
</tr>
</tbody>
</table>

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS None

EXAMPLES None

SEE ALSO portLoopbackTest, bpPortLoopbackTest
killTelnet

Terminates an open Telnet session.

SYNOPSIS

killTelnet

DESCRIPTION

Use this command to terminate an open Telnet session. The command lists all current Telnet and serial port login sessions and information such as session number, login name, idle time, IP address of the connection, and timestamp of when the login session was opened. The command prompts you to specify the number of the session you want to terminate. The list of open sessions displayed with killTelnet includes your current session; be sure not kill your own Telnet session.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

EXAMPLES

To terminate an open Telnet connection:

switch:admin> killtelnet
Collecting login information....Done
List of telnet sessions (3 found)

<table>
<thead>
<tr>
<th>Session No</th>
<th>USER</th>
<th>TTY</th>
<th>IDLE</th>
<th>FROM</th>
<th>LOGIN@</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>root0</td>
<td>ttyS0</td>
<td>1:17m</td>
<td>-</td>
<td>5:13pm</td>
</tr>
<tr>
<td>1</td>
<td>admin0</td>
<td>pts/0</td>
<td>16.00s</td>
<td>192.168.130.29</td>
<td>6:29pm</td>
</tr>
<tr>
<td>2</td>
<td>admin0</td>
<td>pts/1</td>
<td>3.00s</td>
<td>192.168.130.29</td>
<td>6:31pm</td>
</tr>
</tbody>
</table>

Enter Session Number to terminate (q to quit) 1
Collecting process information... Done.
You have opted to terminate the telnet session:-
logged in as "admin0 ", from "192.168.130.29 ", since " 6:29pm" and has been inactive for "16.00s ",
the current command executed being: "-rbash ".
The device entry is: "pts/0 ".
This action will effectively kill these process(es):-
USER PID ACCESS COMMAND
/dev/pts/0 root 12868 f.... login
root 12869 f.... login
root 12877 f.... rbash
Please Ensure (Y/[N]): y
killing session.... Done!
Collecting login information....Done
List of telnet sessions (2 found)

<table>
<thead>
<tr>
<th>Session No</th>
<th>USER</th>
<th>TTY</th>
<th>IDLE</th>
<th>FROM</th>
<th>LOGIN@</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>root0</td>
<td>ttyS0</td>
<td>1:17m</td>
<td>-</td>
<td>5:13pm</td>
</tr>
<tr>
<td>1</td>
<td>admin0</td>
<td>pts/1</td>
<td>3.00s</td>
<td>192.168.130.29</td>
<td>6:31pm</td>
</tr>
</tbody>
</table>

Enter Session Number to terminate (q to quit) q

SEE ALSO

None
ldapCfg

Maps LDAP AD server roles to default switch roles.

SYNOPSIS

ldapcfg --maprole ldaprole switchrole
ldapcfg --unmaprole ldaprole
ldapcfg --show
ldapcfg --help

DESCRIPTION

Use this command to map a Lightweight Directory Access Protocol (LDAP) Active Directory (AD) server role to one of the default roles available on a switch. This command also provides an option to remove an existing mapping.

This command creates an alias for a customer-defined group which allows a user belonging to that group to login to the switch with the permissions associated with the mapped switch role.

This command supports one-to-one role mapping only. For example, you might map the "SAN administrator" role on the AD server to the "admin" role on the switch, or the "SAN maintenance" role to the switch "operator" role. But the command fails if you attempt to map an already mapped AD server role.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command takes as input an action and its associated arguments. When no operand is specified, the command prints the usage.

This command has the following operands:

--maprole

Maps an LDAP role to a specified switch role. The following operands are required:

ldaprole

Specifies the LDAP role to be mapped to a switch role. The role must be a valid AD server role.

switchrole

Specifies the switch role to which the LDAP role is mapped. Valid switch roles include the following:

- admin
- user
- switchadmin
- zoneadmin
- fabricadmin
- basicswitchadmin
- operator
- securityadmin
ldapCfg

--unmaprole

Removes the mapping between an LDAP role and a switch role. Use the --show option for a listing of existing mappings. The following operand is required:

ldaprole

Specifies the LDAP AD server role to be removed from the mapping.

--show

Displays a table of existing mappings between LDAP roles and their corresponding switch role.

--help

Displays the command usage.

EXAMPLES

To display current LDAP and switch role map:

switch:admin> ldapcfg --show
LDAP Role | Switch Role

ldapadmin | admin
ldapuser | user
SANfabadmin | fabricadmin
SANzoneadmin | zoneadmin
SANoperator | operator
LDAPSANsecadm | securityadmin
SANuser | user
SAN01secadmin | securityadmin
LD_02zoneadmin | zoneadmin

To map an LDAP AD server role to the switch role of "operator":

switch:admin> ldapcfg --maprole SANoperator operator
LDAP role SANoperator has been successfully mapped.

switch:admin> ldapcfg --unmaprole SANoperator
LDAP role SANoperator has been successfully unmapped.

SEE ALSO

aaaConfig, userConfig
IfCg

Configures and displays logical fabrics.

SYNOPSIS

Ifcfg [--show | --showall] -cfg
Ifcfg [--show | --showall] -lisl [-v]
Ifcfg [--show -xisl slot/port | --showall -xisl
Ifcfg --lislenable
Ifcfg --help

DESCRIPTION

Use this command to display logical fabric configuration information, to determine the status of logical interswitch links (LISLs), to enable LISLs between logical switches, and to display information about the XISLs and LISLs associated with each XISL.

A logical switch is a partition created on a physical switch that shares the physical resources of the base fabric while functioning as an independent entity in a "virtual" logical fabric. The logical fabric sits on top of a base physical fabric and ties otherwise disconnected logical switches together to share the same connectivity and physical resources. At the same time, the logical fabric provides protocol and management isolation, and each logical fabric is independently scalable.

The display options provided with this command show the logical fabric configuration for a given logical switch context or for a chassis context. Each logical switch displays only the user ports that are configured to be part of that switch instance. The switch context is defined by the fabric ID. The default context is the base logical switch that you are placed in upon login. The default logical switch context is defined by the fabric ID 128. To change the context, use the setContext command.

When issued with the -cfg option, this command displays the following information:

Chassis
 Numeric identifier for the chassis.

Chassis WWN
 Chassis world wide name.

Base switch Domain
 The domain ID of the base switch.

For each logical switch, the following information is displayed:

Logical Switch
 Numeric identifier for the logical switch within the chassis.

Base switch
 Yes or No. This field indicates whether or not this logical switch is the base switch.

Fabric Id
 The logical switch fabric ID (FID).

State
 The state of the logical switch: Online or Offline.

Switch WWN
 The logical switch world wide name.

When issued with the -lisl option, the command displays the following information:

FID
 Fabric ID of the logical switch.
Port Number of the logical LISL port.
remote-domain Domain ID of the base switch in the remote chassis.
Name Switch name.
State Port state: Online or Offline.

Associated physical ports Physical ports associated with the LISL ports.

When **IfCfg** is issued within a logical switch context, only the configuration regarding that switch and the fabrics reachable from that switch is displayed. When the command is issued in a chassis context the information for all chassis in the base fabric reachable from the current chassis is displayed. Executing chassis-level commands requires chassis permissions. Refer to the **userConfig** command for information on setting chassis user permissions.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command is supported only on hardware platforms that are Virtual Fabric-aware and run Fabric OS v6.2.0 or later. Refer to the *Fabric OS Administrator's Guide* for specific hardware support.

You cannot use the **portEnable** command on logical ports. Use **Ifcfg** with the **--lislenable** option to re-enable disabled LISL ports on a logical switch.

OPERANDS

This command has the following operands:

--show -cfg Displays information for the fabric ID set by the context in all chassis reachable from the base fabric.

--showall -cfg Displays information for all fabrics in all chassis reachable from the chassis context in which the command is executed. This option requires chassis permissions.

--show -lisl Displays status information about the LISLs in the logical switch set by the context.

--showall -lisl Displays status information of all LISLs in the chassis. This option requires chassis permissions.

-v Displays, in addition to the LISLs, the physical ports on the base switch that are associated with the LISL ports. This operand is optional with the **-lisl** option.

--show -xisl [slot/]port Displays the XISL and the LISLs associated with it for the specified XISL port. For each LISL port, the output displays the FID, LISL State (online/offline) and the local and remote logical switch WWNs. This command must be executed from the base switch.

--showall -lisl Displays the XISL connections between two base switches for all XISL ports. This command must be executed from the base switch.
--listenable

Re-enables all LISLs in the fabric that were disabled because of some conflict or error condition in the fabric. This command provides the option of manually reestablishing the LISLs after the error condition has been resolved.

--help

Displays the command usage.

EXAMPLES

To display logical fabric information for FID 2 in all chassis reachable from the base fabric:

```
switch:admin> lfcfg --show -cfg
```

```
------------------------ Chassis: 1 ---------------------
Chassis WWN: 10:00:00:05:1e:39:82:64
Number of Partitions: 2
Base switch domain: 1

Logical switch: 2  Base switch: YES       Fabric Id: 2
State: Online(1)   Switch WWN: 10:00:00:05:1e:39:81:67

------------------------ Chassis: 2 ---------------------
Chassis WWN: 10:00:00:05:1e:0b:a4:5e
Number of Partitions: 2
Base switch domain: 2

Logical switch: 2  Base switch: YES       Fabric Id: 2
State: Online(1)   Switch WWN: 10:00:00:05:1e:0b:a4:41
```

To display information for all fabrics in all chassis reachable from the base fabric:

```
switch:admin> lfcfg --showall -cfg
```

```
------------------------ Chassis: 1 ---------------------
Chassis WWN: 10:00:00:05:1e:39:82:64
Number of Partitions: 2
Base switch domain: 1

Logical switch: 2  Base switch: YES       Fabric Id: 2
State: Online(1)   Switch WWN: 10:00:00:05:1e:39:81:67

Logical Switch: 1  Base switch: NO         Fabric Id: 1
State: Online(1)   Switch WWN: 10:00:00:05:1e:39:81:66

------------------------ Chassis: 2 ---------------------
Chassis WWN: 10:00:00:05:1e:0b:a4:5e
Number of Partitions: 2
Base switch domain: 2

Logical switch: 2  Base switch: YES       Fabric Id: 2
State: Online(1)   Switch WWN: 10:00:00:05:1e:0b:a4:41

Logical Switch: 1  Base switch: NO         Fabric Id: 1
State: Online(1)   Switch WWN: 10:00:00:05:1e:0b:a4:40
```

To display the LISLs in the logical switch:

```
switch:admin> lfcfg --show -lisl
FID  Port#  remote-doma Name State
2    384    24           sw0 PT Online
```
Displays status information about the LISLs in the logical switch set by the context:

```
switch:admin> lfcfg --show -lisl -v
```

```
ID Port# remote-domain Name State Associated Physical Ports
2  384   24            sw0  PT Online 1/29, 2/41, 3/33, 4/24
```

To display information about all LISLs in the chassis:

```
switch:admin> lfcfg --showall -lisl
```

```
FID Port# remote-domain Name State
2  384   24            sw0  PT Online
3  385   24            sw0  PT Online
```

To display all XISLs and the LISLs associated with each XISL:

```
switch:admin> lfcfg --showall -xisl
```

```
XISL Port No. : 12/30
LISL Pt. FID LISL State Local LS WWN            Remote LS WWN
450   10  PortOnline 10:00:00:05:1e:48:f8:02 10:00:00:05:1e:58:b2:5a
451   20  PortOnline 10:00:00:05:1e:48:f8:03 10:00:00:05:1e:58:b2:5b
452   30  PortOnline 10:00:00:05:1e:48:f8:04 10:00:00:05:1e:5b:69:d5
453   10  PortOnline 10:00:00:05:1e:48:f8:02 10:00:00:05:1e:5b:69:d4
454   30  PortOnline 10:00:00:05:1e:48:f8:04 10:00:00:05:1e:58:bd:6b
455   10  PortOnline 10:00:00:05:1e:48:f8:02 10:00:00:05:1e:58:bd:6a
XISL Port No. : 12/31
LISL Pt. FID LISL State Local LS WWN            Remote LS WWN
448   10  PortOnline 10:00:00:05:1e:48:f8:02 10:00:00:05:1e:0b:87:dd
449   20  PortOnline 10:00:00:05:1e:48:f8:03 10:00:00:05:1e:0b:87:de
```

To display a specific XISL and the LISLs associated with it

```
switch:admin> lfcfg --show -xisl 12/31
```

```
XISL Port No. : 12/31
LISL Pt. FID LISL State Local LS WWN            Remote LS WWN
448 10  PortOnline 10:00:00:05:1e:48:f8:02 10:00:00:05:1e:0b:87:dd
449 20  PortOnline 10:00:00:05:1e:48:f8:03 10:00:00:05:1e:0b:87:de
```

SEE ALSO None
licenseAdd

Adds a license key to a switch.

SYNOPSIS

licenseadd license

DESCRIPTION

Use this command to add a license key to a switch.

Some features of the switch and the fabric to which it is connected are optional, licensed products. Without a valid license installed for such products, their services are not available.

A license key is a string of any length consisting of upper- and lowercase letters and numbers. License keys are case-sensitive. The license must be entered exactly as issued. The system may accept an incorrectly entered license, but the licensed products will not function. After entering the license, use the licenseShow command to validate the product associated with the license. If no licensed products are shown, the license is invalid.

After you enter a license, the licensed product is generally available immediately without requiring further action. The following exceptions apply:

- Some licenses may require you to refresh the ports before to activate the license. Depending on your system, use the portDisable/portEnable, switchDisable/switchEnable or chassisDisable/chassisEnable commands to refresh the ports.
- Some licenses may require that you reboot the switch to activate the license. The licenseAdd command will prompt you to reboot the switch.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operand:

license

Specifies the license key to be installed. This operand is required.

EXAMPLES

To add a license key to the switch:

switch:admin> licenseadd DXXtN3LmRSMwCSW3XmfSBPfrWKLZ3HMTN73rP9GANJMA
adding license-key [DXXtN3LmRSMwCSW3XmfSBPfrWKLZ3HMTN73rP9GANJMA]

SEE ALSO

licenseRemove, licenseShow
licenseldShow

Displays the system license ID.

SYNOPSIS

licenseldshow

DESCRIPTION

Use this command to display the license ID of the system.

Some features of the switch and the fabric are optional, licensed products. Without a license installed for such products, the services provided by these features are not available.

This command displays the system license ID used for generating and validating licenses on the system. The license ID format consists of eight pairs of hexadecimal values, separated by colons. Each hexadecimal value is between 00 (0) and FF (255).

NOTES

While the format of this identifier might be similar or even identical to other identifiers in the system, no inferences should be made about the relationships between them as they are subject to change independently of one another.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display the license ID:

switch:admin> licenseldshow
a4:f8:69:33:22:00:ea:18

SEE ALSO

licenseAdd, licensePort, licenseRemove, licenseShow, licenseSlotCfg
licensePort

Manages Dynamic Ports On Demand (DPOD) licenses.

SYNOPSIS

licenseport --release port
licenseport --reserve port
licenseport --show
licenseport --method dynamic | static

DESCRIPTION

Use this command to manage and display Dynamic Ports on Demand (DPOD) license assignments.

Dynamic Ports On Demand (DPOD) is an optional feature available on all embedded platforms. DPOD takes the expansion capability of static Ports On Demand (POD) and adds the flexibility of activating any available port as long as a valid license is available. In Static mode, POD allows only specific fixed ports to be activated or licensed. With DPOD, any physical port can be made active as long as the total number of licenses is not exceeded.

The Dynamic POD feature assigns ports to the POD license in the order in which they come online until they equal the number of online licensed ports. This command provides the mechanism to make adjustments to the dynamic assignments by reserving assignments for specific ports in the event that there are more online ports than the purchased POD licenses can support.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

On unsupported platforms, this command returns a "not supported" message.

OPERANDS

This command has the following operands:

port
 Specifies the number of the port to which to assign or from which to remove a POD license. A port must be specified when releasing or reserving a port.

--release
 Releases a license assignment from the specified port when the switch is using the Dynamic POD method. The port must be offline for this command to succeed.

--reserve
 Reserves a license assignment for the specified port when the switch is using the Dynamic POD method. The port must be offline for this command to succeed.

--show
 Displays the POD license assignments.

--method
 Selects the POD method as one of the following:
 dynamic
 static
 Selects the dynamic POD method.
 Selects the static POD method.
EXAMPLES

To activate Dynamic Ports On Demand:

```
switch:admin> licenseport --method dynamic
The POD method has been changed to dynamic.
Please reboot the switch now for this change to take effect.
```

To release a port from a Dynamic POD license assignment and to display the assignments:

```
switch:admin> licenseport --release 22
switch:admin> licenseport --show
24 ports are available in this switch
1 POD license is installed
   Dynamic POD method is in use
24 port assignments are provisioned for use in this switch:
   12 port assignments are provisioned by the base switch license
   12 port assignments are provisioned by the first POD license
   * 0 more assignments are added if the second POD license
      is installed
23 ports are assigned to installed licenses:
   12 ports are assigned to the base switch license
   11 ports are assigned to the first POD license
Ports assigned to the base switch license:
   1, 2, 3, 5, 6, 7, 8, 10, 11, 14, 15, 19
Ports assigned to the first POD license:
   0, 4, 9, 12, 13, 16, 17, 18, 20, 21, 23
Ports assigned to the second POD license:
   None
Ports not assigned to a license:
   22
1 license reservation is still available for use by unassigned ports.
```

To reserve a Dynamic POD license assignment for a port and to display the assignments:

```
switch:admin> licenseport --reserve 5
switch:admin> switch:admin> licenseport --show
24 ports are available in this switch
1 POD license is installed
   Dynamic POD method is in use
24 port assignments are provisioned for use in this switch:
   12 port assignments are provisioned by the base switch license
   12 port assignments are provisioned by the first POD license
   * 0 more assignments are added if the second POD license
      is installed
24 ports are assigned to installed licenses:
   12 ports are assigned to the base switch license
   12 ports are assigned to the first POD license
Ports assigned to the base switch license:
   1, 2, 3, 5, 6, 7, 8, 10, 11, 14, 15, 19
Ports assigned to the first POD license:
   0, 4, 9, 12, 13, 16, 17, 18, 20, 21, 22*, 23
Ports assigned to the second POD license:
   None
Ports not assigned to a license:
   None
0 license reservations are still available for use by unassigned ports
1 license assignment is held by an offline port (indicated by *)
```
To disable Dynamic Ports On Demand:

```
switch:admin> licenseport --method static
The POD method has been changed to static.
Please reboot the switch now for this change to take effect.
```

SEE ALSO licenseAdd, licenseRemove, licenseShow, licenseShow
licenseRemove

Removes or deactivates a license key.

SYNOPSIS

```
licenseRemove license
```

DESCRIPTION

Use this command to remove an existing license key from a switch or to deactivate the license key. The existing license key must be entered exactly as shown by the `licenseShow` command. License keys are case-sensitive.

When the key has been removed, use the `licenseShow` command to verify that the key and the associated product have been uninstalled. You must reboot the switch after removing a license. For a switch that has no licenses installed, `licenseShow` displays "No licenses."

Upgradable licenses, such as slot-based licenses or Universal Time-based licenses cannot be permanently removed; they remain in the database but are not displayed in the `licenseShow` output.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

The following operand is required:

```
license
```

Specifies the license key to be removed or deactivated. This operand is required.

EXAMPLES

To remove a license key from the switch:

```
switch:admin> licenseRemove bQebzbRdScRfc0iK
removing license key [bQebzbRdScRfc0iK]
```

To deactivate a slot-based license:

```
switch:admin> licenseRemove \\DXXXN3LmRSMWCSW3XmfSBPfrWKLZ3HMTN73rP9GANJMA \\removing license-key \\[DXXXN3LmRSMWCSW3XmfSBPfrWKLZ3HMTN73rP9GANJMA]
```

```
switch:admin> licenseShow
SSezcSec9RXTf0dj:
Performance Monitor license
KgrfCBHgRtfBrGKH4D7f9S3FX7K3MttBHkrYHA4CM:
A7N9rATZLYgPa7JBFmOJEKETgCHMGQMY4gfLmGA4GA:
Advanced FICON Acceleration (FTR_AFA) license
Capacity 6
Consumed 2
Configured Blade Slots 3,4
KSYFYAtAFQGHDRI7cYQcQ9T9CYmXDBJg:
Enhanced Group Management license
XFDYXHMpCWC9J3Cld9ZD9AmTFFgDStFJGMAK9FgNAfg:
8 Gb FC license
Expiry Date 03/06/2009
License is expired
Hf7MBE8GCPNtTAMXXF9RtHXQN4RtM3gLtrWZLAMaTaAY9EB:
Storage Application Services license
Expiry Date 03/07/2009
```

SEE ALSO

`licenseAdd`, `licenseIdShow`, `licenseShow`
licenseShow

Displays current license keys.

SYNOPSIS

licenseshow

DESCRIPTION

Use this command to display current license keys, along with a list of licensed products enabled by these keys. Depending on the type of license, this command displays the following information:

Permanent licenses
• License key
• Associated product

Temporary and universal time-based licenses
• License key
• Associated product
• Expiration date or expiration notice if the license has expired

Slot-based licenses
• License key
• Associated product
• Capacity (number of slots purchased)
• Consumed (number of slots configured to use the license)
• Configured Blade Slot Positions (slot numbers of the configured blade slots)

When no licenses are installed, the message "No license installed on this switch" is displayed.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

On the Brocade DCX and DCX 8510 chassis family running Fabric OS v7.0.0 and later, the interchassis link (ICL) license is displayed as an ICL Ports on Demand (POD) license. The fist ICL POD license indicates half of the ICL ports; the second ICL POD license indicates all of the ICL ports. When you upgrade a DCX to Fabric OS v7.0.0, the license display does not change. Refer to the example section for an illustration.

OPERANDS

None

EXAMPLES

To display the license keys on a switch with permanent licenses installed:

switch:admin> licenseshow
S9bdhb9SqbTAcceC:
 Fabric license
eeeRRySff0fSe:
 Remote Switch license
bzbzRcbbcSc0c0SY:
 Remote Fabric license
dSeR9RcSeeTfSAq:
 Extended Fabric license
RyeSzRSycTzfT09:
 Entry Fabric license
RyeSzRSycUzfT0A:
Fabric Watch license
RyeSzRScycazft0G:
 Trunking license
RyeSzRScycS0ft09:
 4 Domain Fabric license

To display the license keys on a switch with temporary (expired) licenses installed:

```
switch:admin> licenseShow
7QmYFYJrmDgE9tTS4AYXB9trYSGrMtrQZSTK4ZSC7FC9ZAYAgE:
   Integrated Routing license
   Expiry Date 01/16/2008
   License is expired
33YBfZfKZ3tQKrRJRRgmsS3JdtCL99P4fYrYQP7GffS4ASrNE:
   Enterprise Bundle license
   Expiry Date 01/16/2008
   License is expired
```

To display the license keys on a switch with universal time-based licenses:

```
switch:admin> licenseshow
DAmHTPgQ7KDtKrEYQC7X7STF9HJDL7mTWRmZPmSTSE49AEfaE:
   Trunking license
   Expiry Date 11/11/2008
   License is expired
H47CFSa93aKgKJM9NWMYEMaLrATQWDHCgHfZftWGGqNCYAJaBA:
   High-Performance Extension over FCIP/FC license
   Expiry Date 12/20/2008
```

To display a slot-based 10G FC and 10G Gigabit Ethernet license on a Brocade DCX 8510-8:

```
switch:admin> licenseshow
tKLFTNAPDQtEPHFCf9YSPrafrTJCQALP49fXEGHA4SPB:
   10 Gigabit FCIP/Fibre Channel (FTR_10G) license
   Capacity 3
   Consumed 3
   Configured Blade Slots 1,3,12
```

```
switch:admin> slotshow -m

<table>
<thead>
<tr>
<th>Slot</th>
<th>Blade Type</th>
<th>ID</th>
<th>Model Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SW BLADE</td>
<td>97</td>
<td>FC16-32</td>
<td>ENABLED</td>
</tr>
<tr>
<td>2</td>
<td>UNKNOWN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AP BLADE</td>
<td>75</td>
<td>FX8-24</td>
<td>ENABLED</td>
</tr>
<tr>
<td>4</td>
<td>UNKNOWN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CORE BLADE</td>
<td>98</td>
<td>CR16-8</td>
<td>ENABLED</td>
</tr>
<tr>
<td>6</td>
<td>CP BLADE</td>
<td>50</td>
<td>CP8</td>
<td>ENABLED</td>
</tr>
<tr>
<td>7</td>
<td>CP BLADE</td>
<td>50</td>
<td>CP8</td>
<td>ENABLED</td>
</tr>
<tr>
<td>8</td>
<td>CORE BLADE</td>
<td>98</td>
<td>CR16-8</td>
<td>ENABLED</td>
</tr>
<tr>
<td>9</td>
<td>UNKNOWN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>UNKNOWN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>UNKNOWN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>SW BLADE</td>
<td>96</td>
<td>FC16-48</td>
<td>ENABLED</td>
</tr>
</tbody>
</table>
```

To display an ICL license on a Brocade DCX 8510-8:

```
switch:admin> licenseshow
X3ffNTZM9CNmM4SKFLYTGS4WmCRCgAZZBJDTB:
   Inter Chassis Link (2nd POD) license
```
To display an ICL license on a Brocade DCX before and after a firmware upgrade to Fabric OS v7.0.0.

switch:admin> licenseshow
X3ffNTZM9CNmM4SKFLYTGS4VmCRCgAZZBJDTB:
 Inter Chassis Link (16 link) license

switch:admin> licenseshow
X3ffNTZM9CNmM4SKFLYTGS4VmCRCgAZZBJDTB:
 Inter Chassis Link (16 link) license

SEE ALSO licenseAdd, licenseIdShow, licenseRemove
licenseSlotCfg

Configures and displays slot-based licensed features.

SYNOPSIS
licenseslotcfg --add feature slot
licenseslotcfg --remove feature slot
licenseslotcfg --show
licenseslotcfg --help

DESCRIPTION
Use this command to configure and manage licenses for the Brocade FX8-24 extension blade on the slot where the blade is installed.

Slot-based licenses allow you to select the slots the license will enable up to the purchased capacity and thereby increase existing capacity without disrupting the slots for which licensed features are already enabled.

There is a separate slot-based license key for each licensed feature supported on the blade. For example, the Brocade FX8-24 supports slot-based license keys for each of the following features:

- 10 GbE license - Enables the two 10GbE ports on the Brocade FX8-24.
- Advanced Extension license - Enables FCIP Trunking and Adaptive Rate Limiting.
- Advanced FICON Acceleration license - Accelerates FICON tape read and write and IBM Global Mirror data replication operations over distance.

A license key with the specified capacity must be installed with the licenseAdd command before you can enable the feature on a specified slot with the licenseSlotCfg command. Refer to the Fabric OS Administrator's Guide for more information.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
feature

Specifies the licensed feature to be added at the specified slot. The feature is specified as a tag from the following set of licenses:

FTR_AE
Advanced Extension license

FTR_AFA
Advanced FICON Acceleration license

FTR_10G
10 Gigabit Ethernet license

slot

Specifies the slot number for the Brocade FX8-24 extension blade. This number corresponds to the physical blade slot number on the chassis (1-4, 9-12 on the Brocade DCX; 1-2, 7-8 on the Brocade DCX-4S).

--add

Adds a slot-based license to the specified slot.

--remove

Removes a slot-based license from the specified slot. This operation frees up the license to be assigned to another slot. You must disable the applications that use the license on this slot before you can deactivate the license.
licenseSlotCfg

--show
Displays slot assignments for all slot-based licenses in the chassis.

--help
Displays the command usage.

EXAMPLES
To add a license key for the slot-based Advance Extension feature for eight slots:

switch:admin> licenseadd DXXtN3LmRSMWCSW3XmfSBPfrWKLZ3HMTN73rP9GANJMA
adding license-key DXXtN3LmRSMWCSW3XmfSBPfrWKLZ3HMTN73rP9GANJMA

To display the installed license (new license in bold):

switch:admin> licenseshow
SSezcSec9RXTf0dj:
Performance Monitor license
KgrfCBHgRtfBrGKH4D7f9S3FBX7K3MtTtBHKrYHA4CMB:
10 Gigabit Ethernet (FTR_10G) license
Capacity 8
Consumed 4
Configured Blade Slots 1,3,5,12
A7N9rATZLYgfFa7JBFmGEJKEt7gMcHFGQMY4gfLmGAA4GA:
Advanced FICON Acceleration (FTR_AFA) license
Capacity 6
Consumed 2
Configured Blade Slots 3,4
DXXtN3LmRSMWCSW3XmfSBPfrWKLZ3HMTN73rP9GANJMA:
Advanced Extension (FTR_AE) license
Capacity 8
Consumed 0

To configure the blade slots 3, 4, 11, and 12 to enable the license on these slots:

switch:admin> licenseslotcfg --add FTR_AE 3
Blade slot-3 added to FTR_AE slot-based license configuration
Remaining capacity for FTR_AE slot-based license = 7

switch:admin> licenseslotcfg --add FTR_AE 4
Blade slot-4 added to FTR_AE slot-based license configuration
Remaining capacity for FTR_AE slot-based license = 6

switch:admin> licenseslotcfg --add FTR_AE 11
Blade slot-11 added to FTR_AE slot-based license configuration
Remaining capacity for FTR_AE slot-based license = 5

switch:admin> licenseslotcfg --add FTR_AE 12
Blade slot-12 added to FTR_AE slot-based license configuration
Remaining capacity for FTR_AE slot-based license = 4

To display the enabled licenses:

switch:admin> licenseshow
SSezcSec9RXTf0dj:
Performance Monitor license
KgrfCBHgRtfBrGKH4D7f9S3FBX7K3MtTtBHKrYHA4CMB:
10 Gigabit Ethernet (FTR_10G) license
Capacity 8
Consumed 4
Configured Blade Slots 1,3,5,12
A7N9rATZLYgFa7JBfmGEJKETgCMHFGQMY4gfLmGAa4GA:
 Advanced FICON Acceleration (FTR_AFA) license
 Capacity 6
 Consumed 2
 Configured Blade Slots 3,4
 DXXtN3LtRSMWCSW3XmSBPfrWKLZ3HMTN73rP9GANJMA:
 Advanced Extension (FTR_AE) license
 Capacity 8
 Consumed 4
 Configured Blade Slots 3,4,11,12

switch:admin> licenseslotcfg --show
 FTR_10G license - blade slots configured = 1,3,5,12
 FTR_AE license - blade slots configured = 3,4,11,12
 FTR_AFA license - blade slots configured = 3,4

To deactivate the Advanced Extension license on slots 3 and 12, and to display the results:

switch:admin> licenseslotcfg --remove FTR_AE 3
 Blade slot-3 removed from FTR_AE slot-based license configuration

switch:admin> licenseslotcfg --show
 FTR_10G license - blade slots configured = 1,3,5,12
 FTR_AE license - blade slots configured = 12
 FTR_AFA license - blade slots configured = 3,4

switch:admin> licenseslotcfg --remove FTR_AE 12
 Blade slot-12 removed from FTR_AE slot-based license configuration

switch:admin> licenseslotcfg --show
 FTR_10G license - blade slots configured = 1,3,5,12
 FTR_AFA license - blade slots configured = 3,4

switch:admin> licenseshow
 SSeczSec9RXTf0dj:
 Performance Monitor license
 KgrfCBHgRtfBrGKH4D7f9S3FX7K3MtTbHkrYHA4CMB:
 10 Gigabit Ethernet (FTR_10G) license
 Capacity 8
 Consumed 4
 Configured Blade Slots 1,3,5,12
 A7N9rATZLYgFa7JBfmGEJKETgCMHFGQMY4gfLmGAa4GA:
 Advanced FICON Acceleration (FTR_AFA) license
 Capacity 6
 Consumed 2
 Configured Blade Slots 3,4
 DXXtN3LtRSMWCSW3XmSBPfrWKLZ3HMTN73rP9GANJMA:
 Advanced Extension (FTR_AE) license
 Capacity 8
 Consumed 0
 Configured Blade Slots 3,4
 G4H3AZmW4gPTMHN9FfJFGX4fSaTSY9TtaDCB43EBNHKYNZSA:
 10 Gigabit Ethernet (FTR_10G) license - Inactive.
 SBZQNCI4YCLK4QaXJ9SfPDR9FrSaXAT4WNMGmADFRFrgrAYWTC:
 8 Gig FC license - Inactive.
 KSYFYAtAfPGHDRJfCyQrC4Q9T9CYmXDBJgLB:
 Enhanced Group Management license
 XFXJXHmPtCW93ClgBD9BZD9AmTFgDStFDJGMAlKd9FgWAfSE:
 8 Gig FC license
licenseSlotCfg

Expiry Date 03/06/2009
License is expired
Hf7MBEBCGFNmTAWXXP99RtHXQN4RRtM3mLGtrWZLAMaTaAY9EB:
Storage Application Services license
Expiry Date 03/07/2009

To remove the Advanced Extension license completely (marked inactive):

switch:admin> licenseremove \n DXXtN3LmRSMWCW3XmfSBPfrWKL23HMTN73rP9GANJMA
removing license-key
[DXXtN3LmRSMWCW3XmfSBPfrWKL23HMTN73rP9GANJMA]

switch:admin> licenseshow
SSezcSec9RXTf0dj:
Performance Monitor license
KgrfCBHgRtfBrGKH4D7f9S3FBX7K3MtTbHDKrYHA4CMB:
10 Gigabit Ethernet (FTR_10G) license
Capacity 8
Consumed 4
Configured Blade Slots 1,3,5,12
A7N9rATZLYgPa7JBfmgSKJfKETgCMHFGQMgY4gfLmGAa4GA:
Advanced FICON Acceleration (FTR_AFA) license
Capacity 6
Consumed 2
Configured Blade Slots 3,4
KSYFYAtAfPCHDRIJfCYQrC4Q9T9CYmXDBJgL:
Enhanced Group Management license
XFJXYHmPtcW9C93LgBD9BD9AmTFgDStPDJGMaLKC9FgfWAgSE:
8 Gig FC license
Expiry Date 03/06/2009
License is expired
Hf7MBEBCGFNmTAWXXP99RtHXQN4RRtM3mLGtrWZLAMaTaAY9EB:
Storage Application Services license
Expiry Date 03/07/2009

SEE ALSO licenseAdd, licenseldShow, licenseRemove
linkCost

Sets or displays the Fabric Shortest Path First (FSPF) cost of a link.

SYNOPSIS

```
linkcost [[slot[/]port [cost]]]
```

DESCRIPTION

Use this command to set or display the cost of an interswitch link (ISL). The cost of a link is a dimensionless positive number. The Fabric Shortest Path First (FSPF) protocol compares the cost of various paths between a source switch and a destination switch by adding the costs of all the ISLs along each path. FSPF chooses the path with minimum cost. If multiple paths exist with the same minimum cost, FSPF distributes the load among these paths. The default link cost value is 500.

When executed without operands, the command displays the current cost of each port on the switch, including non-ISLs. An E_PORT suffix is appended to the interface number of active ISLs. If a static cost is assigned to a port, a STATIC suffix is appended to the link cost. In this case, only the current link cost displays. Use `interfaceShow` to display both the default and current link costs.

NOTES

This command sets a non-default, "static" cost for any port except EX/VEX ports. Use `fcrRouterPortCost` to configure EX/VEX ports.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command cannot be executed on a logical ISL (LISL).

OPERANDS

This command has the following operands

- `slot` For bladed systems only, specifies the slot number for which to set or display the cost, followed by a slash (/).
- `port` Specifies the port number for which to set or display the cost, relative to its slot for bladed systems. Use `switchShow` to list of valid ports.
- `cost` Specifies the static cost of the link connected to the specified port. Recommended cost values are 0 through 32765. Setting static link cost values above 32765 will cause access problems. When you set a link cost value between 32766 and 65534, some parts of the fabric may become inaccessible. When you set the maximum link cost value of 65535, the port will become unusable. In either case, the command displays an appropriate warning message, and you are prompted to continue or to cancel and reissue the command with a lower link cost value. A value of 0 removes the static cost and the port reverts to its default link cost. If `cost` is not specified, the command displays the current cost of the specified port.

EXAMPLES

To display the link costs for all ports on a switch:

```
switch:admin> linkcost
            Port   Cost
-------------------------
     1/0   (E_PORT)  500
     1/1                500
     1/2                500
     1/3                500
     1/4                500
     1/5                500
     1/6                500
```
To set the ISL cost on a port:

```
switch:admin> linkcost 1/9 1000
```

To display the new cost value on the same port:

```
switch:admin> linkcost 1/9

Interface 1/9  (E_PORT)  Cost   1000 (STATIC)
```

To delete the cost value and reset to default:

```
switch:admin> linkcost 1/9 0
```

To display the change:

```
switch:admin> linkcost 1/9

Interface 1/9  (E_PORT)  Cost   500
```

To set the ISL cost to a value outside of the recommended range:

```
switch:admin> linkcost 1/9 32766
```

The link cost entered may prevent some parts of the fabric from being accessible. If you do not want this to happen, choose no and run 'linkcost' again with a value lower than 32766.

Do you want to continue? (yes, y, no, n): [no] y

```
switch:admin> linkcost 1/9

Interface 1/9  (E_PORT)  Cost   32766 (STATIC)
```

To set the ISL cost to the maximum value:

```
switch:admin> linkcost 1/9 65535
```

The link cost entered will cause the port to become unusable. If you do not want this to happen, choose no and run 'linkcost' again with a value lower than 65535.

Do you want to continue? (yes, y, no, n): [no] n

SEE ALSO interfaceShow, IsDbShow, topologyShow, uRouteShow, fcrRouterPortCost
logicalGroup

Creates and manages groups of monitored elements.

SYNOPSIS

logicalgroup --create group_name -type group_type

[-members member_list]

logicalgroup --delete group_name

logicalgroup --addmember group_name -members member_list

logicalgroup --delmember group_name -members member_list

logicalgroup --clone existing_group_name

- name new_group_name

logicalgroup --show [group_name]

logicalgroup --help

DESCRIPTION

Use this command to create and modify groups of elements that are to be monitored using the same set
of thresholds. For example, you can create a group of ports that behave in a similar manner, such as
UNIX ports or long-distance ports.

The elements in a group must be the same type: ports, circuits, or SFP transceivers. By creating a group
of similar elements, you can manage these elements as a single entity.

The maximum number of user-defined groups is 64 per logical switch.

NOTES

This command requires a Fabric Vision license.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS

This command has the following operands:

 group_name

 Specifies the name of the group to be configured. The name for the group must be
 unique; it is case-sensitive and can contain up to 32 characters.

 member_list

 Specifies the elements in the group. The member list must be enclosed in double
 quotation marks and can consist of the following:

 Port and SFP groups:
 • A single port, for example, "8" or "2/8" on bladed systems.
 • A port range where the beginning and end port are separated by a dash, for
 example, "8-13" or "2/8-13" on bladed systems.
 • A set of ports and port ranges separated by commas, for example,
 "3,5,7-10,15" or "2/3,2/5,3/7-10,4/15" on bladed systems.

 Circuit groups:
 • A single circuit in VE_Port/circuit format, for example, "33/5".
 • A circuit range in VE_Port/circuit format, for example, "33/1-3".
 • A set of circuits separated by commas, for example, "33/1-3,33/5".
---create group_name
 Creates a group of monitored elements.

--type group_type
 Specifies the type of elements present in the group. Valid types include the
 following:

 port
 The elements are FC ports.

 circuit
 The elements are FCIP circuits.

 sfp
 The elements are SFP transceivers.

--members member_list
 Specifies the elements that are to be in the group.

---delete group_name
 Deletes a user-defined group of monitoring elements. You cannot delete a
 predefined group. You cannot delete a group that is used by any rules.

--addmember group_name
 Adds members to the group.

 --members member_list
 Specifies the elements that are to be added to the group.

--delmember group_name
 Deletes members from the group.

 --members member_list
 Specifies the elements that are to be deleted from the group.

---clone
 Creates a replica of an existing group. The new group has all of the members of
 the existing group. You can further modify the newly created group. The following
 operands are required:

 existing_group_name
 Specifies the name of an existing group. The group can be a predefined group or
 a user-defined group.

 --name new_group_name
 Specifies the name of the group to be created.

---show
 Displays detailed information for a single group or all groups in MAPS. For each
 group, the group name, type, member count, and group members are displayed.

 group_name
 Displays information for a single specified group. The name can be a predefined
 or a user-defined group.

---help
 Displays the command usage.

EXAMPLES
 To create a group with three port members:

 switch:admin> logicalgroup --create CRITICAL_PORTS
 --type port --members "2, 10, 22"

 To add members to a group:

 switch:admin> logicalgroup --addmember CRITICAL_PORTS
 --members "4, 5"
To delete members from a group:

```
switch:admin> logicalgroup --delmember CRITICAL_PORTS
         --delmember "5"
```

To clone a group:

```
switch:admin> logicalgroup --clone CRITICAL_PORTS
         -name LONG_DISTANCE_PORTS
```

To display the members of a group:

```
switch:admin> logicalgroup --show CRITICAL_PORTS
```

```
<table>
<thead>
<tr>
<th>Group Name</th>
<th>Predefined</th>
<th>Type</th>
<th>Member Count</th>
<th>Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRITICAL_PORTS</td>
<td>No</td>
<td>Port 9</td>
<td>1/1-5,3/7-9,3/12</td>
<td></td>
</tr>
</tbody>
</table>
```

To delete a group:

```
switch:admin> logicalgroup --delete CRITICAL_PORTS
```

SEE ALSO mapsConfig, mapsDb, mapsPolicy, mapsRule, mapsSam
login

Logs in as new user.

SYNOPSIS login

DESCRIPTION Use this command to log in to the switch with another user name and password, without first logging out from the original session. If you originally connected through a Telnet or rlogin session, that session is left open.

This command allows you to access commands that you cannot access at your current user level.

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS None

EXAMPLES To log in as admin from the login user:

 switch:user> login
 login: admin
 Password: ******

SEE ALSO logout
logout

Logs out from a shell session.

SYNOPSIS

 logout

DESCRIPTION

Use this command to log out from a shell session. Remote login connections are closed and the local serial connections return to the login prompt.

The exit command is accepted as a synonym for logout, as is Ctrl-D at the beginning of a line.

OPERANDS

None

EXAMPLES

To log out from an rlogin session:

 switch:admin> logout

SEE ALSO

login
IsanZoneShow

Displays logical SAN zone information.

SYNOPSIS

lsanzoneshow [-s] [-f fabricid] [-w wwn] [-z zonename]

DESCRIPTION

Use this command to display the inter-fabric zones or LSAN zones. These zones are normal WWN zones created in FC Router EX_Port-connected fabrics and backbone fabrics. The LSAN zones are identified by the text string "lsan_" in the zone name. Note that the string is case insensitive so "LSAN_" also is valid. The FC Router uses these zones to establish the inter-fabric device import and export policy. The LSAN zones are established by zoning administration in each EX_Port-attached fabric and backbone fabric. Inter-fabric device sharing is allowed between two devices if the LSAN zones defined in their respective fabrics both allow the two devices to communicate; for example, the intersection of LSAN zones in two fabrics define the device sharing policy.

The LSAN zones are listed by fabric. Zone membership information (information about the devices in the zone) is provided for each LSAN zone. The default output displays only WWNs of the zone members.

Search parameters -f, -w, and -z allow searching for LSAN zones based on fabric ID, WWN of an LSAN zone member, or LSAN zone name.

"No LSAN zone found" is displayed if there is no LSAN zone information available at this FC Router.

Each LSAN zone entry displays the following:

Fabric ID

The ID of the fabric in which the LSAN zone was created.

Zone Name

The zone name.

Zone Members

The zone members or devices. The default output displays the WWN of the zone members.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

-s state

Displays state information for the device. Valid states include the following:

Configured

Device is configured to be in an LSAN, but the device is neither imported nor exists in this fabric.

Initializing

Device is in an intermediate state. It is not yet imported into the fabric.

EXIST

Device exists in this fabric (the fabric of the zone entry).

Imported

Device has been imported (proxy created) into this fabric.

-f fabricid

Displays LSAN zones in the specified fabric.
lsanZoneShow

-\texttt{w wnn}
Displays LSAN zones containing the specified port WWN. The WWN format is \texttt{xx:xx:xx:xx:xx:xx}.

-\texttt{z zonename}
Displays LSAN zones with the specified zone name. The database for zones is displayed per switch, which can differ from the database stored on the other FCR switches.

\textbf{EXAMPLES}

To display the LSAN zones:

switch:admin> \texttt{lsanzoneshow}
Fabric ID: 4 Zone Name: lsan_fcr10_0
50:05:07:65:05:84:0b:83
50:05:07:65:05:84:09:0e
10:00:00:00:c9:2b:6a:68
21:00:00:00:37:18:22:55
Fabric ID: 5 Zone Name: lsan_fcr11_0
10:00:00:00:c9:2b:6a:68
21:00:00:00:37:18:22:55
50:05:07:65:05:84:0b:83
50:05:07:65:05:84:09:0e
switch#

\textbf{SEE ALSO}
\texttt{fcrFabricShow, fcrPhyDevShow, fcrProxyDevShow, fcrRouteShow, switchShow}
lsCgf

Configures and manages a logical switch

SYNOPSIS

 Iscfg --create FID [-b | -base] [-f | -force]
 Iscfg --delete FID [-f | -force]
 lsCgf --config FID -slot slot1[-slot2]
 [-port [port1[-port2]]] [-q | -qsfp]
 [-f | -force]
 lsCgf --restore_to_default FID
 lsCgf --restore_slot_to_default slot
 lsCgf --change FID [[-newfid FID] | [-base] [-force]
 lsCgf --show [-ge] [-provision]
 lsCgf --help

DESCRIPTION

Use this command to create a logical switch and to modify logical switch configurations.

The logical switch feature provides the ability to partition a single physical switch into multiple switch
instances. Each of these switch partitions is referred to as a logical switch (LS). The logical switch feature
allows you to configure multiple logical fabrics on top of a base (physical) fabric. Each logical fabric is
made up of logical switches that share the physical resources of the base fabric, for example, interswitch
link (ISL) connectivity. At the same time, protocol and management isolation of each logical fabric is
maintained, and each logical fabric can scale independently.

The Default Logical Switch is created by the system and cannot be deleted. All switch ports not explicitly
assigned to a logical switch are part of the default logical switch.

The Virtual Fabric (VF) feature must be enabled on the switch before you can configure a logical switch.
Use the fosconfig --enable vf command to enable the feature. Use the fosconfig --show command to
determine whether the VF feature is enabled or disabled on the switch.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

Not all commands that support the -force option will prompt for user input when used without the -force
option.

OPERANDS

This command has the following operands:

 --create

 Creates a logical switch instance. The following operands are supported.

 FID

 Specifies the Fabric ID. Each logical switch in a chassis is assigned a unique
 fabric identifier. The FID address space is shared between logical switches and
 EX_Ports. Valid FID values are integers between 1 and 128. The default logical
 switch is assigned FID 128 by default. This operand is required.
-b | -base Creates a base logical switch on the chassis. A base logical switch communicates among different logical switches. Legacy switches can be connected to the base logical switch through EX_Ports, and interswitch links (ISLs) between base logical switches enable communication among different logical switches. This operand is optional.

-f | -force Executes the command without confirmation. This operand is optional.

--delete Deletes a logical switch with the specified fabric ID. The specified logical switch must exist and no ports should be configured on this partition. You must remove all ports from the logical switch before deleting the logical switch instance. Use the lsconf --config command to remove the ports.

FID Specifies the Fabric ID of the logical switch. This operand is required.

-f | -force Executes the command without confirmation. This operand is optional.

--config Configures the specified logical switch. This command assigns ports to the logical switch specified by a given FID. The ports are removed from the partition on which they are currently configured. This command prompts for confirmation, indicating that the specified ports will be disabled. The following operands are supported:

FID Specifies the fabric ID of the logical switch. This operand is required.

-slot slot1[-slot2] Specifies the slot number or a range of slot numbers separated by a dash, for example -slot 3-5. This operand is required.

-port port1[-port2] Specifies the ports to be assigned to the logical switch. Provide a valid port, or a range of ports separated by a dash, for example -port 3-8. This operand is optional; if omitted, all ports on the specified slots are assigned.

-q | -qsfp Moves all ports in a quad small form-factor pluggable (QSFP) group to be assigned to the logical switch. This operand is optional.

-f | -force Executes the command without confirmation. This operand is optional.

--restore_to_default FID Moves all vacant ports in the logical switch specified by FID to the default switch. Use this command when lsconf --show displays no ports, but the switch continues to generate errors indicating that there are ports on the switch.

--restore_slot_to_default slot Moves all ports on a specified slot to the default switch.

--change Changes the fabric ID of a logical switch, creates a base logical switch out of an existing logical switch, or removes base switch properties. The -newfid and -base operands are exclusive and may not be combined. The following operands are supported:

FID Specifies the Fabric ID of the logical switch. This operand is required.
Changes the fabric ID of an existing logical switch. This command effectively removes the logical switch from a given logical fabric and makes it part of another logical fabric.

Turns an existing logical switch into a base switch. When this command is issued on a switch that is already a base switch, this command removes the base switch properties. This command disables the current logical switch. After making the change, you must re-enable the switch.

Executes the command without confirmation. This operand is optional.

Displays the partition configuration on a switch or chassis. Without any operands, the command displays all logical switches and the FC ports assigned to them. For each switch, the FID, switch role, and domain ID are displayed: base switch (bs) or default switch (ds). The following operands are optional with the --show option.

Displays partition configuration information for GbE ports. This operand is valid only on the Brocade 7800/FX8-24 platforms.

Displays the partition configuration for all slots, regardless of the slot's status. This operand is valid only on a chassis and can be used with or without the -ge option.

Displays the command usage.

EXAMPLES

To create a base switch:

```
switch:admin> lscfg --create 1 -base
Creation of a base switch requires that the proposed new base switch on this system be disabled.
Would you like to continue [y/n]? y
About to create switch with fid=1. Please wait...

Switch successfully created.

Logical Switch has been created with default configurations. Please configure the Logical Switch with appropriate switch and protocol settings before activating the Logical Switch.
```

To create a logical switch identified by fabric ID 2:

```
switch:admin> lscfg --create 2
A Logical switch with FID 2 will be created with default configuration.
Would you like to continue [y/n]? y
About to create switch with fid=2. Please wait...
switch1 Updating flash ... 2013/05/02-10:13:59, [ZONE-1034], 373, SLOT 4 | FID 2, INFO, switch_2, \ A new zone database file is created.
2013/05/02-10:14:15, [FSSM-1002], 374, SLOT 5 | CHASSIS, INFO, switch, \ HA State is in sync.
All service instances in sync 2013/05/02-10:14:15, [FSSM-1002], 375, SLOT 4 | CHASSIS, INFO, switch, \ HA State is in sync.
Logical Switch with FID (2) has been successfully created.
```
Logical Switch has been created with default configurations. Please configure the Logical Switch with appropriate switch and protocol settings before activating the Logical Switch.

To create a base switch with FID 2 without confirmation:

```
switch:admin> lscfg --create 2 -base -force
```

About to create switch with fid=2. Please wait...
Switch successfully created.

Logical Switch has been created with default configurations. Please configure the Logical Switch with appropriate switch and protocol settings before activating the Logical Switch.

To delete a logical switch:

```
switch:admin> lscfg --delete 2
```

The Logical switch with FID 2 will be deleted.
Would you like to continue [y/n]? y
2013/05/02-10:18:08, [FW-1424], 387, SLOT 4 | FID 2, WARNING, switch_2,
Switch status changed from HEALTHY to MARGINAL.
2013/05/02-10:18:08, [FW-1439], 388, SLOT 4 | FID 2, WARNING, switch_2,
Switch status change contributing factor Switch offline.
All active login sessions for FID 2 have been terminated.
Switch successfully deleted.
2013/05/02-10:18:29, [PMGR-1003], 389, SLOT 4 | CHASSIS, INFO, pluto_19,
Attempt to delete switch 2 succeeded.

To assign ports to a logical switch:

```
switch:admin> lscfg --config 2 -port 10-12
```
This operation requires that the affected ports be disabled.
Would you like to continue [y/n]? y
Making this configuration change. Please wait...
Configuration change successful.
Please enable your ports/switch when you are ready to continue.

To move all ports in a QSFP group to a logical switch:

```
switch:admin> lscfg --config 10 -slot 5 -port 0-20 -qsfp
```
This operation requires that the affected ports be disabled and will move all ports(0-23) in qsfp to fid 10.
Would you like to continue [y/n]? y
Making this configuration change. Please wait...
Dispatch a request to kernel-land component: swc
Dispatch a request to kernel-land component: swc
Configuration change successful.
Please enable your ports/switch when you are ready to continue.
To display the logical switch configuration for FC ports only:

```
switch:admin> lscfg --show
Created switches FIDs(Domain IDs): 128(ds)(10) 1(bs)(1) 2(1)
Port 0 1 2 3 4 5 6 7 8 9
---------------------------------------------------------------
FID 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2
Port 10 11 12 13 14 15 16 17 18 19
---------------------------------------------------------------
FID 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128
Port 20 21 22 23 24 25 26 27 28 29
---------------------------------------------------------------
FID 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128
Port 30 31 32 33 34 35 36 37 38 39
---------------------------------------------------------------
FID 128 | 128 | 128 | 2 | 2 | 2 | 128 | 128 | 128 | 128
```

To display the logical switch configuration for GbE ports only (in the example, all GbE ports are in logical switch 2):

```
switch:admin> lscfg --show -ge
Created switches FIDs(Domain IDs): (ds) 2(bs)(1) 1(1)
Slot 1 2 3 4 5 6 7 8
------------------------------------------------------
Port 0 | 2 | | | | | | |
1 | 2 | | | | | | |
2 | 2 | | | | | | |
3 | 2 | | | | | | |
4 | 2 | | | | | | |
5 | 2 | | | | | | |
6 | 2 | | | | | | |
7 | 2 | | | | | | |
8 | 2 | | | | | | |
9 | 2 | | | | | | |
10 | 2 | | | | | | |
11 | 2 | | | | | | |
```

To display the partition configuration for all slots with the -ge option:

```
switch:admin> lscfg --show -provision -ge
Created switches FIDs(Domain IDs): 128(ds)(118) 2(bs)(1) 1(1)
Slot 1 2 3 4 5 6 7 8
------------------------------------------------------
Port 0 | 128 | 2 | | | | | 128 | 128 |
1 | 128 | 2 | | | | | 128 | 128 |
2 | 128 | 2 | | | | | 128 | 128 |
3 | 128 | 2 | | | | | 128 | 128 |
4 | 128 | 2 | | | | | 128 | 128 |
5 | 128 | 2 | | | | | 128 | 128 |
6 | 128 | 2 | | | | | 128 | 128 |
To change the fabric ID for a logical switch:

```
switch:admin> lscfg --change 1 -newfid 2
```

Changing of a switch fid requires that the switch be disabled.
Would you like to continue [y/n]? y
Disabling switch...
All active login sessions for FID 2 have been terminated.
Checking and logging message: fid = 2.
Please enable your switch.

To display the change:

```
switch:admin> lscfg --show
```

```
Created switches FIDs (Domain IDs): 128 (ds) (118) 1 (1) 2 (bs) (1)
```

```
Port 0 1 2 3 4 5 6 7 8 9

FID 1 | 1 | 1 | 1 | 1 | 128 | 128 | 128 | 128 | 128 |
Port 10 11 12 13 14 15 16 17 18 19

FID 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 |
Port 20 21 22 23 24 25 26 27 28 29

FID 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 |
Port 30 31 32 33 34 35 36 37 38 39

FID 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 |
```

To make logical switch FID 1 the base switch without confirmation:

```
switch:admin> lscfg --change 1 -base -force
```

Disabling the current base switch...
Disabling switch fid 1
Disabling the proposed new base switch...
Disabling switch fid 1
Please enable your switches when ready.

To make logical switch FID 1 the base switch with confirmation:

```
switch:admin> lscfg --change 1 -base
```

Creation of a base switch requires that the proposed new base switch on this system be disabled.

Would you like to continue [y/n]? y
Disabling the proposed new base switch...
Disabling switch fid 1
Please enable your switches when ready.

SEE ALSO  IfCfg, setContext
lsDbShow

Displays the Fabric Shortest Path First (FSPF) link state database.

SYNOPSIS

lsdbshow [domain]

DESCRIPTION

Use this command to display an FSPF link state database record for switches in the fabric or for a specified domain.

There are two types of database entries:

- The link state database entry, which is permanently allocated.
- The link state record (LSR), which is allocated when a switch is connected to the fabric.

The LSR describes the links between connected domains in a fabric. For a link to be reported in the LSR, the neighbor for that link must be in NB_ST_FULL state.

This command displays the content of both types of database entries, if both are present, as shown below:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>Domain ID described by this LSR. A (self) keyword after the domain ID indicates that LSR describes the local switch.</td>
</tr>
<tr>
<td>lsrP</td>
<td>Pointer to LSR.</td>
</tr>
<tr>
<td>earlyAccLSRs</td>
<td>Number of LSRs accepted, even though they were not sufficiently spaced apart.</td>
</tr>
<tr>
<td>ignoredLSRs</td>
<td>Number of LSRs not accepted because they were not sufficiently spaced apart.</td>
</tr>
<tr>
<td>lastIgnored</td>
<td>Last time an LSR was ignored.</td>
</tr>
<tr>
<td>installTime</td>
<td>Time this LSR was installed in the database, in seconds since boot.</td>
</tr>
<tr>
<td>iseFlags</td>
<td>Internal variable.</td>
</tr>
<tr>
<td>uOutIfsP</td>
<td>Internal variable.</td>
</tr>
<tr>
<td>uAllOutIfsP</td>
<td>Internal variable.</td>
</tr>
<tr>
<td>uPathCost</td>
<td>Internal variable.</td>
</tr>
<tr>
<td>uOldHopCount</td>
<td>Internal variable.</td>
</tr>
<tr>
<td>uHopsFromRoot</td>
<td>Internal variable.</td>
</tr>
<tr>
<td>uPathCount</td>
<td>The number of currently available paths to the remote domain.</td>
</tr>
<tr>
<td>mOutIfsP</td>
<td>Internal variable.</td>
</tr>
<tr>
<td>parent</td>
<td>Internal variable.</td>
</tr>
</tbody>
</table>
mPathCost  | Internal variable.
mHopsFromRoot | Internal variable.

**Link State Record pointer**

- **lsr**: Pointer to LSR. The same as IsrP.

**lsAge**

- Age, in seconds, of this LSR. An LSR is removed from the database when its age exceeds 3,600 seconds.

**reserved**

- Reserved for future use.

**type**

- Type of the LSR. Always 1.

**options**

- Always 0.

**lsId**

- ID of this LSR. It is identical to the domain ID.

**advertiser**

- Domain ID of the switch that originated this LSR.

**incarn**

- Incarnation number of this LSR.

**length**

- Total length, in bytes, of this LSR. Includes header and link state information for all links.

**chksum**

- Checksum of total LSR, with exception of lsAge field.

**linkCnt**

- Number of links in this LSR. Each link represents a neighbor in NB_ST_FULL state.

**flags**

- Always 0.

**LinkId**

- ID of this link. It is the domain ID of the switch on the other side of the link.

**out port**

- Port number on the local switch.

**rem port**

- Port number of the port on the other side of the link.

**cost**

- Cost of this link. The default cost for a 1 Gbps link is 1,000.

**bw**

- The rounded bandwidth of the output link, in Gbps.

**type**

- Always 1.
NOTES  The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS  This command has the following operand:

domain  Specifies the domain ID of the LSR to be displayed. This operand is optional; if omitted, the entire link state database is displayed.

EXAMPLES  To display the link state record for a switch:

```
switch:admin> lsdbshow 1

Domain = 1 (self), Link State Database Entry pointer = 0x1096da60
lsrP = 0x109784b0
earlyAccLSRs = 0
ignoreQLSRs = 0
lastIgnored = Never
installTime = Aug 26 18:20:41.451
lseFlags = 0xa
uOutIfsP[0] = 0x00000000
uOutIfsP[1] = 0x00000000
uOutIfsP[2] = 0x00000000
uOutIfsP[3] = 0x00000000
uOutIfsP[4] = 0x00000000
uOutIfsP[5] = 0x00000000
uOutIfsP[6] = 0x00000000
uAllOutIfsP[0] = 0x00000000
uAllOutIfsP[1] = 0x00000000
uAllOutIfsP[2] = 0x00000000
uAllOutIfsP[3] = 0x00000000
uAllOutIfsP[4] = 0x00000001
uAllOutIfsP[5] = 0x00000000
uAllOutIfsP[6] = 0x00000000
uPathCost = 0
uOldHopCount = 0
uHopsFromRoot = 0
uPathCount = 1
mOutIfsP[0] = 0x10000000
mOutIfsP[1] = 0x00000000
mOutIfsP[2] = 0x00000000
mOutIfsP[3] = 0x00000000
mOutIfsP[4] = 0x00000000
mOutIfsP[5] = 0x00000000
mOutIfsP[6] = 0x00000000
parent = 0xf0
mPathCost = 0
mHopsFromRoot = 0

Link State Record:
Link State Record pointer = 0x109784b0
lsAge = 321
reserved = 0
type = 1
options = 0x0
lsId = 1
advertiser = 1
incarn = 0x80000185
```
lsDbShow

length          = 60
chksum          = 0x168a
linkCnt = 2,    flags = 0x0
 LinkId =  91, out port =  28, rem port =  28, cost =  500, bw = 16G, type = 1
 LinkId =  91, out port =  29, rem port =  29, cost =  500, bw = 48G, type = 1

SEE ALSO                  interfaceShow, nbrStateShow
mapsConfig

Enables MAPS and sets other MAPS configurations.

SYNOPSIS

mapsconfig --enablemaps -policy policy_name

mapsconfig --fwconvert

mapsconfig --config pause -type member_type
  -members member_list

mapsconfig --config continue -type member_type
  -members member_list

mapsconfig --actions actions_list

mapsconfig --emailcfg -address email_address

mapsconfig --import flow_name [-force]

mapsconfig --deimport flow_name

mapsconfig --purge

mapsconfig --show

mapsconfig --help

DESCRIPTION

Use this command to perform the following Monitoring and Alerting Policy Suite (MAPS) functions:

- Enable MAPS monitoring. This operation will disable Fabric Watch monitoring.
- Convert Fabric Watch configuration to MAPS policies.
- Pause or continue monitoring specific elements.
- Define the list of allowable actions that can be taken on the switch when a threshold is triggered.
- Configure e-mail address to which the alerts must be delivered.
- Import a flow.
- Remove the imported flow from MAPS configuration.
- Delete all user-defined MAPS configurations: rules, groups, policies, etc.
- Display MAPS settings.

NOTES

This command requires a Fabric Vision license.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.
OPERANDS

This command has the following operands:

--enablemaps
    Enables MAPS and disables Fabric Watch monitoring. The following operand is required:

    -policy policy_name
    Specifies the policy that will be enabled after MAPS starts monitoring. The policy can be a converted Fabric Watch policy, a predefined MAPS policy, or a user-defined policy. Valid values for the policy_name variable are as follows:

    dflt_conservative_policy
    Contains rules with more lenient thresholds that allow a buffer and do not immediately trigger actions. Use this policy in environments where the elements are resilient and can accommodate errors.

    dflt_aggressive_policy
    Contains rules with very strict thresholds. Use this policy if you need a pristine fabric (for example, FICON fabrics).

    dflt_moderate_policy
    Contains rules with thresholds values between the aggressive and conservative policies.

    fw_active_policy
    Contains all of the monitoring rules based on the active thresholds in Fabric Watch at the time of the migration.

    fw_default_policy
    Contains all of the monitoring rules based on the default thresholds configured in Fabric Watch.

    fw_custom_policy
    Contains all of the monitoring rules based on the custom thresholds configured in Fabric Watch.

    user_policy
    A user-defined policy.

--fwconvert
    Converts Fabric Watch thresholds into the following policy files that can be utilized by MAPS:
    • fw_default_policy
    • fw_custom_policy
    • fw_active_policy

--config pause
    Stops monitoring specific elements. The active policy is still in effect.

--config continue
    Resumes monitoring specific elements on which monitoring was previously paused.

    -type member_type
    Specifies the type of elements on which to pause monitoring. Valid types include the following:

    port
    The elements are FC ports.

    circuit
    The elements are FCIP circuits.

    sfp
    The elements are SFP transceivers.
-members member_list
  Specifies the specific elements on which to pause or continue monitoring. The member list must be enclosed in double quotation marks and can consist of the following:

  Port and SFP groups:
  - A single port, for example, "8" or "2/8" on bladed systems.
  - A port range where the beginning and end port are separated by a dash, for example, "8-13" or "2/8-13" on bladed systems.
  - A set of ports and port ranges separated by commas, for example, "3,5,7-10,15" or "2/3,2/5,3/7-10,4/15" on bladed systems.

  Circuit groups:
  - A single circuit in VE_Port/circuit format, for example, "33/5".
  - A circuit range in VE_Port/circuit format, for example, "33/1-3".
  - A set of circuits separated by commas, for example, "33/1-3,33/5".

--actions actions_list
  Specifies a comma-separated list of all of the actions that are allowed globally on the switch. Any actions listed for a specific rule must also be listed here to take effect. Valid actions include the following:

  raslog
  Generates a RASLog message.

  fence
  Fences the port, if port fencing is enabled. Port fencing takes the ports offline if the user-defined thresholds are exceeded. This action is valid only on conditions that are evaluated on ports.

  smtp
  Generates an SNMP trap.

  email
  Sends information about a switch event to a specified e-mail address.

  sw_critical
  Sets the state of the affected switch to critical. This action is valid only if the monitoring system (specified by the monitor operand in the mapsRule command) is one of the switch policy status monitoring systems.

  sw_marginal
  Sets the state of the affected switch to marginal. This action is valid only if the monitoring system (specified by the monitor operand in the mapsRule command) is one of the switch policy status monitoring systems.

  sfp_marginal
  Sets the state of the affected SFP transceiver to marginal. This action is valid only if the monitoring system (specified by the monitor operand in the mapsRule command) is one of the switch policy status monitoring systems.

  none
  No actions are allowed on the switch. Specifying this option allows you to turn off all notifications.

--emailcfg
  Specifies the configuration for e-mail notifications, if email is a triggered action. You can configure a relay host IP address using the relayConfig command.
-**address** `email_address`  
Specifies the e-mail address to which the notifications are sent. You can configure up to 5 e-mail addresses as the alert message's receiver. Multiple e-mail addresses must be separated by a comma and each e-mail address can be up to a maximum length of 128 bytes. The e-mail address must conform to standard syntax: string@domain.suffix. Invalid e-mail addresses are rejected.

---import  
Imports a flow from Flow Vision into MAPS.  
`flow_name`  
Specifies the name of a flow to be imported. The flow name must be defined in Flow Vision. This operand is required.

---force  
Imports a flow with the same name as the previously imported flow. This operand is optional. When a flow that was imported into MAPS is deleted in Flow Vision, all members of the group corresponding to that flow are automatically deleted from MAPS. If the same flow is created again, it will not automatically be reimported into MAPS, and importing this flow using the `--import` option fails unless you use the `--force` option.

---deimport  
Removes a flow from MAPS. The following operand is required:  
`flow_name`  
Specifies the name of the flow to be removed from MAPS.

---purge  
Deletes all user-defined MAPS configurations on the switch (groups, rules, and policies). This command does not delete the predefined groups and policies. Enables `dflt_conservative_policy` after successful purge.

---show  
Displays the MAPS global configuration settings.

---help  
Displays the command usage.

**EXAMPLES**

To enable MAPS monitoring and set `dflt_moderate_policy` as the active policy:

```
switch:admin> mapsconfig --enablemaps -policy dflt_moderate_policy
```

To stop monitoring on three ports:

```
switch:admin> mapsconfig --config pause -type port
-members "3/1,3/2,3/3"
```

To resume monitoring on two ports:

```
switch:admin> mapsconfig --config continue -type port
-members "3/1,3/3"
```

To specify that generating a RASLog and sending an e-mail message are the only allowed notification actions on this switch:

```
switch:admin> mapsconfig --actions raslog,email
```

To configure the e-mail address to which notifications are sent:

```
switch:admin> mapsconfig --emailcfg -address admin@mycompany.com
```
To import a flow:

switch:admin> mapsconfig --import fmFlow1

To delete all of the user-defined groups, policies, and rules:

switch:admin> mapsconfig --purge
WARNING: This command will clear all the user-defined MAPS configurations and activate the factory defined policy and rules.
Do you want to continue? (yes, y, no, n): [no] yes

To display the global MAPS configuration:

switch:admin> mapsconfig --show
Configured Notifications:  Raslog, Fence, SNMP, EMAIL
Mail Recipient:            admin@mycompany.com
Relay Host IP is:          10.10.10.10
Relay Host Domain name:    brocade.com

Paused members :
=================
PORT : 2/5,3/1-2,3/6
CIRCUIT :
SFP :

SEE ALSO  logicalGroup, mapsDb, mapsPolicy, mapsRule, mapsSam, relayConfig
MapsDb

Displays or clears the dashboard showing an at-a-glance snapshot of switch health status.

**SYNOPSIS**

```
mapsdb --show [all | history | details [-day mm/dd/yyyy | -hr hour]]
mapsdb --clear [all | history | summary]
mapsdb --help
```

**DESCRIPTION**

Use this command to view the summary of the events or rules triggered and the objects on which the rules were triggered over a specified period of time, and to clear the dashboard data. When used with the `--show` option, this command displays the following information:

**Switch Health Report**

Displays the overall status of the switch. If the overall status is not healthy, the contributing factors and the fenced ports are listed.

**Summary Information**

Displays the status of the monitoring categories needed to determine the current health of the switch. The health state of each category is contributed to by a group of monitoring systems or error counters, and the rules configured in the active policy. The summary view displays the following information for each category:

- Information collected since midnight of the current day and the historical information collected over the last 7 days.

  The health state can be one of the following:

  **No Error**
  
  No error has occurred.

  **In operating range**

  The errors are within the thresholds configured in the active policy.

  **Out of operating range**

  The errors are above the configured thresholds and this triggers the rules configured in the active policy. This indicates that some attributes of the switch are operating out of the configured range.

**Conditions contributing to health**

Displays the conditions that contributed to the current switch status. The following information is displayed: number of rules triggered in a category, repeat count, triggered rules, execution time, the elements for which rules were triggered, and the triggered value.

**History Data**

Displays the following historical data for a specific time window: the monitoring system, the current value that triggered the rule, and the elements for which rules were triggered.

If no operands are specified, this command displays the usage.

**NOTES**

This command requires a Fabric Vision license.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.
OPERANDS

This command has the following operands:

--show
Displays a summary of the data collected since midnight of the current day. The following operands are supported with the --show command.

all
Displays a summary and historical data of the errors for 5 rules and last 5 ports.

history
Displays the historical data only.

details
Displays detailed data in addition to the summary. The following operands are supported with the details command.

-day mm/dd/yyyy
Displays the dashboard data for a specific day.

mm
Specifies the month. Valid values are 01 through 12.

dd
Specifies the date. Valid values are 01 through 31.

 yyyy
Specifies the year.

-hr hour_of_day
Displays the dashboard data for a specific hour of the day. The valid values for hour are 0 through 23. For example, if you specify 17, the dashboard data is displayed for the time window of 5:00 PM to 5:59 PM.

--clear
Clears the dashboard data. This command clears all database data except the History Data of the current day because it is directly displayed from hardware. The following operands are supported with the --clear command.

all
Clears all dashboard data.

history
Clears the dashboard history data.

summary
Clears the dashboard summary data.

--help
Displays the command usage.

EXAMPLES

To display the dashboard with summary information for data collected since midnight:

switch:admin> mapsdb --show
===== Dashboard Start Time: Fri Feb 8 09:57:29 2013, Active policy: \ndflt_conservative_policy =====

Switch Health Report:
=====================
Current Switch Policy Status: HEALTHY

<table>
<thead>
<tr>
<th>Category</th>
<th>Today</th>
<th>Last 7 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Health</td>
<td>In operating range</td>
<td>In operating range</td>
</tr>
<tr>
<td>FRU Health</td>
<td>In operating range</td>
<td>In operating range</td>
</tr>
<tr>
<td>Security Violations</td>
<td>In operating range</td>
<td>In operating range</td>
</tr>
<tr>
<td>Fabric State Changes</td>
<td>In operating range</td>
<td>In operating range</td>
</tr>
</tbody>
</table>
### Switch Resource
- Out of operating range | In operating range

### Traffic Performance
- In operating range | In operating range

### FCIP Health
- In operating range | In operating range

**Conditions contributing to health:**

<table>
<thead>
<tr>
<th>Category</th>
<th>Repeat</th>
<th>Rule Name</th>
<th>Execution Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Health (36)</td>
<td>9</td>
<td>defNON_E_F_PORTSLF_5</td>
<td>02/08/13 21:16:36</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>defNON_E_F_PORTSLF_5</td>
<td>02/08/13 21:15:36</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>defNON_E_F_PORTSLF_5</td>
<td>02/08/13 21:14:30</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>defNON_E_F_PORTSLF_5</td>
<td>02/08/13 21:9:12</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>defNON_E_F_PORTSLF_5</td>
<td>02/08/13 21:4:54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Object</th>
<th>Triggered</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port 33</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Port 34</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Port 35</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Port 32</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Port 33</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Port 34</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Port 35</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Port 32</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Port 33</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Port 34</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Port 35</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Port 32</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Port 33</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Port 34</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Port 35</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Port 32</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Port 33</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Port 34</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Port 35</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
To display the dashboard with summary information and historical data for a specific day:

```
switch:admin> mapsdb --show details -day 10/31/2012
```

Switch Health Report:

```
Current Switch Policy Status: HEALTHY
Category | Today | Last 7 days |

Port Health | In operating range | In operating range |
FRU Health | In operating range | In operating range |
Security Violations | In operating range | In operating range |
Fabric State Changes | In operating range | In operating range |
Switch Resource | In operating range | In operating range |
Traffic Performance | In operating range | In operating range |
FCIP Health | In operating range | In operating range |
```

Conditions contributing to health:

```
Category | TORT | Rule Name | Condition | Object | Triggered |
--
```

History Data:

```
MS | Current 10/31/12 | --/--/-- | --/--/-- | --/--/-- | --/--/-- |

CRC | - | - | - | - | - |
ITW | - | - | - | - | - |
LOSS_SYNC | - | 75(1) | - | - | - |
LF | - | 75(3) | - | - | - |
LOSS_SIGNAL | - | 75(3) | - | - | - |
PE | - | - | - | - | - |
STATE_CHG | - | 75(3) | - | - | - |
LR | - | - | - | - | - |
C3TXTO | - | - | - | - | - |
RX | - | - | - | - | - |
TX | - | - | - | - | - |
UTILITY | - | - | - | - | - |
BN_SECS | - | - | - | - | - |
```

To clear the history data:

```
switch:admin> mapsdb --clear history
```

**SEE ALSO**  
logicalGroup, mapsConfig, mapsPolicy, mapsRule, mapsSam, portStatsClear
mapsHelp

Displays MAPS command information.

SYNOPSIS

mapshelp

DESCRIPTION

Use this command to display a listing of Monitoring and Alerting Policy Suite (MAPS) commands with short descriptions for each command. MAPS commands require a Fabric Vision license.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display MAPS command help information:

switch:admin> mapshelp
mapsRule      Use this command to create threshold monitoring rules
mapsPolicy    Manage policies using this command
logicalGroup  Create and manage user-defined logical groups
mapsdb        Display MAPS Dashboard to see the summary of the \ violations triggered due to current active policy.
mapsConfig    MAPS configuration command eg: use this to enable MAPS
relayConfig   Configure e-mail server information to receive email \ notifications
mapssam       Show availability monitor information
mapsHelp      Display all the MAPS commands

SEE ALSO

None
mapsPolicy

Creates and manages MAPS policies.

SYNOPSIS

mapsPolicy --create policy_name
mapsPolicy --addrule policy_name -rulename rule_name
mapsPolicy --delrule policy_name -rulename rule_name
mapsPolicy --enable policy_name
mapsPolicy --clone existing_policy_name -name new_policy_name
mapsPolicy --delete policy_name
mapsPolicy --show policy_name | -summary | -all
mapsPolicy --help

DESCRIPTION

Use this command to create and manage monitoring policies. A MAPS policy is a set of rules that define thresholds for measures and actions to take when a threshold is triggered. When you enable a policy, all of the rules in the policy are in effect. A switch can have multiple policies.

NOTES

This command requires a Fabric Vision license.

Any change to a policy affects only the information stored on the switch. Consequentially, if an active policy is modified, it has to be re-enabled for the modifications to be effective.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

--create

Creates a monitoring policy.

    policy_name

    Specifies the name of the policy to be created. The name for the policy must be unique; it is case-sensitive and can contain up to 32 characters.

--addrule policy_name

Adds a rule to the specified user-defined policy. You cannot add a rule to the preconfigured policies.

    -rulename rule_name

    Specifies the name of the rule to be added to the policy.

--delrule policy_name

Deletes a rule from the specified user-defined policy. You cannot delete a rule from the preconfigured policies.

    -rulename rule_name

    Specifies the name of the rule to be deleted from the policy.

--enable

Activates a policy on the switch. The dashboard data will be cleared after the policy is activated.
mapsPolicy

policy_name
Specifies the name of the policy to be enabled. The name can be a predefined or a user-defined policy. If another policy is already enabled, that policy is disabled and the specified policy is enabled instead.

--create
Creates a replica of an existing predefined or user-defined policy. The new policy has all of the rules of the existing policy. You can further modify the newly created policy. The following operands are required:

existing_policy_name
Specifies the name of an existing policy. The policy can be a predefined policy or a user-defined policy.

-name new_policy_name
Specifies the name of the policy to be created.

--delete
Deletes a user-defined policy.

policy_name
Specifies the name of the user-defined policy to be deleted. You cannot delete the predefined policies.

--show
Displays the rules in a policy.

policy_name
Specifies the name of the policy to display. The name can be a predefined or a user-defined policy.

-summary
Displays all existing policies and the number of rules present in them.

-all
Displays the rules in all of the policies.

--help
Displays the command usage.

**EXAMPLES**
To create a policy named "aggressive_policy":

```
switch:admin> mapsPolicy --create aggressive_policy
```

To add a rule to a policy:

```
switch:admin> mapsPolicy --addrule aggressive_policy \
-ruiname CRIT_PORT_CRC_GE_2
```

To delete a rule from a policy:

```
switch:admin> mapsPolicy --delrule aggressive_policy \
-ruiname CRIT_PORT_CRC_GE_2
```

To clone a policy:

```
switch:admin> mapsPolicy --clone dflt_conservative_policy \
-name my_conservative_policy
```

To delete a policy:

```
switch:admin> mapsPolicy --delete my_conservative_policy
```
To display a policy:

```
switch:admin> mapspolicy --show Policy1
Policy Names Rule Names Action Condition

Policy1 Rule1 RASLOG Switch(Sec_IDB/Min>0)
Policy1 Rule2 RASLOG Switch(Sec_IDB/Min>1)
Active Policy: Policy2
```

To display a summary of policies:

```
switch:admin> mapspolicy --show -summary
Policy Names Number of Rules

Policy1 : 125
Policy2 : 130
Policy3 : 135
Policy4 : 150
Active Policy: Policy2
```

To enable a policy:

```
switch:admin> mapspolicy --enable aggressive_policy
```

SEE ALSO  logicalGroup, mapsConfig, mapsDb, mapsRule, mapsSam
mapsRule

Creates and manages monitoring rules.

SYNOPSIS

mapsrule --create rule_name [group group_name | flow_name]
            [-monitor ms_name -timebase timebase]
            [-op comparison_operator -value value]
            [-action action [-policy policy]]

mapsrule --delete rule_name

mapsrule --config rule_name [group group_name | flow_name]
            [-monitor monitor] [-timebase timebase]
            [-op comparison_operator] [-value value] [-action action]

mapsrule --clone existing_rule_name -rulename new_rule_name
            [group group_name | flow_name] [-monitor ms_name]
            [-timebase timebase] [-op comparison_operator]
            [-value value] [-action action] [-policy policy]

mapsrule --show rule_name | -all

mapsrule --help

DESCRIPTION

Use this command to configure and manage MAPS monitoring rules, and to display the configured rules.

A rule associates a condition with actions that must be triggered when the specified condition is
evaluated to be true. When you modify a rule, the rule does not take effect until you enable the policy. If
the rule is part of the enabled policy, you must re-enable the policy for the rule to take effect.

NOTES

This command requires a Fabric Vision license.
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS

This command has the following operands:

rule_name

    Specifies the name of the rule to be configured. The name for the rule must be
    unique; it is case-sensitive and can contain up to 32 characters.

monitor

    Specifies the monitoring system. Valid monitoring systems for each category
    include the following:

    Port health

        Monitors port statistics. Valid values for the port health category include the
        following:

            CRC
            Cyclic redundancy check errors

            ITW
            Invalid transmit words

            LOSS_SYNC
            Loss of synchronization
LF  
  Link failure

LOSS_SIGNAL  
  Loss of signal

PE  
  Protocol errors

LR  
  Link reset

C3TXTO  
  Class 3 timeouts

STATE_CHG  
  State changes

CURRENT  
  SFP current

RXP  
  SFP receive power

TXP  
  SFP transmit power

VOLTAGE  
  SFP voltage

SFP_TEMP  
  SFP temperature

PWR_HRS  
  SFP power on hours

FRU health  
  Monitors the field-replaceable units, including ports, power supplies, and flash memory. Valid values for the FRU health category include the following:

PS_STATE  
  Power supply state has changed

FAN_STATE  
  Fan state has changed

BLADE_STATE  
  Blade state has changed

SFP_STATE  
  SFP state has changed

WWN  
  WWN card state has changed

FCIP health  
  Monitors the FCIP circuit. Valid values for the FCIP health category include the following:

CIR_STATE  
  FCIP circuit state changes

CIR_UTIL  
  FCIP circuit utilization

CIR_PKTLOSS  
  FCIP packet loss
Security violations

Monitors security violations on the switch. Valid values for the security health category include the following:

- **SEC_DCC**: DCC violations
- **SEC_HTTP**: HTTP violations
- **SEC_CMD**: Illegal command
- **SEC_IDB**: Incompatible security database
- **SEC_LV**: Login violations
- **SEC_CERT**: Invalid certifications
- **SEC_FCS**: No FCS
- **SEC_SCC**: SCC violations
- **SEC_AUTH_FAIL**: Authentication failure
- **SEC_TELNET**: Telnet violations
- **SEC_TS**: Time Server (TS) out of sync

Fabric state change

Monitors fabric state changes, including zone changes, fabric segmentation, E_Port down, fabric reconfiguration, domain ID changes, and fabric logins. Valid values for the fabric state change category include the following:

- **DID_CHG**: Domain ID change
- **FLOGI**: Fabric logins
- **FAB_CFG**: Fabric reconfigurations
- **EPORT_DOWN**: E_Ports down
- **FAB_SEG**: Fabric segmentation
- **ZONE_CHG**: Zone changes

Switch policy status

Monitors the health of the switch. Valid values for the switch policy change category include the following:

- **BAD_PWR**: Absent or faulty power supply
BAD_TEMP  Temperature sensors outside range
BAD_FAN    Absent or faulty fans
FLASH_USAGE Flash usage
MARG_PORTS Percentage of marginal ports
FAULTY_PORTS Percentage of faulty ports
MISSING_SFP Percentage of missing SFP transceivers
ERR_PORTS  Percentage of error ports
WWN_DOWN   World Wide Name card down
DOWN_CORE  Core blade monitoring
FAULTY_BLADE Faulty blades
HA_SYNC     High Availability monitoring

Switch resource
Monitors system RAM, flash, memory, and CPU. Valid values for the switch resource category include the following:

TEMP       Temperature sensor
FLASH_USAGE Flash usage
CPU        CPU usage
MEMORY_USAGE Memory usage

Traffic performance
Monitors traffic load and flow on an FC Port. Valid values for the traffic performance category include the following:

RX         Receive bandwidth usage %
TX         Transmit bandwidth usage %
UTIL       Trunk utilization
TX_FCNT    Transmit frame count
RX_FCNT    Receive frame count
TX_THPUT  Transmit throughput
RX_THPUT  Receive throughput
IO_RD     IO read command count
IO_WR     IO write command count
IO_RD_BYTES  IO read data
IO_WR_BYTES  IO write data
group_name  Specifies the name of a user-defined group.
flow_name   Specifies the name of a user-defined flow.
timebase    Specifies the time interval between two samples to be compared. Valid time base values include the following:
            min  Samples are compared every minute.
            hour Samples are compared once an hour.
            day  Samples are compared once a day.
            none Time base is not applicable.
comparison_operator  Specifies the relational operations to be used in evaluating the condition. Valid operators include the following:
            l  Less than
            le Less than or equal to
            g  Greater than
            ge Greater than or equal to
            eq  Equal to
value       Specifies the threshold value. Valid values include the following:
            • For numerical values: 1-9999.
            • For percentage values: 1-100.
            • For FRU states: ON, OFF, IN, OUT, or FAULTY.
            • For temperature monitoring: IN_RANGE or OUT_OF_RANGE.
**action**

Specifies a comma-separated list of actions to be taken if the specified condition is evaluated to be true. The action is not taken unless it is also specified globally, using the `mapsconfig --actions` command. Valid actions include the following:

- **raslog**
  Generates a RASLog message.

- **fence**
  Fences the port, if port fencing is enabled. Port fencing takes the ports offline if the user-defined thresholds are exceeded. This action is valid only on conditions that are evaluated on ports.

- **snmp**
  Generates an SNMP trap.

- **email**
  Sends information about a switch event to a specified e-mail address.

- **sw_critical**
  Sets the state of the affected switch to critical. This action is valid only if the `monitor` operand is one of the switch policy status monitoring systems.

- **sw_marginal**
  Sets the state of the affected switch to marginal. This action is valid only if the `monitor` operand is one of the switch policy status monitoring systems.

- **sfp_marginal**
  Sets the state of the affected SFP transceiver to marginal. This action is valid only if the `monitor` operand is one of the switch policy status monitoring systems.

- **none**
  No actions are allowed on the switch. Specifying this option allows you to turn off all notifications.

**--create rule_name**

Creates a monitoring rule and adds it to a specified policy. All the following operands are required:

- **-group group_name**
  Specifies the group containing the elements on which the specified condition is to be evaluated.

- **-monitor ms_name**
  Specifies the monitoring system (MS).

- **-timebase time_base**
  Specifies the time interval between two samples to be compared.

- **-op comparison_operator**
  Specifies the relational operation to be used in evaluating the condition.

- **-value value**
  Specifies the threshold value.

- **-action action**
  Specifies a comma-separated list of actions to be taken if the specified condition is evaluated to be true.

- **-policy policy**
  Specifies the user-defined policy to which the rule is to be added. You cannot add a rule to a predefined policy.

**--delete rule_name**

Deletes a monitoring rule.
--config rule_name

Modifies a monitoring rule. You cannot modify a default rule.
Specify only the operands that you want to modify. Refer to mapsrule --create for a listing of operands and their descriptions.

--clone existing_rule_name -rulename new_rule_name

Creates a replica of an existing rule. The following operands are required:

existing_rule_name
Specifies the name of the exiting rule to be copied.

-rulename new_rule_name
Specifies the name of the new rule. The name for the new rule must be unique; it is case-sensitive and can contain up to 32 characters.

Refer to mapsrule --create for a listing of optional operands and their descriptions. Specify only the operands that you want to modify. If no operands are specified, an exact copy is created.

--show

Displays a rule, including the condition and actions.

rule_name
Specifies the name of the rule to display.

-all
Displays all rules configured on the switch.

--help

Displays the command usage.

EXAMPLES

To create a rule for monitoring the number of CRC errors every hour on critical ports and generating a RASlog if the number of CRC errors is greater than 10:

switch:admin> mapsrule --create check_crc -monitor crc -group CRITICAL_PORTS -timebase hour -op g -value 10 -action raslog

To modify a rule to change the action to generate a RASlog message and fence the port:

switch:admin> mapsrule --config check_crc -monitor crc -group CRITICAL_PORTS -timebase hour -op g -value 10 -action raslog,fence

To delete a rule:

switch:admin> mapsrule --delete New_Cntr_High

To clone a rule with a modified timebase:

switch:admin> mapsrule --clone Rule1 -rulename NewRule2 -timebase Hour

To display a single rule:

switch:admin> mapsrule --show defRuleITWAboveHighPF
Rule Data:
--------
RuleName: defRuleITWAboveHighPF
Actions: Raslog
Condition: ALL_PORTS(ITW/MIN>25)
Policies Associated: none
To display all of the rules configured on a switch:

```bash
switch:admin> mapsrule --show -all
RASLOG (R) | FENCE (F) | EMAIL (E) | SNMP (S) | \n SW_MARGINAL (SWM) | SW_DOWN (SWD) | SFP_MARGINAL (SFPM)
--
RuleName Action Condition
--
Rule1 R,F,S Switch(SEC_IDB/Min>0)
Rule2 R Switch(SEC_IDB/Hour>1)
NewRule1 R,F,S Switch(SEC_IDB/Min>0)
NewRule2 R,F,S Switch(SEC_IDB/Hour>1)
```

SEE ALSO logicalGroup, mapsConfig, mapsDb, mapsPolicy, mapsSam
mapsSam

Generates or clears the port availability monitor report.

SYNOPSIS
mapssam --show
mapssam --clear
mapssam --help

DESCRIPTION
Use this command to display or clear the MAPS port availability monitor report on a logical switch. This report displays uptime and downtime for each port and enables you to check if a particular port is failing more often than the others. When issued with the --show option, the command displays the following information:

- **Port**: Port number on the local switch.
- **Type**: Port type, such as the following: E (E_Port), F (F_Port), U (U_Port), D (disable port), T (Trunk port), VE (VE_Port), G (G_Port), DP (persistently disable port), DIA (D_Port), or VEX (VEX_Port).
- **Total Up Time**: Percent of time the port was up.
- **Total Down Time**: Percent of time the port was faulty.
- **Down Occurrence**: Number of times the port was faulty.
- **Total Offline Time**: Percent of time the port was offline.

NOTES
This command requires a Fabric Vision license.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
This command has the following operands:

--show
Displays the SAM report.

--clear
Clears the SAM report.

--help
Displays the command usage.

EXAMPLES
To generate a port availability monitor report:

```
switch:admin> mapssam --show

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Total Up Time</th>
<th>Total Down Time</th>
<th>Down Occurrence</th>
<th>Total Offline Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>
```
2   U   0   0   0   100
3   F   100  0   0   0
4   U   0   0   0   100
5   U   0   0   0   100
6   U   0   0   0   100
7   U   0   0   0   100
8   U   0   0   0   100
9   E   0   0   0   0
10  U   0   0   0   100
(output truncated)

To clear the report:

switch:admin> mapssam --clear

SEE ALSO logicalGroup, mapsConfig, mapsDb, mapsPolicy, mapsRule
memShow

Displays the amounts of free and used memory in a switch.

SYNOPSIS  
memshow [-b | -k | -m]

DESCRIPTION  
Use this command to display free and used memory in the switch, as well as the shared memory and buffers used by the kernel.

NOTES  
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS  
This command has the following operands:

- `b`  
  Specify to display memory usage in bytes.

- `k`  
  Specify to display memory usage in kilobytes.

- `m`  
  Specify to display memory usage in megabytes. By default, memory usage is displayed in bytes.

EXAMPLES  
To view the memory usage:

```
switch:admin> memshow
 total used free shared buffers cached
Mem: 129740800 112562176 17178624 0 139264 30396416
Swap: 0 0 0

switch:admin> memshow -m
 total used free shared buffers cached
Mem: 123 107 16 0 0 28
Swap: 0 0 0
```

SEE ALSO  
supportSave
motd

Sets the banner on the chassis.

SYNOPSIS

motd --set string

motd --show

DESCRIPTION

Use this command to set the banner on the chassis.

The banner is a string of alphanumeric characters. It is displayed before you log in to a switch.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following optional operands:

--set string

Specify a text string of alphanumeric characters to be displayed before login. The string must be enclosed in double quotation marks. Spaces are allowed. The maximum length is 116 characters.

--show

Displays the chassis-wide banner.

--help

Displays the command usage.

EXAMPLES

To set a chassis-level banner for the switch:

switch:admin> motd --set "This is a \chassis-level banner. It displays before the login."

To display the banner:

switch:admin> motd --show
This is a chassis-level banner. It displays before the login.

SEE ALSO

bannerSet, bannerShow
msCapabilityShow

Displays the Management Server (MS) capabilities.

SYNOPSIS

mscapabilityshow

DESCRIPTION

Use this command to display the supported capabilities of the Management Server for each switch in the fabric. An asterisk displays next to the name of the local switch.

NOTES

Reliable commit service (RCS) is a fabric-wide capability and is supported only if all the switches in the fabric support the service.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display the supported MS capabilities for each switch in the fabric:

```
switch:admin> mscapabilityshow
Switch WWN Capability Switch Name
======================== ========== ========
10:00:00:60:69:20:15:71 0x0000008f "switch1**
10:00:00:60:69:00:30:05 0x0000008f "switch2"
```

Capability Bit Definitions:

- Bit 0: Basic Config Service Supported.
- Bit 1: Platform Management Service Supported.
- Bit 2: Topology Discovery Service Supported.
- Bit 3: Unzoned Name Service Supported.
- Bit 4: Fabric Zone Service Supported.
- Bit 5: Fabric Lock Service Supported.
- Bit 6: Time Service Supported.
- Bit 7: RSCN Small Payload Supported.
- Bit 8: Reliable Commit Service (RCS) Supported.
- Bit 9: Access Gateway Registration/Discovery Supported.
- Bit 10: Administrative Domains (AD) Supported.
- Others: Reserved.

SEE ALSO

msConfigure, msPlMgmtActivate, msPlMgmtDeactivate, msTdDisable, msTdEnable, msTdReadConfig
msConfigure

Configures the Management Server (MS) access control list (ACL).

SYNOPSIS

    msconfigure

DESCRIPTION

Use this command to configure the MS Access Control List (ACL). The MS allows a Storage Area Network (SAN) management application to retrieve and administer the fabric and Interconnect Elements, such as switches. This application is located at the Fibre Channel well-known address, 0xFFFFFA.

If the MS ACL is empty (default), The MS is available to all systems connected to the fabric. By populating the MS ACL with one or more world wide names (WWNs), you can restrict access to MS to the specified WWNs.

This command is interactive and provides the following choices:

0
   Done

1
   Display the access list

2
   Add member based on its port/node WWN

3
   Delete member based on its port/node WWN

When changing the MS ACL by adding or deleting WWNs, you are prompted to save the new configuration to nonvolatile storage. The saved MS ACL becomes effective upon reboot.

The MS ACL is implemented on a per-switch basis and should be configured on the switch to which the management application is directly connected.

NOTES

When an FCS policy is enabled, the MS ACL is not used. In such a case, access to MS is controlled by security by way of the MS_POLICY configuration.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command is supported only in AD0 and AD255 contexts.

OPERANDS

None

EXAMPLES

To display the MS ACL:

    switch:admin> msconfigure
       0       Done
       1       Display the access list
       2       Add member based on its port/node WWN
       3       Delete member based on its port/node WWN

    select : (0..3) [1] 1

    MS Access List consists of (5): {
    20:01:00:60:69:00:60:10
    20:02:00:60:69:00:60:10
    20:03:00:60:69:00:60:10
    20:02:00:60:69:00:60:03
msConfigure

20:02:00:60:69:00:60:15

0       Done
1       Display the access list
2       Add member based on its Port/Node WWN
3       Delete member based on its Port/Node WWN

select : (0..3) [1] 0

done ...

SEE ALSO  msCapabilityShow, msPlatShow, msPIClearDB, msPIMgmtActivate, msPIMgmtDeactivate, msTdDisable, msTdEnable, msTdReadConfig, secPolicyShow
msPlatShow

Displays the Management Server (MS) platform database.

SYNOPSIS

msplatshow

DESCRIPTION

Use this command to display information from the MS platform database. This command displays the name of each platform object with the platform type (GATEWAY, HOST_BUS_ADAPTER, and so forth), associated management addresses, and associated node names.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands” and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display the MS platform database for a fabric:

switch:admin> msplatshow
--------------------------------------------
Platform Name: [9] "first obj"
Platform Type: 5 : GATEWAY
Number of Associated M.A.: 1
Associated Management Addresses:
Number of Associated Node Names: 1
Associated Node Names:
10:00:00:60:69:20:15:71
----------------------------------------------
Platform Name: [10] "second obj"
Platform Type: 7 : HOST_BUS_ADAPTER
Number of Associated M.A.: 1
Associated Management Addresses:
Number of Associated Node Names: 2
Associated Node Names:
10:00:00:60:69:20:15:79
10:00:00:60:69:20:15:75

SEE ALSO

msCapabilityShow, msConfigure, msPlatShowDBCB, msPIClearDB, msPMgmtActivate, msPMgmtDeactivate
msPlatShowDBCB

Displays the Management Server (MS) platform service database control block.

SYNOPSIS  msPlatShowDBCB

DESCRIPTION Use this command to display the control block fields associated with the platform database.

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS None

EXAMPLES To display the MS platform service database control block:

    switch:admin> msPlatShowDBCB
    Domain  Worldwide Name     Retry Count Exchange Status
    ----------------------------------------------
    3: 10:00:00:60:69:51:10:e6     0             0x2
    ----------------------------------------------
    msPlDBCB.peerWwn == 00:00:00:00:00:00:00:00.
    msPlDBCB.psPeerWwn == 00:00:00:00:00:00:00:00:00.
    msPlDBCB.replicate == 0.
    msPlDBCB.fabMaySeg == 255.
    msPlDBCB.enabled == 1.

SEE ALSO msCapabilityShow, msConfigure, msPlatShow, msPIClearDB, msPIMgmtActivate, msPIMgmtDeactivate
msPlClearDB

Clears the Management Server (MS) platform database on all switches in the fabric.

SYNOPSIS

msPlClearDB

DESCRIPTION

Use this command to clear the MS platform database in the entire fabric. Because this operation cannot be undone, it should not be performed unless it is intended to resolve a database conflict between two joining fabrics or to establish an entirely new fabric with an empty database.

NOTES

When an FCS policy is enabled, this command can be issued only from the primary FCS switch.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command is supported only in AD0 and AD255 contexts.

OPERANDS

None

EXAMPLES

To clear the MS platform database:

switch:admin> msPlClearDB

MS Platform Service is currently enabled.
This will erase MS Platform Service Database in the entire fabric.

Would you like to continue this operation?
(yes, y, no, n): [no] y

Request to MS Platform DB Clear operation in progress...

*Completed clearing MS Platform Service Database!!

SEE ALSO

msCapabilityShow, msConfigure, msPlatShow, msPlatShowDBC, msPIMgmtActivate, msPIMgmtDeactivate
msPIMgmtActivate

Activates the Management Server (MS) platform service.

SYNOPSIS

msplmgmtactivate

DESCRIPTION

Use this command to activate the MS platform service throughout the fabric. This command attempts to activate the MS platform service for each switch in the fabric. The change takes effect immediately and is committed to the configuration database of each affected switch. MS activation is persistent across power cycles and reboots.

NOTES

By default, the MS platform service is disabled.

Before issuing this command, run msCapabilityShow to verify that all switches in the fabric support the MS platform service; if one switch does not support the service, the command fails.

When an FCS policy is enabled, this command can be issued only from the primary FCS switch.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command is supported only in AD0 and AD255 contexts.

OPERANDS

None

EXAMPLES

To activate the MS platform service:

    switch:admin> msplmgmtactivate

    Request to activate MS Platform Service in progress......

    *Completed activating MS Platform Service in the fabric!

SEE ALSO

msCapabilityShow, msPlatShow, msPIClearDB, msPIMgmtDeactivate
msPlMgmtDeactivate

Deactivates the Management Server (MS) platform service.

SYNOPSIS    msplmgmtdeactivate

DESCRIPTION  Use this command to deactivate the MS platform service throughout the fabric. This command
deactivates the MS platform service for each switch in the fabric and commits the change to nonvolatile
storage.

NOTES        When an FCS policy is enabled, this command can be issued only from the primary FCS switch.
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

This command is supported only in AD0 and AD255 contexts.

OPERANDS     None

EXAMPLES     To deactivate the MS platform service on all switches in the fabric:

    switch:admin> msplmgmtdeactivate

    MS Platform Service is currently enabled.

    This will erase MS Platform Service configuration
    information as well as database in the entire fabric.

    Would you like to continue this operation?
    (yes, y, no, n): [no] y

    Request to deactivate MS Platform Service in progress...

    *Completed deactivating MS Platform Service in the fabric!

SEE ALSO     msCapabilityShow, msConfigure, ms PlatShow, ms PlatShowDBCB, ms PIClearDB,
             msPlMgmtActivate
msTdDisable

Disables the Management Server (MS) topology discovery service.

SYNOPSIS
mstddisable ["ALL"]

DESCRIPTION
Use this command to disable the management server topology discovery service on a local switch or an entire fabric. This change takes effect immediately and commits to the configuration database for all affected switches. The change is persistent across power cycles and reboots.

NOTES
Topology Discovery Management requires the attached devices (including attached switches) to support request node identification data (RNID) extended link service (ELS).

When an FCS policy is enabled, and this command is issued with the "ALL" operand, it can be issued only from the primary FCS.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command is supported only in AD0 and AD255 contexts.

OPERANDS
The following operand is optional:

"ALL"
Disables the MS topology discovery service throughout the entire fabric. This operand must be enclosed in double quotation marks.

EXAMPLES
To disable the MS topology discovery service on the local switch only:

switch:admin> mstddisable
This may erase all NID entries. Are you sure?
(yes, y, no, n): [no] y

Request to disable MS Topology Discovery Service in progress....
done.
*MS Topology Discovery disabled locally.

To disable MS topology discovery on all the switches in the fabric:

primaryfcs:admin> mstddisable "ALL"
This may erase all NID entries. Are you sure?
(yes, y, no, n): [no] y

Request to disable MS Topology Discovery Service in progress....
done.
*MS Topology Discovery disabled locally.
*MS Topology Discovery Disable Operation Complete!!

SEE ALSO
msTdEnable, msTdReadConfig
msTdEnable

Enables the Management Server (MS) topology discovery service.

SYNOPSIS  mstdenable [*"ALL"]

DESCRIPTION  Use this command to enable the MS topology discovery service on the local switch or throughout the fabric. The change takes effect immediately and commits to the configuration database for all affected switches. The change is persistent across power cycles and reboots.

NOTES  Topology Discovery Management requires the attached devices (including attached switches) to support request node identification data (RNID) extended link service (ELS).

When an FCS policy is enabled, and this command is issued with the "ALL" operand, it can be issued only from the primary FCS.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command is supported only in AD0 and AD255 contexts.

OPERANDS  The following operand is optional:

"ALL"  Enables the MS topology discovery service throughout the fabric. This operand must be enclosed in double quotation marks.

EXAMPLES  To enable the MS topology discovery service on the local switch:

switch:admin> mstdenable

Request to enable MS Topology Discovery Service in progress....
done.
*MS Topology Discovery enabled locally.

To enable MS topology discovery on all switches in the fabric:

switch:admin> mstdenable "ALL"

Request to enable MS Topology Discovery Service in progress....
done.
*MS Topology Discovery enabled locally.
*MS Topology Discovery Enable Operation Complete!!

SEE ALSO  mstdDisable, mstdReadConfig
msTdReadConfig

Displays the status of The Management Server (MS) topology discovery service.

SYNOPSIS

mstdreadconfig

DESCRIPTION

Use this command to check whether or not the management server topology discovery service is enabled.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display the status of the topology discovery service:

switch:admin> mstdreadconfig

*MS Topology Discovery is enabled.

SEE ALSO

msCapabilityShow, msConfigure, msPIMgmtActivate, msPIMgmtDeactivate, msTdDisable, msTdEnable
myid

Displays the current login session details.

SYNOPSIS

myid

DESCRIPTION

Use this command to display the status of the system and the login session details. This includes IPv4 or IPv6 addresses associated with the login session.

The login session gives details of the following:

- CP/switch (or console/serial port) used to log in.
- The IP address of the current login session for Telnet or the name of the current console port or the serial port (if modem login used).
- The current CP mode (Active, Standby, or Unknown).
- The current system status (Redundant, Nonredundant, or Unknown).

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display current login information:

switch:admin> myid
Current Switch: switch
Session Detail: switch (123.123.123.123) Active Redundant

SEE ALSO

version
nbrStateShow

Displays the state of FSPF neighbors.

SYNOPSIS

nbrstateshow [slot][port]

DESCRIPTION

Use this command to display information about fabric shortest path first (FSPF) neighbors to the local switch or information about a neighbor to a specified port. FSPF defines a neighbor as a remote E_Port interface that is directly attached to the local switch. However, if ports are trunked, the command displays data only about the trunk master.

This command displays the following fields:

Local Domain ID
Domain ID of the local switch.

Local Port
E_Port interface on the local switch. This value is typically equal to the Index field reported in the switchShow command.

Domain
Domain ID of the remote switch.

Remote Port
E_Port interface on the remote switch.

State
State of the neighbor. The neighbor can be in one of the following five states:

0
NB_ST_DOWN - The neighbor is down.

1
NB_ST_INIT - The neighbor is initializing.

2
NB_ST_DB_EX - The neighbor and the switch are exchanging data from their Link State Records (LSR) databases.

3
NB_ST_DB_ACK_WT - The neighbor is waiting for the switch to acknowledge the LSR database.

4
NB_ST_DB_WT - The LSR Database is in waiting state; synchronization is in process.

5
NB_ST_FULL - The neighbor is in the last, finishing state. The E_Port can route frames only if the neighbor is in full state.

Sub-State
Substate of the port. The port can be in one of the following 12 substates:

INIT
The port is initializing.

ROUTABLE
The port is ready to receive frames.

ROUTABLE_WAIT
The port is waiting for notification from the neighbor.
nbrStateShow

ROUTABLE_SEND
The port is preparing for local route update; negotiates for the necessary locks before updating the routes.

ROUTABLE_TIMER
The request for one or more locks failed; delay for a short interval before retrying.

DONE
The port is online and in use.

DECOM_START
The decommissioning request is sent to the neighbor and waiting for a response.

DECOM_WAIT
Waiting for neighbor to remove routes using the interswitch link (ISL).

DECOM_SEND
Preparing to update routes of the local port; negotiates for the necessary before updating the routes.

DECOM_TIMER
The request for one or more locks failed; delay for a short interval before retrying.

DECOM_DONE
The local routes are updated; waiting for acknowledgement from the neighbor.

DECOM_BLOCK
The local routes are updated; the neighbor sent acknowledgement.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
This command has the following operands:

slot
For bladed systems only, specify the slot number of the port to display, followed by a slash (/).

port
Specify the port number to display, relative to its slot for bladed systems. Use switchShow to list valid ports. This operand is optional; if omitted, all neighbor states are displayed.

EXAMPLES
To display information about a neighbor directly connected to the local switch:

switch:user> nbrStateShow 2/0
Local Domain ID: 1

<table>
<thead>
<tr>
<th>Local Port</th>
<th>Domain</th>
<th>Remote Port</th>
<th>State</th>
<th>Sub-State</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>2</td>
<td>48</td>
<td>NB_ST_FULL</td>
<td>DONE</td>
</tr>
</tbody>
</table>

SEE ALSO
interfaceShow
nbrStatsClear

Resets FSPF interface counters.

SYNOPSIS

nbrstatsclear [slot/][port]

DESCRIPTION

Use this command to reset the counters of fabric shortest path first (FSPF) frames transmitted and received on all interswitch links (ISLs) or on a specified ISL. Use this command without operands to reset counters on all interfaces. Use interfaceShow to view the FSPF counters.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

slot

For bladed systems only, specify the slot number of the port to display, followed by a slash (/).

port

Specify the port number to display, relative to its slot for bladed systems. Use switchShow to list valid ports. This operand is optional; if omitted, FSPF statistics are reset.

EXAMPLES

To display the counters on a port:

switch:admin> interfaceshow 1/0

idbP = 0x10050a38

Interface 0 data structure:

ngbP = 0x1004ce68
ifNo = 0
masterPort = 0 (self)
defaultCost = 500
cost = 500
delay = 1

(output truncated)

nCmdAcc = 37
nInvCmd = 0
nHloIn = 10
nInvHlo = 0
nLsuIn = 17
nInsIn = 10
attHloOut = 11
nHloOut = 11
attLsuOut = 12
nLsuOut = 12
attLsaOut = 17
nLsaOut = 17

To reset the counters on a port:

switch:admin> nbrstatsclear 1/0
To verify the changes:

switch:admin> **interfaceshow 1/0**

idbP = 0x10050a38

Interface 0 data structure:

nghbP = 0x1004ce68
ifNo = 0
masterPort = 0 (self)
defaultCost = 500
cost = 500

(output truncated)

**SEE ALSO**  interfaceShow, portShow, switchShow
nodeFind

Displays all device Name Server (NS) entries matching a given WWN, device PID, or alias.

SYNOPSIS

nodefind WWN | PID | ALIAS

DESCRIPTION

Use this command to display the NS information for all devices in the fabric that have either a port world
wide name (WWN) or a node WWN matching the given WWN; or have a device PID matching the given
PID; or have a defined configuration alias to which the device belongs matching the given alias.

If there is no device matching the given WWN, PID, or alias, the message "No device found" is displayed.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS

This command has the following operands:

WWN | PID | ALIAS

Specify the WWN, device PID, or alias that can be used to match the real device's
data. The WWN must have eight colon-separated fields, each consisting of one or
two hexadecimal numbers between 0 and ff, with no spaces. The PID must begin
with 0x or 0X; otherwise, it is interpreted as an alias.

EXAMPLES

To display all the device information matching the WWN "20:00:00:e0:8b:01:ce:d3":

switch:user> nodefind 20:00:00:e0:8b:01:ce:d3
Remote:
Type Pid COS PortName NodeName
NL 020eef; 3;20:00:00:e0:8b:01:ce:d3;20:00:00:e0:8b:01:ce:d3;
Fabric Port Name: 20:0e:00:60:69:51:0b:ba
Permanent Port Name: 20:00:00:e0:8b:01:ce:d3
Device type: Physical Target
Port Index: 14
Share Area: No
Device Shared in Other AD: No
Aliases:

To display all the device information matching the PID "0x020eef":

switch:user> nodefind 0x020eef
Remote:
Type Pid COS PortName NodeName
NL 020eef; 3;20:00:00:e0:8b:01:ce:d3;20:00:00:e0:8b:01:ce:d3;
Fabric Port Name: 20:0e:00:60:69:51:0b:ba
Permanent Port Name: 20:00:00:e0:8b:01:ce:d3
Device type: Physical Target
Port Index: 14
Share Area: No
Device Shared in Other AD: No
Aliases:

No match:

To display device information for a string for which there is no match:

switch:user> nodefind abcd
No device found.
To display all the device information matching the alias "a320":

switch:user> nodefind a320
Local:
Type Pid    COS     PortName             NodeName         SCR
NL 0314d9;3;22:00:00:04:cf:5d:dc:2d;20:00:00:04:cf:5d:dc:2d; 0
  FC4s: FCP [SEAGATE ST318452FC 0001]
  Fabric Port Name: 20:14:00:60:69:80:04:79
  Permanent Port Name: 22:00:00:04:cf:5d:dc:2d
  Device type: Physical Target
  Port Index: 20
  Share Area: No
  Device Shared in Other AD: No
  Aliases: a320
NL 0314d6; 3;22:00:00:04:cf:9f:78:7b;20:00:00:04:cf:9f:78:7b; 0
  FC4s: FCP [SEAGATE ST336605FC 0003]
  Fabric Port Name: 20:14:00:60:69:80:04:79
  Permanent Port Name: 22:00:00:04:cf:9f:78:7b
  Device type: Physical Target
  Port Index: 20
  Share Area: No
  Device Shared in Other AD: No
  Aliases: a320
NL 0314d5;3;22:00:00:04:cf:9f:26:7e;20:00:00:04:cf:9f:26:7e; 0
  FC4s: FCP [SEAGATE ST336605FC 0003]
  Fabric Port Name: 20:14:00:60:69:80:04:79
  Permanent Port Name: 22:00:00:04:cf:9f:26:7e
  Device type: Physical Target
  Port Index: 20
  Share Area: No
  Device Shared in Other AD: No
  Aliases: a320

SEE ALSO aliShow, nsAllShow, nsCamShow, nsShow
nsAliasShow

Displays local Name Server (NS) information, with aliases.

SYNOPSIS

nsaliasshow [-r][-t] | -domain domain_id | --help

DESCRIPTION

Use this command to display local name server information with the added feature of displaying the defined configuration aliases to which the device belongs. If there are no defined configuration aliases for that device, no alias is displayed. If there is no information in this switch, the following message is displayed: "There is no entry in the Local Name Server." Use the -domain domainid option to display the remote device details for a specific domain in the fabric.

The information displayed for each device is the same that is displayed by the nsShow command with the exception of the additional display of the alias to which the device belongs. Refer to the nsShow help page for a description of these displays. Use nsCamShow to display information from all switches.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following optional operands:

-\r

Replaces the time-to-live (TTL) attribute output with state change registration (SCR) information. This value indicates what type of RSCN a device registers to receive. Values include the following:

SCR=0

Reserved.

SCR=1

Fabric detected registration. Register to receive all RSCN requests issued by the fabric controller for events detected by the fabric.

SCR=2

NX_Port detected registration. Register to receive all RSCN requests issued for events detected by the affected NX_Port.

SCR=3

Register to receive all RSCN requests issued. The RSCN request returns all effected N_Port_ID pages.

-\t

Displays the device type. The device type is defined in terms of two attributes. The first attribute indicates the origination of the device as one of the following:

-• Physical - The device is connected to the NX_Port, using FLOGI to log in to the switch.
-• Virtual - The device is contrived by the switch.
-• NPV - The device is connected to the NX_Port, using FDISC to log in to the switch.
-• iSCSI - The device is connected to the iSCSI port.

The second attribute indicates the role of the device. Valid role attributes include the following:

-• Unknown (initiator/target) - Device role is not detected
-• Initiator - An iSCSI initiator
-• Target - An iSCSI target
-• Initiator+Target - Both an iSCSI initiator and an iSCSI target
-domain domain_id
Displays the remote device details for a specific domain.

--help
Displays the command usage.

EXAMPLES To display local NS information with aliases:

switch:user> nsaliasshow
{
  Type Pid    COS   PortName        NodeName            TTL(sec)
N 010600;3;20:06:00:05:1e:38:81:71;10:00:00:05:1e:38:81:71; na
  Fabric Port Name: 20:06:00:05:1e:7a:7a:00
  Permanent Port Name: 20:06:00:05:1e:38:81:71
  Port Index: 6
  Share Area: No
  Device Shared in Other AD: No
  Redirect: No
  Partial: No
  Aliases: MyAlias1 MyAlias2
N 010601;3;23:0d:00:05:1e:38:81:71;50:00:51:e3:88:17:10:0d; na
  FC4s: FCP
  PortSymb: [44] "Brocade Ioblaster Port Entity #00,pid#10601."
  Fabric Port Name: 20:06:00:05:1e:7a:7a:00
  Permanent Port Name: 20:06:00:05:1e:38:81:71
  Port Index: 6
  Share Area: No
  Device Shared in Other AD: No
  Redirect: No
  Partial: No
  Aliases:
N 010602;3;10:00:00:00:00:00:00:01;10:00:00:00:00:00:00:00:01; na
  FC4s: FCP
  PortSymb: [41] "Brocade Ioblaster Initiator#00,pid#10602."
  Fabric Port Name: 20:06:00:05:1e:7a:7a:00
  Permanent Port Name: 20:06:00:05:1e:38:81:71
  Port Index: 6
  Share Area: No
  Device Shared in Other AD: No
  Redirect: No
  Partial: No
  Aliases: DeviceAlias
The Local Name Server has 3 entries }

To display local NS information with aliases with the -r option:

switch:user> nsaliasshow -r
{
  Type Pid  COS     PortName              NodeName          SCR
N 010600;3;20:06:00:05:1e:38:81:71;10:00:00:05:1e:38:81:71; 0
  Fabric Port Name: 20:06:00:05:1e:7a:7a:00
  Permanent Port Name: 20:06:00:05:1e:38:81:71
  Port Index: 6
  Share Area: No
  Device Shared in Other AD: No
  Redirect: No
  Partial: No
  Aliases: MyAlias1 MyAlias2
N 010601;3;23:0d:00:05:1e:38:81:71;50:00:51:e3:88:17:10:0d; 3
  FC4s: FCP
  PortSymb: [44] "Brocade Ioblaster Port Entity #00,pid#10601."
Fabric Port Name: 20:06:00:05:1e:7a:7a:00
Permanent Port Name: 20:06:00:05:1e:38:81:71
Port Index: 6
Share Area: No
Device Shared in Other AD: No
Redirect: No
Partial: No
Aliases:

N 010602;3;10:00:00:00:00:00:00:00:1;10:00:00:00:00:00:00:00:1; 3
FC4s: FCP
PortSymb: [41] "Brocade Ioblaster Initiator#00,pid#10602."
Fabric Port Name: 20:06:00:05:1e:7a:7a:00
Permanent Port Name: 20:06:00:05:1e:38:81:71
Port Index: 6
Share Area: No
Device Shared in Other AD: No
Redirect: No
Partial: No
Aliases: DeviceAlias

The Local Name Server has 3 entries

To display local NS information with aliases with the -r and -t options:

switch:admin> nsaliasshow -r -t

<table>
<thead>
<tr>
<th>Type Pid</th>
<th>COS</th>
<th>PortName</th>
<th>NodeName</th>
<th>SCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 010600; 3;20:06:00:00:05:1e:38:81:71;10:00:00:05:1e:38:81:71; 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fabric Port Name: 20:06:00:05:1e:7a:7a:00
Permanent Port Name: 20:06:00:05:1e:38:81:71
Device type: Physical Unknown(initiator/target)
Port Index: 6
Share Area: No
Device Shared in Other AD: No
Redirect: No
Partial: No
Aliases: MyAlias1 MyAlias2

N 010601;3;23:0d:00:05:1e:38:81:71;50:00:51:e3:88:17:10:0d; 3
FC4s: FCP
PortSymb: [44] "Brocade Ioblaster Port Entity #00,pid#10601."
Fabric Port Name: 20:06:00:05:1e:7a:7a:00
Permanent Port Name: 20:06:00:05:1e:38:81:71
Device type: NPIV Unknown(initiator/target)
Port Index: 6
Share Area: No
Device Shared in Other AD: No
Redirect: No
Partial: No
Aliases:

N 010602;3;10:00:00:00:00:00:00:00:1;10:00:00:00:00:00:00:00:1; 3
FC4s: FCP
PortSymb: [41] "Brocade Ioblaster Initiator#00,pid#10602."
Fabric Port Name: 20:06:00:05:1e:7a:7a:00
Permanent Port Name: 20:06:00:05:1e:38:81:71
Device type: NPIV Initiator
Port Index: 6
Share Area: No
To display remote device details for a specific domain:

switch:admin> nsaliasshow -domain 92
{
  Type  Pid    COS     PortName                NodeName
  N 5c1000; 3;23:06:00:05:1e:53:e3:8a;50:00:51:e5:3e:38:a0:06; FC4s: FCP
  PortSymb: [45] "Brocade VDPC Entity-Slot#00,DPC#00,Entity#03."
  Fabric Port Name: 20:10:00:05:1e:53:e3:8a
  Permanent Port Name: 23:06:00:05:1e:53:e3:8a
  Port Index: 16
  Share Area: No
  Device Shared in Other AD: No
  Redirect: No
  Partial: No
  Aliases: MyAlias1
  N 5c1200;3;23:04:00:05:1e:53:e3:8a;50:00:51:e5:3e:38:a0:04; FC4s: FCP
  PortSymb: [45] "Brocade VDPC Entity-Slot#00,DPC#00,Entity#02."
  Fabric Port Name: 20:12:00:05:1e:53:e3:8a
  Permanent Port Name: 23:04:00:05:1e:53:e3:8a
  Port Index: 18
  Share Area: No
  Device Shared in Other AD: No
  Redirect: No
  Partial: No
  Aliases: MyAlias1
  N 5c1300; 3;23:02:00:05:1e:53:e3:8a;50:00:51:e5:3e:38:a0:02; FC4s: FCP
  PortSymb: [45] "Brocade VDPC Entity-Slot#00,DPC#00,Entity#01."
  Fabric Port Name: 20:13:00:05:1e:53:e3:8a
  Permanent Port Name: 23:02:00:05:1e:53:e3:8a
  Port Index: 19
  Share Area: No
  Device Shared in Other AD: No
  Redirect: No
  Partial: No
  Aliases: MyAlias1
  N 5c1700; 3;23:00:00:05:1e:53:e3:8a;50:00:51:e5:3e:38:a0:00; FC4s: FCP
  PortSymb: [34] "Brocade DPC Entity-Slot#00,DPC#00."
  Fabric Port Name: 20:17:00:05:1e:53:e3:8a
  Permanent Port Name: 23:00:00:05:1e:53:e3:8a
  Port Index: 23
  Share Area: No
  Device Shared in Other AD: No
  Redirect: No
  Partial: No
  Aliases: MyAlias1
The Remote Name Server has 4 entries }
nsAllShow

Displays global name server information.

SYNOPSIS
nsallshow [type]

DESCRIPTION
Use this command to display the 24-bit Fibre Channel addresses of all devices in all switches in the fabric. When used with the type operand, the command displays only devices of the specified FC-4 type. FC-4 type codes are referenced in the Fibre Channel Framing and Signaling (FC-FS) standards documentation (see "TYPE codes - FC-4"). When used without operand, all devices are displayed.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
This command has the following operand:

type

Specifies the FC-4 type code to filter the command output. Valid values are 0 to 255. Only the following two FC-4 device type codes are applicable to the Brocade environment:

- 8 - FCP type device
- 5 - FC-IP type device

For all other codes, entries are summarized in the format "x ports supporting FC4 type", where x is the number of ports and type is the user-specified FC-4 type code in hexadecimal format.

EXAMPLES
To display all devices in the fabric, followed by all type 8 (SCSI-FCP) devices, and all type 5 (SCSI-FCIP) devices:

switch:admin> nsAllShow
{ 011000 011200 0118e2 0118e4 0118e8 0118ef 021200 021300 0214e2 0214e4 0214e8 0214ef
  12 Nx_Ports in the Fabric }

switch:admin> nsAllShow 8
{ 0118e2 0118e4 0118e8 0118ef 0214e2 0214e4 0214e8 0214ef
  8 FCP Ports }

switch:admin> nsAllShow 5
{ 011200 021200
  2 FC-IP Ports }

To display a device type of 255:

switch:admin> nsAllShow 255
{ 010100 020a00
  2 Ports supporting FC4 0xff }

SEE ALSO
nsShow, switchShow
nsCamShow

Displays information about remote devices in the Name Server (NS) cache.

SYNOPSIS

nscamshow [-t]

DESCRIPTION

Use this command to display the local NS cache information about the devices discovered in the fabric by the NS cache manager.

If the NS cache manager does not discover new switches or new devices in the fabric, the command displays the message "No Entry is found!"

For each discovered remote switch, this command displays the following information:

Switch entry for N

- Displays the remote domain ID for the switch.

state

- Displays one of the following values:
  - known
    - The local domain is aware of all the devices from this remote domain.
  - unknown
    - The local domain is unaware of devices from this remote domain.
  - ERROR
    - The information for this remote domain is unreliable.

rev

- Fabric OS firmware version of the remote switch. For switches running firmware other than Fabric OS, a string of question marks ("????") is displayed.

owner

- Displays the owner of the NSCAM database entry. The value displayed is a domain ID (domain address). For example, 0xfffc02 indicates domain 2 and is the domain on which the command has been executed. This is the local domain and the information is stored locally by this switch.

cap_available

- Each switch in the fabric exchanges information regarding its capabilities (for example, firmware level, feature support, etc.). When the cap_available value is 1, it indicates that the local domain has received the capabilities of the remote domain that is being displayed. When the value is 0 capability information has not been received.

The remaining information displayed for each device is the same that is displayed by the nsShow command. Refer to the nsShow help page for a description of these displays.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

The following operand is optional:

-t

- Displays the device type. The device type is defined in terms of two attributes. The first attribute indicates the origination of the device as one of the following:
  - Physical
    - The device is connected to the NX_Port, using FLOGI to log in to the switch.
Virtual
The device is contrived by the switch.

NPV
The device is connected to the NX_Port, using FDISC to log in to the switch.

iSCSI
Device is connected to the iSCSI port.

iSCSI
The second attribute indicates the role of the device. Valid role attributes include the following:

Unknown (initiator/target)
Device role is not detected

Initiator
An iSCSI initiator.

Target
An iSCSI target.

Initiator+Target
Both an iSCSI initiator and an iSCSI target.

EXAMPLES
To display all switch and device entries discovered by the Name Server in the fabric:

```bash
switch:user> nsCamShow
nscam show for remote switches:
Switch entry for 92
state rev owner cap_available
known v640 0xfffc23 1
Device list: count 8
Type Pid COS PortName NodeName
N 5c1000; 3;23:06:00:05:1e:53:e3:8a;50:00:51:e5:3e:38:a0:06; FC4s: FCP
PortSymb: [45] "Brocade VDPC Entity-Slot#00,DPC#00,Entity#03."
Fabric Port Name: 20:10:00:05:1e:53:e3:8a
Permanent Port Name: 23:06:00:05:1e:53:e3:8a
Port Index: 16
Share Area: No
Device Shared in Other AD: No
Redirect: No
Partial: No
N 5c1200;3;23:04:00:05:1e:53:e3:8a;50:00:51:e5:3e:38:a0:04; FC4s: FCP
PortSymb: [45] "Brocade VDPC Entity-Slot#00,DPC#00,Entity#02."
Fabric Port Name: 20:12:00:05:1e:53:e3:8a
Permanent Port Name: 23:04:00:05:1e:53:e3:8a
Port Index: 18
Share Area: No
Device Shared in Other AD: No
Redirect: No
Partial: No
N 5c1300; 3;23:02:00:05:1e:53:e3:8a;50:00:51:e5:3e:38:a0:02; FC4s: FCP
PortSymb: [45] "Brocade VDPC Entity-Slot#00,DPC#00,Entity#01."
Fabric Port Name: 20:13:00:05:1e:53:e3:8a
Permanent Port Name: 23:02:00:05:1e:53:e3:8a
Port Index: 19
Share Area: No
Device Shared in Other AD: No
Redirect: No
```

612 Fabric OS Command Reference 53-1002921-02
Partial: No
N 5c1700; 3;23:00:00:05:1e:53:e3:8a;50:00:51:e5:3e:38:a0:00;
FC4s: FCP
PortSymb: [34] "Brocade DPC Entity-Slot#00,DPC#00."
Fabric Port Name: 20:17:00:05:1e:53:e3:8a
Permanent Port Name: 23:00:00:05:1e:53:e3:8a
Port Index: 23
Share Area: No
Device Shared in Other AD: No
Redirect: No
Partial: No
(output truncated)

To display the output with the -t option:

switch:user> nscamshow -t
Switch entry for 92
state  rev    owner  cap_available
known   v640  0xfffc23 1
Device list: count 8
Type Pid    COS     PortName                NodeName
N 5c1000;3;23:06:00:05:1e:53:e3:8a;50:00:51:e5:3e:38:a0:06;
FC4s: FCP
PortSymb: [45] "Brocade VDPC Entity-Slot#00,DPC#00,Entity#03."
Fabric Port Name: 20:10:00:05:1e:53:e3:8a
Permanent Port Name: 23:06:00:05:1e:53:e3:8a
Device type: Virtual Unknown(initiator/target)
Port Index: 16
Share Area: No
Device Shared in Other AD: No
Redirect: No
Partial: No
(output truncated)

SEE ALSO nsAllShow, nsAliasShow, nsShow, switchShow
nsDevLog

Manages device history logging.

SYNOPSIS

nsdevlog --show [-slot slot -port port | -pid pid | -wwpn wwpn | -wwnn nwwn | -event event]

nsdevlog --enable
nsdevlog --disable
nsdevlog --clear
nsdevlog --help

DESCRIPTION

Use this command to manage Name Server (NS) device logging. By default, logging is enabled. The NS records the PortIndex, PID, world wide node name (WWNN), world wide port name (WWPN) and the event (login and logout).

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

--show options

Displays the device logs.

-slot slot -port port
Displays device logs for the specified port or slot/port.

-pid pid
Displays device logs for the specified PID.

-wwpn wwpn
Displays device logs for the specified port WWN.

-wwnn nwwn
Displays device logs for the specified node WWN.

-event event
Displays device logs for the specified event. The events are the following:

• "Register": Entry created by explicit NS registration,
• "Deregister": Entry deleted by explicit NS deregistration.
• "Device Add": Entry created based on UPD Area.
• "Device Del": Entry deleted based on UPD Delete.
• "Device Add (Query)": Entry created by NS query from the device.
• "Port Del": Entries deleted based on DEL Area.
• "Dup WWN": Entry deleted based on Duplicate WWN.
• "Switch Offline": Entries deleted due to switch offline.
• "FPORT Entry": Entry created by F-Port SCN.

--enable
Enables NS device history logging.

--disable
Disables NS device history logging.
nsDevLog

--clear
Clears the NS device history logs.

--help
Displays the command usage.

EXAMPLES
To enable device logging:
switch:admin> nsdevlog --enable
Device History Logging enabled

To disable device logging:
switch:admin> nsdevlog --disable
Device History Logging disabled

To display the NS device log for an event:
switch:admin> nsdevlog --show -event "FPORT Entry"

SEE ALSO nsAliasShow, nsAllShow, nsCamShow, nsShow, nsZoneMember
nsShow

Displays local Name Server (NS) information.

SYNOPSIS

nsshow [-r][-t]

DESCRIPTION

Use this command to display local NS information about devices connected to a switch. If no information is available for the switch, the command displays the following message: "There is no entry in the Local Name Server."

Use nsAllShow to display NS information for all switches in the fabric.

Each line of output displays the following information:

Type
Displays U for unknown, N for N_Port, NL for NL_Port.

PID
Displays the 24-bit Fibre Channel address of the device.

COS
Displays the Class of Service levels supported by the device. This can be class 1, class 2, or class 3. The command displays only the numeric values, 1, 2, and/or 3. A device can support multiple CoS levels.

PortName
Displays the device port world wide name (WWN).

NodeName
Displays the device node WWN.

TTL
Displays the time-to-live, in seconds, for cached entries or NA (not applicable) if the entry is local.

SCR
Displays the state change registration of the device. This field displays only with the -r option.

Device type
Displays the device type if -t is specified.

Fabric Port Name
Displays the F_Port WWN to which the N_Port connects.

Permanent Port Name
Displays the physical N_Port or NL_Port WWN.

Port Index
Displays the index number of the physical N_Port to which the device connects.

Share Area
Displays "Yes" if the port shares an area; otherwise displays "No".

Device Shared in Other AD
Displays "Yes" if the device is shared in another Admin Domain; otherwise displays "No."

Redirect
Displays "Yes" if the device is involved in frame redirection; otherwise displays "No". The device involved in frame redirection is specified as either "virtual", "host", or "target".
Partial

Displays "Yes" if the device entry is incomplete; otherwise displays "No". Devices that are incomplete are displayed by the `nsShow` and `nsCamShow` commands, and have routing established, but are not considered during device discovery (for example, during FC-GS Name Server Queries).

LSAN

Displays "Yes" if the device is currently part of an active LSAN zone; otherwise displays "No".

The following information is displayed only if the device has registered the information (for example, the switch automatically registers SCSI inquiry data for FCP target devices):

- FC4s supported
- IP address
- Port and node symbolic names
- Fabric Port Name. This is the WWN of the port on the switch to which the device is physically connected.
- Port address or port IP address

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following optional operands:

-r

Replaces the time-to-live (TTL) attribute output with state change registration (SCR) information. This value indicates what type of RSCN a device registers to receive. Values include the following:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR=0x00000000</td>
<td>Reserved.</td>
</tr>
<tr>
<td>SCR=0x00000001</td>
<td>Fabric detected registration. Register to receive all RSCN requests issued by the fabric controller for events detected by the fabric.</td>
</tr>
<tr>
<td>SCR=0x00000002</td>
<td>NX_Port detected registration. Register to receive all RSCN requests issued for events detected by the affected NX_Port.</td>
</tr>
<tr>
<td>SCR=0x00000003</td>
<td>Register to receive all RSCN requests issued. The RSCN request returns all effected N_Port_ID pages. The following SCR values use the 4th byte of the SCR value and can coexist with the SCR values of 0x00000000, 0x00000001, 0x00000002, and 0x00000003.</td>
</tr>
<tr>
<td>SCR=0x01000000</td>
<td>Principal switch RSCN registration. Register to receive proprietary RSCN (principal switch change).</td>
</tr>
<tr>
<td>SCR=0x02000000</td>
<td>AG_QOS RSCN registration.</td>
</tr>
</tbody>
</table>

-t

Displays the device type. The device type is defined in terms of two attributes. The first attribute indicates the origination of the device as one of the following:

Physical

The device is connected to the NX_Port, using FLOGI to log in to the switch.
Virtual

The device is contrived by the switch.

NPV

The device is connected to the NX_Port, using FDISC to log in to the switch.

iSCSI

The device is connected to the iSCSI port.

The second attribute indicates the role of the device. Valid role attributes include the following:

Unknown (initiator/target)

Device role is not detected

Initiator

An iSCSI initiator.

Target

An iSCSI target.

Initiator+Target

Both an iSCSI initiator and an iSCSI target.

EXAMPLES

To display local NS information:

```
switch:user> nsshow
{
 Type Pid COS PortName NodeName TTL(sec)
N 010100;3;21:00:00:e0:8b:13:08:10;20:00:00:e0:8b:13:08:10;na
 FC4s: FCP
 NodeSymb: [41] "QLA2340 FW:v3.03.06 DVR:v9.0.0.2 (w32 IP)"
 Fabric Port Name: 20:01:00:05:1e:34:00:70
 Permanent Port Name: 21:00:00:e0:8b:13:08:10
 Port Index: 1
 Share Area: No
 Device Shared in Other AD: No
 Redirect: No
 Partial: No
 LSAN: No
N 010e00;3;21:00:00:e0:8b:12:8a:be;20:00:00:e0:8b:12:8a:be;na
 FC4s: FCP
 NodeSymb: [41] "QLA2340 FW:v3.03.06 DVR:v9.0.0.2 (w32 IP)"
 Fabric Port Name: 20:0e:00:05:1e:34:00:70
 Permanent Port Name: 21:00:00:e0:8b:12:8a:be
 Port Index: 14
 Share Area: No
 Device Shared in Other AD: No
 Redirect: No
 Partial: No
 LSAN: No
The Local Name Server has 2 entries }
```

To display local name server information with the -r option.

```
switch:user> nsshow -r
Type Pid COS PortName NodeName SCR
N 010100;3;21:00:00:e0:8b:13:08:10;20:00:00:e0:8b:13:08:10;0x01000003
 FC4s: FCP
 NodeSymb: [41] "QLA2340 FW:v3.03.06 DVR:v9.0.0.2 (w32 IP)"
 Fabric Port Name: 20:01:00:05:1e:34:00:70
```

618 Fabric OS Command Reference
53-1002921-02
Permanent Port Name: 21:00:00:e0:8b:13:08:10
Port Index: 1
Share Area: No
Device Shared in Other AD: No
Redirect: No
Partial: No
LSAN: No
N 010e00;3;21:00:00:e0:8b:12:8a:be;20:00:00:e0:8b:12:8a:be; \
  0x00000001
FC4s: FCP
NodeSymb: [41] "QLA2340 FW:v3.03.06 DVR:v9.0.0.2 (w32 IP)"
Fabric Port Name: 20:0e:00:05:1e:34:00:70
Permanent Port Name: 21:00:00:e0:8b:12:8a:be
Port Index: 14
Share Area: No
Device Shared in Other AD: No
Redirect: No
Partial: No
LSAN: No
The Local Name Server has 2 entries

To display local name server information with -r and -t options.

switch:user> nsshow -r -t
{
  Type Pid COS     PortName             NodeName         SCR
N 010100; 3;21:00:00:e0:8b:13:08:10;20:00:00:e0:8b:13:08:10; \
  0x00000001
FC4s: FCP
NodeSymb: [41] "QLA2340 FW:v3.03.06 DVR:v9.0.0.2 (w32 IP)"
Fabric Port Name: 20:01:00:05:1e:34:00:70
Permanent Port Name: 21:00:00:e0:8b:13:08:10
Device type: Physical Initiator
Port Index: 1
Share Area: No
Device Shared in Other AD: No
Redirect: No
Partial: No
LSAN: No
N 010e00;3;21:00:00:e0:8b:12:8a:be;20:00:00:e0:8b:12:8a:be; \
  0x00000001
FC4s: FCP
NodeSymb: [41] "QLA2340 FW:v3.03.06 DVR:v9.0.0.2 (w32 IP)"
Fabric Port Name: 20:0e:00:05:1e:34:00:70
Permanent Port Name: 21:00:00:e0:8b:12:8a:be
Device type: Physical Initiator
Port Index: 14
Share Area: No
Device Shared in Other AD: No
Redirect: No
Partial: No
LSAN: No
The Local Name Server has 2 entries

SEE ALSO  nsAllShow, nsAliasShow, nsCamShow, switchShow
nsZoneMember

Displays the information on online devices zoned with a specified device.

**SYNOPSIS**

nszonemember pid | wwn
nszonemember -a | -n | -u
nszonemember [-domain domain] [-index index]
szonemember --help

**DESCRIPTION**

Use this command to display information on all online devices zoned with the specified device. The device can be specified by WWN or Port ID (PID). Use this command with the -u option to display all unzoned devices in the entire fabric. Use the -a option to display online zoned device data for each local device. Use the -domain and -index options to display zoned device data for a device (either local or remote) in the fabric with the specified domain and port index combination. If a domain is not specified, device data for a local device with the specified port index is displayed.

The command output displays the following information:

- **Type**
  - U - known, N - N_Port, NL - NL_Port.
- **Pid**
  - The 24-bit Fibre Channel address.
- **COS**
  - A list of classes of service supported by the device.
- **PortName**
  - The device's port world wide name (WWN).
- **NodeName**
  - The device's node WWN.
- **Permanent Port Name**
  - The physical N_Port or NL_Port WWN.
- **DeviceType**
  - The device type.
- **Port Index**
  - The index of the port to which the device is attached.
- **Shared Area**
  - Whether or not the device shares an area with other devices.
- **Device Shared in Other AD**
  - Whether or not the device is shared in other Admin Domains.

Additional lines may display if the device has registered any of the following information (the switch automatically registers SCSI inquiry data for FCP target devices):

- FC4 supported
- IP address (node)
- IPA
- port and node symbolic name (local device only)
- fabric port name
- hard address or port IP address
**NOTES**
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**
This command has the following operands:

- **PID | WWN**
  Specifies the port ID or WWN of the device for which to display zoned devices.

- **-a**
  Displays each local device's online zoned device data, including the device PID and zone alias.

- **-n**
  Displays each local device's online zoned device data including the device PID.

- **-u**
  Displays all unzoned devices in the entire fabric. The device data includes the device PID and zone alias.

- **-domain domain**
  Displays zoned device data for a device (either local or remote) with the specified domain.

- **-index index**
  Displays zoned device data for a device (either local or remote) with the specified port index.

- **--help**
  Displays the command usage.

**EXAMPLES**
To display information about all the online devices zoned with the given device:

```
switch:admin> nszonemember 0x0416e2
3 local zoned members:
Type Pid COS PortName NodeName SCR
NL 041901;2,3;10:00:00:00:c9:26:0e:ae;20:00:00:00:c9:26:0e:ae; 3
 Fabric Port Name: 20:09:00:60:69:50:06:78
 Permanent Port Name: 10:00:00:00:c9:26:0e:ae
 Device type: Physical Initiator
NL 0416e2;3;22:00:00:20:37:d9:6b:b3;20:00:00:20:37:d9:6b:b3; 0
 FC4s: FCP [SEAGATE ST318304FC 0005]
 Fabric Port Name: 20:06:00:60:69:50:06:78
 Permanent Port Name: 22:00:00:20:37:d9:6b:b3
 Device type: Physical Target
NL 0416e4; 3;22:00:00:20:37:d9:61:ac;20:00:00:20:37:d9:61:ac; 0
 FC4s: FCP [SEAGATE ST318304FC 0005]
 Fabric Port Name: 20:06:00:60:69:50:06:78
 Permanent Port Name: 22:00:00:20:37:d9:61:ac
 Device type: Physical Target

No remote zoned members
```

To display information about all the online devices zoned with the given WWN:

```
switch:admin> nszonemember 10:00:00:00:c8:23:0b:ad
3 local zoned members:
Type Pid COS PortName NodeName SCR
NL 041901;2,3;10:00:00:00:c9:26:0e:ae;20:00:00:00:c9:26:0e:ae; 3
 Fabric Port Name: 20:09:00:60:69:50:06:78
 Permanent Port Name: 10:00:00:00:c9:26:0e:ae
```

Fabric OS Command Reference 621
53-1002921-02
Device type: Physical Initiator
NL 0416e2; 3:22:00:00:20:37:d9:6b:b3;20:00:00:20:37:d9:6b:b3; 0
FC4s: FCP [SEAGATE ST318304FC 0005]
Fabric Port Name: 20:06:00:60:69:50:06:78
Permanent Port Name: 22:00:00:20:37:d9:6b:b3

Device type: Physical Target
NL 0416e4; 3:22:00:00:20:37:d9:61:ac;20:00:00:20:37:d9:61:ac; 0
FC4s: FCP [SEAGATE ST318304FC 0005]
Permanent Port Name: 22:00:00:20:37:d9:61:ac

No remote zoned members

To display all the unzoned devices in the fabric:

```
switch:admin> nszonemember -u

Pid: 0xb01ea9; Aliases: trimm32b_1
Pid: 0xb01eaa; Aliases: trimm32b_2
Pid: 0xb01eab; Aliases: trimm32b_3
Pid: 0xb01eac; Aliases: trimm32b_4
Pid: 0xb01fad; Aliases: trimm32a_5
Pid: 0xb01fae; Aliases: trimm32a_6
Pid: 0xb01fb1; Aliases: trimm32a_7
Pid: 0xb01fb2; Aliases: trimm32a_8
Pid: 0xdc2800; Aliases:
Totally 9 unzoned devices in the fabric.
```

To display each local device’s online zoned device data:

```
switch:admin> nszonemember -a

Port: 4 Pid: 0xb00400 Aliases: ix360_131_201_6a
Zoned Members: 2 devices
 Pid: 0xb00400 Aliases: ix360_131_201_6a
 Pid: 0xbalee8 Aliases: trimm101b_3

Port: 12 Pid: 0xb00c01 Aliases: dl360_130159a
Zoned Members: 2 devices
 Pid: 0xb00c01 Aliases: dl360_130159a
 Pid: 0xbd1bef Aliases: nstor4b_8

Port: 13 Pid: 0xb00d00 Aliases: ix360_131_196p5
Zoned Members: 2 devices
 Pid: 0xb00d00 Aliases: ix360_131_196p5
 Pid: 0xe07d00 Aliases: hds9200_6p4 hds9200_6p4

Port: 14 Pid: 0xb00e00 Aliases: dl360_130251a dl360_130251a
Zoned Members: 2 devices
 Pid: 0xb00e00 Aliases: dl360_130251a dl360_130251a
 Pid: 0xbailae4 Aliases: trimm100a_2
```

To display device data for a local device with the specified port index:

```
switch:admin> nszonemember -index 2

Port Index: 2 Pid: 0x015200 Aliases: ali_b1
Zoned Members: 2 devices
 Pid: 0x015200 Aliases: ali_b1
 Pid: 0x03a840 Aliases: ali_b1
```
To display zoned device data for a device (either local or remote) in the fabric with the specified domain and port index:

switch:admin> nszonemember -domain 3 -index 168
Port Index: 168  Pid: 0x03a840
    Zoned Members: 2 devices
        Pid: 0x03a840  Aliases: ali_z1
        Pid: 0x015200  Aliases: ali_z1

SEE ALSO  cfgShow, nsCamShow, nsShow
nsZoneShow

Displays the zone names.

SYNOPSIS

nszoneshow -pid pid
nszoneshow -wwn wwn
nszoneshow -pid "pid1,pid2"
nszoneshow -wwn "wwn1,wwn2"

DESCRIPTION

Use this command to display the zone names that a specified device or device-pair are part of. The devices can be zoned as part of regular zones, Traffic Isolation (TI) zones, or Frame Redirect (RD) zones.

- If you specify a single Port ID (PID) or world wide name (WWN), the command displays the names of the regular zones, RD zones, or TI zones that the devices belong to.
- If you specify a PID pair or WWN pair, the command displays the names of the common zones (regular, RD or TI zones) that the device pairs share.
- For devices zoned as part of an RD zone, the command displays the following information:
  - If you specify the PID or WWN pair for a given host and virtual target (VT) pair, the command displays the RD zone name.
  - If you specify the PID or WWN pair for a given virtual host (VI) and target pair, the command displays the RD zone name.
  - If you specify the PID or WWN for a given VI or VT, the command displays the RD zone name.
  - If you specify the PID or WWN pair for a given host and target pair, the command displays the regular zone name and the RD zone name.
  - If you specify the PID or WWN for a given host or target, the command displays the regular zone name and the RD zone name.

The host, target, VI and VT are specified while creating zones using the zone command. The RD zone names will start with the prefix 'red_0917'. You can use the cfgshow or the zone --show command to view the zone configuration information.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

- **-pid pid**
  Displays the zone names that the PID belongs to.

- **-wwn wwn**
  Displays the zone names that the WWN belongs to.

- **-pid "pid1,pid2"**
  Displays the zone names of the common zones where both PIDs are zoned together.

- **-wwn "wwn1,wwn2"**
  Displays the zone names of the common zones where both WWNs are zoned together.
EXAMPLES

To display the zone names for a device with a specified PID:

```
switch:admin> nszoneshow -pid 0x010200
Zone Names
=============
zn_test1
zn_test2
=============
```

To display the common zone for two devices specified by a WWN pair:

```
switch:admin> nszoneshow \nwwn "20:08:00:05:1e:a3:01:d9,20:01:00:05:1e:a3:01:d9"
Zone Names
=============
zn_test2
=============
```

To display the RD zone name:

```
switch:admin> cfgshow
Defined configuration:
cfg: myHTcfg myHostTarget
cfg: r_e_d_i_r_c__fg
red________base;
red_0917_00_3f_3f_3f_23_24_25_26_3f_3f_3f_30_32_00_00_00
zone: myHostTarget
00:3f:3f:3f:23:24:25:26; 3f:3f:3f:30:32:00:00:00
zone:red_0917_00_3f_3f_3f_23_24_25_26_3f_3f_3f_30_32_00_00_00
00:3f:3f:3f:23:24:25:26; 3f:3f:3f:30:32:00:00:00;
3f:3f:3f:30:30:00:00:00; 3f:3f:3f:30:31:00:00:00
zone: red________base
00:00:00:00:00:00:00:01; 00:00:00:00:00:00:00:02;
00:00:00:00:00:00:00:03; 00:00:00:00:00:00:00:04
switch:admin> nszoneshow wwn 00:3f:3f:3f:23:24:25:26
Zone Names
=============
myHostTarget
red_0917_00_3f_3f_3f_23_24_25_26_3f_3f_3f_30_32_00_00_00
=============
```

SEE ALSO  
cfgShow, zone, nsZoneMember
passwd

Changes the password for a specified user.

SYNOPSIS

```
passwd
[user_account]
[-old old_password]
[-new new_password]
```

DESCRIPTION

Use this command to change a user account password. Passwords can be changed locally on any switch. For the password database to be distributed to other switches in the fabric, the switches must be configured to accept the password database with the `fddCfg` command. The password database is distributed manually with the `distribute` command.

If RADIUS authentication is enabled, password change is blocked for users changing their own password. Administrators with the privilege to change passwords for other accounts may do so regardless of whether RADIUS authentication is enabled; all such password changes operate on the local password database.

The `passwd` command cannot be run on the Standby CP. When an admin account or a SecurityAdmin account changes the password for other accounts, it does not prompt for the current password, unless the target account is a factory or root account.

Any chosen password must satisfy the following password strength rules:

- Password contains the minimum required number of lowercase characters.
- Password contains the minimum required number of uppercase characters.
- Password contains the minimum required number of numeric characters.
- Password contains the minimum required number of punctuation characters.
- Password must be between `minlength` and 40 characters long. The `minlength` parameter is set with the `passwdCfg` command.
- Password may not contain the colon (:) character.
- Password must satisfy repeated and sequential character constraints.

The password history policy is enforced across all user accounts when the user is setting his own password. The password history policy is not enforced when an administrator sets a password for another user, but the user's password history is preserved and the password set by the administrator is recorded in the user's password history.

The `passwd` command behaves as follows:

- If you are changing your own password, you are prompted to enter the old password and, if your entry is valid, you are prompted to enter the new password. Alternately, you may specify the old and new password on the command line.
- If you are changing another user's password with greater privileges than your current login level, you are prompted to enter that user level's old password and, if your entry is valid, you are prompted for a new password.
- If you are changing another user's password, the target account's AD member list must be a subset of your account's AD member list.
- If you are logged in as the root user when changing another user's password, you are not prompted to enter the old password. If you are a factory account, an admin, or SecurityAdmin account, you are not prompted to enter the current password unless the target account is root.
- Changing the password of any user level causes the login session of that account (if logged in) to terminate.

When invoked without an operand, this command changes the password for the current user account.
NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
The following operand is optional:

user_account
   Specifies the user account for which the password is to be changed. The user account must be an existing account, either default or user-created. Only users with accounts of type "root", "factory", "SecurityAdmin", or "admin" can execute this operand and have permission to change passwords for accounts other than their own.

-old old_password
   Specifies the old password. This operand is optional; if omitted, the command interactively prompts for the old password.

-new new_password
   Specifies the new password. This operand is optional; if omitted and only the old password is specified on the command line, the command interactively prompts for the new password.

DIAGNOSTICS
The system may generate one or more of the following error messages. Refer to the Fabric OS Message Reference for more diagnostic information.

RADIUS enabled error
   Password change disallowed, RADIUS authentication is enabled.

Password error
   Password length, strength, or history policy not met.

"User" is not a valid user name
   You have not specified a valid recognized user name on the system.

Permission denied
   You do not have permission to change the password for the specified user.

Incorrect password
   You have not entered the correct password when prompted for the old password.

Password unchanged
   You have entered the carriage return special input case, choosing not to change the password.

Passwords do not match
   You have not correctly verified the new password.

Invalid length of password
   You have entered a password length that is not between minlength and 40.

Insufficient number of lower case letters
   The password you entered contains less than the minimum required number of lowercase characters.

Insufficient number of upper case letters
   The password you entered contains less than the minimum required number of uppercase characters.

Insufficient number of digits in password
   The password you entered contains less than the minimum required number of numeric characters.

Insufficient number of punctuation characters
   You have entered a password that contains less than the minimum required number of punctuation characters.
passwd

Password matches one of the previous passwords
The password you entered matches one of the previous passwords.
You must wait longer to change your password
You cannot change the password before the minimum aging period expires.
Password contains invalid characters
The password you entered contains invalid characters.

EXAMPLES
To change the password for the admin account while logged in as admin:

```
switch:admin> passwd
Changing password for admin
Enter new password: [redacted]
Re-type new password: [redacted]
Password changed.
Saving password to stable storage.
Password saved to stable storage successfully.
```

To change the password for user "admin" from an admin account noninteractively:

```
switch:admin> passwd -old password -new adminpass
Password changed.
Saving password to stable storage.
Password saved to stable storage successfully.
```

To change the password for user "brocadeUser" from an admin account noninteractively:

```
switch:admin> passwd brocadeUser -old brcdPasswd -new mynewPasswd
Password changed.
Saving password to stable storage.
Password saved to stable storage successfully.
```

SEE ALSO
login, logout, passwdCfg
passwdCfg

Manages the password policies.

SYNOPSIS

passwdcfg --set options value
passwdcfg --setuser username options value
passwdcfg --disableadminlockout
passwdcfg --enableadminlockout
passwdcfg --setdefault
passwdcfg --showall
passwdcfg --showuser username
passwdcfg --deleteuser username
passwdcfg --deleteuser -all
passwdcfg --help

DESCRIPTION

Use this command to manage password policies.

Use --set to configure the following password policies:

• Password strength policy
• Password history policy
• Password expiration policy
• Account lockout policy

Password Strength Policy

The password strength policy enforces a set of rules that new passwords must satisfy. Configurable rules include lowercase and uppercase characters, numbers, punctuation occurrences and minimum length values. It is enforced only when a new password is defined. The password strength policy is enforced across all user accounts. When a password fails more than one of the strength attributes, an error is reported for only one of the attributes at a time.

Password History Policy

The password history policy prevents reuse of a recently used password. The password history policy is enforced across all user accounts when users are setting their own password. It is not enforced when an administrator sets a password for another user, but the user's password history is preserved and the password set by the administrator is recorded in the user's password history.

Password Expiration Policy

The password expiration policy forces expiration of a password after a specified period of time. When a user's password expires, the user must change the password to complete the authentication process. A warning that password expiration is approaching is displayed when the user logs in. The number of days prior to password expiration during which warnings commence is a configurable parameter. Password expiration does not disable or lock out the account. The password expiration policy is enforced across all user accounts except the root and factory accounts.

Account Lockout Policy
The account lockout policy disables a user account when the user exceeds a configurable number of failed login attempts. The mechanism can be configured to keep the account locked until explicit administrative action is taken to unlock the account or locked accounts can be automatically unlocked after a specified period. An administrator can unlock a locked account at any time. Note that the account locked state is distinct from the account disabled state. The account lockout policy is enforced across all user accounts except the root, factory, and SecurityAdmin role accounts. A separate configuration option, available to the SecurityAdmin and Admin role accounts, may be used to enable and disable applications of the account lockout policy to Admin role accounts.

A failed login attempt counter is maintained for each user on each switch instance. The counters for all user accounts are reset to zero when the account lockout policy is enabled. The counter for an individual account is reset to zero when the account is unlocked after the lock-out duration period expires.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command takes as input an operand and its associated arguments. When invoked without operands, the command prints the usage.

--showall
Displays the password configuration parameters.

--showuser username
Displays the password configuration parameters for a specific user.

--setdefault
Resets all password policies to their default values.

--set
Configures a specified password policy.

  -lowercase value
  Specifies the minimum number of lowercase alphabetic characters that must occur in the password. The default value is 0. The maximum value must be less than or equal to the -minlength value.

  -uppercase value
  Specifies the minimum number of uppercase alphabetic characters that must occur in the password. The default value is 0. The maximum value must be less than or equal to the -minlength value.

  -digits value
  Specifies the minimum number of numeric digits that must occur in the password. The default value is 0. The maximum value must be less than or equal to the -minlength value.

  -punctuation value
  Specifies the minimum number of punctuation characters that must occur in the password. All displayable, non-alphanumeric punctuation characters, except the colon (:), are allowed. The default value is 0. The maximum value must be less than or equal to the -minlength value.

  -minlength value
  Specifies the minimum length of the password. The minimum can be set anywhere between 8 and 40 characters. The default value is 8. The total of -lowercase, -uppercase, -digits, -punctuation must be less than or equal to -minlength value.

  -history value
  Specifies the number of past password values that are disallowed when setting a new password. A value of 0 to 24 can be specified. The default value is 0.
passwdCfg

-minpasswordage value
Specifies the minimum number of days that must elapse before a password can be changed. -minpasswordage can be set at 0 to 999. The default value is 0. Setting this parameter to a nonzero value discourages a user from rapidly changing a password in order to defeat the password history setting to reuse a recently used password. The minpasswordage policy is not enforced when an administrator changes the password for another user.

-maxpasswordage value
Specifies the maximum number of days that can elapse before a password must be changed. This is the password expiration period. -maxpasswordage can be set at 0 to 999. Setting this parameter to 0 disables password expiration. The default value is 0. When -maxpasswordage is set to a nonzero value, -minpasswordage must be set to a value less than or equal to -maxpasswordage.

-warning value
Specifies the number of days prior to password expiration that a warning of password expiration is displayed. The valid range for -warning is 0 to 999. The default value to 0.

-lockoutthreshold value
Specifies the number of times a user can specify an incorrect password during login before the account is locked. The number of failed login attempts is counted from the last successful login. Values for -lockoutthreshold range from 0 to 999. Setting this parameter to 0 disables the lockout mechanism. The default value is 0.

-lockoutduration value
Specifies the time, in minutes, after which a previously locked account automatically unlocks. lockoutduration values range from 0 to 99999. The default value is 30. Setting this parameter to 0 disables lockout duration, requiring an administrative action to unlock the account. The lockout duration begins with the first login attempt after the lockout threshold has been reached. Subsequent failed login attempts do not extend the lockout period.

-repeat value
Specifies the length of repeated character sequences that will be disallowed. For example, if the "repeat" value is set to 3, a password "passAAAword" is disallowed because it contains the repeated sequence "AAA". A password of "passAAword" would be allowed because no repeated character sequence exceeds two characters. The range of allowed values is 1 to 40.

-sequence value
Specifies the length of sequential character sequences that will be disallowed. In a character sequence, the ASCII value of each contiguous character differs by one. The ASCII value for the characters in the sequence must all be increasing or decreasing. For example, if the "sequence" value is set to 3, a password "passABCword" is disallowed because it contains the sequence "ABC". A password of "passABword" would be allowed because no repeated character sequence exceeds two characters. The range of allowed values is 1 to 40. The default value is 1.

-reverse [1|0]
Activates (1) or deactivates (0) the validation check to determine whether the password is an exact reverse string of the username.

--setuser username
Configures the password policy for a specific user.
-minpasswordage value
Specifies the minimum number of days that must elapse before a password can be changed. -minpasswordage can be set at 0 to 999. The default value is 0. Setting this parameter to a nonzero value discourages a user from rapidly changing a password in order to defeat the password history setting to reuse a recently used password. The minpasswordage policy is not enforced when an administrator changes the password for another user.

-maxpasswordage value
Specifies the maximum number of days that can elapse before a password must be changed. This is the password expiration period. -maxpasswordage can be set at 0 to 999. Setting this parameter to 0 disables password expiration. The default value is 0. When -maxpasswordage is set to a nonzero value, -minpasswordage must be set to a value less than or equal to -maxpasswordage.

-warning value
Specifies the number of days prior to password expiration that a warning of password expiration is displayed. The valid range for -warning is 0 to 999. The default value to 0.

--enableadminlockout
Enables the admin lockout policy and sets the config parameter "passwdcfg.adminlockout" to 1. If the parameter "passwdcfg.lockouthreshold" is set to greater than 0 and Admin Lockout policy is enabled, then, if the number of failed login attempts from the last successful login equals the "passwdcfg.lockouthreshold", the account gets locked for the "passwdcfg.lockoutduration" duration. The particular account is unlocked manually using userconfig --change account_name -u or it is automatically unlocked after "passwdcfg.lockoutduration" duration.

--disableadminlockout
Disables the admin lockout policy if already enabled and sets the config parameter "passwdcfg.adminlockout" to 0. By default, admin lockout policy is disabled.

--deleteuser username
Removes the password expiration policies for a particular user account.

--deleteuser -all
Removes the password expiration policies of all users.

--help
Displays the command usage.

DIAGNOSTICS
The passwdCfg command may fail for any of the following reasons:

Permission failure
You not permitted to execute the command.

Invalid command line option
An unrecognized command line option was specified.

Minlength value out of range
The -minlength value must be between 8 and 40.

Lowercase value out of range
The -lowercase value specified must be greater than or equal to 0 and less than or equal to -minlength value.

Uppercase value out of range
The -uppercase value specified must be greater than or equal to 0 and less than or equal to -minlength value.
Digits value out of range
The -digits value specified must be greater than or equal to 0 and less than or equal to -minlength value.

Punctuation value out of range
The -punctuation value specified must be greater than or equal to 0 and less than or equal to -minlength value.

Total strength specification out of range
The total of -lowercase value, -uppercase value, -digits value, and -punctuation value must be less than or equal to -minlength value.

History value out of range
The -history value must be between 0 and 24.

Minpasswordage value out of range
The -minpasswordage value must be between 0 and 999.

Maxpasswordage value out of range
The -maxpasswordage value must be between 0 and 999.

Warning value out of range
The -warning value must be between 0 and 999.

Invalid password expiration specification
The -minpasswordage value or -warning value must be less than or equal to -maxpasswordage value when -maxpasswordage value is nonzero.

Lockoutthreshold value out of range
The -lockoutthreshold value must be between 0 and 999.

Lockoutduration value out of range
The -lockoutduration value must be between 0 and 99999.

Repeat value out of range
The -repeat value must be between 1 and 40.

Sequence value out of range
The -sequence value must be between 1 and 40.

Specified user account not exist
The user does not exist in the local switch.

Per user password expiration policy not configured
The password expiration policy is not configured for this user.

Not applicable for default account
The password expiration policy is not applicable for the root and factory accounts.

Password strength policy is allowed for per user password configurations
The password configuration is allowed only for the password expiration policy.

EXAMPLES
To display the current password configuration parameters:

switch:admin> passwdcfg --showall
passwdcfg.minlength: 8
passwdcfg.lowercase: 0
passwdcfg.uppercase: 0
passwdcfg.digits: 0
passwdcfg.punctuation: 0
passwdcfg.history: 1
passwdcfg.minpasswordage: 0
passwdcfg.maxpasswordage: 0
passwdcfg.warning: 0
passwdcfg.lockoutthreshold: 0
passwdcfg.lockoutduration: 30
passwdcfg.status: 0
passwdcfg.reverse: 0

To set password configuration parameters, specifying that a password must contain at least two uppercase characters, and that passwords expire in 90 days from the date they are defined:

```
switch:admin> passwdcfg --set -uppercase 2
 -maxpasswordage 90
```

To set user password expiration policy parameters:

```
switch:admin> passwdcfg --setuser admin -minpasswordage 2
 -maxpasswordage 5 -warning 3
```

To display the current user password expiration policy parameters:

```
switch:admin> passwdcfg --showuser admin
passwdcfg.maxpasswordage.admin: 5
passwdcfg.minpasswordage.admin: 2
passwdcfg.warning.admin: 3
```

To delete all password configurations:

```
switch:admin> passwdcfg --deleteuser -all
All user password configurations are removed
```

To delete password configurations of a specific user:

```
switch:admin> passwdcfg --deleteuser admin
The user(admin) password configurations are removed
```

To activate password reverse criterion check:

```
switch:admin> passwdcfg --set -reverse 1
```

SEE ALSO passwd, userConfig
pathInfo

Displays routing information and statistics along a path covering multiple switches.

SYNOPSIS

pathinfo

pathinfo -f FID dest_switch_domain [source_port] [dest_port]
   [-sid source_pid] [-did dest_pid] [-r] [-t]

pathinfo dest_switch_domain [source_port] [dest_port]
   [-sid source_pid] [-did dest_pid] [-r] [-t]

pathinfo --help

DESCRIPTION

Use this command to display routing information from a source port on the local switch to a destination port on another switch. The command output describes the exact data path between these ports, including all intermediate switches.

When using pathinfo across fabrics connected through an FC Router, the command represents backbone information as a single hop. The command captures details about the FC Router to which ingress and egress EX_Ports are connected, but it hides the details about the path the frame traverses between the ingress EX_Ports to the egress EX_Ports in the backbone.

To use pathinfo across remote fabrics, you must specify both the fabric ID (FID) and the domain ID of the remote switch. You cannot use the command to obtain source port information across remote FCR fabrics. When obtaining path info across remote fabrics, the destination switch must be identified by its Domain ID. Identifying the switch by name or WWN is not accepted.

The command does not retry if there is a timeout or failure. It may fail if a switch along the path is busy or does not support this feature.

If the advanced performance tuning (APT) policy in effect on the intermediate switches is not a port-based policy, subsequent data streams may not take the same path as displayed in the pathinfo output. Refer to aptPolicy for more information on advanced performance tuning policies.

If you specify an inactive port or a path through a switch that does not have active routing tables to the destination, this command describes the path that would be taken if the ports were active. If you specify a destination port that is not active, this command uses the embedded port as the destination.

The ingress and egress points above 256 are specified as port index. Use switchShow for a listing of valid port index numbers.

To display the TI-enabled path across FCR, you must specify both source ID (SID) and destination ID (DID). The DID must be the proxy device ID and you can view the proxy device IDs using the nsAllShow command.

In addition, pathInfo can provide statistics on every traversed interswitch link (ISL) that is part of the path. This feature is available only in the interactive command mode.

The routing and statistics information are provided by every switch along the path, based on the current routing table information and statistics calculated continuously in real-time. Each switch represents one hop of the total path.

In a Virtual Fabric environment, pathInfo displays port numbers beyond physical port numbers while displaying information for a hop that corresponds to a path in the base fabric. The cost for this hop is the cost of the corresponding path in the base fabric plus a small offset. Refer to the Examples section for an illustration.

Other command options allow the collection of information on the reverse path, or on a user-selected path (source route).
For each hop, this command displays the following fields:

**Hop**
- The hop number. The local switch is hop 0.

**In Port**
- The port on which the switch receives frames. For hop 0, this is `source_port` identified by the port index.

**Domain ID**
- The domain ID of the switch.

**Name**
- The name of the switch.

**Out Port**
- The output port that the frames take to reach the next hop. For the last hop, this is `destination_port` identified by the port index.

**BW**
- The bandwidth of the output interswitch link (ISL), in Gbps. This parameter does not apply to the embedded port. If the bandwidth is zero, it is displayed as 1 Gbps. For logical interswitch links (LISL) ports, the bandwidth displays as 8 Gbps, the maximum bandwidth on hardware platforms on which LISLs can be formed. In cases where the LISL bandwidth is zero, `pathInfo` displays a bandwidth of 4 Gbps.

**Cost**
- The cost of the output link used by the fabric shortest path first (FSPF) routing protocol. This parameter applies only if the output link is recognized by FSPF.

You can request more detailed statistics for each hop in addition to the routing information. These statistics are presented for the input and output ports for both receive and transmit modes. You can select basic or extended statistics or both when running `pathInfo` in interactive mode. Statistics are not reported for the embedded port. Some throughput values are reported in multiple time intervals, to describe both current path utilization and the average throughput over a larger period of time.

To collect these statistics, this command uses a special `pathInfo` frame that is sent hop-by-hop from the source switch to the destination switch. To prevent such a frame to loop forever if an error occurs, a maximum number of hops for the frame to traverse is enforced. The hop count includes all hops in the direct path from source to destination, and also all the hops in the reverse path, if the tracing of the reverse path is requested. The default value for the maximum hop count is 25.

**Basic statistics**
- Basic statistics report parameters that may indicate ISL congestion along the path. They include the following:
  
  **B/s**
  - Bytes per second received or transmitted. This value is reported for multiple time periods displayed in parentheses.

  **Tcdr**
  - The length of time, in milliseconds, that the port was unable to transmit frames because the transmit BB credit was zero. The purpose of this statistic is to detect congestion or a device affected by latency. This parameter is sampled at 1 millisecond intervals, and the counter is incremented if the condition is true. Each sample represents 1 ms of time with zero Tx BB Credit. An increment of this counter means that the frames could not be sent to the attached device for 1 ms, indicating degraded performance. This value reports for multiple time periods, displayed in parentheses. Note that other commands, such as `portStatsShow`, may express this value in units other than milliseconds.
Extended statistics

Extended statistics report variables of general interest. They include the following:

**F/s**
The number of frames received or transmitted per second. This value is reported for multiple time periods, displayed in parentheses.

**Words**
The total number of 4-byte Fibre Channel words.

**Frames**
The total number of frames.

**Errors**
The total number of errors that may have caused a frame not to be received correctly. This includes cyclic redundancy check (CRC) errors, bad end-of-frame (EOF) errors, frame truncated errors, frame-too-short errors, and encoding errors inside a frame.

Reverse path

The path from port A on switch X to port B on switch Y may be different from the path from port B to port depending on the links traversed between a given sequence of switches, or the reverse path may involve different switches. The -r option displays routing and statistics information for the reverse path in addition to those for the direct path.

Source route

The source route option allows you to specify a sequence of switches or ports, which the pathInfo frame has to traverse to reach the destination. Therefore, the path specified may be different from the one used by actual traffic.

The source route is expressed as a sequence of switches, a sequence of output ports, or a combination of both. The next hop in the source route is described by either the output port to be used to reach the next hop, or the domain ID of the next hop.

The source route can specify a full route from source to destination or a partial route. In a partial route the remaining hops are chosen as the path from the input port on the first hop not listed in the source route to the destination. The maximum hop count is enforced in both cases.

If the source route does not specify all the switches along a section of the path, you can specify a strict or a loose path. A strict source route requires that only the specified switches are reported in the path description. If two switches are specified back-to-back in the source route descriptor but are not directly connected, the switches in-between are ignored. In a loose source route, the switches in-between are reported. The concepts of strict and loose route apply only to the portions of the path described by domains, not to the part described by output ports.
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command has the following operands:

`dest_switch_domain` Specifies the destination switch. To obtain path info in a Layer 2 fabric, the destination switch can be identified by its Domain ID, by the switch WWN, or by the switch name. To obtain path info across remote fabrics connected through an FC Router, the destination switch must be identified by its Domain ID. Identifying the switch by name or WWN is not accepted. This operand is optional; if omitted, the command prompts for input interactively.

`source_port` Specifies the port whose path to the destination domain is traced, specified as the port index. The embedded port (-1) is the default. The embedded port can be selected manually by entering the value of MAX_PORT. MAX_PORT stands for the maximum number of ports supported by the local switch.

`dest_port` Specifies the port on the destination switch for the path being traced. This operand returns the state of this port. The embedded port (-1) is used by default, or if you specify a destination port that is not active. The destination is specified as the port index.

`-r` Displays the reverse path in addition to the forward path. This operand is optional.

`-t` Displays the command output in traceroute format. When this operand is used, only routing information is displayed. The output includes the time it takes, in microseconds, to reach each hop. Basic and extended statistics are not available in the traceroute format.

`-sid source_pid` Specifies the source ID of the originator device in "0xDDAAPP" format, where DD is domain ID, AA is area ID and PP is AL_PA ID.

`-did dest_pid` Specifies the destination ID of the proxy device in "0xDDAAPP" format, where DD is domain ID, AA is area ID and PP is AL_PA ID. You can view the proxy device IDs using the `nsAllShow` command.

`--help` Displays the command usage.

When executed without operands, `pathInfo` runs interactively. Specifying a destination switch is required; the values for the source and destination ports can be -1 to indicate the embedded port. You must specify the source and destination PID to display the correct TI-enabled path information across the FCR. Reverse-path tracing is optional. In addition, this command prompts for the following parameters:

`Max hops` The maximum number of hops that the `pathInfo` frame is allowed to traverse; the default is 25.

`Fabric Id` Specifies the Fabric ID. If unspecified, the value defaults to -1 (Default switch FID 128)

`Domain|Wwn|Name` Specifies the domain ID or WWN.
Source port

Specifies the port whose path to the destination domain is traced, specified as the port index. If unspecified, the value defaults to -1 (embedded port).

Destination port

Specifies the port on the destination switch for the path being traced. If unspecified, the value defaults to -1 (embedded port).

Source pid

Specifies the source ID of the originator device in hexadecimal format.

Destination pid

Specifies the destination ID of the proxy device in hexadecimal format.

Basic stats

Whether basic statistics are generated on every link; the default is no.

Extended stats

Whether extended statistics are generated on every link; the default is no.

Trace reverse path

 Specifies the path information in reverse direction; the default is no.

Source route

Specifies a sequence of switches or ports that the pathInfo frame should traverse; the default is no. If an output port to the next hop is specified, you are not prompted for the domain of the next switch. The domain is determined by the port.

Timeout

The maximum time allowed waiting for the response in milliseconds. The default is 10000 milliseconds.

EXAMPLES

To display basic path information to a specific domain in command line mode:

```
switch:admin> pathinfo 91
Target port is Embedded
Hop In Port Domain ID (Name) Out Port BW Cost

0 E 9 (web226) 2 1G 1000
1 3 10 (web229) 8 1G 1000
2 8 8 (web228) 9 1G 1000
3 6 91 (web225) E - -
```

To display basic path information in traceroute format:

```
switch:admin> pathinfo 91 -t
traceroute to domain 91(web225) , 25 hops
Hop Domain ID (Name) time taken for the hop

1 10 (web229) 0.0331 us
```

To display basic path information in traceroute format with reverse path option:

```
switch:admin> pathinfo 4 -r -t
Target port is Embedded
Hop Domain ID (Name) Time/hop

1 11 (mps_daz_1) 32882 usec
2 4 (METEOR) 32882 usec
3 11 (mps_daz_1) 32882 usec
4 97 (pulsar055) 32882 usec
```
To display path information when source port and destination port are provided along with the traceroute option:

```
switch:admin> pathinfo 6 12 13 -t
```

Target port is F_Port

```
Hop Domain ID (Name) Time/hop
------------------ --------------------- -------------
6 (Stealth_I) ---
```

To display basic path information to a specific domain in a Virtual Fabric environment (the cost for this hop is the cost of the corresponding path in the base fabric):

```
switch:admin> pathinfo 13 4
```

Target port is Embedded

```
Hop In Port Domain ID (Name) Out Port BW Cost
------------------ --------------------- ---------- ---- -------------
0 4 9 2009* - 1500
1 2015* 10 8 1G 1000
2 6 13 E - -
```

To display basic and extended statistics in interactive mode:

```
switch:admin> pathinfo
```

Max hops: (1..127) [25]
Fabric Id: (1..128) [-1]
Domain|Wwn|Name: [ ]
Source port: (0..200) [-1]
Destination port: (0..1800) [-1]
Source pid: (0x0..0xefff00) [ffffffff]
Destination pid: (0x0..0xefff00) [ffffffff]
Basic stats (yes, y, no, n): [no] y
Extended stats (yes, y, no, n): [no] y
Trace reverse path (yes, y, no, n): [no]
Source route (yes, y, no, n): [no]
Timeout: (1000..30000) [5]
Target port is Embedded

```
Hop In Port Domain ID (Name) Out Port BW Cost
------------------ --------------------- ---------- ---- -------------
0 E 9 (web226) 2 1G 1000
```

```
Port

 E
 2
```

```
B/s 1s

- - 0 0
```

```
B/s 64s

- - 1 1
```

```
Txcrdz 1s

- - 0 -
```

```
Txcrdz 64s

- - 0 -
```

```
F/s 1s

- - 0 0
```

```
F/s 64s

- - 2743 0
```

```
Words

- - 2752748 2822763
```

```
Frames

- - 219849 50881
```

```
Errors

- - - 0
```

```
Hop In Port Domain ID (Name) Out Port BW Cost
------------------ --------------------- ---------- ---- -------------
1 3 10 (web229) 12 1G 1000
```
To display the TI-enabled path information over an FCR in interactive mode:

```
switch:admin> pathinfo
Max hops: (1..127) [25]
Fabric Id: (1..128) [-1] 8
Domain|Wwn|Name: [] 5
Source port: (0..400) [-1] 2
Destination port: (0..400) [-1] 24
Source pid: (0x0..0xefff00) [ffffffff] 0x061600
Destination pid: (0x0..0xefff00) [ffffffff] 0x01f001
Basic stats (yes, y, no, n): [no]
Extended stats (yes, y, no, n): [no]
Trace reverse path (yes, y, no, n): [no] y
Source route (yes, y, no, n): [no]
Timeout: (1000..30000) [10000]
Target port is Embedded
```

```
Hop In Port Domain ID (Name) Out Pot BW Cost

0 2 1 (web228) 6 4G 500
1 23 2 (web228) 8 4G 500
2 4 3 (web228) 3 4G 500
3 2 4 (web228) 24 4G 10000
4 3 7 (switch_3) 2 4G 500
5 27 5 (switch_3) 24 - -

Reverse path
6 24 5 (switch_3) 27 4G 500
7 2 7 (switch_3) 3 4G 500
8 24 4 (web228) 2 4G 500
9 3 3 (web228) 4 4G 10000
10 8 2 (web228) 23 4G 500
11 6 1 (web228) 2 - -
```

SEE ALSO  portStatsShow, switchShow
pdShow

Displays data from a panic dump file.

SYNOPSIS  pdshow [panic_dump_file]

DESCRIPTION Use this command to display data from a panic dump file. The panic dump file contains information that might be useful to determine the cause of the system panic.

When executed without any arguments, this command displays output from the latest panic dump file available on the switch.

If a panic dump file is specified as an argument, the contents of that specific file are displayed.

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS This command has the following optional operand:

panic_dump_file Specify the full path name of a panic dump file.

EXAMPLES To examine a panic dump file by the name panic_dump located under the directory /tmp:

switch:admin> pdshow /tmp/panic_dump

*** CAUTION ***
* Host PLATFORM (current) is: 'Unknown'
* PLATFORM got from pd file is: 'SW12000'
* Some results shown may be incorrect and/or missing
* It is best if this command is run on same \
  PLATFORM as that of pdfile
**************

File  :/core_files/panic/core.pd1038932352
SECTION:PD_MISC

WatchDogRegister=0x0
Section=Startup time: Tue Dec 3 16:06:11 UTC 2002
Kernel= 2.4.19
Fabric OS= v4.1.0_j_dist_1103
Made on= Tue Dec 3 19:07:13 2002
Flash= Tue Dec 3 13:19:06 2002
BootProm= 3.2.0
Section=HA show Output

(output truncated)

SEE ALSO  portLogDump, supportSave
perfAddEE Monitor

Adds an end-to-end monitor to a port.

SYNOPSIS

perfAddEE Monitor [slot]port SourceID DestID [-force]

DESCRIPTION

Use this command to add an end-to-end performance monitor to a port. The performance monitor counts the number of words received, number of words transmitted, and number of CRC errors detected using either of the following conditions:

- For frames received at the port, the frame SID is the same as SourceID and frame DID is the same as DestID; both RX_COUNT and CRC_COUNT are updated accordingly.
- For frames transmitted from the port, the frame DID is the same as SourceID and frame SID is the same as DestID; both TX_COUNT and CRC_COUNT are updated accordingly.

To monitor traffic from host A to device B, add a monitor on port 2, specifying 0x050200 as the SID and 0x010100 as the DID. The RX count equals the number of words from host A to device B, whereas the TX count equals the number of words from device B to host A. The CRC count equals the total number of CRC errors for both directions. Adding a monitor on port 1, specifying 0x010100 as SID and 0x050200 as the DID has a similar effect, except the RX and TX counts are interchanged.

To monitor traffic between one Initiator host and one target storage device connected to an Encryption Switch, you must add two monitors because of the manner in which the real initiators or targets transfer data to VIs and VTs. The first monitor would be added between the initiator SID and the virtual initiator DID, and the second monitor would be set up between virtual target SID and the target DID. Refer to the Examples section for details.

Identical monitors cannot be added to the same port. Two monitors are considered identical if they have the same SID and DID values after applying the end-to-end mask.

Execution of this command displays a monitor number, which can be used to manipulate performance monitors.

Because of a hardware limitation on Brocade devices, the following types of monitors cannot coexist on the same ASIC chip:

- If an end-to-end monitor is installed on a port in a given ASIC, you cannot install an ingress or egress Top Talker monitor on another port on the same ASIC.
- If an ingress Top Talker monitor is installed on a port in a given ASIC, you cannot install an egress Top Talker monitor or an end-to-end monitor on another port of the same ASIC.
- If an egress Top Talker monitor is installed on a port in a given ASIC, you cannot install an ingress Top Talker monitor or an end-to-end monitor on another port of the same ASIC.

You can use the -force option to override these limitations and install incompatible monitors on ports of the same ASIC. However, if you choose to do so, be aware that the statistics will not be accurate.

NOTES

This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports, and GbE ports.

On 8Gb (Condor 2-based) platforms, End-to-End monitors are supported only on F_Ports. On 16Gb (Condor 3-based) platforms, End-to-End monitor are supported on both F_Ports and E_Ports. When installing an end-to-end monitor on an E_Port, be sure to install the SID and DID in the ingress direction. End-to-end monitors are non-persistent and will be removed when you reboot the system or disable the port. To make the monitors persistent, issue the perfCfgSave command before you perform operations that causes the port to go offline. Issue the perfCfgRestore command after the port comes back up.
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

This command has the following operands:

- **slot**
  For bladed systems only, specifies the slot number of the port on which the monitor is to be added, followed by a slash (/).

- **port**
  Specifies the number of the port on which the monitor is to be added, relative to its slot for bladed systems. Use `switchShow` for a list of valid ports.

- **SourceID**
  Specifies the 3-byte SID (Source ID) of the originator device. It should be in "0xDDAAPP" format, where DD is domain ID, AA is area ID and PP is AL_PA ID. For example, 0x050200 has a domain ID of 5, an area ID of 2, and an AL_PA ID of 0. SourceID and DestID both cannot be 0x000000.

- **DestID**
  Specifies the 3-byte DID (destination ID) of the destination device. It should be in "0xDDAAPP" format, where DD is domain ID, AA is area ID and PP is AL_PA ID. For example, 0x050200 has a domain ID of 5, an area ID of 2, and an AL_PA ID of 0. SourceID and DestID both cannot be 0x000000.

- **-force**
  Overrides a hardware limitation that does not allow incompatible monitors to coexist on the same ASIC chip.

**EXAMPLES**

To add an end-to-end monitor to blade 1 port 2:

```
switch:admin> perfaddeemonitor 1/2 0x050200 0x1182ef
End-to-End monitor number 0 added.
```

To add an end-to-end monitor to an Encryption switch (In this scenario, one target disk storage device connects to the Encryption switch, and an initiator device connects to a DCX backbone. The DCX is directly connected to the Encryption Switch. Two EE monitors are added on port 1 of the Encryption Switch, which is an F_Port that attaches to the target device):

1. Get the CryptoTarget container configuration. This command shows the PIDs for the target, the virtual target, the initiator, and the virtual initiator:

   ```
 EncryptionSwitch:Securityadmin> cryptocfg --show -container -all -stat
 Encryption group name: brcd
 Number of Container(s): 1
 Container name: st_target
 Type: disk
 EE node: 10:00:00:05:1e:53:b8:45
 EE slot: 0
 Target: 2f:ff:00:06:2b:0e:b3:3c 2f:ff:00:06:2b:0e:b3:3c
 Target PID: 0a0100
 VT: 20:00:00:05:1e:53:b8:41 20:00:00:05:1e:53:b8:41
 VT PID: 0a2001
 Number of host(s): 1
 Number of rekey session(s): 0
 Host: 10:00:00:00:c9:52:00:7d
   ```
20:00:00:00:c9:52:00:7d
Host PID: 01a000
VI: 20:01:00:05:1e:53:b8:41
    20:02:00:05:1e:53:b8:41
VI PID: 0a2002
Number of LUN(s): 1
LUN number: 0x0
LUN type: disk
LUN serial number:
   600062B0000EB33C00000000000000000000000000000000000000000
Encryption mode: encrypt
Encryption format: native
Encrypt existing data: disabled
Rekey: disabled
LUN state: Encryption enabled
Encryption algorithm: AES256-XTS
Key ID state: Read write
Key creation time: Tue May 20 08:32:25 2008
Operation Succeeded

2. Get name server information. Name server info shows four devices (two of which are virtual) connected to the Encryption Switch along with their PIDs:

EncryptionSwitch:Securityadmin> nsshow
{
    Type Pid COS PortName NodeName TTL(sec)
    N 0a0100;3;2f:ff:00:06:2b:0e:b3:3c;2f:ff:00:06:2b:0e:b3:3c;na FC4s: FCP
       PortSymb: [18] "SANBlaze V3.0 Port"
       Fabric Port Name: 20:01:00:05:1e:53:b8:45
       Permanent Port Name: 2f:ff:00:06:2b:0e:b3:3c
       Port Index: 1
       Share Area: No
       Device Shared in Other AD: No
       Redirect: Yes target
       Partial: NO

    N 0a0900;3;10:00:00:06:2b:12:66:33;20:00:00:06:2b:12:66:33;na FC4s: IPFC
       PortSymb: [52] "LSI7404EP-LC A.1 L3-01071-01G FW:01.03.14 Port 1"
       Fabric Port Name: 20:09:00:05:1e:53:b8:45
       Permanent Port Name: 10:00:00:06:2b:12:66:33
       Port Index: 9
       Share Area: No
       Device Shared in Other AD: No
       Redirect: No
       Partial: NO

    N 0a2001;3;20:00:00:05:1e:53:b8:41;20:00:00:05:1e:53:b8:41;na FC4s: FCP
       PortSymb: [21] "Crypto Virtual Target"
       NodeSymb: [58] "Cntr Name:st_target Tgt Port \ 
           wwn:2F:FF:00:06:2B:0E:B3:3C"
       Fabric Port Name: 20:20:00:05:1e:53:b8:45
       Permanent Port Name: 20:00:00:05:1e:53:b8:41
       Port Index: 32
       Share Area: No
       Device Shared in Other AD: No
       Redirect: Yes virtual

    N 0a2002; 3;20:01:00:05:1e:53:b8:41;20:02:00:05:1e:53:b8:41 na FC4s: FCP
3. Add an EE monitor on port 1 between the Initiator SID and the virtual initiator DID:
   EncryptionSwitch:SecurityAdmin> perfaddeemonitor 1 \
   0x0a0100 0x0a2002
   End-to-End monitor number 0 added.

4. Add another EE monitor on port 1 between the Virtual Target SID and the Target DID:
   EncryptionSwitch:SecurityAdmin> perfaddeemonitor 1 \
   0x0a2001 0x01a000
   End-to-End monitor number 1 added.

5. Display the EE monitors on the Encryption Switch:
   EncryptionSwitch:SecurityAdmin> perfmonitorshow --class EE 1

   There are 2 end-to-end monitor(s) defined on port 1.

   KEY   SID     DID  OWNER_APP  TX_COUNT       RX_COUNT  OWNER_IP_ADDR
   ---------------------------------------------------------------------
   0 0x0a0100 0x0a2002 TELNET 0x000000001d914e1c 0x000000002183f0da N/A
   1 0x0a2001 0x01a000 TELNET 0x0000000002b5c076 0x0000000006c4fb04 N/A

   To install an egress Top Talker monitor and an end-to-end monitor on the same ASIC with the -force option (in the following example, ports 1/33 and 1/35 are on the same ASIC. The attempt to install an end-to-end monitor after you installed an egress Top Talker monitor fails unless you use the perfAddEEMonitor command with the -force option):
   switch:admin> perfittmon --add egress 1/33
   switch:admin> perfittmon --add 1/35 0xca6d00 0xca6d01
   Cannot install EE/TopTalker Ingress monitor because TopTalker Egress monitor is already present on one of the ports of this asic
   switch:admin> perfaddeemonitor --add 1/35 0xca6d00 0xca6d01 -force
   End-to-End monitor number 0 added.

SEE ALSO perfDelEEMonitor, perfMonitorClear, perfMonitorShow, perfTTmon
**perfCfgClear**

Clears the previously saved performance monitoring configuration settings from nonvolatile memory.

**SYNOPSIS**

`perfCfgClear`

**DESCRIPTION**

Use this command to clear the previously saved end-to-end performance monitoring configuration settings from nonvolatile memory.

**NOTES**

This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE ports.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

None

**EXAMPLES**

To clear the performance monitoring information from nonvolatile memory:

```
switch:admin> perfCfgClear
This will clear Performance Monitoring settings in FLASH.
The RAM settings won't change. Do you want to continue?
(yes, y, no, n): [no] y
Please wait ...
Performance Monitoring configuration cleared from FLASH.
```

**SEE ALSO**

`perfCfgRestore`, `perfCfgSave`
perfCfgRestore

Restores performance monitoring configuration settings from nonvolatile memory.

SYNOPSIS

perfCfgRestore

DESCRIPTION

Use this command to restore the performance monitoring configuration information from nonvolatile memory. This does not restore the information cleared by the perfCfgClear command; rather, it restores the configuration from nonvolatile memory. The perfCfgRestore command overwrites any configuration changes that were not saved.

NOTES

This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE ports.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To restore the performance monitoring configuration information from nonvolatile memory:

switch:admin> perfCfgRestore
This will overwrite current Performance Monitoring settings in RAM. Do you want to continue? (yes, y, no, n): [no] y
Please wait ...
Performance monitoring configuration restored from FLASH.

SEE ALSO

perfCfgClear, perfCfgSave
perfCfgSave

Saves performance monitoring configuration settings to nonvolatile memory.

SYNOPSIS

    perfCfgSave

DESCRIPTION

Use this command to save the current Performance Monitor configuration for end-to-end (EE) performance monitors to nonvolatile memory. Configuration changes are saved persistently across power cycles.

The number of monitors that can be saved to flash memory is limited as follows:

- 16 EE monitors per port
- A total number of 512 EE monitors per switch

When the number of monitors per port or switch exceeds the limit, the following message is displayed:

"Performance monitor count has exceeded limit. Some monitors have been discarded."

NOTES

This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE ports.

Monitors created by Web Tools are not saved in persistent memory.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To save the current performance monitoring configuration to firmware:

    switch:admin> perfCfgSave
    This will overwrite previously saved Performance Monitoring
    settings in FLASH. Do you want to continue?
    (yes, y, no, n): [no] y
    Please wait ...
    Performance monitoring configuration saved in FLASH.

SEE ALSO

    perfCfgClear, perfCfgRestore
perfClearAlpaCrc

Clears the CRC error count associated with a port and arbitrated loop physical address (AL_PA).

SYNOPSIS

perfclearalpacrc [slot[/]port [ALPA]]

DESCRIPTION

Use this command to clear a specific cyclic redundancy check (CRC) error counter associated with a specific port and AL_PA, or all such counters on a port.

NOTES

This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE ports.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command is not supported on all platforms. Refer to the Fabric OS Administrator's Guide for specific hardware support.

OPERANDS

This command has the following operands:

slot

For bladed systems only, specifies the slot number of the port on which the monitor is to be added, followed by a slash (/).

port

Specifies the number of the port on which the monitor is to be added, relative to its slot for bladed systems. Use switchShow for a list of valid ports.

ALPA

Specifies the AL_PA address to clear the CRC error counter for a particular device. This operand is optional; if ALPA is not specified, this command clears the counters for all devices attached to the specified port.

EXAMPLES

To clear the CRC count on a particular AL_PA on a port and then clear the CRC count for all AL_PAs on a port:

switch:admin> perfclearalpacrc 2/15 0x59
CRC error count at ALPA 0x59 on port 31 is cleared.

switch:admin> perfclearalpacrc 2/15
This will clear all ALPA CRC Counts on port 31
Do you want to continue? (yes, y, no, n) y
Please wait ...
All alpa CRC counts are cleared on port 31.

SEE ALSO

perfShowAlpaCrc
**perfDelEEMonitor**

Deletes one or all end-to-end performance monitors from a port.

**SYNOPSIS**

`perfdeleemonitor [slot[/]port [monitorId]`

**DESCRIPTION**

Use this command to delete an end-to-end performance monitor from a port, or all such monitors associated with a port.

**NOTES**

This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE ports.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

This command has the following operands:

- **slot**
  
  For bladed systems only, specifies the slot number of the port on which to delete the monitor, followed by a slash (/).

- **port**
  
  Specifies the number of the port on which the monitor is to be deleted, relative to its slot for bladed systems. Use `switchShow` for a list of valid ports.

- **monitorId**
  
  Specifies the numeric key of the monitor to be deleted. The key is defined when a monitor is created. Use `perfMonitorShow` to determine the monitor key. This operand is optional. If no operand is specified, this command deletes all end-to-end monitors associated with the port.

**EXAMPLES**

To delete an end-to-end monitor on a port, or all such monitors:

```
switch:admin> perfdeleemonitor 7/2 5
End-to-End monitor number 5 deleted

switch:admin> perfdeleemonitor 7/2
This will remove ALL EE monitors on port 2, \
continue? (yes, y, no, n): [no] y
```

**SEE ALSO**

`perfAddEEMonitor`, `perfMonitorShow`
perfHelp

Displays performance monitoring help information.

SYNOPSIS

perfhelp

DESCRIPTION

Use this command to display the help commands available for performance monitoring.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display commands related to performance monitoring:

    switch:admin> perfhelp
    fmconfig                Configure Frame Monitors
    perfaddeemonitor        Add end-to-end monitor
    perfcfgclear            Clear Performance settings from FLASH
    perfcfgrestore          Restore Performance configuration from FLASH
    perfcfgsave             Save Performance configuration to FLASH
    perfclearalpacrc        Clears the CRC error count associated with a port and Arbitrated Loop Physical Address (AL_PA).
    perfclearaeemonitor     Clears statistics counters of one or more end-to-end performance monitors.
    perfdeleemonitor        Delete end-to-end monitor
    perfhelp                Print Performance Monitoring help info
    perfmonitorclear        Clear end-to-end/filter-based/ISL monitors
    perfmonitorshow         Show end-to-end/filter-based/ISL monitors
    perfresourceshow        Show monitor availability
    perfsetporteemask       Set overall mask for end-to-end monitors
    perfshowalpacrc         Get ALPA CRC count by port and ALPA
    perfshoweemonitor       Show user-defined end-to-end monitors
    perfshowporteemask      Show the current end-to-end mask
    perfttmon               Configure bandwidth usage monitor

SEE ALSO

None
**perfMonitorClear**

Clears counters of end-to-end and ISL performance monitors on a port.

**SYNOPSIS**

```
perfmonitorclear --class monitor_class
 [slot/][port] [monitorId]
```

**DESCRIPTION**

Use this command to clear counters for performance monitors on a port, specified by class. Monitor classes include end-to-end monitors (EE) and interswitch link monitors (ISL).

Issuing the `portStatsClear` command on a port clears all end-to-end and filter-based monitors (but not ISL monitors) for all the ports in the same quad.

**NOTES**

Management of filter-based monitors is provided through the Frame Monitor management interface (`fmMonitor`). Use `fmMonitor` to configure and manage filter-based monitors.

This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE ports.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

This command has the following operands:

--class monitor_class

Specifies the monitor class as one of the following: **EE** (end-to-end) or **ISL** (interswitch link). These values are case-sensitive. This operand is required.

**slot**

For bladed systems only, specifies the slot number of the port on which the monitor counter is to be cleared, followed by a slash (/).

**port**

Specifies the number of the port on which the monitor counter is to be cleared, relative to its slot for bladed systems. Use `switchShow` for a list of valid ports.

**monitorId**

Specifies the numeric key of the monitor to be deleted. The key is defined when a monitor is created and can be displayed with the `perfMonitorShow` command. This operand is optional. If no operand is specified, this command clears all monitor counters of the specified `monitor_class` on the port. This operand does not apply to ISL monitors.

**EXAMPLES**

To clear statistics counters for an end-to-end monitor:

```
switch:admin> perfmonitorclear --class EE 1/2 5
End-to-End monitor number 5 counters are cleared
```

```
switch:admin> perfmonitorclear --class EE 1/2
This will clear ALL EE monitors' counters on port 2, \ continue? (yes, y, no, n): [no] y
```
To clear statistics counters for an ISL monitor:

```
switch:admin> perfmonitorclear --class ISL 1
This will clear ISL monitor on port 1, continue? [yes, y, no, n]: [no] y
```

SEE ALSO  
perfAddEEMonitor, perfMonitorShow
perfMonitorShow

Displays end-to-end and interswitch link performance monitors on a port.

SYNOPSIS

perfmonitorshow --class monitor_class [slot/port [interval]]

DESCRIPTION

Use this command to display End-to-End (EE) performance monitors on a port. If interval is specified, the command displays a snapshot of the traffic at the specified interval. If no interval is specified, this command displays the following information:

Key
The monitor number.

SID
The source Port ID.

DID
The destination Port ID.

Owner_app
The owner application: TELNET, WEB_TOOLS, or API.

Tx_count
The number of FC words transmitted.

Rx_count
The number of FC words received.

Owner_ip_addr
The IP address of the originator that created the EE monitor. Displays the IPv6 address if applications pass the IP address while adding the monitor. If the monitor is added using performance monitor commands, this field displays N/A.

NOTES

ISL Monitors are deprecated as of Fabric OS v7.0.0. Management of filter-based monitors is no longer supported with this command; it is now provided through the Frame Monitor management interface (fmMonitor).

This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE ports.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

--class monitor_class
Specifies the monitor class as one of the following: EE (end-to-end) or ISL (interswitch link). These values are case-sensitive.

slot
For bladed systems only, specifies the slot number of the port on which to display the monitor, followed by a slash (/).

port
Specifies the number of the port on which to display the monitor, relative to its slot for bladed systems. Use switchShow for a listing of valid ports.
The interval value must be greater than or equal to 5, and it must be a multiple of 5. In the case of end-to-end monitor, Tx and Rx counts are displayed in the unit of byte when this operand is specified. This operand is optional; if the operand is not specified, this command displays cumulative counts.

### EXAMPLES
To display EE monitors on port 8:

```
switch:admin> perfmonitorshow --class EE 2/8
There are 8 end-to-end monitor(s) defined on port 8.
```

<table>
<thead>
<tr>
<th>KEY</th>
<th>SID</th>
<th>DID</th>
<th>OWNER_APP</th>
<th>TX_COUNT</th>
<th>RX_COUNT</th>
<th>OWNER_IP_ADDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0xfffff2</td>
<td>0x000002</td>
<td>TELNET</td>
<td>0x0000000000000000</td>
<td>0x0000000000000000</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>0xfffff3</td>
<td>0x000003</td>
<td>TELNET</td>
<td>0x0000000000000000</td>
<td>0x0000000000000000</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>0xfffff4</td>
<td>0x000004</td>
<td>TELNET</td>
<td>0x0000000000000000</td>
<td>0x0000000000000000</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>0xfffff5</td>
<td>0x000005</td>
<td>TELNET</td>
<td>0x0000000000000000</td>
<td>0x0000000000000000</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>0xfffff6</td>
<td>0x000006</td>
<td>TELNET</td>
<td>0x0000000000000000</td>
<td>0x0000000000000000</td>
<td>N/A</td>
</tr>
<tr>
<td>6</td>
<td>0xfffff7</td>
<td>0x000007</td>
<td>TELNET</td>
<td>0x0000000000000000</td>
<td>0x0000000000000000</td>
<td>N/A</td>
</tr>
<tr>
<td>7</td>
<td>0xfffff8</td>
<td>0x000008</td>
<td>TELNET</td>
<td>0x0000000000000000</td>
<td>0x0000000000000000</td>
<td>N/A</td>
</tr>
<tr>
<td>0</td>
<td>0x000000</td>
<td>0x1182ef</td>
<td>TELNET</td>
<td>0x0000000000000000</td>
<td>0x0000000000000000</td>
<td>N/A</td>
</tr>
</tbody>
</table>

To display end-to-end monitors on a port at an interval of every 5 seconds:

```
switch:admin> perfmonitorshow --class EE 8 5
Showing EE monitors 8, 5: Tx/Rx are # of bytes
```

```
0 1 2 3 4 5 6 7
----- ----- ----- ----- ----- ----- ----- -----
Tx Rx Tx Rx Tx Rx Tx Rx Tx Rx Tx Rx
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
```

To display ISL monitor information on a port:

```
switch:admin> perfmonitorshow --class ISL 1/1
Total transmit count for this ISL: 1462326
Number of destination domains monitored: 3
Number of ports in this ISL: 2
Domain 97: 110379 Domain 98: 13965
Domain 99: 1337982
```

SEE ALSO  
perfMonitorClear, perfAddEEMonitor
perfResourceShow

Displays performance monitor resources for a logical switch.

SYNOPSIS

perfresourceshow --portttRes [[slot/]port]
perfResourceShow --eeRes [[slot/]port]
perfResourceShow --fabmodeRes
perfResourceShow --installed [[slot/]port]
perfResourceShow --help

DESCRIPTION

Use this command to determine the physical resources available to support the installation of performance monitors on a logical switch port.

In a Virtual Fabric environment, performance monitors installed on a logical switch share the physical resources of the switches that make up the base fabric. To make efficient usage of existing system resources, such as link table size for all supported monitors, the resources reserved for a given logical switch are allocated when the first monitor is installed on a port belonging to that logical switch. The resources are de-allocated when the last monitor installed on a given partition is removed.

This command displays the resource availability for the current logical switch context. The display includes the maximum of supported monitors, the number of monitors currently installed, and the remaining available resources.

In a non-Virtual Fabric environment, this command displays the resources for the switch.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following optional operands:

slot

For bladed systems only, specifies the slot number of the port for which to display the resources, followed by a slash (/).

port

Specifies the number of the port for which to display the resources, relative to its slot for bladed systems. Use switchShow for a listing of valid ports.

--portttRes

Displays the number of Top Talkers that can be installed on a specified port. If no port is specified, this command displays the resources for all ports on the current logical switch.

--eeRes

Displays the number of EE monitors that can be supported on the specified port. If no port is specified, this command displays the resources for all ports on the current logical switch.

--fabmodeRes

Displays whether fabric mode Top Talkers are running on the current logical switch. A port is not required with this operand.

--installed

Displays the monitor types installed on a specified port.
--help

Displays the command usage.

EXAMPLES

To display the number of Top Talkers that can be installed on the current logical switch:

switch:admin> perfresourceshow --portttRes

To display the number of Top Talkers that can be installed on port 2/37:

switch:admin> perfresourceshow --portttRes 2/37

To display the number of EE monitors that can be installed on the current logical switch:

switch:admin> perfresourceshow --eeRes
To display the number of EE monitors that can be installed on port 10:

```
switch:admin> perfresourceshow --eeRes 2/10
```

<table>
<thead>
<tr>
<th>slot/Port</th>
<th>Available</th>
<th>Installed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/0</td>
<td>30</td>
<td>3</td>
</tr>
</tbody>
</table>

To display the status of TT fabric mode on the current logical switch:

```
switch:admin> perfresourceshow --fabRes
```

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Installed</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

To display the types of monitors installed on port 2/10:

```
switch:admin> perfresourceshow --installed 2/0
```

- Top Talker Fabric mode: Not Installed
- Top Talker Port mode: Not Installed
- EE monitor: Not Installed
- Frame monitor: Installed
- ISL monitor: Not Install

SEE ALSO  perfAddEEMonitor, perfTTmon
perfSetPortEEMask

Sets the overall mask for end-to-end (EE) performance monitors.

SYNOPSIS

perfsetporteemask [slot]port "TxSIDMsk " "TxDIDMsk " "RxSIDMsk" "RxDIDMsk"

DESCRIPTION

Use this command to set the mask for an end-to-end (EE) performance monitor. This command allows
selecting the Fibre Channel frames for which to collect performance statistics. When setting the EE mask
on a port, all existing EE monitors on that port are deleted.

This command controls all three address fields (Domain ID, Area ID, and AL_PA ID) of both the source
ID and destination ID, which can be used to trigger the monitor.

The address mask is of the form "dd:aa:pp", where "dd" is the Domain ID mask, "aa" is the Area ID mask,
and "pp" is AL_PA ID mask.

Specify the following values to turn a specific field on or off:

00
    Specifies that the field does not trigger EE monitors.

ff
    Specifies that the field does trigger EE monitors.

The default EE mask value is 0xffffff.

When a mask is set (0xff), the corresponding field triggers the monitor. If the mask is unset (0x00), the
corresponding field is ignored.

For example, "00:ff:00" uses only the Area ID to trigger the EE monitor.

There is only one EE mask per port. The mask is applied to all eight EE monitors available on a port. The
default EE mask value upon power-on is already set. When ISL monitoring is enabled, the EE mask on
E_Ports is controlled automatically and existing mask values for E_Ports are over-written.

NOTES

This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE
ports.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS

This command has the following operands:

slot

For bladed systems only, this operand specifies the slot number of the port on
which the monitor is to be updated, followed by a slash (/).

port

Specifies the number of the port on which the EE mask is to be updated, relative
to its slot for bladed systems. Use switchShow for a list of valid ports.

TxSIDMsk

Specify the transmitting source ID mask in \textit{dd:aa:pp} format, with quotation marks,
where \textit{dd} is the domain ID mask, \textit{aa} is the Area ID mask, and \textit{pp} is AL_PA ID
mask. For example, "00:ff:00" uses only the Area ID to trigger the EE monitor.

Specify the following values to turn a specific field on or off:

00
    Specifies that the field does not trigger EE monitors.
ff

Specifies that the field does triggers EE monitors.

**TxDIDMsk**

Specify the transmitting Destination ID mask, in quotation marks, in *dd:aa:pp* format.

**RxSIDMsk**

Specify the receiving Source ID mask, in quotation marks, in *dd:aa:pp* format.

**RxDIDMsk**

Specify the destination ID mask, in quotation marks, in *dd:aa:pp* format.

**EXAMPLES**

To set the overall mask for end-to-end monitors on a port:

```
switch:admin> perfsetportemask 1/6 "00:00:00" "ff:ff:ff" "00:ff:ff" "ff:00:00"
Changing EE mask for this port will cause ALL EE monitors on this port to be deleted.
continue? (yes, y, no, n): [no] y
```

The EE mask on port 6 is set and EE Monitors on this port are deleted.

**SEE ALSO**

`perfAddEEMonitor`, `perfShowPortEEMask`
perfShowAlpaCrc

Displays the CRC error count by port or by arbitrated loop physical address (AL_PA).

SYNOPSIS

    perfshowalpacrc [slot[/]port [ALPA]]

DESCRIPTION

Use this command to display the cyclic redundancy check (CRC) error count of one or all devices
tagged to a port. If the AL_PA operand is specified, only the CRC count for that AL_PA device is
displayed. If the AL_PA operand is not specified, the CRC count for all the AL_PA devices on a specified
port are displayed.

CRC count is a 64-bit counter. The CRC count value is displayed in hexadecimal.

NOTES

This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Ports), EX_Port, M (Mirror) ports and GbE
ports.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, “Using Fabric OS Commands” and Appendix A, "Command Availability” for
details.

This command is not supported on all platforms. Refer to the Fabric OS Administrator’s Guide for specific
hardware support.

OPERANDS

This command has the following operands:

    slot

    For bladed systems only, specifies the slot number of the port to be displayed,
followed by a slash (/).

    port

    Specifies the number of the port to be displayed, relative to its slot for bladed
systems. Use switchShow for a list of valid ports.

    ALPA

    Specify the AL_PA address to get the CRC errors for a specific device. This
operand is optional; if the operand is omitted, this command displays CRC error
counts for all devices attached to the specified port.

EXAMPLES

To display the CRC error count for all AL_PA devices on a port:

    switch:admin> perfshowalpacrc 2/4

    ALPA               CRC_ERROR_COUNT
    --------------------------
    0x01               0
    0x03               0

SEE ALSO

    perfClearAlpaCrc
**perfShowPortEEMask**

Displays the current address mask for end-to-end performance monitors on a port.

**SYNOPSIS**

```
perfshowporteemask [slot[/]port
```

**DESCRIPTION**

Use this command to display the current mask shared across all end-to-end (EE) performance monitors of a port. There are only two commands that can modify the value of the EE mask: `perfSetPortEEMask` and `perfCfgRestore`.

The end-to-end mask has 12 fields:

- TxSID Domain: on
- TxSID Area: on
- TxSID ALPA: on
- TxDID Domain: on
- TxDID Area: on
- TxDID ALPA: on
- RxSID Domain: on
- RxSID Area: on
- RxSID ALPA: on
- RxDID Domain: on
- RxDID Area: on
- RxDID ALPA: on

The fields that are marked "on" trigger end-to-end monitors. The default value of the EE mask for all fields is "on."

**NOTES**

This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE ports.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

This command has the following operand:

- `slot`

  For bladed systems only, this operand specifies the slot number of the port on which the monitor is to be displayed, followed by a slash (/).

- `port`

  Specifies the number of the port on which the monitor is to be displayed, relative to its slot for bladed systems. Use `switchShow` for a list of valid ports.

**EXAMPLES**

To display the end-to-end mask on a port:

```
switch:admin> perfshowporteemask 2/4
The EE mask on port 20 is set by application NONE

TxSID Domain: on
TxSID Area: on
TxSID ALPA: on
TxDID Domain: on
TxDID Area: on
TxDID ALPA: on
RxSID Domain: on
```
perfShowPortEEMask

RxDID Area: on
RxDID ALPA: on
RxDID Domain: on
RxSID Area: on
RxSID ALPA: on

SEE ALSO  perfAddEEMonitor, perfDelEEMonitor, perfSetPortEEMask
perfTTmon

Installs the Top Talker monitor in the specified mode.

SYNOPSIS

perfTTmon

Port Mode:

perfTTmon --add egress | ingress [slot]/port [-force]

perfTTmon --show [slot]/port
  [number_of_flows] [wwn] pid

perfTTmon --delete [slot]/port | -all | -sconfig

Fabric Mode:

perfTTmon --add fabricmode

perfTTmon --show dom domain id
  [number_of_flows] [wwn] pid

perfTTmon --delete fabricmode

perfTTmon --help

DESCRIPTION

Use this command to install the Top Talker monitor. The Top Talker feature provides real-time information about the top ’n’ bandwidth consuming flows from a set of a large number of flows passing through a specific point in the network (after initial stabilization).

Top Talkers can display between 1 and 32 flows depending on hardware platform. For the Brocade 300, 5100, 5300, 6505, 6510, 6520, FC8-xx, and FC16-xx port blades, a maximum of 32 flows are displayed.

Top Talker supports the following two modes, Port Mode and Fabric Mode:

• In Port Mode, Top Talker is installed at the port level to measure the traffic flowing through the port to different destinations. The output displays the data in a sorted order based on the data rate of each flow.

• In Fabric Mode, Top Talker measures the top ”n” bandwidth using flows on a given switch. Top Talker installs only on E_Ports and measures the data rate of all the possible flows in the fabric. Flow is a pair of communicating FC addresses (SID and DID). Top Talkers in Fabric Mode and EE monitors are mutually exclusive. EE monitors must be removed from all switches before enabling fabric mode.

Because of a hardware limitation on Brocade devices, the following types of monitors cannot coexist on the same ASIC chip:

• If an end-to-end monitor is installed on a port in a given ASIC, you cannot install an ingress or egress Top Talker monitor on another port on the same ASIC.

• If an ingress Top Talker monitor is installed on a port in a given ASIC, you cannot install an egress Top Talker monitor or an end-to-end monitor on another port of the same ASIC.

• If an egress Top Talker monitor is installed on a port in a given ASIC, you cannot install an ingress Top Talker monitor or an end-to-end monitor on another port of the same ASIC.

You can use the -force option to override these limitations and install incompatible monitors on ports of the same ASIC. However, if you choose to do so, be aware that the statistics will not be accurate.
NOTES
This command requires an Advanced Performance Monitor license.
Top Talkers are incompatible with Frame Redirection, and therefore this feature is not supported on the
Brocade Encryption switch for encrypted data traffic.
Top Talkers are not supported on embedded platforms.
Top Talkers are not supported on FCoE ports or ports configured as mirror ports. Top Talkers are not
supported on VE_Ports, EX_Ports, VEX_Ports.
You cannot install a Top Talker and an End-to-End Monitor on the same port. Brocade recommends
against installing a Top Talkers and an End-to-End Monitor on the ports belonging to the same ASIC chip.
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS
This command has the following operands:

slot
For bladed systems only, specifies the slot number of the port on which to
configure Top Talkers, followed by a slash (/).

port
Specifies the number of the port on which the Top Talker is to be configured,
relative to its slot for bladed systems. Use switchShow for a list of valid ports.
On 8Gb (Condor 2-based) platforms, port-based Top Talkers are supported only
on F_Ports. On 16Gb (Condor 3-based) platforms, port-based Top Talkers are
supported on both F_Ports and E_Ports.

Port-level Top Talker commands:

--add
Installs the Top Talker monitor on a specified F_Port or E_Port.

egress | ingress
Used with the --add option to specify the direction in which the traffic is monitored
as incoming or outgoing. This operand is required.

-force
Overrides a hardware limitation that does not allow incompatible monitors to
cocexist on the same ASIC chip.

--show
Displays the top talking flows on a specified port.

number of top talking flows
Specifies "n" top talking flows. Valid values are between 1 and 32. If a value
greater than 32 is entered, Top Talker displays counters for only 32 flows and a
warning message. This operand is optional; if omitted, the command displays the
top 8 flows.

wwn | pid
Specifies the output display as either WWN or PID format. This operand is
optional. If omitted, the command displays in WWN format.

--delete
Deletes existing Top Talker monitors on the specified F_Ports or E_Ports. You can
specify a single monitor by its port number, or you can specify all monitors. The
-sconfig option deletes all stale monitors.

-all
Deletes all Top Talker monitors from online ports.
-sconfig

On a Condor 3-based platforms, the -sconfig option deletes all stale Top Talker monitor entries from the configuration file. A Top Talker monitor is considered stale when it can no longer monitor due to a configuration change, but it still exists in the persistent configuration. For example, a Top Talker becomes stale when a port configured for Top Talker goes offline or when a port blade is removed from the chassis.

On Condor 2-based platforms, the -sconfig option deletes all Top Talker monitors, as well as the configuration keys of all Top Talker monitors in the configuration file. This option deletes all configured monitors, regardless of the port state (online, etc).

When a stale Top Talker entry is still present in the configuration file, you cannot enable FC routing services on Condor 2 platform, because Top Talkers cannot coexist with FC Routing services. FC Routing services and Top Talker monitors may coexist in a Condor 3 environment.

Fabric Mode Top Talker commands:

--add fabricmode

Installs the Top Talker monitor on all switches in the fabric. When a new switch joins the fabric, this command must be run again on the switch. The TT configuration information is not propagated automatically to the new switch. In a mixed chassis configuration containing both 8Gb and 16Gb port blades, fabric mode is blocked when FCR is enabled. Port-level Top Talkers will be allowed on 16Gb blades but not on 8Gb blades when FCR is enabled. When you insert an 8Gb port blade into a chassis with fabric mode and FCR enabled, the blade is faulted. Use the fosConfig command to disable FCR or disable the fabric mode Top Talker.

--show

Displays the Top Talking flows on the switch for a given domain ID.

   dom dom_id

Specifies the domain ID for the flow display.

   number of top talking flows

Specifies "n" Top Talking flows. Valid values are between 1 and 32. If a value greater than 32 is entered, Top Talker displays counters for only 32 flows and a warning message. This operand is optional; if omitted, the command displays the top 8 flows.

   wwn | pid

 Specifies display as either WWN or PID format. This operand is optional; if omitted, the command displays in WWN format.

--delete fabricmode

Deletes the Fabric Mode Top Talker.

--help

Displays the command usage.

EXAMPLES
To add an F_Port Top Talker to blade 1 port 2 (which should be an F_Port):

Switch:admin> perfttmon --add ingress 1/2

To delete the F_Port Top Talker:

switch:admin> perfttmon --del 1/2

To add the Fabric Mode Top Talker:

Switch:admin> perfttmon --add fabricmode
To delete the Fabric Mode Top Talker:

```
Switch:admin> perfTTmon --del fabricmode
```

To display the Fabric Mode Top Talker output:

```
Switch:admin> perfTTmon --show dom 1 pid
```

```
<table>
<thead>
<tr>
<th>Src_PID</th>
<th>Dst_PID</th>
<th>MB/sec</th>
<th>Potential E-Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x03f600</td>
<td>0x011300</td>
<td>121.748</td>
<td>2/0,2/2,2/3</td>
</tr>
<tr>
<td>0x03f600</td>
<td>0x011300</td>
<td>121.748</td>
<td>3/14,3/15</td>
</tr>
</tbody>
</table>
```

To identify and delete a stale Top Talker for an F_Port (the F_Port belonged to a blade that has been removed):

```
Switch:admin> configshow -a | grep perf
 perf.ToptalkerEnabledonC2:1
 perf.ttmonC.254:254|0|0|1:
Switch:admin> perfTTmon --delete -sconfig
```

To install an ingress and an egress Top Talker monitor on the same ASIC with the `force` option (in the following example, ports 1/33 and 1/34 are on the same ASIC. The attempt to install conflicting monitors fails unless you use the `perfTTmon` command with the `force` option):

```
switch:admin> perfTTmon --add ingress 1/33
switch:admin> perfTTmon --add egress 1/34
Cannot install EE/TopTalker Egress monitor because TopTalker Ingress monitor is already present on one of the ports of this asic
switch:admin> perfTTmon --add egress 1/34 -force
```

SEE ALSO  `perfAddEEMonitor`, `perfResourceShow`
portAddress

Assigns the lower 16 bits of the Fibre Channel Port ID.

SYNOPSIS

portaddress --bind [slot]/port [16-bit_address] [--auto]
portaddress --unbind [slot]/port
portaddress --show [[slot]/port]
portaddress --findPID 24-bit_Port_ID
portaddress --help

DESCRIPTION

Use this command to bind the 16-bit address to the lower two bytes of a port 24-bit Fibre Channel address, or to unbind the currently bound address for the specified port. Changes effected by this command are persistent across reboots and power cycles.

The port must be offline to bind an address and not currently bound to another address. If the port is currently bound to another address, use this command with the --unbind option to unbind the port.

This command returns an error if the chosen address is in use or is bound to another port. If the address is currently assigned to another port, use this command with the --findPID option to identify the port that is bound to that address, and then unbind the port.

The command provides a --show option that displays the currently bound address for a specified port or for all ports. Alternately, you can use the --findPID option to display the port currently bound to a specified port ID (PID).

NOTES

This command is supported on the Brocade DCX, DCX-4S, DCX 8510-8, and DCX 8510-4 on all logical switches including the Default Switch. Virtual Fabrics must be enabled. It is also supported on the Brocade 300, 5100, 5300, 6510, 7800, and VA-40FC, regardless of Virtual Fabrics status.

This command is not supported on embedded platforms.

If a blade port is qualified to be in a user-created logical switch on a Brocade XDCX, DCX-4S, DCX 8510-4 or DCX 8510-8, this feature is supported on those ports. In the Default Switch, AP blades such as the Brocade FCOE10-24 or FS8-18 are not supported, when dynamic area mode is enabled. This is enforced by the software.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

--bind

Assigns the lower two bytes of the Fibre Channel address to the specified port.

slot

Specifies the slot number on bladed systems, followed by a slash (/).

port

Specifies the port number, relative to its slot on bladed systems.

16-bit_address

Specifies the 16-bit address to be bound to the FC address. Note that only the upper 10 bits of the PID can be used for a unique route. Therefore, not all addresses in the 16-bit range are available.
portAddress

--auto

Enables autobinding on the specified port. If the auto feature is enabled, the entire area field of the PID is bound to a single port. With 10-bit routing, up to 4 ports can share the same 8-bit area field of the PID. This address assignment mode dedicates all four unique routes to a single port. By default, auto is off. This operand is optional; if unspecified, the default is used.

--unbind

Removes both the address and any automode override configuration from the specified port.

--show

Displays the currently bound address attributes for the specified port. This command shows the lowest two bytes of the Fibre Channel address as well as the current setting for automode. If a port is not specified, the display shows the Partition Address Mode value (0, 1, or 2) and all ports on the current partition. A -1 is displayed for ports that have not been assigned an area. Areas are dynamically assigned an address as they are added to a partition. The Partition Address Mode value is set by the configure command (Enable a 256 Area Limit).

--findPID

Displays the port (slot and port offset) of the port that is currently assigned the provided address. This command applies the 10-bit area mask to the provided PID and returns the port that has been assigned the specified address. Therefore not all 24 bits are required to match exactly.

24-bit_Prot_ID

Specifies the 24-bit Fibre Channel port address. This operand is required with the --findPID option. This command applies the 10-bit area mask to the provided PID and returns the port that has been assigned the specified address. Therefore not all 24 bits are required to match.

--help

Displays the command usage.

EXAMPLES

To bind a 16-bit address to the low two bytes of a port 24-bit Fibre Channel address:

```
switch:admin> portaddress --bind 5/18 0x1a00
```

To unbind a given address from a port:

```
switch:admin> portaddress --unbind 5/18 0x1a00
```

To display all port address bindings on the current partition:

```
switch:admin> portaddress --show
```

<table>
<thead>
<tr>
<th>Index</th>
<th>Slot</th>
<th>Port</th>
<th>Area</th>
<th>Mode</th>
<th>User_bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>384</td>
<td>5</td>
<td>0</td>
<td>0x0800</td>
<td>8 bit</td>
<td>Y</td>
</tr>
<tr>
<td>385</td>
<td>5</td>
<td>1</td>
<td>0x0900</td>
<td>8 bit</td>
<td></td>
</tr>
<tr>
<td>386</td>
<td>5</td>
<td>2</td>
<td>0x0a00</td>
<td>8 bit</td>
<td></td>
</tr>
<tr>
<td>387</td>
<td>5</td>
<td>3</td>
<td>0x0b00</td>
<td>8 bit</td>
<td></td>
</tr>
<tr>
<td>388</td>
<td>5</td>
<td>4</td>
<td>0x0c00</td>
<td>8 bit</td>
<td></td>
</tr>
<tr>
<td>389</td>
<td>5</td>
<td>5</td>
<td>0x0d00</td>
<td>8 bit</td>
<td></td>
</tr>
<tr>
<td>390</td>
<td>5</td>
<td>6</td>
<td>0x0e00</td>
<td>8 bit</td>
<td></td>
</tr>
<tr>
<td>391</td>
<td>5</td>
<td>7</td>
<td>0x0f00</td>
<td>8 bit</td>
<td></td>
</tr>
<tr>
<td>392</td>
<td>5</td>
<td>8</td>
<td>0x0000</td>
<td>8 bit</td>
<td></td>
</tr>
<tr>
<td>393</td>
<td>5</td>
<td>9</td>
<td>0x0100</td>
<td>8 bit</td>
<td>Y</td>
</tr>
<tr>
<td>394</td>
<td>5</td>
<td>10</td>
<td>0x0200</td>
<td>8 bit</td>
<td></td>
</tr>
<tr>
<td>395</td>
<td>5</td>
<td>11</td>
<td>0x0300</td>
<td>8 bit</td>
<td></td>
</tr>
<tr>
<td>396</td>
<td>5</td>
<td>12</td>
<td>0x0400</td>
<td>8 bit</td>
<td></td>
</tr>
</tbody>
</table>
To display the port address binding for port 28:

```
switch:admin> portaddress --show 5/18

Index Slot Port Area Mode
===============================
 412 5 28 0x1400 8 bit
```

To display the port bound to a specified address.

```
switch:admin> portaddress --findPID 0x2400

Index Port Port ID
===================
 36 36 0x 2400
```

SEE ALSO None
portAlpaShow

Displays the Arbitrated Loop Physical Addresses (AL_PAs) of devices attached to a port.

SYNOPSIS

portalpashow [slot]/port

DESCRIPTION

Use this command to display the AL_PAs of devices connected to a port, and whether these devices are
public or private. If the specified port is not an active FL_Prot or if no AL_PAs are present, this command
prints an error.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS

This command has the following operands:

slot
   For bladed systems only, specify the slot number of the port to display, followed by
   a slash (/).

port
   Specify the port number to display, relative to its slot for bladed systems. Use
   switchShow to list valid ports.

EXAMPLES

To display the AL_PAs of a port:

switch:user> portalpashow 4/14
AL_PA   type       AL_PA   type     AL_PA   type
0xe2    public     0xe4    public

SEE ALSO

switchShow
portBeacon

Sets port beaconing mode.

SYNOPSIS

portbeacon --enable [slot/port]
portbeacon --disable [slot/port]
portbeacon --show [slot/port]
portbeacon --help

DESCRIPTION

Use this command to enable or disable beaconing mode on a specified port.

When beaconing mode is enabled on a port, the port LED flashes amber and green for 2.5 seconds each in an alternating pattern. The beaconing mode continues until you turn it off. Beaconing mode is useful if you are trying to locate a specific port.

Beaconing mode takes over the port LEDs. The normal flashing LED pattern associated with an active, faulty, or disabled port is suppressed, and only the beaconing pattern is shown. Other commands are still executable and functional. However, if diagnostic frame-based tests such as portLoopbackTest are executed, the diagnostic LED pattern is interleaved with the beaconing pattern. Running switch beaconing or HBA-side (E2E) beaconing also overwrites the pattern.

The portBeacon command is one of three commands that control beaconing. Each command has a clearly defined scope of action:

- The portBeacon command enables or disables beaconing on a specified port.
- The switchBeacon command enables or disables beaconing on all ports in the current logical switch.
- The chassisBeacon command to enables or disables beaconing on all ports in the chassis.

The actions of the beaconing commands are independent and mutually exclusive. Existing portBeacon settings remain unaffected if you enable or disable beaconing on the switch or on the chassis. Failure to disable existing beaconing commands before using a different type of beaconing may cause the commands to interfere with each other in unexpected ways.

Issue the portBeacon --show [slot/port] command to display beaconing for a specific port. The switchShow command displays the status of the switchBeacon command only.

NOTES

Beaconing of Inter Chassis Link (ICL) ports, GE ports, FCoE ports, 10G ports, and embedded internal ports is not allowed.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

slot

For bladed systems only, specifies the slot number of the port group to display, followed by a slash (/).

port

Specifies the number of the port to be configured, relative to its slot for bladed systems. Use switchShow for a listing of valid ports.

--enable

Enables beaconing mode on the specified port.
portBeacon

--disable
Disables beaconing mode on the specified port.

--show
Displays the port beaconing mode on the specified port as ON or OFF.

--help
Displays the command usage.

EXAMPLES
To enable beaconing mode on a port and verify the configuration:

switch:admin> portbeacon --enable 2/1

switch:admin> portbeacon --show 2/1
PortBeacon status of : slot 2, port 1 is ON

To disable beaconing mode on a port and verify the configuration:

switch:admin> portbeacon --disable 2/1

switch:admin> portbeacon --show 2/1
PortBeacon status of : slot 2, port 1 is OFF

SEE ALSO chassisBeacon, switchBeacon
portBufferCalc

Calculates the number of buffers required per port.

SYNOPSIS

portbuffercalc [slot/]port [-distance distance] [-speed speed] [-framesize framesize]

portBufferCalc --help

DESCRIPTION

Use this command to calculate how many buffers are required for a given distance, speed, and framesize. You can use the same number of buffers and port speed, when configuring the portCfgLongDistance command. If no options are specified, then the current port's configuration is considered to calculate the number of buffers required.

NOTES

Buffers required for the given frame size, distance and speed is calculated using the below formula:

• 1 buffer is required for 1 km at 2G (2048 framesize).
• 8 buffers are required for 1 km at 16G (2048 framesize).

OPERANDS

This command supports the following operands:

-distance distance

Specifies the desired distance with valid range of 10Km to 1500Km.

-speed speed

Specifies the port speed. The valid values are:

1

Specifies port speed as 1Gbps.

2

Specifies port speed as 2Gbps.

4

Specifies port speed as 4Gbps.

8

Specifies port speed as 8Gbps.

10

Specifies port speed as 10Gbps.

16

Specifies port speed as 16Gbps.

-framesize framesize

Specifies the desired framesize in bytes with a maximum value 2048.

--help

Displays command usage.

EXAMPLES

To calculate the buffers required per port:

switch:admin> portbuffercalc 9/4 \
   -distance 100 -speed 8 -framesize 512
1606 buffers required for 100km at 8G and framesize of 512 bytes

SEE ALSO

portCfgLongDistance
portBufferShow

Displays the buffer usage information for a port group or for all port groups in the switch.

SYNOPSIS  portbuffershow [[slot[/port]]

DESCRIPTION Use this command to display the current long distance buffer information for the ports in a port group. The port group can be specified by giving any port number in that group. If no port is specified, then the long distance buffer information for all of the port groups of the switch is displayed.

The following long distance information is displayed:

User Port Index number of the port.

Port Type E (E_Port), F (F_Port), G (G_Port), L (L_Port), or U (U_Port).

Lx Mode Long distance mode.

L0 Link is not in long distance mode.

LE Link is up to 10 km.

LD Distance is determined dynamically.

LS Distance is determined statically by user input.

Max/Resv Buffers The maximum or reserved number of buffers that are allocated to the port based on the estimated distance (as defined by the desired_distance operand of the portCfgLongDistance command). If the port is not configured in long distance mode, certain systems might reserve buffers for the port. This field then displays the number of buffers reserved for the port.

Avg Buffer Usage & FrameSize The average buffer usage and average frame size for Tx and Rx.

Buffer Usage The actual number of buffers allocated to the port. In LD mode, the number is determined by the actual distance and the user-specified desired distance (as defined by the desired_distance operand of the portCfgLongDistance command).

Needed Buffers The number of buffers needed to utilize the port at full bandwidth (depending on the port configuration). If the number of Buffer Usage is less than the number of Needed Buffers, the port is operating in the buffer limited mode.

Link Distance For L0 (not in long distance mode), the command displays the fixed distance based on port speed, for instance: 10 km (1 Gbps), 5 km (2 Gbps), 2 km (4 Gbps), or 1 km (8 Gbps). For static long distance mode (LE), the fixed distance of 10 km displays. For LD mode, the distance in kilometers displays as measured by timing...
the return trip of a MARK primitive that is sent and then echoed back to the switch. LD mode supports distances up to 500 km. Distance measurement on a link longer than 500 km might not be accurate. If the connecting port does not support LD mode, it shows "N/A".

**Remaining Buffers**
The remaining (unallocated and reserved) buffers in a port group.

A hyphen in one of the display fields indicates that no relevant information is available; there may be no connection to a port, or the port is disabled, or the port is not an E_Port.

When invoked without operands, this command displays the long distance buffer information for all the port groups of the switch.

**NOTES**
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**
The following operands are optional:

- **slot**
  For bladed systems only, specifies the slot number of the port group to display, followed by a slash (/).

- **port**
  Specifies the number of a port associated with the port group, relative to its slot for bladed systems. Use `switchShow` for a list of valid ports.

**EXAMPLES**
To display the port buffer information:

```
switch:admin> portbuffershow 17
```

<table>
<thead>
<tr>
<th>User Port</th>
<th>Lx</th>
<th>Max/Resv</th>
<th>Avg Buffer Usage &amp; FrameSize</th>
<th>Buffer Needed</th>
<th>Link</th>
<th>Remaining Buffers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Type</td>
<td>Mode</td>
<td>Buffers</td>
<td>Tx Rx</td>
<td>Buffer Usage</td>
<td>Buffers</td>
<td>Distance Buffers</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>-------</td>
<td>------</td>
<td>----------</td>
<td>--------</td>
<td>-----------------</td>
</tr>
<tr>
<td>64</td>
<td>-</td>
<td>8</td>
<td>( - )</td>
<td>0</td>
<td>-</td>
<td>100km</td>
</tr>
<tr>
<td>65</td>
<td>-</td>
<td>8</td>
<td>( - )</td>
<td>0</td>
<td>-</td>
<td>2km</td>
</tr>
<tr>
<td>66</td>
<td>-</td>
<td>8</td>
<td>( - )</td>
<td>0</td>
<td>-</td>
<td>2km</td>
</tr>
<tr>
<td>67</td>
<td>-</td>
<td>8</td>
<td>( - )</td>
<td>0</td>
<td>-</td>
<td>2km</td>
</tr>
<tr>
<td>68</td>
<td>E LS</td>
<td>806</td>
<td>197(2012)</td>
<td>206</td>
<td>100km</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>E</td>
<td>8</td>
<td>1(2016)</td>
<td>1(2020)</td>
<td>2km</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>E</td>
<td>8</td>
<td>1(2012)</td>
<td>1(2036)</td>
<td>2km</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>E</td>
<td>8</td>
<td>1(2008)</td>
<td>2(2052)</td>
<td>2km</td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>-</td>
<td>8</td>
<td>( - )</td>
<td>0</td>
<td>-</td>
<td>2km</td>
</tr>
<tr>
<td>193</td>
<td>-</td>
<td>8</td>
<td>( - )</td>
<td>0</td>
<td>-</td>
<td>2km</td>
</tr>
<tr>
<td>194</td>
<td>-</td>
<td>8</td>
<td>( - )</td>
<td>0</td>
<td>-</td>
<td>2km</td>
</tr>
<tr>
<td>195</td>
<td>-</td>
<td>8</td>
<td>( - )</td>
<td>0</td>
<td>-</td>
<td>2km</td>
</tr>
</tbody>
</table>
portBufferShow

```
196 - 8 - (-) - (-)
 0 - -
197 - 8 - (-) - (-)
 0 - -
198 - 8 - (-) - (-)
 0 - -
199 - 8 - (-) - (-)
 0 - - 4556
```

SEE ALSO portCfgLongDistance
portCamShow

Displays port-based filter CAM utilization.

SYNOPSIS

portcamshow [slot]port

DESCRIPTION

Use this command to display the current filter Content-Addressable Memory (CAM) utilization of a specified port.

The command displays the following information:

SID used

Total number of CAM entries used by this port. Note that each CAM entry, either source ID (SID) or destination ID (DID) CAM, can be shared among a certain number of ports, depending on the ASIC.

DID used

Total number of CAM entries used by this port. Note that each CAM entry (either SID or DID CAM) can be shared among a certain number of ports, depending on the ASIC.

SID entries

All existing source ID entries within the CAM for this port. Note that each CAM entry (either SID or DID CAM) can be shared among a certain number of ports, depending on the ASIC.

DID entries

All existing destination ID entries within the CAM for this port. Note that each CAM entry (either SID or DID CAM) can be among a certain number of ports, depending on the ASIC.

SID free

The total number of free SID CAM entries available for use by this port.

DID free

The total number of free DID CAM entries available for use by this port.

NOTES

This command cannot be executed on a logical port.

Ports that support shared areas are divided into two ports: primary and secondary ports. Primary and secondary ports share the same area. Port CAM entries displayed on the primary ports also consist of all the secondary port SIDs and DIDs as well, when both the ports are F_Ports. This is because the primary port acts as a proxy for the CAM entries of the secondary port, in this case using redirect filters.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command is not supported on FCoE ports.

This command cannot be executed on a logical port.

OPERANDS

This command has the following operands:

slot

For bladed systems only, specifies the slot number of the port to display, followed by a slash (/).

port

Specifies the port number to display, relative to its slot for bladed systems. Use switchShow to list valid ports. This operand is required.
EXAMPLES  To display the filter CAM utilization for a single port on a switch:

```
switch:user> portcamshow 3/2
```

```
Area SID used DID used SID entries DID entries
34 3 1 350400 2b2200
2b1200 220400
```

SID Free, DID Free: (61, 511)

To display port CAM entries on shared ports (in the example, port 7/31 and 7/39 are shared ports and 7/31 is the primary port):

```
switch:user> portcamshow 7/39
```

```
Area SID used DID used SID entries DID entries
207 3 1 03b380 03cf80
034100
03cf00
```

SID free, DID free: (2044, 1020)

```
switch:admin> portcamshow 7/31
```

```
Area SID used DID used SID entries DID entries
207 4 2 03b380 03cf80
034100 03cf00
03cf00
03cf80
```

SID free, DID free: (2044, 1020)

The SID entry 03cf00 and DID entry 03cf80 on port 7/31 belong to port 7/39.

SEE ALSO  switchShow
portCfg

Manages port configuration parameters for FC ports, VE_ports, and GbE/10GbE ports.

SYNOPSIS

portcfg action [slot/] port arguments
portcfg action [slot/] ge_port arguments
portcfg action [slot/] ve_port options arguments
portcfg action [slot/] ge_port options arguments

DESCRIPTION

Use this command to manage port configuration parameters on FC ports as well as on Gigabit Ethernet (GbE) ports on the Brocade 7800 switch and on the Brocade FX8-24 blade.

You must use this command in a manner that honors the platform-specific differences in command syntax and behavior. Some command options are not available on all platforms. Others behave differently depending on the platform on which they are executed. Use the following section headings to navigate this page.

Commands supported on all platforms

- **portcfg mirrorport** - Configure a mirror port on the local FC port.
- **portcfg rscnsupr** - Manage registered state change notification (RSCN) suppression on the local port.

Configure IP interfaces on the Brocade 7800 switch and FX8-24 blade

- **portcfg ipif** - Configure the local IP interfaces
- **portcfg iproute** - Configure a static route on the IP interface.
- **portcfg vlanlag** - Manage the IP interface VLAN configuration for FCIP.

Configure tunnels, circuits, and management interfaces on the Brocade 7800/FX8-24

- **portcfg fciptunnel** - Create, modify, and delete Fibre Channel over IP (FCIP) tunnels
- **portcfg fciipcircuit** - Create, modify, and delete FCIP circuits.
- **portcfg mgmtif** - Creates the inband management interfaces.
- **portcfg mgmtroute** - Creates the routes for the inband management interfaces.
- **portcfg autoneg** - Configure autonegotiation settings for 1 GbE ports.

To display the command usage on the switch, execute **portcfg action** without any further arguments.

NOTES

IPv6 addresses are supported except for inband management. IP Security enabled FCIP Tunnels cannot use IPv6 circuits.

In Fabric OS v7.0.0, the restrictions on addressing have been lifted. An IPv4 subnet can span multiple GbE interfaces, and you can now have multiple IPv6 addresses with the same prefix configured on different GbE interfaces on the same extension switch or blade.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

Some of the features supported by this command may require a license.

The Fabric OS port configuration commands are not supported on FCoE ports.

FUNCTION

Commands supported on all platforms

SYNOPSIS

portcfg action [slot/] port arguments
DESCRIPTION

Use this command to configure the following parameters on a local FC port.

- **portcfg mirrorport** - Configure a mirror port on the local port.
- **portcfg rscnsupr** - Manage registered state change notification (RSCN) suppression on the local port.

OPERANDS

This command has the following operands:

- **slot**
  
  For bladed systems only, specifies the slot number of the port to be configured, followed by a slash (/).

- **port[-port]**
  
  Specifies a single port or a range of ports, for example, 3-22 or 1/3-8. Port ranges are supported only with the **rscnsupr** option.

- **rscnsupr**
  
  Manages Registered State Change Notification (RSCN) suppression on the local port. RSCN suppression is configurable only on FC ports. The syntax for **portCfg rscnsupr** is as follows:

  **portcfg rscnsupr** [slot[/]port[-port]] mode

  The following modes are supported with the **rscnsupr** option:

  - **--disable**
    
    Disables the configuration. When disabled, device changes on the port generate an RSCN to all other end devices that are zoned with this one. By default, RSCN suppression is disabled on all ports.

  - **--enable**
    
    Enables the configuration. When enabled, any device changes on the port will not generate an RSCN to any other end device.

- **mirrorport**
  
  Configures a mirror port on the local port. The port mirroring feature reroutes data frames between two devices to the mirror port. Port mirroring can aid in troubleshooting common FC end-to-end communication problems. The command prompts for confirmation that the specified port be enabled as a mirror port. Once a port is configured as a mirror port, the port can only be used as part of a mirror connection. Port Mirroring is not supported over FCIP links (VE tunnels).

  The syntax for **portCfg mirrorport** is as follows:

  **portcfg mirrorport** [slot[/]port mode

  Valid modes for **mirrorport** include the following:

  - **--disable**
    
    Disables the configuration. When disabled, a port cannot be a mirror port.

  - **--enable**
    
    Enables the configuration. When the mirror port feature is enabled to a port, a mirror connection can use this port to mirror traffic.

EXAMPLES

To enable a mirror port configuration:

```
switch:admin> portcfg mirrorport 2/4 --enable
Please confirm enable of Mirror Port (Y,y,N,n):[n] y
```

To configure a range of ports as RSCN-suppressed:

```
switch:admin> portcfg rscnsupr 2/4-7 --enable
```
portCfg

FUNCTION Configure IP interfaces on the Brocade 7800 switch and FX8-24 blade

SYNOPSIS portcfg action [slot] ge_port arguments

DESCRIPTION Use this command to configure the local IP interfaces and static routes on the Brocade 7800 switch and on the Brocade FX8-24 blade. You must configure the local IP interfaces before you can create and configure FCIP tunnels. You can also create a VLAN configuration at the IP interface on the Brocade 7800/FX8-24.

- portcfg ipif - Configure the local IP interfaces.
- portcfg iproute - Configure a static route on the IP interface.
- portcfg viantag - Manage the IP interface VLAN configuration for FCIP.

OPERANDS This command has the following operands:

slot For bladed systems only, specifies the slot number of the port to be configured, followed by a slash (/).

ge_port Specifies the number of the GbE port to be configured. The GbE ports are numbered ge0 - ge9 on the Brocade FX8-24 blade and ge0 - ge5 on the Brocade 7800 switch. The two 10GbE ports on the Brocade FX8-24 blade are numbered xge0 and xge1. Use the switchShow command for a list of valid ports.

ipif Defines the IP interface for both ports of a tunnel.

On the Brocade 7800 and FX8-24, up to eight IP interfaces per GbE port are supported, but only 4 FCIP circuits can be configured on a single GbE port. Up to 10 IP interfaces and 10 FCIP circuits are supported on the 10GbE port. In Fabric OS v7.0.0 and later, these circuits are not limited to a single 10GbE port. Rather, they can be distributed across both 10GbE ports.

The IP network connection is configured by defining IP interfaces for origin and destination virtual ports, and then defining one or more IP routes to connect them. The syntax for portCfg ipif is as follows:

portcfg ipif [slot] ge_port option args [optional_args]

Valid options and arguments for ipif include the following:

create src_ipaddr [netmask] mtu_size
Creates IP interfaces. Specify the following:
	src_ipaddr

Specifies source IP address in either IPv6 or IPv4 format:

src_IPv6_addr/prefix_len
Specifies the source IPv6 address of the virtual port if IPv6 is used. The address must be an IPv6 global, unicast address, followed by a prefix. This is used for IPv6 addresses instead of a netmask. The prefix_len operator is required. Refer to the Fibre Channel over IP Administrator's Guide for more information on IPv6 rules and restrictions.

src_IPv4_addr netmask
Specifies the source IPv4 address of the virtual port, if IPv4 is used. If an IPv4 address is used, the subnet mask must be specified as well (in a.b.c.d. format.)
mtu_size
Specifies the maximum transmission unit size. The permitted range is 1260 Bytes to 1500 Bytes. This operand is required.

-x | --crossport
Configures an interface for a failover crossport. A crossport is defined as the nonlocal (secondary) XGE port to a VE_Port group that provides failover capabilities for the tunnel configured on the local XGE port. For VE_Ports 12-21, xge1 is the local XGE port and xge0 is the crossport. For VE_Ports 22-31, xge0 is the local XGE port and xge1 is the crossport. This operand is optional and supported only on the Brocade FX8-24 XGE ports.

delete ipaddr
Deletes IP interfaces. Specify the IPv6 or IPv4 address of the virtual port.

iproute
Defines static IP routes on a GbE port or on a 10GbE port. After defining the IP interface on the remote switch, you can define destination routes for an interface. A maximum of 32 user-configurable routes per GbE/10GbE port are supported. You cannot use this command to configure routes for inband management; use portCfg mgmtroute instead. In Fabric OS v7.0.0, you can use this command to configure an iproute for a XGE port configured as a failover crossport. This feature is supported only on the FX8-24.

The syntax for portcfg iproute is as follows:

portcfg iproute [slot]/ge_port option args [optional_args]

Valid options and arguments for iproute include the following:

create dest_ipaddr [netmask] [gateway_router] metric
Creates an IP route. Specify the following:

dest_ipaddr
Specifies the destination IP address in either IPv6 or IPv4 format:

dest_IPv6_addriprefix_len
Specifies the destination IPv6 address of the virtual port, if IPv6 is used. The address must be an IPv6 global, unicast address, followed by a prefix. This is used for IPv6 addresses instead of a netmask. The prefix_len operand is required.

dest_IPv4_addr netmask
Specifies the destination IPv4 address of the virtual port, if IPv4 is used. If an IPv4 address is used, the subnet mask must be specified as well. Use a.b.c.d. format.

gateway_router
Specifies the IP address of an IP router that can route packets to the destination virtual port IP address. The gateway address must be on the same IP subnet as one of the port IP addresses. This operand is optional with IPv6 addresses. If not specified, the gateway_router learned from the Neighbor Discovery protocol is used.

-x | --crossport
Configures an IP route for a failover crossport. A crossport is defined as the nonlocal (secondary) XGE port to a VE_Port group that provides failover capabilities for the tunnel configured on the local XGE port. For VE_Ports 12-21, xge1 is the local XGE port and xge0 is the crossport. For VE_Ports 22-31, xge0 is the local XGE port and xge1 is the crossport. This operand is optional and supported only on the Brocade FX8-24 XGE ports.
**delete ipaddr**
Deletes IP routes for a specified IPv4 or IPv6 address. Valid *ipaddr* values include the following:

*ipaddr*

Specifies IP address in either IPv6 or IPv4 format:

**IPv6_addr/prefix_len**

Specifies the IPv6 address of the virtual port, if IPv6 is used. The address must be an IPv6 global, unicast address, followed by a prefix. The *prefix_len* operand is required.

**dest_IPv4_addr netmask**

Specifies the destination IPv4 address of the virtual port, if IPv4 is used. If an IPv4 address is used, the subnet mask must be specified as well. Use a.b.c.d. format.

**vlantag**

Use this command to maintain the VLAN tag table associated with a particular network interface. This table is mainly used during ingress processing to filter VLAN tagged frames. You can configure multiple VLAN IDs per IP interface; however, if you provide a destination address, there cannot be two entries to the same destination, including 0.0.0.0. Egress frames already marked as VLAN tagged (FCIP circuit-level tagging) take precedence over entries in this table.

This command supports **add** and **delete** options only. To modify a table entry, it must first be deleted, then added with different configuration parameters. The syntax for **portcfg vlantag** is as follows:

```
portcfg vlantag [slot/][ge_port] mode arguments
```

Valid modes for **vlantag** include the following:

**add ipif_addr vlan_id l2cos [dst_ipaddr][optional_args]**

Adds an entry to the VLAN tag table.

**delete ipif_addr vlan_id [dst_ipaddr]**

Deletes an entry from the VLAN tag table. Valid arguments for **add** and **delete** include the following:

*ipif_addr*

Specifies the locally defined interface address in IPv6 or IPv4 format.

*vlan_id*

Specifies the VLAN ID used for this tag. The range is 1 to 4094.

*l2cos*

Specifies Layer 2 Class of Service/Priority, as defined in the IEEE 802.1p specification. The range is 0 to 7. Valid only with the **add** option.

*dst_ipaddr*

Specifies an optional destination IP address (IPv4 or IPv6). All packets destined for this IP address are tagged accordingly. If a destination IP address is not specified, all packets not already tagged will be tagged. The default is 0.0.0.0.

*optional_args*

Optional VLAN tagging parameters include the following:

- **-x | --crossport**

  Applies the VLAN tag to a crossport interface. Specifying this parameter allows the VE_Ports 12-21 to use the IP interface with this vlantag. This operand is optional and valid only and supported only on the Brocade FX8-24 XGE ports.
portCfg2

-m | --mgmt

Specifying this parameter applies the VLAN tag to the inband management interface.

EXAMPLES

To create an IP interface using IPv4:

switch:admin> portcfg ipif ge0 create
  192.168.0.20 255.0.0.0 1500
Operation Succeeded

To create an IP interface using IPv6 with a prefix:

switch:admin> portcfg ipif ge0 create 2000::22/64 1500
Operation Succeeded

switch:admin> portshow ipif ge0
Port: ge0
Interface IPv4 Address  NetMask        Effective MTU Flags
----------------------------------------------------------
 0 192.168.0.20  255.255.255.0  1500          U R M
 1 192.168.0.21  255.255.255.0  1500          U R M

Interface IPv6 Address                Len  Effective MTU  Flags
---------------------------------------------------------------
 2  fe80::205:1eff:fec3:e6b2    64   1500           U R M
 3  2000::20                    64   1500           U R M
 4  2000::21                    64   1500           U R M
 5  2000::22                    64   1500           U R M

Flags: U=Up B=Broadcast D=Debug L=Loopback P=Point2Point R=Running
        N=NoArp PR=Promisc M=Multicast S=StaticArp LU=LinkUp

To create an interface for a failover crossport on a Brocade FX8-24:

1. Configure the interface for the local XGE port (xge0).

   switch:admin> portcfg ipif 8/xge0 create 192.168.10.20
       255.255.255.0 1500
Operation Succeeded

2. Configure the interface for the nonlocal XGE port (xge1).

   switch:admin> portcfg ipif 8/xge1 create 192.168.11.20
       255.255.255.0 1500 -x
Operation Succeeded

3. The IP address 192.168.11.20 will be available for circuits on VE_Ports 22-31. The output from
   portshow ipif for the same address shows the crossport tag.

   switch:admin> portshow ipif 8/xge0
Port: 8/xge0
Interface IPv4 Address  NetMask      Effective MTU Flags
-----------------------------------------------
 0 192.168.10.20  255.255.255.0  1500          U R M
 3 192.168.11.20  255.255.255.0  1500 (crossport)

To delete an IP interface:

switch:admin> portcfg ipif ge0 delete 192.168.10.20
Operation Succeeded
To delete an IP interface for a failover crossport:

```
switch:admin> portcfg ipif 8/xge0 delete 192.168.11.20 -x
Operation Succeeded
```

To create a static IP route using an IPv4 destination address, a netmask, and a gateway address:

```
switch:admin> portcfg iproute ge0 create \n192.42.0.0 255.255.255.0 192.168.0.250
Operation Succeeded
```

To create a static IP route using IPv6:

```
switch:admin> portcfg iproute ge0 create \n2010::/64 2000::1:250
Operation Succeeded
```

```
switch:admin> portshow iproute ge0

Port: ge0
IP Address Mask Gateway Metric Flags

192.42.0.0 255.255.255.0 192.168.0.250 0 U G
192.168.0.0 255.255.255.0 * 0 U C
192.168.0.10 255.255.255.255 * 0 U H L
192.168.0.11 255.255.255.255 * 0 U H L
192.168.0.21 255.255.255.255 * 0 U C
192.168.0.250 255.255.255.255 * 0 U H L

IPv6 Address Len Gateway Metric Flags
--
2000:: 64 * 0 U C
2000::10 128 * 0 U H L
2000::11 128 * 0 U H L
2000::1:250 128 * 0 U H L
2001:: 64 2000::1:250 0 U G
fe80:: 64 * 0 U C
ff01:: 32 * 0 U C
ff02:: 32 * 0 U C

Flags: U=Usable G=Gateway H=Host C=Created(Interface) S=Static L=LinkLayer(Arp)
```

To create an IP route for a failover crossport on a Brocade FX8-24:

1. Configure the iproute for the local XGE port (xge0).

```
switch:admin> portcfg iproute 8/xge0 create 2.2.2.0 \n255.255.255.0 192.168.11.250
Operation Succeeded
```
2. Configure the interface for the nonlocal XGE port (xge1).

```
switch:admin> portcfg ipif 8/xge1 create 1.1.1.0 \n 255.255.255.0 192.168.11.250 -x
Operation Succeeded
```

3. The IP route will be available for circuits on VE ports 22-31. The output from `portshow iproute` for the same route shows the crossport tag.

```
switch:admin> portshow iproute 8/xge0
Port: 8/xge0
IP Address Mask Gateway Metric Flags

 2.2.2.0 255.255.255.128 192.168.10.251 0 U G S
 2.2.2.0 255.255.255.0 192.168.10.250 0 U G S
192.168.10.0 255.255.255.0 * 0 U C
192.168.10.250 255.255.255.255 * 0 U H L
192.168.10.251 255.255.255.255 * 0 U H L
1.1.1.0 255.255.255.0 192.168.11.250 0 U G S (crossport)
192.168.11.0 255.255.255.0 * 0 U C (crossport)
192.168.11.250 255.255.255.255 * 0 U H L (crossport)
```

To delete the crossport IP route:

```
switch:admin> portcfg iproute 8/xge1 delete \n 1.1.1.0 255.255.255.0 -x
Operation Succeeded
```

To delete a static IP route using an IPv4 address:

```
switch:admin> portcfg iproute ge0 delete \n 172.16.0.0 255.255.0.0
Operation Succeeded
```

To create a network-wide permanent VLAN tag entry with a VLAN ID of 200 and an L2 CoS value of 5 (no destination address):

```
switch:admin> portcfg vlantag ge2 add \n 192.168.2.10 200 5
Operation Succeeded
```

To display the VLAN tag configuration (for an explanation of the flags, refer to `portShow`):

```
switch:admin> portshow vlantag ge2
Port: ge2
Interface Address VlanId L2CoS Flags

 Destination Address
 192.168.2.10 0.0.0.0 200 5 Perm Net
 192.168.0.20 192.168.0.10 100 0 Perm
 192.168.0.21 192.168.0.11 200 0 Perm
 2000::20 2000::10 300 0 Perm
 2000::21 2000::11 400 0 Perm
```
To create a VLAN tag entry for a failover crossport interface with a VLAN ID of 200 and an L2 CoS value of 1 and to display the configuration:

```
switch:admin> portcfg vlantag 8/xge0 add 192.168.11.20 200 1 -x
Operation Succeeded

switch:admin> portshow vlantag 8/xge0
```

<table>
<thead>
<tr>
<th>Port: 8/xge0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Address</td>
</tr>
<tr>
<td>192.168.11.20</td>
</tr>
<tr>
<td>0.0.0.0</td>
</tr>
</tbody>
</table>

To delete a VLAN tag entry:

```
switch:admin> portcfg vlantag ge2 delete 192.168.2.10 200
Operation Succeeded
```

To delete a VLAN tag entry for a crossport:

```
switch:admin> portcfg vlantag 8/xge0 delete 192.168.11.20 200 -x
Operation Succeeded
```

FUNCTION Configure tunnels, circuits, and management interfaces on the Brocade 7800/FX8-24

SYNOPSIS portcfg action [slot]ve_port options arguments

DESCRIPTION Use this command to configure FCIP tunnels and FCIP circuits on the GbE/10GbE ports on the Brocade 7800 and FX8-24 platforms only and to configure the inband management on these platforms. The FCIP tunnels on the local and remote GbE ports act as Virtual E_Ports (VE_Ports) connecting the local and remote fabrics. The following operations can be performed with this command:

- **portcfg fciptunnel** - Create, modify, and delete Fibre Channel over IP (FCIP) tunnels.
  - Configure a tunnel with the FCIP FastWrite feature.
  - Enable or disable Tape Pipelining.
  - Configure the compression options.
  - Configure an IPSec-enabled tunnel.
  - Configure VLAN tagging on the default FCIP circuit.
  - Configure Differentiated Services Code Point (DSCP) markings.
  - Set the committed rate or minimum and maximum rates for the default circuit.
  - Configure a tunnel for FICON emulation.
- **portcfg fcipcircuit** - Create, modify, and delete additional FCIP circuits.
  - Set or modify the committed rate or minimum and maximum rates for the circuit.
  - Configure or change VLAN tagging on the default circuit.
  - Set or modify additional circuit parameters.
- **portcfg mgmtif** - Configure the inband management interfaces.
- **portcfg mgmtroute** - Configure the routes for the inband management interfaces.
- **portcfg autoneg** - Enable or disable autonegotiation settings for 1GbE ports.
NOTES
You can configure up to 20 FCIP tunnels on the Brocade FX8-24 and up to 8 tunnels on the Brocade 7800.

OPERANDS
This command has the following operands:

slot
For bladed systems only, specifies the slot number of the port to be configured, followed by a slash (/).

ve_port
Specifies the number of the VE_Port associated with the tunnel configured on one of the GbE/10GbE ports to be configured. The VE_Ports are numbered 16-23 on the Brocade 7800.

fciptunnel
Creates, modifies, or deletes a Fibre Channel over IP (FCIP) tunnel.

Note the following port mapping rules on the Brocade FX8-24: The Brocade FX8-24 has two FCIP chips and each one controls specific GbE ports and VE ports. The first FCIP chip controls VE_Ports 12-21, and the GbE ports ge0-ge9 and the local XGE port, xge1. The second FCIP chip controls VE_Ports 22-31 and the local XGE port, xge0. Typically (that is in the case when you do not configure a failover crossport) you use the IP addresses on ge0-ge9 and xge1 for any FCIP circuits that use VE_Ports 12-21. And likewise, you use IP addresses on xge0 for any FCIP circuits that use VE_Ports 22-31. When you configure a failover crossport, the VE_Ports on one chip are allowed to use the IP addresses on the non-local chip's XGE port (crossport).

The syntax for portcfg fciptunnel is as follows:

portcfg fciptunnel [slot]ve_port options [tunnel_arguments] [circuit_arguments]

The following options are supported with fciptunnel:

create [tunnel_arguments][circuit_arguments]
Creates an FCIP tunnel and, optionally a single default circuit. If no circuit arguments are specified, no FCIP circuit will be created. While it is possible to create a tunnel without a default circuit, it is an unlikely scenario (for example, for configuration staging purposes). In most cases, you will create a tunnel with at least one configured FCIP circuit. In this case, you must specify a remote and local IP address for the circuit as well as a committed rate (or alternately, a minimum and maximum committed rate) to configure the default circuit. The default circuit created with the tunnel is automatically assigned the circuit ID 0. You can modify the default circuit with the fciptunnel modify command. To add additional circuits to an existing tunnel, use the fcipcircuit create command.

modify [tunnel_arguments][circuit_arguments]
Modifies the properties of an existing FCIP tunnel. To modify a tunnel, you must specify at least one of the tunnel or circuit parameters for the command to be effective. Any circuit attribute you change with the fciptunnel modify command affects only the FCIP circuit 0. All other circuits remain unchanged. To modify a circuit other than circuit 0, you must use the fcipcircuit modify command.

In order to create a default circuit 0 with the tunnel, you must at least specify the following circuit arguments with fciptunnel create:

remote_ip_address
Specifies the IP address for the remote end of the FCIP circuit.

local_ip_address
Specifies the IP address for the local end of the FCIP circuit.
The following two operands are exclusive; you can either specify a committed rate or a minimum and maximum rate for circuit 0. You can modify these parameters later with `fc iptunnel modify`.

```
comm_rate
```

Specifies the committed traffic rate on the FCIP tunnel in Kbps. The valid range is 10,000 Kbps to 1,000,000 Kbps for 1G ports and 10,000 Kbps to 10,000,000 Kbps for 10G ports. There is no default. Both sides of the circuit must have matching configurations.

```
-b | --min-comm-rate value, -B | --max-comm-rate value
```

Alternately you may set a minimum and a maximum for the committed rate to configure the tunnel for Adaptive Rate Limiting (ARL), which allows for a more effective sharing of bandwidth between applications. The valid range is 10,000 Kbps to 1,000,000 Kbps for 1G ports and 10,000 Kbps to 10,000,000 Kbps for 10G ports. The maximum committed rate is the combined maximum committed rate of all configured circuits and it can be no larger than five times the minimum committed rate. Both sides of the circuit must have matching configurations.

Beginning with Fabric OS v7.0, you can configure minimum and maximum rates for each circuit of a tunnel using the XGE ports on the FX8-24 blade. This provides a maximum guaranteed rate of 10Gbps combined for all tunnels over a single 10GbE port and a maximum rate of 10Gbps for any single circuit. This feature is backwards compatible with 1GbE ports on either the Brocade 7800 Extension Switch or on the Brocade FX8-24 Extension Blade. For connections between 10GbE ports, ARL is supported only if Fabric OS v7.0 is running on both switches.

Optional `tunnel_arguments` for `fc iptunnel create` and `modify` include the following. Tunnel parameters are by default disabled. To change the default (for example, enabling FastWrite) with `fc iptunnel create`, specify the parameter only. To modify any of these parameters with `fc iptunnel modify`, specify the parameter and one of the values in square brackets.

```
-f | --fastwrite [0 |1]
```

Disables (0) or enables (1) FCIP FastWrite on the specified FCIP tunnel.

```
-t | --tape-pipelining [0-2]
```

Configures Open Systems Tape Pipelining on the specified FCIP tunnel. By default, OSTP is disabled (0).

When using this operand with `fc iptunnel create`, specify one or more of the following operands:

```
-t | --tape-pipelining
```

Enables write-read Tape Pipelining (FCIP FastWrite must also be enabled.)

```
-N | --no-read-pipelining
```

Disables tape read-pipelining. This operand is valid only with `fc iptunnel create` and `-t` must be specified enabling the feature. The combination of `-t` and `-N` effectively enables tape write-pipelining.

When using this operand with `fc iptunnel modify`, specify one or more of the following:

```
-t | --tape-pipelining mode
```

Modifies the Open System Tape Pipelining configuration. Specify one of the following modes:

```
0
```

Disables Tape Pipelining
1. Enables write-read Tape Pipelining (FCIP FastWrite must also be enabled).
2. Enables write-only Tape Pipelining (FCIP FastWrite must also be enabled).

\(-c \mid \text|--compression \ compression\_level\)
Configures compression on the specified FCIP tunnel. By default, compression is disabled (0). Specify one of the following values:

- **0**: Compression disabled
- **1**: Standard compression
- **2**: Moderate compression
- **3**: Aggressive compression
- **4**: Auto compression. Automatically adjusts compression level based on the maximum configured tunnel bandwidth. To enable this feature you must upgrade both ends of the tunnel to Fabric OS v7.0.0. Based on total effective tunnel bandwidth, the compression level will be adjusted as follows:
  - **Aggressive**: Bandwidth less than 512 Mbps
  - **Moderate**: Bandwidth more than 512 Mbps and less than 2 Gbps.
  - **Standard**: Bandwidth more than 2 Gbps.

\(-T \mid \text|--tperf \ [0|1]\)
Disables (0) or enables (1) TPerf test mode. Refer to \text{portCmd} help for more information regarding TPerf monitoring.

\(-n \mid \text|--remote-wwn \ remote-wwn\)
Specifies the WWN of the remote FC entity.

\(-d \mid \text|--description \ string\)
Specifies a description for the specified tunnel.

\(-i \mid \text|--ipsec \ [0|1]\)
Disables (0) or enables (1) Internet Protocol Security (IPSec) on the specified tunnel. Circuits that fall underneath a tunnel inherit the IPSec tunnel attributes. IPSec uses a predefined policy with IKEv2 for key negotiation, ESP transport mode for IPSec, and AES with 256-bit keys for Encryption (AES-GCM-ESP). You must specify a key with this option. On the Brocade FX8-24, IPSec is supported only on VE_Ports 12-21.

\(-K \mid \text|--key \ preshared\_key\)
Specifies the preshared key to be used for authentication. Specify a string of alphanumeric characters 32 bytes in length. This argument must be used together with \text|--ipsec.
-l | --legacy [0|1]
In Fabric OS v7.0.0, the connection process for FCIP tunnels has changed in ways that make it incompatible with earlier firmware versions. Specifying the --legacy allows connection to IPSec-configured tunnels that use pre-Fabric OS v7.0.0 firmware versions. You enable or disable this option per tunnel. This option is a disruptive modify request that causes the tunnel to bounce. The command prompts for confirmation with an appropriate message.

-q | --qos high,med,low
Sets QoS percentages for all QoS priorities. The default values are 50% (high), 30% (medium), and 20% (low). Each priority can have a minimum of 10%, the high must be greater than or equal to the medium, and the medium must be greater than or equal to the low. The sum of percentages must equal 100%. Both ends of the tunnel must have the same QoS priority settings and the switches must run Fabric OS v7.0.0.

Use the following operands to modify individual settings.

--qos-high percentage
Specifies the percentage for the high priority.

--qos-medium percentage
Specifies the percentage for the medium priority.

--qos-low percentage
Specifies the percentage for the high priority.

-F | --ficon [0|1]
Enables (1) or disables (0) FICON emulation on the specified FCIP tunnel. Optional FICON arguments for fciptunnel create allow you to control specific features. Use the [0|1] options only with fciptunnel modify.

--ficon-tera-read [0|1]
Enables (1) or disables (0) FICON Read Emulation for a Teradata server on the specified FCIP tunnel.

--ficon-tera-write [0|1]
Enables (1) or disables (0) FICON Write Emulation for a Teradata server on the specified FCIP tunnel.

--ficon-xrc [0|1]
Enables (1) or disables (0) FICON XRC emulation. FICON XRC Emulation allows XRC (IBM eXtendedRemote Copy, also known as IBM z/OS Global Mirroring) to operate effectively at extended distances.

--ficon-tape-write [0|1]
Enables (1) or disables (0) FICON Tape Write Pipelining. This feature improves the performance of certain applications when writing to tape over extended distances.

--ficon-tape-read [0|1]
Enables (1) or disables (0) FICON Tape Read Pipelining. This feature improves performance for certain applications when reading from FICON tape over extended distances.

--ficon-tin-tir [0|1]
Enables (1) or disables (0) FICON TIN/TIR emulation. This feature enhances recovery when a TIN/TIR exchange occurs as part of a channel recovery operation during tape emulation. This feature is enabled by default (recommended setting).
--ficon-dvcack [0|1]
Enables (1) or disables (0) FICON Device Level Acknowledgement emulation. This feature is applicable to both FICON Disk and Tape configurations. The feature removes one network round trip for exchanges that end with a Device Level Acknowledgement frame from the device. This feature is enabled by default (recommended setting).

--ficon-read-blk [0|1]
Enables (1) or disables (0) FICON read Tape Read Block ID emulation. This feature permits FICON write channel programs containing embedded read block ID commands (CCWs) with a byte count of exactly four bytes to be processed as emulated commands during write emulation processes.

--ficon-print [0|1]
Enables (1) or disables (0) FICON printer emulation on the specified FCIP tunnel. This command is valid only with the modify option.

--max-read-pipe value
Defines the maximum number of tape read channel commands (CCWs) that can enter the read pipeline for a single device whether all the CCWs are bundled in a single channel program or in multiple channel programs. The setting has significance only for host (channel) initiated operations at this side and will not affect tape write operations initiated by hosts (channels) attached at the opposite side. Too small of a value will result in poor performance. The value should be chosen based upon the typical tape channel program that requires optimum performance. The default value is 32 (recommended setting). The range is 1 to 100.

--max-write-pipe value
Defines the maximum number of tape write channel commands (CCWs) that can enter the write pipeline for a single device whether all the CCWs are bundled in a single channel program or in multiple channel programs. The setting has significance only for host (channel) initiated operations at this side and will not affect tape write operations initiated by hosts (channels) attached at the opposite side. Too small of a value will result in poor performance. The value should be chosen based upon the typical tape channel program that requires optimum performance. The default value is 32 (recommended setting). The range is 1 to 100.

--max-read-devs value
Defines the maximum number of concurrent emulated tape read operations. As concurrency increases, the value of emulation decreases. Excessive concurrency has the potential to oversubscribe packet data memory. The setting has significance only for host (channel) initiated operations at this side and will not affect tape read operations initiated by hosts (channels) attached at the opposite side. The default value is 16. The range is 1 to 32.

--max-write-devs value
Defines the maximum number of concurrent emulated tape write operations. As concurrency increases, the value of emulation decreases. Excessive concurrency has the potential to oversubscribe packet data memory. The setting has significance only for host (channel) initiated operations at this side and will not affect tape write operations initiated by hosts (channels) attached. The default value is 16. The range is 1 to 32.
--write-timer value
Defines a time limit for pipelined write chains. This value is specified in milliseconds (ms). If a pipelined write chain takes longer than this value to complete, the ending status for the next write chain will be withheld from the channel. This limits processing to what the network and device can support. Too small a value limits pipelining performance. Too large a value results in too much data being accepted for one device on a path. The default value is 300 milliseconds (ms). The range is 100 to 1500.

--write-chain value
Defines the maximum amount of data that can be contained in a single CCW chain. If this value is exceeded, emulation is suspended. The default value is 3.2 MB (3200000 bytes) The range is 1 MB to 5 MB.

--oxid-base value
Defines the base value of an entry pool of 256 OXIDs supplied to emulation-generated exchanges. It should fall outside the range used by FICON channels and devices to avoid conflicts. The default value is 0x8000 (recommended setting). The range is 0x0000 to 0xF000.

--ficon-debug value
Defines optional debug flags. The default value is 0xF7C80000. This parameter is primarily for use by technical support personnel.

Optional FCIP circuit arguments for fciptunnel create and modify include the following.

-a | --admin-status [0|1]
Enables (1) or disables (0) the circuit. Admin status is disabled by default. Use -a --admin-status to enable the feature when you create a circuit. Use -a --admin-status 0|1 when you modify a circuit.

-C | --connection-type [0|1|2] | [default|listener|initiator]
Specifies whether the circuit is the listener or the initiator. Values are 0=Default, 1=Listener, and 2=Initiator. You can use either the numeric values or their string equivalents. String values are not case sensitive. In default mode, the initiator and listener are automatically chosen based on the lower and higher-order IP address. This can cause a problem in Network Address Translation (NAT) environments, if both sides of the circuit have lower-order addresses. This option is a disruptive modify request that causes the tunnel to bounce. The command prompts for confirmation with an appropriate message.

-s | --sack 0|1
Disables (0) or enables (1) selective acknowledgement code (SACK) on the FCIP circuit. SACK is enabled by default. Use -s --sack to disable the feature when you create a circuit. Use -s --sack 0|1 to disable or enable SACK when you modify a circuit.

-k | --keepalive-timeout timeout
Specifies the keep alive timeout in milliseconds. The valid range is 500 ms to 720000 ms. If the tunnel does not already have FICON Emulation enabled, circuits created on the tunnel default to 10000 ms (10 seconds) for the FCIP Trunking keep alive timeout. If FICON emulation is enabled on the FCIP Tunnel when a circuit is created, the keep alive timeout defaults to 1000 ms (1 seconds).
Specifies the metric for the configured circuit. The valid range is 0 to 1. The default value is 0. A lower metric assigns a higher priority to the circuit. As data is flowing through the FCIP tunnel, it automatically traverses the lowest metric cost circuits. For example, if a tunnel has four circuits, three of which are set to a metric of 0 and one is set to a metric of 1, all data will flow over the metric 0 circuits. This parameter is meaningful only, if you configure more than one circuit.

Specifies the failover group ID for the configured circuit. The valid range is 0 to 9, where 0 is the default failover group. The circuit failover groups must be defined at both ends of the FCIP tunnel and each failover group should include at least one metric 0 and one metric 1 circuit. If all metric 0 circuits in the failover group go down, the transmission fails over to the metric 1 circuits in the group. If all metric 0 circuits in a tunnel go down, by default the traffic will run over the metric 1 circuits.

Specifies the minimum time interval in milliseconds between retransmits. The valid range is 20 ms to 5000 ms. The default value is 100 ms.

Specifies the maximum number of retransmissions. The valid range is 1 to 16. The default value is 8.

Creates an FCIP tunnel with VLAN Tagging and Class of Service (CoS). Specify a vlan_id in the range between 1 and 4094. If any other VLAN option is specified, the VLAN ID must also be specified. Refer to the IEEE 802.1p specification for more information.

You can configure VLAN tags when you create a circuit or after the fact by modifying a circuit. Note that adding or modifying the VLAN configuration after a circuit has been created is a disruptive operation.

You may also specify VLAN tagging per IP interface with the portCfg vlantag command. The VLAN configuration at the IP interface level is for non-data path traffic only. If the data path traffic is to be tagged, it must be done through the VLAN tagging option with the fcipcircuit create or modify command. Note that the circuit VLAN configuration takes priority over the IP interface VLAN configuration.

The following operands are optional with VLAN tagging

Specifies the Layer 2 Class of Service (L2CoS) value for F-Class Traffic. This priority setting controls connections between switches. The range is 0 to 7. The default is 0.

Specifies the L2CoS value for High Priority Traffic. The range is 0 to 7. The default is 0.

Specifies the L2CoS value for Medium Priority Traffic. The range is 0 to 7. The default is 0.

Specifies the L2CoS value for Low Priority Traffic. The range is 0 to 7. The default is 0.
--dscp-f-class dscp
Specifies the DSCP value for F-Class Traffic. The range is 0 to 63. The
default value is 0.

--dscp-high dscp
Specifies the DSCP value for High Priority. The range is 0 to 63. The default
value is 0.

--dscp-medium dscp
Specifies the DSCP value for Medium Priority. The range is 0 to 63. The
default value is 0.

--dscp-low dscp
Specifies the DSCP value for Low Priority. The range is 0 to 63. The default
value is 0.

delete tunnel_ID
Deletes the specified FCIP tunnel. This command deletes all associated circuits
created with the fc iptunnel or fcip circuit commands. Use the portShow
command to display all FCIP tunnels and their associated circuits.

fcip circuit
Creates an FCIP circuit on an existing tunnel. Use this command to configure
additional circuits. The circuit-specific parameters are optional. The syntax for
portcfg fcipcircuit is as follows:

portcfg fcipcircuit [slot|ve_port option circuit_ID options [arguments]
[optional_arguments]]

The following options and arguments are supported with fcipcircuit:

create circuit_ID remote_ip_addr local_ip_addr comm_rate [circuit_arguments]
Creates an FCIP circuit. You must specify the following parameters when creating
an additional circuit:

circuit_ID
Specifies a numeric identifier for the circuit. The circuit ID is an integer value
between 0-9 for both the Brocade FX8-24 and the Brocade 7800.

remote_ip_addr
Specifies the IP address for the remote end of the FCIP circuit.

local_ip_addr
Specifies the IP address for the local end of the FCIP circuit.

The following two operands are mutually exclusive:

comm_rate
Specifies the committed traffic rate on the FCIP tunnel in Kbps. The valid
range is 10,000 Kbps to 1,000,000 Kbps for 1G ports and 10,000 Kbps to
10,000,000 Kbps for 10G ports. There is no default. Both sides of the tunnel
must have matching configurations.

-b | --min-comm-rate value -B | --max-comm-rate value
Alternately you can set a minimum and a maximum for the committed rate to
configure the tunnel for Adaptive Rate Limiting (ARL), which allows for a
more effective sharing of bandwidth between applications. The valid range is
10,000 Kbps to 10,000 Kbps for 1G ports and 1,000,000 Kbps to 10,000,000
Kbps for 10G ports. The maximum committed rate can be no larger than five
times the minimum committed rate, and both sides of the circuit must have
matching configurations.
modify [circuit_ID] [circuit_arguments]
  Modifies the properties of an existing FCIP circuit. To modify a circuit, you must
  specify at least one of the optional circuit parameters for the command to be
  effective. Any circuit attribute you change with the fcipcircuit modify command
  affects only the specified FCIP circuit. All other circuits remain unchanged.
  Refer to fciptunnel create and modify for a listing of optional circuit arguments
  and their descriptions.

delete circuit_ID
  Deletes the specified FCIP circuit.

mgmtif
  Configures an inband management interface. A maximum of one interface is
  supported per GbE Port. Up to a total of 6 management interfaces are supported
  for the Brocade 7800 and up to a total of 11 interfaces for the Brocade FX8-24
  (depending on blade operating mode). The interfaces must each exist on a unique
  network, separate from the other inband management interfaces and from all
  other interfaces on the CP. The syntax for mgmtif is as follows:

  mgmtif ge_port [options] arguments

  Valid options and arguments for mgmtif include the following:

create
  Creates a specified IP Address for the inband management interface. The IP
  address must be unique.

  IPv4_address
    Specifies an IP address for the inband management interface in IPv4 format,
    followed by the subnet mask.

  netmask
    Specifies the subnet mask for the IPv4 address in a.b.c.d format.

  MTU
    Specifies the MTU for the inband management interface. The valid range is
    1260 to 1500. This operand is optional.

delete
  Deletes the specified IP Address for the inband management interface.

  IPv4_address
    Specifies the IP address to be deleted.

disable
  Disables the inband management interface at the specified GbE Port.

enable
  Re-enables the inband management interface at the specified GbE Port after it
  has been disabled. The interface is by default enabled when it is created.

mgmtroute
  Configures the management route for the inband management interface (needed
  only if the management interfaces are on different subnets). The syntax for
  mgmtroute is as follows:

  mgmtroute ge_port [options] destination_ip_address
Valid options and arguments for `mgmtroute` include the following:

**create**
Creates a management route for a specified destination IP Address. The following operands are required:

- `dest_IPv4_addr` Specifies the destination IP address for the management route in IPv4 format.
- `netmask` Specifies the subnet mask for the IPv4 address in a.b.c.d format.
- `gateway` Specifies the IP address of an IP router that can route packets to the destination IP address.

**delete**
Deletes a management route for a specified destination IP Address. The following operands are required.

- `dest_IPv4_addr` Specifies the destination IP address for the management route in IPv4 format.
- `netmask` Specifies the subnet mask for the IPv4 address in a.b.c.d format.

**EXAMPLES**
To create a FICON-enabled tunnel, first create an empty FCIP tunnel without any circuits:

```
switch:admin> portcfg fcitunnel 1/12 create
Operation succeeded
```

To enable FICON and compression on the tunnel (this sets the keepalive timeout value to 1000 ms, which is the default for DFICON-enabled tunnels):

```
switch:admin> portcfg fcitunnel 1/12 modify -c 1 -F 1
Operation succeeded
```

To create two circuits (circuit 0 and circuit 1) on the tunnel (these circuits will be created with the FICON-compatible keepalive timeout value):

```
switch:admin> portcfg fcipcircuit 1/12 create 0 192.168.51.61 192.168.50.68 -b 300000 -B 500000
Operation succeeded
```

```
switch:admin> portcfg fcipcircuit 1/12 create 1 192.168.50.61 192.168.51.68 -b 300000 -B 500000
Operation succeeded
```

To display circuit 1:

```
switch:admin> portshow fcipcircuit 1/12 1

Circuit ID: 1/12.1
Circuit Num: 1
Admin Status: Enabled
Oper Status: In Progress
Remote IP: 192.168.51.61
Local IP: 192.168.51.68
Metric: 0
Failover Group ID: (Not Config/Active)
Min Comm Rt: 300000
```
Max Comm Rt: 500000
SACK: On
Min Retrans Time: 100
Max Retransmits: 8
Keepalive Timeout: 1000
Path MTU Disc: 0
VLAN ID: (Not Configured)
L2CoS: (VLAN Not Configured)
DSCP: F: 0 H: 0 M: 0 L: 0
Flags: 0x00000000

To set the compression rate to 'moderate' on the tunnel:

switch:admin> portcfg fc iptunnel 1/12 modify -c 2
Operation succeeded

To enable FICON XRC and Teradata emulation on the tunnel:

switch:admin> portcfg fc iptunnel 1/12 modify \
   --ficon-xrc 1 --ficon-tera-read 1 --ficon-tera-write 1
Operation succeeded

To enable printer emulation on the tunnel:

switch:admin> portcfg fc iptunnel 1/12 modify \
   --ficon-print 1
Operation succeeded

To configure FCIP FastWrite and Tape Pipelining on the tunnel:

switch:admin> portcfg fc iptunnel 1/12 modify -f 1 -t 1
Operation succeeded

To create a circuit on the tunnel with the failover group ID and verify the configuration (in this example, the OpStatus "FGrpWrn" indicates that the failover group is defined but there is not at least one metric 0 and one metric 1 circuit as part of the failover group):

switch:admin> portcfg fcipcircuit 1/22 create 2 \
   1.42.128.93 1.42.128.23 500000 -x 1 -g 1
Operation succeeded

switch:admin> portshow fc iptunnel all -c

<table>
<thead>
<tr>
<th>Tunnel Circuit</th>
<th>OpStatus</th>
<th>Flags</th>
<th>Uptime</th>
<th>TxMBps</th>
<th>RxMBps</th>
<th>ConnCnt</th>
<th>CommRt</th>
<th>Met/G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/22</td>
<td>-</td>
<td>FGrpWrn</td>
<td>cft-----</td>
<td>20m26s</td>
<td>0.00</td>
<td>0.00</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>1/22</td>
<td>0</td>
<td>xge0</td>
<td>Up</td>
<td>20m26s</td>
<td>0.00</td>
<td>0.00</td>
<td>1</td>
<td>3000/5000</td>
</tr>
<tr>
<td>1/22</td>
<td>1</td>
<td>xge0</td>
<td>Up</td>
<td>3s</td>
<td>0.00</td>
<td>0.00</td>
<td>2</td>
<td>3000/5000</td>
</tr>
<tr>
<td>1/22</td>
<td>2</td>
<td>xge0</td>
<td>Up</td>
<td>2m7s</td>
<td>0.00</td>
<td>0.00</td>
<td>1</td>
<td>5000/5000</td>
</tr>
</tbody>
</table>

Fabric OS Command Reference
53-1002921-02
To set the failover group for circuit 1 and verify the configuration:

    switch:admin> portcfg fcipcircuit 1/12 modify 1 -g 1
    Operation succeeded

    switch:admin> portshow fc iptunnel all -c

    Tunnel Circuit OpStatus Flags Uptime TxMBps RxMBps ConnCnt CommRt Met/G
    1/22 -         Up      cft---- 26m51s 0.00 0.00 1 - -/-
    1/22 0 1/xge0 Up     ---4--s 20m26s 0.00 0.00 1 3000/5000 0/-
    1/22 1 1/xge0 Up     ---4--s  3s 0.00 0.00 2 3000/5000 0/1
    1/22 2 1/xge0 Up     ---4--s  2m7s 0.00 0.00 1 5000/5000 1/1

To delete circuit 1:

    switch:admin> portcfg fcipcircuit 1/12 delete 1
    Operation succeeded

To create a tunnel with VLAN tagging:

1. Create a tunnel with VLAN tagging set.

    switch:admin> portcfg fc iptunnel 16 create \ 192.168.2.20 192.168.2.10 2500000 -v 100
    Operation Succeeded

2. Create a circuit with VLAN tagging set.

    switch:admin> portcfg fcipcircuit 16 create 1 \ 192.168.2.21 192.168.2.11 2500000 -v 200
    Operation Succeeded

3. Modify an existing circuit to change the VLAN tag and L2 CoS levels.

    switch:admin> portcfg fcipcircuit 16 modify \ 0 -v 300 --l2cos-f 7 --l2cos-h 5 \ --l2cos-m 3 --l2cos-l 1
    !!!! WARNING !!!!
    Modify operation can disrupt the traffic on the
    fcipcircuit specified for a brief period of time. This
    operation will bring the existing circuit down
    (if circuit is up) before applying new configuration.

    Continue with Modification (Y,y,N,n): [ n] y
    Operation Succeeded

4. Modify existing circuit to change DSCP marking values

    switch:admin> portcfg fcipcircuit 16 modify 0 \ --dscp-f 32 --dscp-h 16 --dscp-m 8 --dscp-l 4
    Operation Succeeded

5. Display the tunnel configuration and circuit values.

    switch:admin> portshow fc iptunnel 16 -c

    Tunnel ID: 16
    Tunnel Description: 
    Admin Status: Enabled
    Oper Status: In Progress
    Compression: Off
Fastwrite: Off
Tape Acceleration: Off
TPerf Option: Off
IPSec: Disabled
Remote WWN: Not Configured
Local WWN: 10:00:00:05:1e:c3:f0:16
Peer WWN: 00:00:00:00:00:00:00:00
Circuit Count: 2
Flags: 0x00000000
FICON: Off

-------------------------------------------
Circuit ID: 16.0
  Circuit Num: 0
  Admin Status: Enabled
  Oper Status: In Progress
  Remote IP: 192.168.2.20
  Local IP: 192.168.2.10
  Metric: 0
  Min Comm Rt: 25000000
  Max Comm Rt: 25000000
  SACK: On
  Min Retrans Time: 100
  Max Retransmits: 8
  Keepalive Timeout: 10000
  Path MTU Disc: 0
  VLAN ID: 300
    L2CoS: F: 7 H: 5 M: 3 L: 1
    DSCP: F: 32 H: 16 M: 8 L: 4
  Flags: 0x00000000

-------------------------------------------
Circuit ID: 16.1
  Circuit Num: 1
  Admin Status: Enabled
  Oper Status: In Progress
  Remote IP: 192.168.2.21
  Local IP: 192.168.2.11
  Metric: 0
  Min Comm Rt: 25000000
  Max Comm Rt: 25000000
  SACK: On
  Min Retrans Time: 100
  Max Retransmits: 8
  Keepalive Timeout: 10000
  Path MTU Disc: 0
  VLAN ID: 200
    L2CoS: F: 0 H: 0 M: 0 L: 0
    DSCP: F: 0 H: 0 M: 0 L: 0
  Flags: 0x00000000

To modify an existing circuit so it becomes the listener:

```
switch:admin> portcfg fcipcircuit 16 modify 2 -C 1

!!!! WARNING !!!!
Modify operation can disrupt the traffic on the fcipcircuit specified \nfor a brief period of time. This operation will bring the existing \ncircuit down (if circuit is up) before applying new configuration.

Continue with Modification (Y,y,N,n): [n]y
Operation Succeeded
```
To modify an existing circuit so it becomes the initiator (the following example uses the string option):

```
switch:admin> portcfg fcipcircuit 16 \
 modify 2 --connection-type initiator
```

**WARNING!!!**
Modify operation can disrupt the traffic on the fcipcircuit specified \
for a brief period of time. This operation will bring the existing \
circuit down (if circuit is up) before applying new configuration.

Continue with Modification (Y,y,N,n): [ n]y
Operation Succeeded

To configure an IPSec-enabled tunnel to connect with an IPSec-configured tunnel in legacy mode:

```
switch:admin> portcfg fciptunnel 8/12 modify --legacy 1
```

**WARNING!!!**
Modify operation can disrupt the traffic on the fciptunnel specified \
for a brief period of time. This operation will bring the existing \
tunnel down (if tunnel is up) before applying new configuration.

Continue with Modification (Y,y,N,n): [ n]y
Tunnel 8/12 modify: Operation Succeeded

To create inband management interfaces for two Brocade 7800 switches on the same subnet:

1. Configure each switch.

```
switch:admin> portcfg mgmtif ge0 create 192.168.3.10 255.255.255.0
switch:admin> portcfg mgmtif ge0 create 192.168.3.20 255.255.255.0
```

2. Access the switch through the external inband management interface.

```
linux# telnet 192.168.3.10
```

To create inband management interfaces for two Brocade 7800 switches on different subnets connected 
by two routers:

1. Configure the inband management interfaces on the first switch.

```
switch:admin> portcfg mgmtif ge0 create 192.168.1.10 255.255.255.0
```

2. Configure the inband management route for the management station.

```
switch:admin> portcfg mgmtroute ge0 create 192.168.3.0 \
 255.255.255.0 192.168.1.250
```

3. Configure the inband management interfaces on the second switch.

```
switch:admin> portcfg mgmtif ge0 create 192.168.2.20 255.255.255.0
```

4. Configure the inband management route for the management station.

```
switch:admin> portcfg mgmtroute ge0 create 192.168.3.0 \
 255.255.255.0 192.168.2.250
```
5. On the Management Station, add route entries to get to the Brocade 7800 external inband management interfaces.

   linux# route add 192.168.1.0 netmask 255.255.255.0 gw 192.168.3.250
   linux# route add 192.168.2.0 netmask 255.255.255.0 gw 192.168.3.250

6. Access the 7800 switches through the external inband management interfaces.

   linux# telnet 192.168.1.10

To delete an inband management interface:

   switch:admin> portcfg mgmtif ge0
delete 192.168.3.10 255.255.255.0

To delete a management route:

   switch:admin> portcfg mgmtroute ge0 delete 192.168.3.0 255.255.255.0 192.168.2.250

To disable and re-enable an inband management interface:

   switch:admin> portcfg mgmtif ge0 disable
   switch:admin> portcfg mgmtif ge0 enable.

To configure a VLAN tag for an inband management port:

   switch:admin> portcfg vlantag 10/xge0 add 172.16.30.40 30 0 --mgmt
   Operation Succeeded

   switch:admin> portshow vlantag all

   Port: 10/xge0
   Interface Address                        VlanId  L2CoS  Flags
   Destination Address
   ------------------------------------------------------------------
     172.16.30.80                               30      0    Perm
       172.16.50.80
     172.16.30.40                               30      0    Perm Net Mgmt
       0.0.0.0

To enable the autonegotiation of 1GbE port:

   switch:admin> portcfg autoneg 1/ge2 --enable
   Operation Succeeded

   switch:admin> portshow autoneg 1/ge2
   Auto-Negotiation Configuration:
   Port: 1/ge2
   Auto-Negotiate: Enabled

SEE ALSO configure, portCfgShow, portCmd, portShow, switchShow
portCfgAlpa

Configures the AL_PA offset on a specified port or range of ports.

SYNOPSIS

portcfgalpa [slot/]port, mode

DESCRIPTION

Use this command to set the Arbitrated Loop Physical Address (AL_PA) offset on a port or a range of ports to either 0x0 (default) or 0x13.

Changes made by this command are persistent across switch reboots and power cycles.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

The Fabric OS port configuration commands are not supported on FCoE ports.

OPERANDS

When invoked without operands, this command displays the usage. The following operands are supported:

slot

For bladed systems only, specify the slot number of the port to be configured, followed by a slash (/).

port

Specify the number of the port to be configured, relative to its slot for bladed systems. Use the switchShow command for a list of valid ports.

mode

Specify a value of 1 to set the AL_PA to 0x13. A value of 0 sets the default AL_PA to 0x0. This operand is required.

EXAMPLES

To configure a port with AL_PA 0x0 (default):

switch:admin> portcfgalpa 1/3 0

To configure a port with AL_PA 0x13:

switch:admin> portcfgalpa 1/3 1

SEE ALSO

portCfgShow
portCfgAutoDisable

Manages the port autodisable configuration.

SYNOPSIS

portcfgautodisable --enable [slot/port[-port]]
portcfgautodisable --disable [slot/port[-port]]
portcfgautodisable --add option [slot/port[-port]]
portcfgautodisable --remove option [slot/port[-port]]
portcfgautodisable --addall [slot/port[-port]]
portcfgautodisable --removeall [slot/port[-port]]
portcfgautodisable --addexcept option [slot/port[-port]]
portcfgautodisable --show [slot/port[-port]]
portcfgautodisable --suspend
portcfgautodisable --resume
portcfgautodisable --help

DESCRIPTION

Use this command to enable or disable the autodisable feature for a specified port or a range of ports and to manage the configuration. If the ports are already in the requested configuration, no action is taken. If a range of ports is specified, some of which are already in the requested configuration, no action is taken for those ports. All other ports in the specified range are updated. Execution of this command is nondisruptive.

The autodisable feature is by default disabled for all ports.

Use the --suspend and --resume options respectively to temporarily suspend and resume the configuration in the current logical switch. These states are persistent across reboots and HA failover.

The port autodisable feature minimizes traffic disruption introduced in some instances of automatic port recovery. When the autodisable flag is set, you can specify the conditions that will prevent the port to reinitialize. Such conditions include loss of sync, loss of signal, OLS, NOS, and LIP. Refer to the operand section for an explanation of these conditions. Note that a link reset does not cause a port autodisable. When a port is in FICON Management Server (FMS) mode, an autodisabled port remains persistently disabled across High Availability (HA) failover. In all cases, you can bring the automatically disabled port back into service using the portEnable command.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command is not supported on GbE ports, VE_Ports, logical interswitch links (LISLs), or FCoE ports.

OPERANDS

This command has the following operands:

slot

Specifies the slot number on bladed systems, followed by a slash (/).
port(auto-disable)

Specifies a port or a port range, relative to the slot number on bladed systems, for example, 5/17-29.

--enable
Enables the autodisable feature on the specified ports.

--disable
Disables the autodisable feature on the specified ports.

--add
Specifies one or more trigger conditions that will disable the specified ports. Trigger conditions must be separated by a space, for example, LOSN OLS LIP. Trigger conditions are case insensitive.

--remove
Removes one or more trigger conditions from the port autodisable configuration.

--addall
Adds all supported trigger conditions to the port autodisable configuration.

--removeall
Removes all supported trigger conditions from the port autodisable configuration. This command removes the triggers only; it does not disable the port autodisable flag.

--addexcept
Adds all supported trigger conditions to the port autodisable configuration except the one specified.

--show
Displays the port autodisable configuration.

--suspend
Suspends the current port autodisable configuration temporarily.

--resume
Resumes the suspended port autodisable configuration.

--help
Displays command usage.

option

Specify one or more the following options (supported with the --add, --remove, and --addexcept operands):

  LOSN
  Loss of Sync

  LOSNG
  Loss of Signal

  OLS
  Offline Primitive Sequence

  NOS
  Not Operational Primitive Sequence

  LIP
  Loop Initialization Primitive Sequence
EXAMPLES

To disable the port autodisable feature on single port:

switch:admin> portcfgautodisable --disable 18
switch:admin> portcfgautodisable --show 18
   Port Auto Disable: OFF
   Configured Option(s): No events configured. Port will not be automatically disabled.

To enable the port autodisable feature on a single port:

switch:admin> portcfgautodisable --enable 18
switch:admin> portcfgautodisable --show 18
   Port Auto Disable: ON
   MODE: RESUME
   Configured Option(s): No events configured. Port will not be automatically disabled.

To add multiple trigger conditions to the port autodisable configuration on a single port:

switch:admin> portcfgautodisable --add losn lip ols 18
switch:admin> portcfgautodisable --show 18
   Port Auto Disable: ON
   MODE: RESUME
   Configured Option(s): LOSN OLS LIP

To add all trigger conditions except the LOSN condition:

switch:admin> portcfgautodisable --addexcept LOSN 18
switch:admin> portcfgautodisable --show 18
   Port Auto Disable: ON
   MODE: RESUME
   Configured Option(s): LOSG OLS NOS LIP

To attempt to enable and configure the port autodisable feature on a port for which the feature is already activated (the configuration is not updated):

switch:admin> portcfgautodisable --show 18
   Port Auto Disable: ON
   MODE: RESUME
   Configured Option(s): LOSG OLS NOS LIP
switch:admin> portcfgautodisable --enable 18
   Same configuration for port 18
switch:admin> portcfgautodisable --addexcept LOSN 18
   Same configuration for port 18

To enable the port autodisable feature on a range of ports:

switch:admin> portcfgautodisable --enable 0-2
switch:admin> portcfgautodisable --show 0-2
   Port Auto Disable: ON
   MODE: RESUME
   Configured Option(s): No events configured. Port will not be automatically disabled.

   Port Auto Disable: ON
   MODE: RESUME
   Configured Option(s): No events configured.
Port will not be automatically disabled.

Port Auto Disable: ON
MODE             : RESUME
Configured Option(s): No events configured.
Port will not be automatically disabled.

To enable the port autodisable feature for a range of ports, some of which were previously enabled (the configuration is applied only to those ports, for which an update is necessary, that is, port 3 in the following example):

switch:admin> portcfgautodisable --enable 0-3
Same configuration for port 0
Same configuration for port 1
Same configuration for port 2

To suspend the port autodisable configurations:

switch:admin> portcfgautodisable --suspend
Suspending Port Auto Disable will de-activate the triggers \ for all ports configured with Port autodisable conditions on this Logical Switch.
Would you like to continue [y/n]? y
PAD option is set to 'SUSPEND'
switch:admin> portcfgautodisable --show 18
Port Auto Disable: ON
MODE             : SUSPEND
Configured Option(s): LOSG  OLS  NOS  LIP

To resume the suspended port autodisable configurations:

switch:admin> portcfgautodisable --resume
PAD option is set to 'RESUME'
switch:admin> portcfgautodisable --show 18
Port Auto Disable: ON
MODE             : RESUME
Configured Option(s): LOSG  OLS  NOS  LIP

SEE ALSO  portCfgShow, portEnable
portCfgCompress

Configures a port for compression.

**SYNOPSIS**

portcfgcompress --enable [slot]/port

portcfgcompress --disable [slot]/port

portcfgcompress --help

**DESCRIPTION**

Use this command to configure a port for compression. This command enables or disables the compression configuration on the specified port, and saves the configuration persistently.

Configuring a port for compression is disruptive. You must disable the port before you can enable compression on the port. This command fails on an enabled port.

The number of configurable ports is limited per ASIC. A message will be displayed once the maximum number is exceeded. Use the `portEncCompShow` for a listing of configurable ports per ASIC.

**NOTES**

This command is supported only on E_Ports. An E_Port can be enabled for compression and for encryption at the same time.

When you move a configured port to another logical switch, you are informed that the operation requires the port configuration to be disabled. You are given the choice to cancel the move or to continue. If you want to go ahead with the move and the port is configured for encryption or compression, you must disable the configuration prior to moving the port. You must reconfigure the port on the target switch if you want to use compression or encryption on that port.

This command is supported only on Condor 3-based platforms running Fabric OS v7.0.0 or later with the exception of the Brocade 6505 switch and the Brocade FC8-32E and Brocade FC8-48E port blades.

Compression feature is not supported on Condor3 Inter Chassis Link (ICL) ports.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

This command has the following operands:

- `slot`
  
  On bladed systems only, specifies the slot number of the ports to be configured, followed by a slash (/).

- `port`
  
  Specifies the port to be configured.

- `--enable`
  
  Enables the compression configuration on the specified port.

- `--disable`
  
  Disables the compression configuration on the specified port.

- `--help`
  
  Displays the command usage.

**EXAMPLES**

To enable the compression configuration:

```
switch:admin> portcfgcompress --enable 2
```
switch:admin> lscfg --config 15 -port 2
This operation requires that the affected ports be disabled.
Would you like to continue [y/n]?: y
Checking for cap port 2
After Checking for cap port 2
val 1  port 2
lscfg: The port cannot be moved to the requested switch because
port or ports have Encryption/Compression enabled. Please disable
the Encryption/Compression configuration.
  FID: 15
  Slot: 0
  Port: 2

To disable the compression configuration:

switch:admin> portcfgcompress --disable 2

To enable compression configuration when maximum number is reached:

switch:admin> portcfgcompress --enable 2
Configuration is not allowed. Maximum number of ports is
already configured for Encryption/Compression.

SEE ALSO portCfgEncrypt, portEncCompShow
portCfgCreditRecovery

Enables or disables credit recovery on a port.

SYNOPSIS

portcfgcreditrecovery --enable [slot/]port
portcfgcreditrecovery --disable [slot/]port
portcfgcreditrecovery --help [slot/]port

DESCRIPTION

Use this command to enable or disable credit recovery on a port. The credit recovery feature enables credits or frames to be recovered. The default credit recovery configuration is enabled.

NOTES

This command is supported in Access Gateway mode in Fabric OS v7.1.0 and later. The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

The Fabric OS port configuration commands are not supported on FCoE ports.

OPERANDS

This command has the following operands:

--disable
Disables credit recovery configuration on the specified port.

--enable
Enables credit recovery configuration on the specified port.

--help
Displays the command usage.

EXAMPLES

To enable credit recovery on a port:

switch:admin> portcfgcreditrecovery --enable 3/15

To disable credit recovery on a port:

portcfgcreditrecovery --disable 3/15

SEE ALSO

portCfgShow
**portCfgDefault**

Resets the port configuration to factory default value.

**SYNOPSIS**

```
portcfgdefault [slot[/]ge]port
```

**DESCRIPTION**

Use this command to reset all configuration values on a specified port to their factory defaults. This command persistently disables ports capable of routing, which is the factory default value. Use the `portCfgShow` command to display the port configuration.

This command does not change the state of a port. To change the state of an E_Port, use either `switchDisable/switchEnable` or `portDisable/portEnable`.

**NOTES**

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

This command has the following operands:

- `slot`
  
  For bladed systems only, specifies the slot number of the port to be reset, followed by a slash (/).

- `port`
  
  Specifies the number of the port to be reset, relative to its slot for bladed systems. Use `switchShow` to list of valid ports.

**EXAMPLES**

To reset a port to factory defaults:

```
switch:admin> portcfgdefault 1/3
```

To reset a GbE port to factory defaults:

```
switch:admin> portcfgdefault 8/ge1
```

**SEE ALSO**

`portCfgEport`, `portCfgGport`, `portCfgLongDistance`, `portCfgLport`, `portCfgPersistentDisable`, `portCfgPersistentEnable`, `portCfgShow`, `portCfgSpeed`, `portCfgTrunkPort`
portCfgDPort

Configures a port as a D_Port.

SYNOPSIS

portcfgdport --enable [-dwdm] [slot/]port_list

portcfgdport --disable [-dwdm] [slot/]port_list

portcfgdport --help

DESCRIPTION

Use this command to configure a diagnostic port (D_Port). The D_Port is not part of the fabric. It does not carry any interswitch traffic or data traffic. The D_Port is used solely for the purpose of running link-level diagnostics between two switches and to isolate link level fault on the port, in the small form factor pluggable (SFP), or in the cable.

You must configure both ends of the link between a given pair of switches, and you must disable the port before you can configure a D_Port. Re-enabling the D_Ports will automatically start the diagnostics when the ports come online.

The D_Port test performs the following diagnostics:

• An electrical loopback test (supported only on 16G SFPs capable of electrical loopback)
• An optical loopback test (supported only on 16G SFPs capable of optical loopback)
• A link traffic test
• A link distance measurement

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command is supported only on Fibre Channel ports. SFPs must be 10Gb or 16Gb Brocade-branded SFPs and run Fabric OS v7.0.0 or later on 16Gb-capable platforms.

This command is not supported on the Brocade FC8-32E and Brocade FC8-48E port blades.

D_Port configuration is not supported on EX_Ports and ports configured in encryption mode or compression mode. Links with mismatched D_Ports configuration will be segmented or disabled.

Forward Error Correction (FEC) is not supported on D_Ports configured with Dense Wavelength Division Multiplexing (DWDM).

OPERANDS

This command has the following operands:

slot

On bladed systems only, specifies the slot number of the ports to be configured, followed by a slash (/).

port_list

Specifies one or more ports, relative to the slot on bladed systems. Use switchShow for a listing of valid ports. A port list should be enclosed in double quotation marks and can consist of the following:

• A single port, for example, "8" or "5/8" on blades systems.
• A port range where beginning and end port are separated by a dash, for example, "8-13" or "5/8-13" on blades systems. A port range cannot span multiple slots.
• A set of ports separated by spaces, for example "3 5 7 8" or 5/3 5/5 5/7 5/8 on bladed systems.
portCfgDPort

- A set of ports separated by commas, for example "3,5,7,8" or 5/3,5,7,8 on bladed systems.
- A wildcard '*' indicates all ports. The wild card should be enclosed in single quotation marks.

--enable
Configures the specified port(s) as D_Port.
You cannot configure the port as a D_Port while Dynamic D_Port tests are in progress on the port. The operation fails with an error message.

-dwmd
Skips the optical loopback test when you run the D_Port diagnostics over a Dense Wavelength Division Multiplexing (DWDM) link or any third party equipment that connects two switches. This operand is optional.

--disable
Clears the D_Port configuration on the specified ports.

-dwmd
Disables DWDM mode on the port. This operand is optional.

--help
Displays the command usage.

EXAMPLES
To configure a single port as a D_Port:
switch:admin> portdisable 42
switch:admin> portcfgdport --enable 42
switch:admin> portenable 42

To clear the D_Port configuration:
switch:admin> portdisable 42
switch:admin> portcfgdport --disable 42
switch:admin> portenable 42

SEE ALSO fabricLog, portCfg, portDPortTest, portShow, switchShow
portCfgEncrypt

Configures a port for encryption.

SYNOPSIS

portcfgencrypt --enable [slot]/port
portcfgencrypt --disable [slot]/port
portcfgencrypt --help

DESCRIPTION

Use this command to configure a port for encryption. This command enables or disables the encryption configuration on the specified port and saves the configuration persistently.

Before you can configure a port for encryption, you must configure the port for authentication. When disabling encryption, you must disable the encryption configuration before you can disable authentication. Refer to the Fabric OS Encryption Administrator's Guide for more information.

Configuring a port for encryption is disruptive. You must disable the port before you can enable encryption on the port. This command fails on an enabled port.

The number of configurable ports is limited per ASIC. Use the portEncCompShow for a listing of configurable ports per ASIC.

NOTES

This command is supported on E_Ports and EX_Ports. An E_Port or EX_Port can be enabled for compression and for encryption at the same time.

When you move a configured port to another logical switch, you are informed that the operation requires that the port configuration be disabled. You are given the choice to cancel the move or to continue. If you want to go ahead with the move and the port is configured for encryption or compression, you must disable the configuration prior to moving the port. You must reconfigure the port on the target switch if you want to use compression or encryption on that port.

This command is supported only on Condor 3-based platforms running Fabric OS v7.0.0 or later with the exception of the Brocade 6505 switch and the Brocade FC8-32E and Brocade FC8-48E port blades.

Encryption feature is not supported on Condor3 Inter Chassis Link (ICL) ports.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

slot

On bladed systems only, specifies the slot number of the ports to be configured, followed by a slash (/).

port

 Specifies the port to be configured.

--enable

 Enables the encryption configuration on the specified port.

--disable

 Disables the encryption configuration on the specified port.

--help

 Displays the command usage.

EXAMPLES

To enable the encryption configuration:

switch:admin> portcfgencrypt --enable 2
To attempt to move a configured port to another logical switch:

```
switch:admin> lscfg --config 15 -port 2
This operation requires that the affected ports be disabled.
Would you like to continue [y/n]? y
Checking for cap port 2
After Checking for cap port 2
val 1 port 2
lscfg: The port cannot be moved to the requested switch because
port or ports have Encryption/Compression enabled. Please disable
the Encryption/Compression configuration.
 FID: 15
 Slot: 0
 Port: 2
```

To disable the encryption configuration:

```
switch:admin> portcfgencrypt --disable 2
```

SEE ALSO authUtil, portCfgCompress, portEncCompShow, secAuthSecret
portCfgEport

Enables or disables E_Port capability on a port or locks down a port as an E_Port.

SYNOPSIS

portCfgEport [slot]port mode

portCfgEport -i [index1[-index2] [...] [-f] mode]

portCfgEport -slot [slot1[-slot2] [...]]

portCfgEport -h

DESCRIPTION

Use this command to enable or disable E_Port capability on a port or to lock down a port as an E_Port. E_Port capability is enabled by default. When an interswitch link (ISL) is connected to a port and the port's E_Port capability is disabled, the ISL is segmented, and all traffic between the switches stops. Fabric management data, such as zoning information, can no longer be exchanged through this port.

You can identify a single port to be configured by its port number or by its port index number. Port ranges are supported with index numbers or by specifying a slot or a slot range. Use switchShow for a listing of valid ports, slots, and port index numbers. When used without operands, this command displays all persistently disabled ports on the switch.

Specifying multiple ports with the index (-i) or slot (-s) option is supported only if portSwap is disabled. They are not supported on GbE ports and configured F_Port trunks. Use the -i option without a port index argument to display the portSwap status or alternately use portSwapShow.

Changes made by this command are persistent across switch reboots or power cycles.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

Regardless of how many E_Ports are connected between two switches, the maximum routing paths are limited to 16 E_Ports.

The Fabric OS port configuration commands are not supported on FCoE ports.

OPERANDS

This command has the following operands:

slot

For bladed systems only, specifies the slot number of the port to be configured, followed by a slash (/).

port

Specifies the number of the port to be configured, relative to its slot for bladed systems. Use switchShow to display a listing of valid ports.

-i index1[-index2]

Specifies a range of ports identified by port index numbers. You may specify multiple index ranges separated by a space, for example, -i 33-38 40-60.

-f

Ignores nonexisting ports. This operand is valid only with the -i option.

-slot [slot1[-slot2]]

Specifies all ports on a slot or on a range of slots, for example, -s 3-5. You may specify multiple slot ranges separated by a space, for example, -s 3-5 8-10.
portCfgeport

mode

Specifies the E_Port configuration as one of the following:

0
Disables E_Port capability for the specified ports.

1
Enables the ports as E_Ports. This is the default port state.

2
Locks down the ports as E_Ports. This command effectively disables the port's F_Port capability.

-h
Displays the command usage.

EXAMPLES
To disable E_Port capability on a port:
switch:admin> portCfgeport 1/3 0
To enable E_Port capability on a port:
switch:admin> portCfgeport 1/3 1
To lock down the port as an E_Port.
switch:admin> portCfgeport 1/3 2
To disable E_Port capability on a range of ports specified by their index number:
switch:admin> portCfgeport -i 12-18 0
To enable E_Port capability on all ports of slot 3-5:
switch:admin> portCfgeport -s 3-5 1

SEE ALSO portShow, portSwapDisable, portSwapShow, switchShow
**portCfgEportCredits**

Configures normal distance E_Port buffer allocation.

**SYNOPSIS**

```
portcfgeportcredits --enable [slot]/port credits
portcfgeportcredits --disable [slot]/port
portcfgeportcredits --show [slot]/port
portcfgeportcredits --help
```

**DESCRIPTION**

Use this command to change the default credit allocation for a normal distance E_Port or EX_Port by allocating the specified number of credits to the port. When port credit allocation is enabled, the number of credits specified overrides the default E_Port credit allocation; that is, a new credit model is constructed based on the user-configured credits value. When the configuration is disabled, the default credit allocation (default credit model) is restored. Only a normal distance E_Port and EX_Port can utilize the new credit model constructed by this command, and the allocated credits are reserved only for that port.

The E_Port credit configuration is persistent across system reboots and High Availability (HA) failover.

Use the `portcfgeportcredits --show` command to display the configured credits.

Use the `portBufferShow` command to determine current port buffer allocations.

**NOTES**

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

The E_Port credits feature does not support ports configured as F_Ports, Mirror Ports, L_Ports, and Trunk Areas. If E_Port credits are configured on ports, moving the ports from one logical switch to another logical switch is not permitted.

The Fabric OS port configuration commands are not supported on FCoE ports.

The E_Port credits are mutually exclusive with F_Port buffers, longdistance, and ISL R_RDY mode.

**OPERANDS**

This command has the following operands:

```
--enable

--disable

--show

slot

port
```

- **--enable**
  Enables the E_Port credit configuration on a specified port. A port and credits allocation must be specified with this option.

- **--disable**
  Disables the E_Port credit configuration on a specified port.

- **--show**
  Displays the credits configured on a specified port.

- **slot**
  Specifies the slot number on bladed systems, followed by a slash (/).

- **port**
  Specifies the port number.
**credits**

Specifies the number of credits to be allocated to the specified port. The specified credit allocation takes effect when the E_Port comes online. This operand is required with the **--enable** option. The minimum credit allocation is 5 and the maximum is 40. The configured credits will be allocated for each of the medium virtual channels (VCs) for the non-QoS ports. For QoS ports, after sharing, both the medium and high VCs will have the configured credits allocated.

**--help**

Displays the command usage.

**EXAMPLES**

To allocate 10 credits to an E_Port:

```
switch:admin> portcfgeporcots --enable 12/6 10
Success.
```

To display the configured credits for an E_Port:

```
switch:admin> portcfgeporcots --show 12/6
E-Port Credit Configured : 10
Success.
```

To disable the credit configuration and return to the default credit allocation:

```
switch:admin> portcfgeporcots --disable 12/6
Success.
```

**SEE ALSO**

portBufferShow
portCfgEXPort

Sets a port to be an EX_Port, and sets and displays EX_Port configuration parameters.

SYNOPSIS

portcfgexport [slot|port

portcfgexport [-a admin]

portcfgexport [-f fabricid]

portcfgexport [-r ratov]

portcfgexport [-e edtov]

portcfgexport [-d domainid]

portcfgexport [-p pidformat]

portcfgexport [-t fabric_parameter]

portcfgexport [-m port mode]

portcfgexport [-i mode]

DESCRIPTION

Use this command to allow a port to be configured as an EX_Port, to display the port’s EX_Port configuration, or to change the configuration. If no optional parameter is specified, the command displays the currently configured values; otherwise, it sets the specified attribute to its new value. The port must be disabled prior to setting EX_Port attributes. The port must be enabled before the port can become active following EX_Port parameter changes. Use portDisable and portEnable to disable or enable the port.

IPFC over FCR allows the routing of IPFC traffic between different EX_Ports where EX_Ports are connected to an edge fabric that has IPFC-capable devices. IPFC traffic is routed between EX and VEX Ports. IPFC traffic can be related to the same edge fabric or to different edge fabrics.

When the port is not active, the preferred domain ID is configurable. The preferred domain ID is used by the EX_Port’s front phantom domain to request a domain ID from the principal switch. The domain ID received becomes the subsequent preferred domain ID, which is persistent and is displayed.

FCR supports Network OS edge (NOS) fabric connectivity when the EX_Port is set to Brocade Network OS fabric mode. No Integrated Routing License is required to support Network OS fabric connectivity, and selective device sharing will be allowed even when a license is not present.

This command is also used to configure the Inter-Chassis Link (ICL) ports to be EX_Ports. The ICL EX_Port is supported only on the VF-enabled Condor3 chassis. Setting ICL EX_Port configuration in a non-VF switch or non-base switch will display an error.

All EX_Ports within a quad small form-factor pluggable (QSFP) must be present in the base switch and in disabled state for configuring ICL EX_Ports. If an EX_Port within the same QSFP is moved from the base switch to a logical switch, EX_Port configuration cannot be applied to any of the ports in the QSFP. When specifying an ICL port, all four E_Ports of the QSFP will be configured with the same EX_Port parameters.

Encryption and compression are not supported on an ICL EX_Ports. When this command is executed on ICL EX_Ports without optional parameters, encryption and compression states are not displayed.
The fabric ID must be the same for every router port connected to the same edge fabric, and different for every edge fabric. If two ports are connected to the same fabric but have been assigned different fabric IDs, one of them will be disabled due to a fabric ID oversubscription. If two fabrics have been assigned the same fabric ID, one of them will be disabled due to a fabric ID conflict.

When a port is changed from FL_Port to EX_Port, the topology is implicitly changed to point-to-point.

The front domain WWN field displays the WWN of the front domain. If the port is enabled and the state is "OK", the edge fabric principal switch domain ID and WWN also are displayed.

If the Fabric Parameter value is "Auto Negotiate", the port ID format, R_A_TOV, and E_D_TOV values display the negotiated values indicated by "(N)" next to them. The negotiated values are what the edge switch specifies in the ELP request. If the state is "Not OK", the R_A_TOV and E_D_TOV display "Not Applicable". By default, all EX_Ports are auto-ELP enabled.

If the Fabric Parameter attribute value is "User configured", the port ID format R_A_TOV and E_D_TOV values display the configured values.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
When invoked without operands, this command displays the usage. The following operands are supported:

- **slot**
  On bladed systems only, specifies the slot number followed by a slash (/).

- **port**
  Specifies the port number. Use switchShow for a list of valid ports. When executed with [slot/]port only, the command displays the current port configuration.

- **-a admin**
  Enables or disables the specified port as an EX_Port. Valid values are 1 (enable as EX_Port), 2 (disable as EX_Port and enable as non-EX_Port). portCfgDefault may also be used to disable EX_Ports.

- **-f fabricid**
  Specifies the fabric ID. Valid values are 1 to 128.

- **-r ratov**
  Specifies the R_A_TOV used for port negotiation. Valid values are 2000 to 120000. This operand is only applicable if the "Fabric Parameter" attribute value is not "Auto Negotiate".

- **-e edtov**
  Specifies the E_D_TOV used for port negotiation. Valid values are 1000 to 60000. This operand is only applicable if the "Fabric Parameter" attribute value is not "Auto Negotiate".

- **-d domainid**
  Specifies the preferred domain ID. For Brocade native mode (-m 0), valid values are 1 to 239.

- **-p pidformat**
  Specifies the Port ID format. Valid values are 0-native, 1-core, 2-extended edge. This operand is applicable only when port mode is set to 0 (native mode). If port mode is not "Brocade Native", the Port ID format displays as "Not applicable".

- **-t fabric_parameter**
  Enables or disables negotiation of the fabric parameters. Valid values are 1 for enable and 2 for disable.
-m port mode

Specifies the port mode. The -m option enforces the same port mode for all the ports connected to the same edge fabric. If this option is selected, the port mode is compared against the online ports. If the modes are different, an error message is posted, and the command fails. Valid values are as follows:

0

Brocade Native mode.

5

Brocade Network OS fabric mode.

-i mode

Enables or disables Insistent Domain Id (IDID) for the specified EX_Port. Specify 1 to enable IDID, specify 2 to disable IDID. This command must be issued from a McDATA edge switch attached to a single or dual FCR configuration.

EXAMPLES

To set the fabric ID of port 2/1 to 5 and the port ID format to core:

```
switch:admin> portcfgexport 2/1 -f 5 -p 1
```

To configure port 2/0 to be an EX_Port and set the fabric ID to 4:

```
switch:admin> portcfgexport 2/0 -a 1 -f 4
```

To disable fabric parameter negotiation on port 2/0 of an EX_Port:

```
switch:admin> portcfgexport 2/0 -t 2
```

To enable IDID on port 2:

```
switch:admin> portcfgexport 2 -i 1
```

To enable Brocade Network OS (NOS) fabric mode on port 1/5:

```
switch:admin> portcfgexport 1/5 -a 1 -m 5
```

To view the configuration of an EX_Port:

```
switch:admin> portcfgexport 1/5
Port 1/5 info
Admin: enabled
State: OK
Pid format: core(N)
Operate mode: Brocade Native
Edge Fabric ID: 128
Preferred Domain ID: 160
Front WWN: 50:00:51:e4:44:40:0e:80
Fabric Parameters: Auto Negotiate
R_A_TOV: 10000(N)
E_D_TOV: 2000(N)
Authentication Type: DHCHAP
DH Group: 4
Hash Algorithm: SHA-1
Encryption: ON
Compression: ON
Forward Error Correction: ON
Edge fabric's primary wwn: N/A
Edge fabric's version stamp: N/A
```
To view the configuration of an ICL EX_Port:

switch:admin> **portcfgexport 5/12**
Port 5/12 info
Admin: enabled
State: OK
Pid format: core(N)
Operate mode: Brocade Native
Edge Fabric ID: 11
Front Domain ID: 160
Front WWN: 50:00:51:e4:8f:80:2e:0b
Principal Switch: 1
Principal WWN: 10:00:00:05:1e:48:f8:03
Fabric Parameters: Auto Negotiate
R_A_TOV: 10000(N)
E_D_TOV: 2000(N)
Authentication Type: None
DH Group: N/A
Hash Algorithm: N/A
Forward Error Correction: ON
Edge fabric's primary wwn: N/A
Edge fabric's version stamp: N/A

SEE ALSO **portCfgVEXPort, portDisable, portEnable, portShow, portCfgDefault, fcrBcastConfig**
portCfgFaultDelay

Configures the fault delay for a single FC port.

SYNOPSIS

portcfgfaultdelay [slot[/]port delay

portcfgfaultdelay --help

DESCRIPTION

Use this command to configure the fault delay of an FC port.

In the event that the link is noisy after a host power cycle, the switch may go into a soft fault state, which means a delay of R_A_TOV. Setting the mode value to 1 reduces the fault delay value to 1.2 seconds. The configuration is stored in nonvolatile memory and is persistent across switch reboots and power cycles.

Use the portCfgShow command to display the user-configured fault delay settings.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command is applicable only to Fibre Channel ports.

OPERANDS

This command has the following operands:

slot

For bladed systems only, specifies the slot number of the port to be configured, followed by a slash (/).

port

Specifies the number of the port to be configured, relative to its slot for bladed systems. Use switchShow for a listing of valid ports.

delay

Specifies the fault delay value for the port number. This operand is required. Valid values are one of the following:

0

Sets the fault delay to R_A_TOV (default).

1

Sets the fault delay to 1.2 seconds.

--help

Displays the command usage.

EXAMPLES

To set the fault delay of a port to 1.2 seconds:

switch:admin> portcfgfaultdelay 2/3 1

To display the configuration

switch:admin> portcfgshow 2/3

Area Number: 21
Octet Speed Combo: 1(16G|8G|4G|2G)
Speed Level: AUTO(SW)
AL_PA Offset 13: OFF
Trunk Port ON
Long Distance OFF
VC Link Init OFF
Locked L_Port: OFF
Locked G_Port: OFF
Disabled E_Port: OFF
Locked E_Port: OFF
ISL R_RDY Mode: OFF
RSCN Suppressed: OFF
Persistent Disable: OFF
LOS TOV enable: OFF
NPIV capability: ON
QOS E_Port: \text{AE}
Port Auto Disable: OFF
Rate Limit: OFF
EX Port: OFF
Mirror Port: OFF
Credit Recovery: ON
F_Port Buffers: OFF
Fault Delay: 1(1.2sec)
NPIV PP Limit: 126
CSCTL mode: OFF
D-Port mode: OFF
Compression: OFF
Encryption: OFF
FEC: Active

\text{switch:admin}\gt \text{portcfgshow}

<table>
<thead>
<tr>
<th>Ports of Slot 2</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>AN</td>
</tr>
<tr>
<td>Fill Word (On Active)</td>
<td>0</td>
</tr>
<tr>
<td>Fill Word (Current)</td>
<td>0</td>
</tr>
<tr>
<td>AL_PA Offset</td>
<td>13</td>
<td>..</td>
</tr>
<tr>
<td>Trunk Port</td>
<td>ON</td>
</tr>
<tr>
<td>Long Distance</td>
<td>..</td>
</tr>
<tr>
<td>VC Link Init</td>
<td>..</td>
</tr>
<tr>
<td>Locked L_Port</td>
<td>..</td>
</tr>
<tr>
<td>Locked G_Port</td>
<td>..</td>
</tr>
<tr>
<td>Disabled E_Port</td>
<td>..</td>
</tr>
<tr>
<td>ISL R_RDY Mode</td>
<td>..</td>
</tr>
<tr>
<td>RSCN Suppressed</td>
<td>..</td>
</tr>
<tr>
<td>Persistent Disable</td>
<td>..</td>
</tr>
<tr>
<td>LOS TOV enable</td>
<td>..</td>
</tr>
<tr>
<td>NPIV capability</td>
<td>ON</td>
</tr>
<tr>
<td>EX Port</td>
<td></td>
</tr>
<tr>
<td>Mirror Port</td>
<td></td>
</tr>
<tr>
<td>Rate Limit</td>
<td></td>
</tr>
<tr>
<td>Credit Recovery</td>
<td>ON</td>
</tr>
<tr>
<td>F_Port Buffers</td>
<td></td>
</tr>
<tr>
<td>Port Auto Disable</td>
<td></td>
</tr>
<tr>
<td>CSCTL mode</td>
<td></td>
</tr>
<tr>
<td>D-Port mode</td>
<td></td>
</tr>
<tr>
<td>Compression</td>
<td></td>
</tr>
<tr>
<td>Encryption</td>
<td></td>
</tr>
</tbody>
</table>
portCfgFaultDelay

FEC ....... ....... ....... ....... ....... ....... ....... Fault Delay 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

where AE:QoSAutoEnable, AN:AutoNegotiate, ..:OFF,
-:NotApplicable, ??:INVALID

(output truncated)

SEE ALSO      portCfgShow
portCfgFec

Enables or disables Forward Error Correction on 16 Gbps and 10 Gbps Fibre Channel links.

SYNOPSIS

portcfgfec --enable [slot]/port [-port]
portcfgfec --disable [slot]/port [-port]
portcfgfec --show [slot]/port [-port]
portcfgfec --help

DESCRIPTION

Use this command to enable or disable Forward Error Correction (FEC) on a specified port or on a range of ports, or to display the configuration.

FEC provides a mechanism for reducing error rates during data transmissions over 16 Gbps Fibre Channel links. When FEC is enabled on a port, the sender adds systematically generated error-correcting code (ECC) to its data transmission. This mechanism allows the receiver to detect and correct errors without needing to get additional information from the sender.

The Brocade implementation of FEC is supported on 16 Gbps platforms (Condor3) and enables the switch to recover bit errors in 16 Gbps and 10 Gbps data streams. The FEC encoding can correct one burst of up to 11 error bits in every 2,112-bit transmission. The error correction covers both frames and primitives. There is no loss of bandwidth or added transmission data rate overhead to the 16 Gbps FC link.

By default, FEC is enabled switch-wide on all Condor3-based platforms. If FEC is already enabled on the ports, enabling FEC has no effect. If a range of ports is specified, some of which are already in the requested configuration, a notification is generated, and no action is taken for those ports only. All other ports in the specified range are updated. Enabling or disabling FEC is disruptive to traffic.

When used with the --show option, the command displays the following information for the specified ports:

Port

The port index number

FEC Capable

Displays YES if the port supports FEC. Displays NO if the port does not support FEC.

FEC Configured

Displays ON if FEC is enabled on the port (default). Displays OFF if the feature is disabled.

FEC State

The FEC state can be active or inactive. An active FEC state indicates that FEC is enabled and actually running. An inactive state can indicate two conditions: FEC is enabled, but not running due to some error condition (for example, FEC may not be enabled on both links). Or FEC is disabled and therefore inactive.

Use the portCfgShow command to display the FEC configuration along with other port parameters. Use the isIShow command to view interswitch link-level FEC configurations. Use the portErrshow and portStatShowhow commands to monitor data transmission errors. You should see a significant reduction in CRC errors on FEC-enabled links.
NOTES

FEC is supported the following links:

- Between E_Ports on all Condor3-based platforms running Fabric OS v7.0.0 or later. Both sides of the link must be configured with port speeds of 10 Gbps and 16 Gbps.
- Between F_Ports and N_Ports in Access Gateway mode (requires Fabric OS v7.1.0 and later on the AG and the switch.
- Between Brocade 16G capable HBAs (Catapult2) Host Bus Adapters and an F_Port. The HBA must be running v3.2 or later and the switch must be running Fabric OS v7.1.0.

FEC is compatible with QoS, Credit Recovery, and Fabric-Assigned Port WWM (FA-PWWN).
FEC is not supported on D_Ports configured with Dense Wavelength Division Multiplexing (DWDM).

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

slot
On bladed systems only, specifies the slot number of the ports to be configured, followed by a slash (/).

port[-port]
Specifies a port or a port range, relative to the slot number on bladed systems, for example, 5/17-29. Multiple port ranges are not supported with this command.

--enable
Enables FEC on the specified ports.

--disable
Disables FEC on the specified ports.

--show
Displays the FEC configuration on the specified ports.

--help
Displays the command usage.

EXAMPLES

To enable FEC on a single port and to display the configuration:

switch:admin> portcfgfec --enable 5/28
switch:admin> portcfgfec --show 5/28
Port: 412
FEC Capable: YES
FEC Configured: ON
FEC State: active

To enable FEC on a port:

switch:admin> portcfgfec --enable 18
Same configuration for port 8

To enable FEC on a port range:

switch:admin> portcfgfec --enable 0-8

To enable the FEC feature on a range of ports, some of which were previously enabled (the following example enables port 4):

switch:admin> portcfgfec --enable 2-4
Same configuration for port 2
Same configuration for port 3
To disable the FEC feature on a port range:

```
switch:admin> portcfgfec --disable 0-8
```

SEE ALSO  
islShow, portCfgShow, portErrShow, portStatsShow
portCfgFillword

Configures the fill word for a single 8G FC port.

SYNOPSIS

    portcfgfillword [slot[/]port, mode [passive]]

    portcfgfillword --help

DESCRIPTION

Use this command to configure the fill word of an 8G FC port. By default, this command disables and re-enables the port and the port comes online with the new fill word setting. When passive option 1 is used after the mode, the new settings are not applied until the next time the port goes offline and comes back online. When passive option 0 is used after the mode, the new settings are applied immediately. The configuration is stored in nonvolatile memory and is persistent across switch reboots or power cycles.

NOTES

This command applicable only to 8G FC ports; it is not supported on Condor 3-based platforms. This configuration cannot be set on VE_Ports or VEX_Ports.

Use the portCfgShow command to display user-configured fill word settings.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

slot

  For bladed systems only, specifies the slot number of the port to be configured, followed by a slash (/).

port

  Specifies the number of the port to be configured, relative to its slot for bladed systems. Use switchShow for a listing of valid ports.

mode

  Specifies the fill word for the port number. This operand is required. Valid values are one of the following:

  0 | -idle-idle
      Sets IDLE mode in the Link Init and IDLE as the fill word (default).

  1 | -arbff-arbff
      Sets ARB(ff) in the Link Init and ARB(ff) as the fill word.

  2 | -idlef-arbff
      Sets IDLE mode in the Link Init and ARB(ff) as the fill word.

  3 | -aa-then-ia
      Attempts hardware arbff-arbff (mode 1) first. If the attempt fails to go into active state, this command executes software idle-arb (mode 2). Mode 3 is the preferable to modes 1 and 2 as it captures more cases.

passive

  Specifies the fill word configuration changes to take effect immediately or next port toggle. This operand is optional. Valid values are one of the following:

  0
      Specify 0 for the new settings to take effect immediately.
1

Specify 1 to postpone the new settings to take effect only after the next time the port goes offline and comes back up. It prevents immediate application of the new settings through a disruptive `portDisable` and `portEnable` operation.

**EXAMPLES**

To set the fill word of a port to ARBFF-ARBFF using the numeric mode notation:

```
switch:admin> portcfgfillword 2/3, 1
```

To set the fill word of a port to ARBFF-ARBFF using the `-arbff-ARBFF` option:

```
switch:admin> portcfgfillword 2/3, -arbff-ARBFF
```

To set the fill word of a port to IDLE-ARBFF using the `-idle-ARBFF` option:

```
switch:admin> portcfgfillword 27, -idle-ARBFF
switch:admin> portcfgshow 27
Area Number: 27
Speed Level: AUTO(HW)
Fill Word(On Active) 2(SW Idle-Arbff)
Fill Word(Current) 2(SW Idle-Arbff)
(output truncated)
```

To set the fill word of a port using the passive option:

```
switch:admin> portcfgfillword 10/2 2 1

switch:admin> portcfgshow 10/2
Area Number: 82
Speed Level: AUTO(HW)
Fill Word(On Active) 2(SW Idle-Arbff)
Fill Word(Current) 1(Arbff-Arbff)
(output truncated)
```

```
switch:admin> portdisable 10/2; portenable 10/2
switch:admin> portcfgshow 10/2
Area Number: 82
Speed Level: AUTO(HW)
Fill Word(On Active) 2(SW Idle-Arbff)
Fill Word(Current) 2(SW Idle-Arbff)
AL_PA Offset 13: OFF
```

```
switch:admin> portcfgfillword 10/2 3 0
switch:admin> portcfgshow 10/2
Area Number: 82
Speed Level: AUTO(HW)
Fill Word(On Active) 3(A-A then SW I-A)
Fill Word(Current) 3(A-A then SW I-A)
AL_PA Offset 13: OFF
Trunk Port OFF
Long Distance OFF
```

**SEE ALSO**  
`portCfgShow`
portCfgFportBuffers

Configures F_Port buffer allocation.

SYNOPSIS

portcfgfportbuffers --enable [slot/]port buffers
portcfgfportbuffers --disable [slot/]port

DESCRIPTION

Use this command to change the default buffer allocation for an F_Port and to allocate a specified number of buffers to the port. When port buffer allocation is enabled, the number of buffers specified override the default F_Port buffer allocation. When the configuration is disabled, the default buffer allocation is restored. Only an F_Port can utilize the buffers allocated by this command, and the allocated buffers are reserved only for this port.

The F_Port buffer configuration is persistent across system reboots.

Use the portBufferShow command to determine current port buffer allocations.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

The F_Port buffer feature does not support ports configured as EX_Ports, Mirror Ports, Long Distance Ports, L_Ports, QoS Ports, Fast Write, and Trunk Areas.

The Fabric OS port configuration commands are not supported on FCoE ports.

OPERANDS

This command has the following operands:

--enable

Enables the F_Port buffer configuration on a specified port. A port and buffer allocation must be specified with this option.

--disable

Disables the F_Port buffer configuration on a specified port.

slot

Specifies the slot number on bladed systems, followed by a slash (/).

buffers

Specifies the number of buffers to be allocated to the specified port. The specified buffer allocation takes effect when the F_Port comes online. This operand is required with the --enable option. The minimum buffer allocation is the default number of buffers plus 1. The maximum is determined by the remaining buffer allocations in the port's port group. Use portBufferShow to determine the number of remaining free buffers.

EXAMPLES

To allocate 12 buffers to an F_Port:

switch:admin> portcfgfportbuffers --enable 2/44 12

To disable the port buffer configuration and return to the default buffer allocation:

switch:admin> portcfgfportbuffers --disable 2/44 12

SEE ALSO

portBufferShow
portCfgGeMediaType

Sets the selected mode for the ge0 and ge1 ports on the Brocade 7800.

SYNOPSIS  portcfggemediatype ge_port [optical | copper]

portcfggemediatype --help

DESCRIPTION Use this command to set the mode for ge0 and ge1 ports on the Brocade 7800.

Each of the ge0 and ge1 ports on the Brocade 7800 can be configured as a copper port (RJ45) or an optical port (SFP). The copper ports (RJ45) can only accept copper connections. The optical ports can accept any Brocade-branded SFP, optical or copper. Each of the ge0 and ge1 ports can be configured either as a copper port or an optical port, but not both.

The following configurations are possible:

Default
- ge0 (RJ45) - active and ge0 (SFP) - inactive
- ge1 (RJ45) - active and ge1 (SFP) - inactive

One copper and one optical port active
- ge0 (RJ45) - active and ge0 (SFP) - inactive
- ge1 (RJ45) - inactive and ge1 (SFP) - inactive

Or:
- ge1 (RJ45) - inactive and ge1 (SFP) - active
- ge0 (RJ45) - active and ge0 (SFP) - active

Both copper ports inactive. Both optical SPP ports active
- Ge0 (RJ45) - inactive and Ge0 (SFP) - active
- Ge1 (RJ45) - inactive and Ge1 (SFP) - active

The copper-only GbE ports are selected by default. To select ge0 or ge1 as optical mode specify the operand as optical. Specify copper to re-select the default copper port.

When used with the ge_port operand only, this command displays the currently selected GbE port and media type.

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command is supported only on the Brocade 7800 and only on ge1 and ge0 ports. On all other platforms or ports, this command returns a "not supported message."

OPERANDS This command has the following operands:

ge_Port Specifies the GbE port to be selected. Valid ports are ge0 and ge1. This operand is required.

optical | copper Specifies which mode to select. Specifying optical selects the optical mode for the GbE port. Specifying copper selects a copper mode for the GbE port. This operand is optional; if omitted, the current media type is displayed for the specified GbE port.
portCfgGeMediaType

--help
Displays the command usage.

EXAMPLES
To select an optical mode for ge0:

switch:admin> portcfggemediatype ge0 optical

To display the current configuration:

switch:admin> portcfggemediatype ge0
Port ge1 is configured in optical mode

To restore the default configuration (copper only ports are selected):

switch:admin> portcfggemediatype ge0 copper
switch:admin> portcfggemediatype ge0
Port ge0 is configured in copper mode

SEE ALSO portCfgShow
portCfgGport

Designates a port as a G_Port; removes G_Port designation.

SYNOPSIS

portcfggport [slot/+]port, mode

DESCRIPTION

Use this command to designate a port as a G_Port. After successful execution of this command, the
switch attempts to initialize the specified port as an F_Port only, and does not attempt loop initialization
(FL_Port) on the port. A port designated as a G_Port can become an E_Port. This configuration can be
cleared but not set on VE/VEX_Ports. Changes made by this command are persistent across switch
reboots or power cycles.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS

This command has the following operands:

slot
   For bladed systems only, specify the slot number of the port to be configured,
   followed by a slash (/).

port
   Specify the port to be configured, relative to its slot for bladed systems. Use
   switchShow to display a list of valid ports.

mode
   Specify a value of 1 to designate the port as a G_Port or specify a value of 0 to
   remove the G_Port designation from the port. A value of 0 is the default port state.
   Mode must be preceded by a comma. This operand is required.

EXAMPLES

To configure port as a locked G_Port:

    switch:admin> portcfggport 1/3, 1

SEE ALSO

configure, portCfgLport, portShow, switchShow
portCfgISLMode

Enables or disables ISL R_RDY mode on a port.

SYNOPSIS

portcfgislmode [slot]port,mode

DESCRIPTION

Use this command to enable or disable interswitch link read-ready (ISL R_RDY) mode on a port. Use the portCfgShow command to determine whether ISL R_RDY mode is enabled on a port.

In ISL R_RDY mode, the port sends a primitive signal that the port is ready to receive frames. The port sends an exchange link parameter (ELP) with flow control mode 02. If a port is ISL R_RDY enabled, it can only receive an ELP with flow control mode 02. A received ELP with flow control mode 01 will segment the fabric.

This mode cannot detect any inconsistencies in fabric operating mode parameters, such as the PID format of connected ports. Before enabling ISL R_RDY mode, ensure that all fabric-wide parameters are consistent for every switch in the fabric.

Use configShow fabric.ops to view a complete listing of fabric operating mode parameters on the switch.

The following E_Port configurations are not applicable to a port configured for ISL R_RDY mode. If configured, these port configuration parameters are ignored during E_Port initialization:

- Trunk port
- VC link init

The portCfgISLMode and portCfgLongDistance levels LE, LD, or LS only can be enabled at the same time. Such an ISL uses R_RDY mode of flow control over the long distance link. This feature is not backward compatible with firmware versions that do not support it.

NOTES

Changes made by portCfgISLMode are persistent across switch reboots and power cycles.

This configuration can be cleared but not set on VE/VEX_Ports.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

The Fabric OS port configuration commands are not supported on FCoE ports.

OPERANDS

This command has the following operands:

slot

For bladed systems only, specify the slot number of the port to display, followed by a slash (/).

port

Specify the port to display, relative to its slot for bladed systems. Use switchShow to list valid ports.

mode

Specify 1 to enable ISL R_RDY mode. Specify 0 to disable ISL R_RDY mode.

EXAMPLES

To enable ISL R_RDY mode on a port:

switch:admin> portcfgislmode 1/3, 1
ISL R_RDY Mode is enabled for port 3. Please make sure the PID formats are consistent across the entire fabric.
To disable ISL R_RDY mode on a port:

```
switch:admin> portcfgislmode 1/3, 0
```

See Also configure, portCfgLongDistance, portCfgShow
portCfgLongDistance

Configures a port to support long distance links.

SYNOPSIS

portcfglongdistance [slot]port
  [distance_level]
  [vc_translation_link_init]
  [-distance distance] | [-buffer buffers]
  [-framesize frame_size]
  [-fecenable | -fecdisable]

DESCRIPTION

Use this command to allocate frame buffer credits to a port or to configure a specified long distance link. The port can only be used as an E_Port. Changes made by this command are persistent across switch reboots and power cycles. This configuration can be cleared but not set on VE/VEX_Ports.

Long distance configuration allows native FC ports to run WAN/LAN connections. It ensures that the full bandwidth of a link or trunk can be utilized for a particular long distance configuration. The receiving port must have sufficient buffers available, so that the transmitting port can stuff the link with enough frames to fill the entire length of the link. As the distance between switches and the link speed increases, additional buffer-to-buffer credits are required to maintain maximum performance. If a port is configured as a long distance port, the remaining ports of that port group could be disabled, fail to initialize, or move to "buffer limited" mode due to a lack of frame buffer credits.

The number of credits reserved for a port depends on the switch model and on the extended fabric mode for which it is configured. Not all distance modes are supported by all platforms. For example, the FC10-6 only supports LO and LS up to 120 km at 10 Gbps, and the maximum supported distance can vary greatly depending on switch platform and available buffers. Refer to the Fabric OS Administrator's Guide for details on platform-specific buffer credit models, long distance mode support, and maximum distance supported for specific hardware configurations.

NOTES

This command requires an Extended Fabrics license.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

A long-distance link can also be configured to be part of a trunk group. Refer to portCfgTrunkPort help for details.

When a port is configured as a long-distance port, the output of portShow and switchShow displays the long-distance level. Refer to portShow help and switchShow help for details.

The portCfgISLMode and portCfgLongDistance LE, LD, or LS levels can be enabled at the same time. Such an ISL uses the R_RDY mode of flow control over the long distance link. While using R_RDY mode flow control, an E_Port cannot form trunk groups of long-distance links even if the trunking is enabled.

This feature is not backward compatible with firmware versions that do not support it.

Ctrl-D cancels the configuration update.

The Fabric OS port configuration commands are not supported on FCoE ports.

OPERANDS

This command has the following operands:

    slot

        Specifies the slot number (for bladed systems only), followed by a slash (/).

    port

        Specifies the number of the port to be configured relative to its slot for bladed systems. Use switchShow to display a list of valid ports. This operand is required.
**distance_level**

Specifies the long distance level as one of the following (the numerical value representing each `distance_level` is shown in parentheses):

- **L0 (0)**
  Specifies L0 to configure the port as a regular port. A total of 20 full-size frame buffers are reserved for data traffic, regardless of the port's operating speed; therefore, the maximum supported link distance is up to 5 km at 2 Gbps, up to 2 km at 4 Gbps and up to 1 km at 8, 10, and 16 Gbps.

- **LE (3)**
  Specifies LE mode to configure an E_Ports distance greater than 5 km and up to 10 km. A total of 5, 10, 20, 40, 50, and 80 full-size frame buffers are reserved for data traffic at port speeds of 1 Gbps, 2 Gbps, 4 Gbps, 8, 10, and 16 Gbps. LE does not require an Extended Fabrics license. If a port in LE mode is set to autonegotiation, it will reserve the buffers for the highest support speed on that port. If this is not the desired buffer allocation, you should set the port to a fixed speed.

- **LD (5)**
  Specifies LD for automatic long-distance configuration. The buffer credits for the given E_Port are automatically configured based on the actual link distance. Up to a total of 1452 full-size frame buffers are reserved depending on the distance measured during E_Port initialization. If a value for `desired_distance` is specified, it is used as the upper limit to the measured distance. If a port in LD mode is set to autonegotiation, it will reserve the buffers for the highest support speed on that port. If this is not the desired buffer allocation, you should set the port to a fixed speed.

- **LS (6)**
  Specifies LS mode to configure a static long distance link with a fixed buffer allocation greater than 10 km. Up to a total of 1452 full-size frame buffers are reserved for data traffic, depending on the specified `desired_distance` value. If a port in LS mode is set to autonegotiation, it will reserve the buffers for the highest support speed on that port. If this is not the desired buffer allocation, you should set the port to a fixed speed.

**vc_translation_link_init**

Specifies the fill words used on long distance links. When set to 1, the link uses ARB fill words (default). When set to 0, the link uses IDLE fill words. The IDLE fill word option is not compatible with QoS configured links and Credit Recovery enabled links. You must disable these features before configuring long distance IDLE fill words.

- **distance distance**
  This parameter is required when a port is configured as an LD or an LS mode link. In LD mode, the value of `desired_distance` is the upper limit of the link distance and is used to calculate buffer availability for other ports in the same port group. When the measured distance exceeds the value of `distance`, this value is used to allocate the buffers. In this case, the port operates in degraded mode instead of being disabled due to insufficient buffers. In LS mode, the actual link distance is not measured, instead the `distance` is used to allocate the buffers required for the port.

- **framesize frame_size**
  Specifies the average frame size for LD and LS Mode.

- **buffer buffers**
  Specifies the desired buffer for LD and LS mode.

- **fcenable**
  Enables Forward Error Correction on supported ports.
-fecdisable

Disables Forward Error Correction.

**EXAMPLES**

To configure a switch port 118 to support a 100 km link and be initialized using the long distance link initialization protocol:

```
switch:admin> portcfglongdistance 12/6 LS 1 -distance 100
switch:admin> portshow 12/6
portIndex: 118
portName: slot12 port6
portHealth: No Fabric Watch License
Authentication: None
portDisableReason: None
portCFlags: 0x1
portFlags: 0x103 PRESENT ACTIVE E_PORT G_PORT U_PORT \
SEGMENTED LOGIN
LocalSwcFlags: 0x0
portType: 24.0
portState: 1 Online
Protocol: FC
portPhys: 6 In_Sync portScn: 64 Segmented Flow control \
 mode 0
port generation number: 14
state transition count: 12
portId: 017600
portIfId: 43c2001e
portWwn: 20:76:00:05:1e:e5:cb:00
portWwn of device(s) connected:
Distance: static (desired distance = 100 Km)
portSpeed: N8Gbps
FEC: Inactive
Credit Recovery: Inactive
LE domain: 0
FC Fastwrite: OFF
Interrupts: 0 Link_failure: 0 Frjt: 0
Unknown: 0 Loss_of_sync: 0 Fbsy: 0
Lli: 70 Loss_of_sig: 0
Proc_rqrd: 205 Protocol_err: 0
Timed_out: 0 Invalid_word: 0
Rx_flushed: 0 Invalid_crc: 0
Tx_unavail: 0 Delim_err: 0
Free_buffer: 0 Address_err: 0
Overrun: 0 Lr_in: 9
Suspended: 0 Lr_out: 5
Parity_err: 0 Ols_in: 0
2_parity_err: 0 Ols_out: 6
CMI_bus_err: 0
```

To configure desired buffers:

```
switch:admin> portcfglongdistance 2/35 \
 LS 1 -buffers 400
Reserved Buffers = 420
```
To configure average frame size:

```
switch:admin> portcfglongdistance 2/35 \
 LS 1 -distance 100 -framesize 1024
```

**SEE ALSO** configure, `portCfgISLMode`, `portCfgTrunkPort`, `portCfgShow`, `portShow`, `switchShow`
**portCfgLossTov**

 Enables or disables de-bouncing of signal loss for front end ports.

**SYNOPSIS**

```
portcfglosstov [slot/]port mode
```

**DESCRIPTION**

Use this command to enable or disable the de-bouncing of loss of signal for 100 ms for front end ports. Use `portCfgShow` to display the current setting.

If executed without operands, the command prints the usage.

**NOTES**

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

On a chassis, this command must be executed on the active CP.

**OPERANDS**

This command has the following operands:

- `slot`
  - For bladed systems only, specifies the slot number of the port to be configured, followed by a slash (/).

- `port`
  - Specifies the port to be configured, relative to its slot for bladed systems. Use `switchShow` to list valid ports.

- `mode`
  - Specify 1 to enable the configuration. Specify 0 to disable the configuration.

**EXAMPLES**

To enable the configuration on port 1/5 and to display the configuration:

```
switch:admin> portcfglosstov 1/5 1
```

```
Area Number: 5
Speed Level: AUTO(HW)
Fill Word(On Active): 0(Idle-Idle)
Fill Word(Current): 0(Idle-Idle)
AL_PA Offset 13: OFF
Trunk Port ON
Long Distance OFF
VC Link Init OFF
Locked L_Port OFF
Locked G_Port OFF
Disabled E_Port OFF
Locked E_Port OFF
ISL R_RDY Mode OFF
RSCN Suppressed OFF
Persistent Disable OFF
LOS TOV enable ON
(Output truncated)
```

To disable the configuration on port 1/5:

```
switch:admin> portcfglosstov 1/5 0
```

**SEE ALSO**

`portCfgShow`
portCfgLport

Configures a port as an L_Port.

SYNOPSIS

portCfgLport

[[slot[/port] locked_mode

[private_mode] [duplex_mode]]

DESCRIPTION

Use this command to designate a port as an L_Port, and to configure its behavior. When a port is designated as an L_Port, the switch attempts to initialize that port as a fabric L_Port (FL_Port). The switch will never attempt a point-to-point (F_Port) initialization on the port. By default the L_Port will be a public L_Port. It can be configured as a private L_Port, in which case it will reject fabric login (FLOGI).

NOTES

This configuration can be cleared but not set on VE/VEX_Ports.

VE_Ports on the Brocade 7800 and FX8-24 platforms do not support Arbitrated Loops. If one of the virtual FC ports (16-31) is preconfigured as an L_Port, and a Brocade FX8-24 Extension blade is inserted into the slot, the configuration is not honored. The system logs a RASLOG error and the port defaults back to a G_Port. Attempts to configure a VE_Port as an L_Port are rejected with a corresponding system message.

The Fabric OS port configuration commands are not supported on FCoE ports.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

When invoked without operands, this command reports the L_Port conditions for all ports present. The following operands are supported:

slot

For bladed systems only, specify the slot number of the port to be configured, followed by a slash (/).

port

Specify a port number to be configured, relative to its slot for bladed systems. Use switchShow to display a list of valid ports. This operand is optional; if omitted, this command displays the L_Port conditions for all ports.

locked_mode

Specify 1 to configure the specified port as a locked L_Port. Specify 0 to remove the locked L_Port configuration from the port (default). This operand is required, if a port is specified.

private_mode

Specify 1 to configure the L_Port as a private L_Port. Specify 0 to configure the L_Port as a public L_Port. This operand is optional; if omitted; the default value of 0 is used. On unsupported platforms, this command is blocked and returns an appropriate message.

duplex_mode

Specify 2 to configure the specified port as a full-duplex L_Port with fairness. Specify 0 to configure the L_Port as a full-duplex L_Port. This operand is optional; if omitted, the default value of 0 is used.

EXAMPLES

To configure ports 8, 14, and 15 as locked L_Ports:

switch:admin> portCfgLport 4/8 4/14-15, 1
To display the L_Port conditions:

switch:admin> **portcfglport**
[...]
Ports of Slot 4  0  1  2  3  4  5  6  7  8  9 10  11  12  13  14  15
----------------------------------------
[...]
Locked L_Port   .. .. .. ..  .. .. .. ..  ON .. .. .. .. .. ON ON
Private L_Port  .. .. .. ..  .. .. .. ..  .... .. ..  .. .. .. ..
Locked Loop HD  .. .. .. ..  .. .. .. ..  .. .. .. .. .. .. .. ..
Loop Fairness   .. .. .. ..  .. .. .. ..  .. .. .. .. .. .. .. ..
(output truncated)

**SEE ALSO**  configure, portCfgShow, portShow, switchShow
Enables or disables N_Port ID virtualization (NPIV) functionality on a port and sets the per-port login limit.

SYNOPSIS

```
portcfgnpivport --enable [slot[/]port
portcfgnpivport --disable [slot[/]port
portcfgnpivport --setloginlimit [slot[/]port login_limit
portcfgnpivport --help
```

DESCRIPTION

Use this command to enable or disable NPIV functionality on a port and to configure the maximum number of logins for this port. Changes made by this command are persistent across switch reboots and power cycles.

N_Port ID Virtualization (NPIV) enables a single Fibre Channel protocol port to appear as multiple, distinct ports, providing separate port identification within the fabric for each operating system image behind the port as if each operating system image had its own unique physical port. NPIV assigns a different virtual port ID to each Fibre Channel protocol device without impacting your existing hardware implementation. The virtual port has the same properties as an N_Port and is therefore capable of registering with all fabric services.

The following conditions must be met for a switch port to respond to NPIV requests from an NPIV device:

**NPIV capable**

NPIV capability is a switch blade or port attribute that is required for NPIV functionality. Some blades within a switch, or some ports within a switch or blade, may not have NPIV capability. NPIV functionality cannot be enabled on such ports and they do not respond to NPIV requests.

**NPIV enabled**

NPIV functionality must be enabled on a port for it to respond to NPIV requests. NPIV is enabled by default. It can be selectively disabled or re-enabled on specified switch ports using this command.

**NPIV HA**

To enable NPIV functionality on dual-CP systems, NPIV-enabled firmware must be running on both the active and the standby CPs. This requirement does not apply to single-CP systems.

Use the `--setloginlimit` option to configure the number of permitted logins per NPIV port. Up to 255 virtual port IDs are allocated per NPIV port, which means each NPIV port can support up to 255 logins. The number of logins you can configure per port is between 0 to 255. The default is 126 per port. The sum of all configured per-port login maximum values cannot exceed the total number of logins set for the switch with the `configure` command.

As of Fabric OS v.6.4.0 you can no longer use the `configure` command to set the NPIV port login limit on a per-switch basis. However, the maximum number of logins per switch is still set and enforced by the `configure` command. Use `configure` to display the current setting.
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

When using `portCfgNPIVPort --disable` or `--enable` on trunked ports, you must disable all trunk member ports before changing the NPIV capability on a trunk member and then re-enable the trunked ports to ensure that the configuration changes take effect.

Use the `portCfgShow` command to determine whether NPIV is enabled on a port and to display the maximum logins configured for that port. Use the `portCfgDefault` command to reset all port configurations, including the NPIV configuration of a port.

### OPERANDS

This command has the following operands:

- `slot`
  - For bladed systems only, specifies the slot number of the port to be configured, followed by a slash (/).

- `port`
  - Specifies the number of the port to be configured, relative to its slot for bladed systems. Use `switchShow` for a listing of valid ports.

- `--enable`
  - Enables NPIV on the specified port. This command can be executed only in switch mode.

- `--disable`
  - Disables NPIV on the specified port. This command can be executed only in switch mode.

- `--setloginlimit login_limit`
  - Sets the maximum number of allowed logins for the specified port. This command can be executed both in switch mode and Access Gateway mode. Valid values for `login_limit` are 0 to 255. The default value is 126.

- `--help`
  - Displays the command usage.

- `mode`
  - Enables or disables NPIV on the specified port. Specify 1 to enable or 0 to disable the feature. The `mode` operand is a legacy command; it will be deprecated in a future Fabric OS release.

### EXAMPLES

To display the current NPIV port configuration:

```
switch:admin> portcfgshow
Ports of Slot 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
--
Speed AN AN
Fill Word(On Active) 0
Fill Word(Current) 0
Fill 0
AL_PA Offset 13 .
Trunk Port ON ON
Long Distance .
VC Link Init .
Locked L_Portal .
Locked G_Portal .
Disabled E_Portal .
Locked E_Portal .
ISL R_RDY Mode .
RSCN Suppressed .
```
To disable NPIV functionality on port 7 and to display the change:

```bash
switch:admin> portcfgnpivport --disable 7
switch:admin> portcfgshow 0/7
```

To increase the maximum logins on port 1 to 255 and to display the change:

```bash
switch:admin> portcfgnpivport --setloginlimit 1 255
switch:admin> portcfgshow 1
```
portCfgNPIVPort

Persistent Disable: OFF
LOS TOV enable: OFF
NPIV capability: OFF
QOS E_Port: AE
Port Auto Disable: OFF

Rate Limit: OFF
EX Port: OFF
Mirror Port: OFF
Credit Recovery: ON
F_Port Buffers: 12
Fault Delay: 0 (R_A_TOV)
NPIV PPI Limit: 255
CSCTL mode: OFF
Frame Shooter Port: OFF
D-Port mode: OFF

SEE ALSO configure, portCfgDefault, portCfgShow
portCfgNPort

Enables or disables N_Port functionality for an Access Gateway port.

**SYNOPSIS**

`portcfgnport [slot[/]port1[-port2] [mode]]`

**DESCRIPTION**

Use this command to enable or disable N_Port functionality for an Access Gateway port or for a range of ports. The enabled N_Ports automatically come online if they are connected to an enterprise fabric switch that supports NPIV. When used without operands, this command displays the port configuration.

**NOTES**

NPIV capability must be enabled on the ports connected to the Access Gateway. By default, NPIV is enabled. Use `portcfgnpivport --enable` to enable NPIV capability on a port, if it was previously disabled. Note that enabling or disabling NPIV capability is not supported in Access Gateway mode.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

This command has the following optional operands:

- `slot`
  Specifies the slot number, followed by a slash (/) on bladed systems.

- `port1[-port2]`
  Specifies a single port or a range of ports to be configured as N_Ports, for example, 3-9, or 2/10-15.

- `mode`
  Enables (1) or disables (0) N_Port functionality on the specified ports. The default mode is 0 (disabled).

**EXAMPLES**

To enable N_Port functionality for a port:

```
switch:admin> portcfgnport 8 1
```

To enable N_Port functionality for a set of ports in a specific range:

```
switch:admin> portcfgnport 2-3 1
```

To display the N_Port configuration for all ports:

```
switch:admin> portcfgnport
Ports 0 1 2 3 4 5 6 7 8 9 10 [...]
--------------------+--+--+--+--+--+--+--+--+--+--+--+- [...]
Locked N_Port ON ON ON [...]
```

```
switch:admin> portcfgshow
Ports of Slot 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
----------------+--+--+--+--+---+--+--+--+---+--+--+--+---+--+--+---
Speed AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN
Fill Word(On Active)0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Fill Word(Current)0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Trunk Port ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON
Locked N_Port ON ON
Persistent Disable..
(output truncated)
```

**SEE ALSO**

`portCfgShow`, `ag`
portCfgOctetSpeedCombo

Sets port speed combination for a port octet.

SYNOPSIS

portcfgoctetspeedcombo [slot]port combo

portcfgoctetspeedcombo [slot]port -default

DESCRIPTION

Use this command to configure the speed for a port octet. A Condor 3 ASIC has six octets, each of which contains eight ports. You can configure up to three different speed combinations. When you configure a given port, the combination applies to all ports in the octet. You can specify the octet by any port within the octet. To change the first octet, for example, you can specify any port from 0 through 7 as a port argument value. The following speed combinations are supported:

- Autonegotiated or fixed port speeds of 16 Gbps, 8 Gbps, 4 Gbps, and 2 Gbps (1)
- Autonegotiated or fixed port speeds of 10 Gbps, 8 Gbps, 4 Gbps, and 2 Gbps (2)
- Autonegotiated or fixed port speeds of 16 Gbps and 10 Gbps (3)

A port octet can be set to any of the three octet combinations, and the ports in the octet can run on any speed supported by its octet combination. This applies to both autonegotiated and fixed speeds.

Before you change the octet speed combination, make sure that the following conditions are met:

- All fixed speed ports are configured at a speed supported by the new combination.
- All online ports in autonegotiation mode have a negotiated speed supported by the new combination.
- If a port is running at a speed not supported in the new combo, you must disable the port or change the speed to a supported fixed speed before you can set the combo.

If any of the ports does not meet the conditions, the operation fails with an appropriate error message. You can change the port speed or disable the ports and retry the command.

The octet combination default is 1. Use the portCfgOctetSpeedCombo port -default command to reset the octet combination to its default value.

NOTES

This command is supported only on Condor 3-based platforms. On the Brocade FC8-32E and Brocade FC8-48E port blades, only the default octet combination is supported. On the Brocade 6505, the command is not supported.

The operation of the portCfgOctetSpeedCombo can be disruptive.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

slot

On bladed systems only, specifies the slot number of the port to be configured, followed by a slash (/).

port

Sets the speed combination for the specified port and all other ports in the octet port group.
```
combo
```
Specifies the speed combination for the ports in the octet. The following speed combinations are supported:

1
Supports autonegotiated or fixed port speeds of 16 Gbps, 8 Gbps, 4 Gbps, and 2 Gbps.

2
Supports autonegotiated or fixed port speeds of 10 Gbps, 8 Gbps, 4 Gbps, and 2 Gbps.

3
Supports autonegotiated or fixed port speeds of 16 Gbps and 10 Gbps.

```
-default
```
Sets all octet combination values back to the default value of 1.

**EXAMPLES**
To configure the ports in first octet for combination 3 on a Brocade 6510:

```
switch:admin> portCfgOctetSpeedCombo 3 3
```

To reset the combination to default:

```
switch:admin> portCfgOctetSpeedCombo 3 -default
```

To switch from combo 3 to combo 2 and there are online ports running at 16G speed:

```
switch:admin> portCfgOctetSpeedCombo 2 2
```
The following ports must be disabled or speed configuration needs to be change. 
Please retry the operation after taking appropriate action.

**Speeds supported for octet combo 2**

<table>
<thead>
<tr>
<th>Port</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16*</td>
</tr>
<tr>
<td>1</td>
<td>N16+</td>
</tr>
<tr>
<td>2</td>
<td>N16+</td>
</tr>
<tr>
<td>3</td>
<td>N16+</td>
</tr>
<tr>
<td>4</td>
<td>N10+</td>
</tr>
<tr>
<td>5</td>
<td>N16+</td>
</tr>
<tr>
<td>6</td>
<td>N16+</td>
</tr>
<tr>
<td>7</td>
<td>N16+</td>
</tr>
</tbody>
</table>

* Port speed configuration must be changed
+ Port must be disabled

```
Setting octet speed combo failed
```

SEE ALSO  portCfgSpeed, switchCfgSpeed
portCfgPersistentDisable

Persistently disables a port or a range of ports.

SYNOPSIS

portcfgpersistentdisable

portcfgpersistentdisable [slot[/]port1[-port2] [...]]

portcfgpersistentdisable -i [index1[-index2] [...] [-f]]

portcfgpersistentdisable -slot [slot1[-slot2] [...]]

portcfgpersistentdisable [slot[/]port -r disable_reason_string]

portcfgpersistentdisable -h

DESCRIPTION

Use this command to persistently disable a port or a range of ports. Persistently disabled ports remain
disabled across power cycles, switch reboots, and switch enables. By default, a port is enabled
persistently, unless the port is capable of routing. The change in configuration is effective immediately.

You can identify a single port to be configured by its port number or by its port index number. Port ranges
are supported with index numbers or by specifying a slot or a slot range. Use switchShow for a listing of
valid ports, slots, and port index numbers. When used without operands, this command displays all
persistently disabled ports on the switch.

Specifying multiple ports with the index (-i) or slot (-s) option is supported only if PortSwap is disabled.
They are not supported on GbE ports and configured F_Ports. Use the -i option without a port index
argument to display the portSwap status, or alternately use portSwapShow.

The persistent disable configuration overrides existing port configurations, but it does not change these
configurations. Use the portCfgPersistentEnable command to enable a port persistently and to restore
all previously set port configurations for that port. The switch still runs power-on diagnostics and
initializes a persistently disabled port. The portEnable, switchEnable, and bladeEnable commands do
not enable a specific port or ports alone, but these commands succeed on a switch with one or more
persistently disabled ports. The portEnable command fails when issued on persistently disabled ports.

The persistent switch disable or enable configuration does not alter the persistent disable or enable
configurations of the ports within the switch.

Because ports are by default persistently enabled, the persistently disabled state of a port is cleared by
the portCfgDefault command.

NOTES

This command is blocked if the switch is operating in the FICON Management Server mode (fmsmode);
instead, use portDisable with Active=Saved mode enabled.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

This command is not supported on FCoE ports. To disable an FCoE port, use fcoe --disable.

OPERANDS

This command has the following operands:

slot

On bladed systems only, specifies the slot number of the ports to be disabled
persistently, followed by a slash (/).
Fabric OS Command Reference

portCfgPersistentDisable

Persistently disables a single port or a range of ports identified by port numbers. The port range cannot span slots, but you can specify multiple port ranges pairs separated by a space, for example 3/1-4 4/7-9.

```
port1[-port2]
```

Persistently disables a port or a range of ports identified by port index numbers. You may specify multiple index ranges separated by a space, for example, -i 33-38 40-60.

```
-i index1[-index2]
```

Ignores nonexisting ports. This operand is valid only with the -i option.

```
-f
```

Persistently disables all ports on a slot or on a range of slots, for example, -s 3-5. You may specify multiple slot ranges separated by a space, for example, -s 3-5 8-10.

```
-slot [slot1][-slot2]
```

Specifies the reason for disabling the port persistently. The string can be up to 16 characters long and must be enclosed in double quotation marks.

```
-r disable_reason_string
```

Displays the command usage.

```
-h
```

**EXAMPLES**

To disable a single port persistently:

```
switch:admin> portcfgpersistentdisable 2/4
```

To disable a range of ports persistently:

```
switch:admin> portcfgpersistentdisable 2/4-8
```

To disable multiple port ranges persistently:

```
switch:admin> portcfgpersistentdisable 2/12 \
-15 3/10-12 4/3-4
```

To display the portSwap status:

```
switch:admin> portcfgpersistentdisable -i
portcfgpersistentdisable: portSwap feature enabled.
'-i' option not supported.
```

To disable a port persistently by specifying its index number:

```
switch:admin> portcfgpersistentdisable -i 176
```

To disable a range of ports persistently by specifying the corresponding port index range:

```
switch:admin> portcfgpersistentdisable -i 17-18
```

To disable multiple ports persistently by specifying multiple port index ranges:

```
switch:admin> portcfgpersistentdisable -i 17-18 30-39
```

To disable all ports on slots 3-5 persistently:

```
switch:admin> portcfgpersistentdisable -s 3-5
```

To disable all ports on slots 3-5 and 8-10 persistently:

```
switch:admin> portcfgpersistentdisable -s 3-5 8-10
```
To display the persistently disabled ports on the switch:

```bash
switch:admin> portcfgpersistentdisable
+---+
| Disabled | | | | | | | | | | | | | | | |
+---+
 Slot 0 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
+---+
| Disabled | YES | YES | - | - | - | - | - | - | - | - | - | - | - | - | YES | YES |
+---+
 Slot 0 32 33 34 35 36 37 38 39
+---+
| Disabled | YES |
+---+
```

To disable a port persistently with a disable reason:

```bash
switch:admin> portcfgpersistentdisable 3/3 -r "bad SFP"
```

SEE ALSO `ficonCupSet`, `ficonCupShow`, `portCfgDefault`, `portDisable`, `portEnable`, `portCfgPersistentEnable`, `portShow`, `portSwapDisable`, `portSwapShow`, `switchShow`
portCfgPersistentEnable

Persistently enables a port or a range of ports.

SYNOPSIS

portcfgpersistentenable

portcfgpersistentenable [slot1]port1[-port2] [...]

portcfgpersistentenable -i [index1][-index2] [...] [-f]

portcfgpersistentenable -s[slot] [slot1][-slot2]

portcfgpersistentenable -h

DESCRIPTION

Use this command to persistently enable a port or a range of ports. If the port is connected to another switch when this command is issued, the fabric may reconfigure. After the port is persistently enabled, devices connected to the port can again communicate with the fabric.

You can identify a single port to be configured by its port number or by its port index number. Port ranges are supported with index numbers or by specifying a slot or a slot range. Use switchShow for a listing of valid ports, slots, and port index numbers. When used without operands, this command displays all persistently enabled ports on the switch.

Specifying multiple ports with the index (-i) or slot (-s) option is supported only if PortSwap is disabled. They are not supported on GbE ports and configured F_Port trunks. Use the -i option without a port index argument to display the portSwap status, or alternately use portSwapShow.

For ports that come online after being persistently enabled, the following indications may be sent to indicate a state transition: RSCN, SNMP trap, Web pop-up window.

Persistently enabled ports remain enabled across power cycles, switch reboots, and switch enables. By default, a port is enabled persistently, unless the port is capable of routing. The change in configuration is effective immediately.

This command re-enables all previously set port configurations of a specified port. You can temporarily disable a persistently enabled port with the portDisable or switchDisable commands. The persistent switch disable or enable configuration does not alter the persistent disable or enable configurations of the ports within the switch. The configuration commands configDefault and portCfgDefault do not modify the persistent enable attribute of a port.

NOTES

This command is blocked if the switch is operating in the FICON Management Server mode (fmsmode). Instead use portEnable with Active=Saved Mode enabled.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command is not supported on FCoE ports. To enable an FCoE port, use fcoe --enable.

OPERANDS

This command has the following operands:

slot

On bladed systems only, specifies the slot number of the ports to be enabled persistently, followed by a slash (/).

port1[port2]

Persistently enables a single port or a range of ports identified by port numbers. The port range cannot span slots, but you can specify multiple port ranges pairs separated by a space, for example 3/1-4 4/7-9.
-i index1[-index2]  Persistently enables a port or a range of ports identified by port index numbers. You may specify multiple index ranges separated by a space, for example, 33-38 40-60.

-f  Ignores nonexisting ports. This operand is valid only with the -i option.

-slot [slot1][-slot2]  Persistently enables all ports on a slot or on a range of slots, for example, -s 3-5. Multiple slot ranges are not supported with this command.

-h  Displays the command usage.

**EXAMPLES**

To enable a single port persistently:
```
switch:admin> portcfgpersistentenable 2/4
```

To enable a range of ports persistently:
```
switch:admin> portcfgpersistentenable 2/4-8
```

To enable multiple port ranges persistently:
```
switch:admin> portcfgpersistentenable 2/24-26 3/10-12 4/3-4
```

To enable a port persistently by specifying its index number:
```
switch:admin> portcfgpersistentenable -i 176
```

To enable a range of ports persistently by specifying the corresponding port index range:
```
switch:admin> portcfgpersistentenable -i 17-18
```

To enable multiple ports persistently by specifying multiple port index ranges:
```
switch:admin> portcfgpersistentenable -i 17-18 30-39
```

To enable all ports on slots 3-5 persistently:
```
switch:admin> portcfgpersistentenable -s 3-5
```

To display the persistently enabled ports on the switch:
```
switch:admin> portcfgpersistentenable

Slot 9 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
--
Enabled YES YES
(output truncated)
```

**SEE ALSO**  ficonCupSet, ficonCupShow, portDisable, portEnable, portCfgPersistentDisable, portCfgShow, portShow, portSwapDisable, portSwapShow, switchShow
portCfgQoS

Enables or disables QoS, sets the default configuration, and sets and resets the ingress rate limit.

SYNOPSIS

portcfgqos --disable | --enable [slot[/]port

portcfgqos --setratelimit [slot[/]port ratelimit

portcfgqos --resetratelimit [slot[/]port

portcfgqos --enable | --disable [slot[/]port[/-port] csctl_mode

portcfgqos --default [slot[/]port

portcfgqos --help

DESCRIPTION

Use this command to configure traffic prioritization on a port. Two alternate modes of traffic prioritization are supported by this command: Adaptive Networking/Quality of Service (AN/QoS) or Class-Specific Control (CS_CTL):

- The Adaptive Networking with QoS feature allows latency-sensitive applications to share storage resources alongside throughput-intensive applications. You can enable or disable Adaptive Networking/Quality of Service (AN/QoS) on a port, set or reset the ingress rate limit for the specified port, and set the default behavior. Ingress Rate Limiting delays the return of BB credits to the external device. By limiting the throughput on the ingress side of a port, existing congestion can be removed or avoided.

- In Fabric OS v7.0.0 and later, an alternate method of traffic flow prioritization based on the CS_CTL bits of a Fibre Channel frame is provided through this command. This feature uses the value of the CS_CTL bit of the frame to determine the virtual channel (VC), so each frame can be prioritized based on the value of the CS_CTL bit.

CS_CTL flow prioritization is independent of traffic prioritization based on QoS zones; and both methods are mutually exclusive. If CS_CTL VC mode is enabled on an F/FL_Port, QoS-based traffic flow prioritization cannot be used between any two devices connected to these F/FL_Ports in that fabric and vice versa.

If both QoS-based and CS_CTL-based traffic prioritization are enabled on the same F/FL_Port, the CS_CTL-based method takes priority over the QoS zones. When QoS is enabled on an F/FL_Port and you enable CS_CTL VC mode on the same port, the command displays a message stating that QoS zones will lose priority to CS_CTL-based traffic prioritization. When you disable CS_CTL mode on a given F/FL port, the QoS zones, if already enabled, become the effective frame classification method for all devices connected to that F/FL_Port.

On Condor3 Inter Chassis Link (ICL) ports, QoS is not configurable and it is always enabled internally.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

Enabling and disabling QOS is potentially disruptive to the I/O on the affected port.

This command is not supported on all platforms. Refer to the Fabric OS Administrator's Guide for more information.

The configuration changes effected by this command are persistent across system reboots.

The Fabric OS port configuration commands are not supported on FCoE ports.
OPERANDS

This command has the following operands:

slot

For bladed systems only, specifies the slot number of the port to configure, followed by a slash (/).

port[-port]

Specifies the port or port range to be configured, relative to the slot for bladed systems. Use switchShow for a listing of valid ports. You can specify a port range only when you configure CS_CTL-based traffic prioritization.

--disable

Disables the current configuration on the specified ports. When issued for a single port, this command disables QoS, which is enabled by default. When issued with the csctl_mode operand, this command accepts a port range and disables traffic prioritization based on CS_CTL. If QoS was enabled before you enabled csctl_mode, this command restores QoS-based traffic prioritization.

--enable

Enables QoS or CS_CTL mode. When issued for a single port, this command enables QoS. When issued with the csctl_mode operand, this command accepts a port range and enables traffic prioritization based on CS_CTL. When you enable csctl_mode, the command displays a message stating that QoS zones will lose priority to CS_CTL-based traffic prioritization.

--resetratelimit

Turns off the ingress rate limiting feature on the specified port.

--setratelimit ratelimit

Sets an ingress rate limit to reduce traffic from the specified port. This configuration is applicable only to F/FL_Ports. For E/EX_Ports, this configuration would not be effective. The ingress rate limit is enforced only when a given port can run at a speed higher than the speed specified in the configuration. For example if the rate limit is set at 4 Gbps and the port comes online only at 2 Gbps, no enforcement is needed. Specify an ingress rate in Mbps. Supported values for ratelimit are: 200, 400, 600, 800, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 5000, 6000, 7000, and 8000, 9000, 10000, 11000, 12000, 13000, 14000, 15000, 16000.

--default

Applies the default configuration to the specified port. This command attempts to re-enable QoS; success depends on availability of buffers. If CS_CTL was enabled on the port, this command disables the configuration.

--help

Displays the command usage.

EXAMPLES

To enable QoS on a port.

switch:admin> portcfgqos --enable 1/15

To disable QoS on a port.

switch:admin> portcfgqos --disable 1/15

To set the default QoS configuration on a port:

switch:admin> portcfgqos --default 12/41

To set the ingress rate limit on a port to 2 Gbps:

switch:admin> portcfgqos --setratelimit 12/41 2000
To enable CS_CTL VC mode on a port when QoS is enabled:

```
switch:admin> portcfgqos --enable 1/10-16 csctl_mode
Enabling CSCTL mode flows causes QoS zone flows to lose priority on such ports
Do you want to proceed?(y/n): y
```

```
switch:admin> portcfgshow -slot 1
Index: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
--------------------+--+--+--+---+--+--+--+---+--+--+--+---+--+--+--+-
Speed AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN
Fill Word(On Active)0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Fill Word(Current) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AL_PA Offset 13
Trunk Port ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON
Long Distance
VC Link Init
Locked L_Port
Locked G_Port
Disabled E_Port
Locked E_Port
ISL R_RDY Mode
RSCN Suppressed
Persistent Disable
LOS TOV enable
NPIV capability ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON
NPIV PP Limit
126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126
EX Port ON ON
Mirror Port
Rate Limit
Credit Recovery ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON
Fport Buffers
Port Auto Disable
CSCTL mode
D-Port mode
Fault Delay 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(output truncated)
```

To disable CS_CTL VC mode on a port range:

```
switch:admin> portcfgqos --disable 1/10-16 csctl_mode
```

SEE ALSO portCfg, portCmd, portShow, switchShow, configure
portCfgShow

Displays port configuration settings.

SYNOPSIS

portcfgshow

portcfgshow [slot]port

portcfgshow -i [index1[-index2] [...] [-f]]

portcfgshow -slot slot1[-slot2] [...] 

portcfgshow [option] [slot/ge_port]

portcfgshow [fc iptunnel | fcipcircuit]

[all | [slot|veport] [optional_argument]]

DESCRIPTION

Use this command to display the current configuration of a port. The behavior of this command is
platform-specific; output varies depending on port type and platform, and not all options are supported on
all platforms.

Non-GbE port displays

When used without operands, this command displays port configuration settings for all ports on a switch, except Gigabit Ethernet (GbE) ports.

Displays supported only on the Brocade 7800/FX8-24

Use this command with optional arguments to display the following parameters configured for a GbE port
on the Brocade 7800/FX8-24 platforms.

• IP interfaces on the GbE port
• Static routes on the IP interfaces
• Address resolution protocol (ARP) entries
• VLAN tag configuration
• Fibre Channel over IP (FCIP) tunnel configuration settings
• IPSec configuration
• Inband Management IP addresses and routes.

Non-GbE port displays

The following information is displayed when the command is issued for all ports, for a single port, or for
one or more port ranges specified by their port index numbers or slot numbers:

Area Number

Displays the port area number. This field is displayed only when portCfgShow is executed for a single port.

Octet Speed Combo

Displays the speed configuration for a port octet. This value is set by the
portCfgOctetSpeedCombo command. Port octet speed configuration is
supported only on Condor 3-based platforms. On unsupported platforms the Octet Speed Combo field is suppressed. Valid Octet Combo values include the
following:

1

Autonegotiated or fixed port speeds of 16 Gbps, 8 Gbps, 4 Gbps, and 2 Gbps.

2

Autonegotiated or fixed port speeds of 10 Gbps, 8 Gbps, 4 Gbps, and 2 Gbps.
Autonegotiated or fixed port speeds of 16 Gbps and 10 Gbps.

**Speed**
Displays Auto for auto speed negotiation mode, or a specific speed of 1, 2, 4, 8, or 16 Gbps. This value is set by the `portCfgSpeed` command.

**Fill Word (On Active)**
Displays the fill word setting that will take effect after the next time the port goes offline and comes back. Possible values are 0(idle-idle), 1(arbff-arbff), 2(idle-arbff), or 3(A-A then SW I-A). This parameter is set by the `portcfgFillword` command.

**Fill Word (Current)**
Displays the currently effective fill word setting. Possible values are 0(idle-idle), 1(arbff-arbff), 2(idle-arbff), or 3(A-A then SW I-A). This parameter is set by the `portcfgFillword` command.

**AL_PA Offset 13**
Displays (..) or OFF when the arbitrated loop physical address (AL_PA) on the port is configured to use a 0x0 AL_PA address (default). Displays ON when the address configuration is 0x13 AL_PA. This value is set by the `portCfgAlpa` command.

**Trunk Port**
Displays ON when port is set for trunking. Displays (..) or OFF when trunking is disabled on the port. This value is set by the `portCfgTrunkPort` command.

**Long Distance**
Displays (..) or OFF when long distance mode is off; otherwise, displays long distance levels. This value is set by the `portCfgLongDistance` command. Values are as follows:

- **LE**
  The link is up to 10 km.

- **LD**
  The distance is determined dynamically.

- **LS**
  The distance is determined statically by user input.

**VC Link Init**
Displays (..) or OFF when the long distance link initialization option is turned off. Displays ON when it is turned on for long distance mode. This value is set by the `portCfgLongDistance` command.

**Desired Distance**
Displays the desired distance of the port. This field is displayed only when portCfgShow is executed for a single port and would only display for LS and LD long distance mode.

**Reserved Buffers**
Displays the reserved buffers for the port. This field is displayed only when portCfgShow is executed for a single port and would only display for LS and LD long distance mode.

**Locked L_Port**
Displays ON when the port is locked to L_Port only. Displays (..) or OFF when L_Port lock mode is disabled and the port behaves as a U_Port. This value is set by the `portCfgLport` command.

**Locked G_Port**
Displays ON when the port is locked to G_Port only. Displays (..) or OFF when G_Port lock mode is disabled and the port behaves as a U_Port. This value is set by the `portCfgGport` command.
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disabled E_Port</td>
<td>Displays ON when the port is not allowed to be an E_Port. Displays (..) or OFF when the port is allowed to function as an E_Port. This value is set by the <code>portCfgEport</code> command.</td>
</tr>
<tr>
<td>ISL R_RDY Mode</td>
<td>Displays ON when ISL R_RDY mode is enabled on the port. Displays (..) or OFF when ISL R_RDY mode is disabled. This value is set by the <code>portCfgISLMode</code> command.</td>
</tr>
<tr>
<td>RSCN Suppressed</td>
<td>Displays ON when RSCN suppression is enabled on the port. Displays (..) or OFF when RSCN suppression is disabled. This value is set by the <code>portCfg rscnsupr</code> command.</td>
</tr>
<tr>
<td>Persistent Disable</td>
<td>Displays ON when the port is persistently disabled; otherwise displays (..) or OFF. This value is set by the <code>portCfgPersistentDisable</code> command.</td>
</tr>
<tr>
<td>LOS TOV enable</td>
<td>Displays ON when LOS TOV is enabled on the port; otherwise displays (..) or OFF. This value is set by the <code>portCfgLossTov</code> command.</td>
</tr>
<tr>
<td>NPIV capability</td>
<td>Displays ON when N_Port ID Virtualization (NPIV) is enabled on the port (default). Displays (..) or OFF when NPIV capability is disabled. This value is set by the <code>portCfgNPIVPort</code> command.</td>
</tr>
<tr>
<td>QOS E_Port</td>
<td>Displays ON when Quality of Service (QoS) is enabled on the E_Port (or EX_Port) when QoS is enabled in an FCR deployment scenario. Displays (..) or OFF when QoS is disabled. By default, QoS is enabled if sufficient buffers are available. Displays AE when QoS is configured as Auto Enabled. In the AE state, QoS is enabled based on the availability of buffers. Use <code>islShow</code> to determine the current status of QoS (on or off) in the AE state. This value is set by the <code>portCfgQos</code> command.</td>
</tr>
<tr>
<td>EX_Port</td>
<td>Displays ON when the port is configured as an EX_Port. Otherwise displays (..) or OFF. This value is set by the <code>portCfgExPort</code> command.</td>
</tr>
<tr>
<td>Mirror Port</td>
<td>Displays ON when Mirror Port is enabled on the port. Displays (..) or OFF when Mirror Port is disabled. This value is set by the <code>portCfg mirrorport</code> command.</td>
</tr>
<tr>
<td>Sim Port</td>
<td>Displays ON when SIM Port is enabled on the port. Displays (..) or OFF when SIM Port is disabled. This value is set by the <code>flow --control flow_name -simport</code> command.</td>
</tr>
<tr>
<td>FC Fastwrite</td>
<td>Displays ON when FC FastWrite is enabled on the port or (..) or OFF when disabled. FastWrite is disabled by default. This value is set by the <code>portCfg fastwrite</code> FC Fastwrite is no longer supported as of Fabric OS v7.0.0.</td>
</tr>
<tr>
<td>Rate Limit</td>
<td>Displays ON when ingress rate limit is set on the port or (..) or OFF when the ingress rate limiting feature is disabled. This value is set by the <code>portCfgQos --setratelimit</code> command. The default value is OFF.</td>
</tr>
</tbody>
</table>
Credit Recovery
Displays ON when Credit Recovery is enabled on the port. Displays (..) or OFF when the feature is disabled. This value is set by the \texttt{portCfgCreditRecovery} command. The credit recovery feature is enabled by default, but only ports configured as long distance ports can utilize this feature.

Port Auto Disable
Displays On when the Auto Disable feature is enabled on a port. Displays (..) or OFF when the feature is disabled. This feature causes ports to become disabled when they encounter an event that would cause them to reinitialize. This feature is enabled by the \texttt{portCfgAutoDisable} command. The feature is disabled by default. In the single port view, the configured trigger conditions are displayed when the feature is disabled. Refer to the example section for an illustration.

F_Port Buffers
Displays the number of configured F_Port buffers. Displays (..) or OFF if no buffers are configured. The buffer value is set by the \texttt{portCfgFPortBuffers} command.

E_Port Credits
Displays the number of configured E_Port credits. Displays (..) or OFF if no credits are configured. The credit value is set by the \texttt{portCfgEPortCredits} command.

NPIV PP Limit
Displays the maximum number of allowed logins for the port. Displays the default of 126 or the configured maximum. This parameter is set with the \texttt{portCfgNPIVPort --setloginlimit} command.

CSCTL mode
Displays ON if CSCTL mode is enabled on the port. Displays (..) or OFF if the feature is disabled. This parameter is set with the \texttt{portCfgQos} command.

D_Port mode
Displays ON when the port is configured as a D_Port; otherwise displays (..) or OFF. Refer to the \texttt{portCfgDPort} command for more information. This parameter is displayed only on on Condor3-based blades that support D_Port capability.

D-Port over DWDM
Displays ON when dwdm is enabled on that port using the \texttt{portCfgDPort} command. This option will be allowed to set only if the link connecting two switches is a DWDM (Dense Wavelength Division Multiplexing) link.

Fault Delay
Displays the Fault delay value. Displays 0 if the value is \texttt{R_A_TOV}. This is the default. Displays 1 if the value is 1.2 seconds. This value is set by the \texttt{portCfgFaultDelay} command. valid for FC ports only.

Compression
Displays ON when compression is enabled on a port. Displays (..) or OFF when the configuration is disabled. Compression is enabled by the \texttt{portCfgCompress} command; it is disabled by default.

Encryption
Displays ON when encryption is enabled on a port. Displays (..) or OFF when the configuration is disabled. Encryption is enabled by the \texttt{portCfgEncrypt} command; it is disabled by default.

FEC
Displays ON when Forward Error Correction (FEC) is enabled on a port and the port is online. Displays (..) or OFF when the configuration is disabled. FEC is enabled by the \texttt{portCfgFec} command; it is enabled by default.
When `portCfgShow` is issued for a single FCoE port, only the following fields are displayed: **Area Number**, **Speed Level**, **AL_PA Offset**, **RSCN Suppressed**, and **NPIV PP Limit**. If the command is issued without operands on a DCX with one or more FCOE10-24 blades, the port parameters that are not valid on the FCoE ports are marked with a dash (-). Refer to the example section for an illustration.

You can identify a single port to be displayed by its port number or by its port index number. Port ranges are supported with index numbers or by specifying a slot or a slot range. Use `switchShow` for a listing of valid ports, slots, and port index numbers. When used without operands, this command displays all persistently disabled ports on the switch.

Specifying multiple ports with the index (-i) or slot (-s) option is supported only if PortSwap is disabled. They are not supported on GbE ports and configured F_Port trunks. Use the -i option without a port index argument to display the portSwap status, or alternately use `portSwapShow`.

**NOTES**
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

The Fabric OS port configuration commands are not supported on FCoE ports.

**OPERANDS**
This command has the following operands:

- **slot**
  For bladed systems only, specifies the slot number of the port to be configured, followed by a slash (/).

- **port**
  Specifies the number of the port to be displayed, relative to its slot for bladed systems. Use `switchShow` for a listing of valid port numbers.

- **-i index1[-index2]**
  Specifies a port or a range of ports identified by port index numbers. You can specify multiple index ranges separated by a space, for example, `-i 33-38 40-60`.

- **-f**
  Ignores nonexisting ports. This operand is valid only with the `-i` option.

- **-slot slot1[-slot2]**
  Specifies a slot or a range of slots. You can specify multiple slot ranges separated by a space, for example, `-s 1-3 5-7`.

- **ge_port**
  Specifies the number of the GbE Port to be displayed. The GbE ports are numbered ge0 - ge9 on the Brocade FX8-24 blade and ge0 - ge5 on the Brocade 7800 switch. The 10GbE ports on the Brocade FX8-24 blade are numbered xge0 and xge1. Use the `switchShow` command for a list of valid ports.

Use `portCfgShow` with a GbE port or with one of the optional arguments to display specific FCIP-related parameters.

**Displays supported on the Brocade 7800/FX8-24 platforms**
When issued on the Brocade 7800/FX8-24, tunnels and parameters not applicable to these platforms are not displayed. Use the `portShow` command to display FCIP tunnel and circuit parameters on the Brocade 7800/FX8-24.

- **ipif**
  Displays the IP interface for both ports of the tunnel. IPv6 addresses are supported.

- **arp**
  Displays the address resolution protocol (ARP) table.

- **iproute**
  Displays the IP route on the specified GbE port. IPv6 addresses are supported.
vltntag

Displays the VLAN tagging configuration. For each entry, the output displays the IP interface address, the destination IP address, the VLAN ID, and the L2 CoS priority. This display includes permanent entries only. Permanent entries are configured at the IP interface level with the portCfg vlantag command. To view VLAN tagged tunnels and circuits along with permanent entries, use the portShow vlantag command.

mgmtif ge_port

Displays the inband management interfaces configured for a specified GbE Port. The display includes the interface status (enabled or disabled), the interface IPv4 Address, the netmask, effective MTU, and annotated port flags.

mgmtroute ge_port

Displays the management routes configured for a specified GbE Port. The display includes the destination IPv4 Address, the netmask, the gateway address, and annotated port flags. The metric field is not valid for the Brocade 7800.

fcipcircuit

Displays FCIP circuits and related parameters.

fc iptunnel

Displays FCIP tunnels and related parameters.

The following options are supported with fcipcircuit and fciptunnel:

all

Displays information for all FCIP tunnels.

ve_port

Displays information for the specified FCIP tunnel. To display the tunnel, specify the VE_Port number associated with the tunnel configured on one of the GbE ports. VE_Ports are numbered 16-23.

optional_argument

The following optional argument is supported with fciptunnel:

-ipsec

Displays whether IPSec is enabled or disabled. If enabled, the key is displayed. If IPSec is enabled and configured in legacy mode, the mode is displayed as "legacy". The mode information is displayed whether or not you issue the -ipsec option.

EXAMPLES

To display the port configuration settings for a single port on a Brocade DCX 8510-8:

switch:admin> portcfgshow 10/38
Area Number:              222
Octet Speed Combo:        1(16G|8G|4G|2G)
Speed Level:              AUTO (HW)
AL_PA Offset 13:          OFF
Trunk Port                ON
Long Distance             LS
VC Link Init              OFF
Desired Distance          10 Km
Reserved Buffers          86
Locked L_Port             OFF
Locked G_Port             OFF
Disabled E_Port           OFF
Locked E_Port             OFF
ISL R_RDY Mode            OFF
KSCN Suppressed           OFF
Persistent Disable        OFF
LOS TOV enable            OFF
### portCfgShow

<table>
<thead>
<tr>
<th>Feature</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPIV capability</td>
<td>ON</td>
</tr>
<tr>
<td>QOS E_Port</td>
<td>AE</td>
</tr>
<tr>
<td>Port Auto Disable:</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>LOSG</td>
</tr>
<tr>
<td></td>
<td>OLS</td>
</tr>
<tr>
<td></td>
<td>NOS</td>
</tr>
<tr>
<td></td>
<td>LIP</td>
</tr>
<tr>
<td>Rate Limit</td>
<td>OFF</td>
</tr>
<tr>
<td>EX Port</td>
<td>OFF</td>
</tr>
<tr>
<td>Mirror Port</td>
<td>OFF</td>
</tr>
<tr>
<td>Sim Port</td>
<td>ON</td>
</tr>
<tr>
<td>Credit Recovery</td>
<td>ON</td>
</tr>
<tr>
<td>F_Port Buffers</td>
<td>OFF</td>
</tr>
<tr>
<td>E_Port Credits</td>
<td>OFF</td>
</tr>
<tr>
<td>Fault Delay:</td>
<td>0(R_A_TOV)</td>
</tr>
<tr>
<td>NPIV PP Limit:</td>
<td>126</td>
</tr>
<tr>
<td>CSCTL mode:</td>
<td>OFF</td>
</tr>
<tr>
<td>D-Port mode:</td>
<td>ON</td>
</tr>
<tr>
<td>D-Port over DWDM:</td>
<td>ON</td>
</tr>
<tr>
<td>Compression:</td>
<td>OFF</td>
</tr>
<tr>
<td>Encryption:</td>
<td>OFF</td>
</tr>
<tr>
<td>FEC:</td>
<td>ON</td>
</tr>
</tbody>
</table>

To display the port configuration settings on a Brocade 5100 for a range of ports specified by their index numbers:

```
switch:admin> portcfgshow -i 3-5
```

```
Speed 8G 8G 8G
Fill Word(On Active) 0 0 0
Fill Word(Current) 0 0 0
AL_PA Offset 13
Trunk Port ON ON ON
Long Distance
VC Link Init
Locked L_Port
Locked G_Port
Disabled E_Port
Locked E_Port
ISL R_RDY Mode
RSCN Suppressed
Persistent Disable
LOS TOV enable ON
NPIV capability ON ON ON
NPIV PP Limit 126 126 126
QOS E_Port AE
EX Port
Mirror Port .. ON ..
Rate Limit ..
Credit Recovery ON ON ON
Fport Buffers ON ..
Port Auto Disable ..
CSCTL mode ..
D-Port mode ..
D-Port over DWDM ..
Compression ..
Encryption ..
FEC ON ON ON
```

Fault Delay 0 0 1

where AE:QoSAutoEnable, AN:AutoNegotiate, ..:OFF, ~:NotApplicable, ??:INVALID,
To display the port configuration settings for all ports on slot 1 on a Brocade DCX 8510-4:

```
switch:admin> portcfgshow -slot 1
Index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Octet Speed Combo 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Speed AN AN
AL_PA Offset 13 AN AN
Trunk Port ON ON
Long Distance AN AN
VC Link Init AN AN
Locked L_Port AN AN
Locked G_Port AN AN
Disabled E_Port AN AN
Locked E_Port AN AN
ISL R_RDY Mode AN AN
RSCN Suppressed AN AN
Persistent Disable.. AN AN
LOS TOV enable AN AN
NPIV capability ON ON
NPIV PP Limit 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
EX Port AN AN
Mirror Port AN AN
Rate Limit AN AN
Credit Recovery ON ON
Fport Buffers ON ON
Port Auto Disable .. AN AN
CSCTL mode AN AN
D-Port mode AN AN
D-Port over DWDM AN AN
Compression AN AN
Encryption AN AN
FEC AN AN
Fault Delay 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Index: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Octet Speed Combo 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Speed AN AN
AL_PA Offset 13 AN AN
Trunk Port ON ON
Long Distance AN AN
VC Link Init AN AN
Locked L_Port AN AN
Locked G_Port AN AN
Disabled E_Port AN AN
Locked E_Port AN AN
ISL R_RDY Mode AN AN
RSCN Suppressed AN AN
Persistent Disable.. AN AN
LOS TOV enable AN AN
NPIV capability ON ON
NPIV PP Limit 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
EX Port AN AN
Mirror Port AN AN
Rate Limit AN AN
Credit Recovery ON ON
Fport Buffers AN AN
```
To display port configuration settings for a single FCoE port on a DCX with a Brocade FCOE10-24 blade:

switch:admin> portcfgshow 12/4
Area Number:              116
Speed Level:              10G
AL_PA Offset 13:          OFF
RSCN Suppressed           OFF
NPIV PP Limit:            126

To display the QoS configuration for an EX_Port (QoS over FCR deployment):

switch:admin> switchshow | grep EX-Port
16 16 id  N4  Online  FC  EX-Port 10:00:00:05:1e:41:4a:45 "Tom_100" (fabric id = 25 ) (Trunk master)

switch:admin> portcfgshow 16
Area Number:              11
Octet Speed Combo:        1(16G|8G|4G|2G)
Speed Level:              AUTO(HW)
Fill Word(On Active)      0(Idle-Idle)
Fill Word(Current)        0(Idle-Idle)
AL_PA Offset 13:          OFF
Trunk Port                ON
Long Distance             LS
VC Link Init              OFF
 Desired Distance         10 Km
Reserved Buffers          86
Locked L_Port             OFF
Locked G_Port             OFF
Disabled E_Port           OFF
ISL R_RDY Mode            OFF
RSCN Suppressed           OFF
Persistent Disable        OFF
LOS TOV enable            OFF
NPIV capability           ON
QoS E_Port                AE
Port Auto Disable:        OFF
Rate Limit                OFF
EX Port                   ON
Mirror Port               OFF
Credit Recovery           ON
F_Port Buffers            OFF
NPIV PP Limit:            126
CSCTL mode:               OFF
Fault Delay               1(1.2sec)
D-Port mode:              ON
D-Port over DWDM:         ON
FEC                       active
To display an FCIP Tunnel on a Brocade FX8-24 with and without IPSec information (In the following examples, IPSec is in legacy mode):

```
switch:admin> portcfgshow fciptunnel 1/12 -ipsec

Tunnel ID: 1/12
 Tunnel Description:
 Compression: Off
 Fastwrite: Off
 Tape Acceleration: Off
 TPerf Option: Off
 IPSec: Enabled (Legacy)
 IPSec Key: '12345678901234567890123456789012'
 QoS Percentages: High 50%, Med 30%, Low 20%
 Remote WWN: Not Configured
 Local WWN: 10:00:00:05:1e:52:fe:00
 Flags: 0x00000000
 FICON: Off

switch:admin> portcfgshow fciptunnel 1/12

Tunnel ID: 1/12
 Tunnel Description:
 Compression: Off
 Fastwrite: Off
 Tape Acceleration: Off
 TPerf Option: Off
 IPSec: Enabled (Legacy)
 QoS Percentages: High 50%, Med 30%, Low 20%
 Remote WWN: Not Configured
 Local WWN: 10:00:00:05:1e:52:fe:00
 Flags: 0x00000000
 FICON: Off
```

To display the inband management interface for a single GbE Port on a Brocade 7800:

```
switch:admin> portcfgshow mgmtif ge0
Inband Management: ge0 Enabled
Interface IPv4 Address NetMask Effective MTU Flags

 0 20.20.0.151 255.255.255.0 1500

Flags: U=Up B=Broadcast D=Debug L=Loopback P=Point2Point R=Running
 N=NoArp PR=Promisc M=Multicast S=StaticArp LU=LinkUp
```
To display the management route for a configured inband management interface on a Brocade 7800:

```bash
switch:admin> portcfgshow mgmtroute ge0
```

<table>
<thead>
<tr>
<th>Port</th>
<th>IP Address</th>
<th>Mask</th>
<th>Gateway</th>
<th>Metric</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge0</td>
<td>192.168.1.0</td>
<td>255.255.255.0</td>
<td>20.20.1.250</td>
<td>0</td>
<td>U=G=G=H=C=S=L</td>
</tr>
</tbody>
</table>

Flags: U=Usable G=Gateway H=Host C=Created(Interface) S=Static L=LinkLayer(Arp)

**SEE ALSO**
- `portCfg`
- `portCfgAutoDisable`
- `portCfgCreditRecovery`
- `portCfgEport`
- `portCfgFec`
- `portCfgGport`
- `portCfgLongDistance`
- `portCfgLport`
- `portCfgNPIVPort`
- `portCfgOctetSpeedCombo`
- `portCfgSpeed`
- `portCfgTrunkPort`
- `portSwapDisable`
- `portSwapShow`
- `switchShow`
portCfgSpeed

Configures the speed for a port or a range of ports.

SYNOPSIS

portcfgspeed [slot]port speed

portcfgspeed -i index1[-index2] [-f] speed

portcfgspeed -x hex1[-hex2] [..] speed

portcfgspeed -slot slot1[-slot2] [..] speed

portcfgspeed -h

DESCRIPTION

Use this command to set the speed on a specified port or port range. This command disables and then re-enables the ports, and the ports come online with the new speed setting. The configuration is saved in nonvolatile memory and is persistent across switch reboots or power cycles. Use the portShow command to display supported port speed levels. Use the portCfgShow command to display configured speed settings.

On Condor 3-based platforms, the portCfgSpeed command checks if the requested speed is allowed, based on the combination configured for the octet that contains the port. If the speed is not supported by the current octet speed combination, this command exits with a warning message that displays the combination compatible with desired speed. Use the portCfgOctetSpeedCombo command to set the suggested combination before re-executing the portCfgSpeed command.

You can identify a single port to be configured by its port number or by its port index number in decimal or hexadecimal format. Port ranges are supported with port numbers, index numbers (decimal or hexadecimal) or by specifying a slot or a slot range. Use switchShow for a listing of valid ports, slots, and port index numbers.

Specifying multiple ports with the index (-i) or slot (-s) option is supported only if PortSwap is disabled. They are not supported on GbE ports and configured F_Port trunks. Use the -i option without a port index argument to display the portSwap status, or alternately use portSwapShow.

NOTES

This configuration cannot be set on VE/VEX_Ports. For a virtual FC port, the speed is always 10 GbE and port speed autonegotiation is not possible.

Speed configuration is not applicable to FCoE ports.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

slot

For bladed systems only, specifies the slot number of the ports to be configured, followed by a slash (/).

port

Configures a single port identified by the port number relative to the slot on bladed systems.

-i index1[-index2]

Configures a port or a range of ports identified by port index numbers. Multiple port ranges are not supported with this command.

-f

Ignores nonexisting ports. This operand is valid only with the -i option.
portCfgSpeed

-x hex1 [hex2]  
Configures a port or a range of ports identified by port numbers, index number in hexadecimal format. You may specify multiple port ranges separated by a space, for example, -x 21-26 28-3c.

-slot slot1[-slot2]  
Configures all ports on a slot or on a range of slots, for example, -s 3-5. You may specify multiple slot ranges separated by a space, for example, -s 3-5 8-10.

speed  
Sets speed for the specified ports. This operand is required. Valid values are one of the following.

0  
Autosensing mode (hardware). The port automatically configures for maximum speed.

ax  
Autosensing mode (hardware). The port automatically configures for maximum speed with enhanced retries.

s  
Auto-sensing mode (software). The port automatically configures for maximum speed with enhanced retries.

1  
The port is set at a fixed speed of 1 Gbps (not supported on 10G and 16G platforms).

2  
The port is set at a fixed speed of 2 Gbps.

4  
The port is set at a fixed speed of 4 Gbps.

8  
The port is set at a fixed speed of 8 Gbps.

10  
The port is set at a fixed speed of 10 Gbps (not supported on 8G platforms).

16  
The port is set at a fixed speed of 16 Gbps (not supported on 8G platforms).

-h  
Displays the command usage.

EXAMPLES  
To set the speed of a port to 10 Gbps:

```
switch:admin> portcfgspeed 2/3 10
```

To set the speed of a port using the port index:

```
switch:admin> portcfgspeed -i 78 16
```

To set the speed of a port range using the port index:

```
switch:admin> portcfgspeed -i 24-38 8
```

To set all ports on slots 2 and 3 to 8 Gbps:

```
switch:admin> portcfgspeed -s 2-3 8
```

To set all ports on slots 2-3 and 9-12 to 10 Gbps:

```
switch:admin> portcfgspeed -s 2-3 9-12 10
```
To set the speed of all ports in a range:

switch:admin> portcfgspeed -x 1d-1e 8

SEE ALSO  portCfgOctetSpeedCombo, portCfgShow, portShow, switchCfgSpeed, portSwapDisable, switchCfgSpeed, portSwapShow, switchShow
portCfgTrunkPort

Enables or disables trunking on a port.

SYNOPSIS

    portcfgtrunkport [slot[/]port[,] mode

DESCRIPTION

Use this command to enable or disable trunking on a port. Use switchCfgTrunk to enable or disable trunking on all ports of a switch.

When the command is executed to update the trunking configuration, the port to which the configuration applies is disabled and subsequently re-enabled with the new trunking configuration. Traffic through the ports may be temporarily disrupted.

Disabling trunking fails if a Trunk Area (TA) is enabled on the port. Use the portTrunkArea command to remove the TA before disabling trunking.

NOTES

Enabling trunking requires an ISL Trunking license. You may disable trunking without a license.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

The Fabric OS port configuration commands are not supported on FCoE ports.

Virtual FC Ports do not support frame-based trunking. If trunking is enabled for one of these ports in a slot, and a Brocade FX8-24 Extension blade is inserted into the slot, the configuration is not honored and the system logs a RASLOG error. An attempt to enable trunking for a Virtual FC port in a slot that contains a Brocade FX8-24 is rejected.

OPERANDS

This command has the following operands:

    slot

    For bladed systems only, specifies the slot number of the port to be configured, followed by a slash (/).

    port

    Specifies the port to be configured, relative to its slot for bladed systems. Use switchShow to display a listing of valid ports.

    mode

    Specify 1 to enable trunking on the specified port. Specify 0 to disable trunking on the port. This operand is required. Trunking is enabled by default, when a trunking license is present on the switch.

EXAMPLES

To enable a port for trunking:

    switch:admin> portcfgtrunkport 1/3, 1

SEE ALSO

    portCfgShow, portShow, switchCfgTrunk, portTrunkArea, switchShow
portCfgVEXPort

Configures a port as a VEX_Port connected to an FC-IP and sets and displays VEX_Port configuration parameters.

SYNOPSIS
portcfgvexport [slot[/]port
portcfgvexport [-a admin]
portcfgvexport [-f fabricid]
portcfgvexport [-r ratov]
portcfgvexport [-e edtov]
portcfgvexport [-d domainid]
portcfgvexport [-p pidformat]
portcfgvexport [-t fabric_parameter]
portcfgvexport [-m portmode]

DESCRIPTION
Use this command to configure a port as a VEX_Port, to display the port's VEX_Port configuration, or to change the configuration. If no optional parameter is specified, the command displays the currently configured values; otherwise, it sets the specified attribute to its new value. The port must be disabled prior to setting VEX_Port attributes. The port must be enabled before the port can become active following VEX_Port parameter changes. Use portDisable and portEnable to disable or enable the port.

When the port is not active, the preferred domain ID is configurable. The preferred domain ID is used by the VEX_Port's front phantom domain to request a domain ID from the principal switch. The domain ID received becomes the subsequent preferred domain ID, which is persistent and is displayed.

NOTES
In FOS v7.1.0 and later, both Open(IM1) and McDATA(IM2 and IM3) interop modes are not supported.

The fabric ID must be the same for every router port connected to the same edge fabric, and different for every edge fabric. If two ports are connected to the same fabric but have been assigned different fabric IDs, one of them will be disabled due to a fabric ID oversubscription. If two fabrics have been assigned the same fabric ID, one of them will be disabled due to a fabric ID conflict.

The front domain WWN field displays the WWN of the front domain. If the port is enabled and the state is "OK", the edge fabric principal switch domain ID and WWN also are displayed.

If the Fabric Parameter value is "Auto Negotiate", the port ID format, R_A_TOV, and E_D_TOV values display the negotiated values indicated by "(N)" next to them. The negotiated values are what the edge switch specifies in the ELP request. If the state is "Not OK", R_A_TOV and E_D_TOV display "Not Applicable". By default, all VEX_Ports are auto-ELP enabled.

If the Fabric Parameter attribute value is "User configured", port ID format, R_A_TOV, and E_D_TOV display the configured values.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.
OPERANDS

This command has the following operands:

-a admin
Enables or disables the specified port as a VEX_Port. Valid values are 1 (enable as VEX_Port), 2 (disable as VEX_Port and enable as non-VEX_Port).

-portCfgDefault may also be used to disable VEX_Ports.

-f fabricid
Specifies the fabric ID. Valid values are 1-128.

-r ratov
Specifies the R_A_TOV used for port negotiation. Valid values are 2000 to 120000. This operand is only applicable if the "Fabric Parameter" attribute value is not "Auto Negotiate".

-e edtov
Specifies the E_D_TOV used for port negotiation. Valid values are 1000 to 60000. This operand is only applicable if the "Fabric Parameter" attribute value is not "Auto Negotiate".

-d domainid
Specify the preferred domain ID. For Brocade native mode (-m 0). Valid values are 1 to 239.

-p pidformat
Specifies the Port ID format. Valid values are 0-native, 1-core, 2-extended edge. This operand is applicable only when port mode is set to 0 (native mode). If port mode is not "Brocade Native", the Port ID format displays as "Not applicable".

-t fabric_parameter
Enables or disables negotiation of the fabric parameters. Valid values are: 1-enable, 2-disable.

-m port mode
Specifies the Port mode. The -m option enforces the same port mode for all the ports connected to the same edge fabric. If the -m option is selected, the port mode is compared to the online ports. If the modes are different, an error message is displayed, and the command fails. Valid values are as follows:

0
Brocade Native mode.

EXAMPLES

To display the VEX_Port configuration of port 2/16:

```
switch:admin> portcfgvexport 2/16

Port 2/16 info
Admin: enabled
State: OK
Pid format: core(N)
Edge Fabric ID: 16
Front Domain ID: 160
Front WWN: 50:06:06:9e:20:9f:ce:10
Principal Switch: 7
principal WWN: 10:00:00:60:69:c0:05:8a
Fabric Parameters: Auto Negotiate
R_A_TOV: 9000 (N)
E_D_TOV: 2000 (N)
Authentication Type: DHCHAP
DH Group: 4
Hash Algorithm: SHA-1
Edge fabric's primary wwn: N/A
Edge fabric's version stamp: N/A
```
To set the fabric ID of port 2/21 to 5 and the port ID format to core:

```bash
switch:admin> portcfgvexport 2/21 -f 5 -p 1
```

To configure port 2/20 as a VEX_Port and set the fabric ID to 4:

```bash
switch:admin> portcfgvexport 2/20 -a 1 -f 4
```

To disable fabric parameter negotiation on port 2/20 of a VEX_Port:

```bash
switch:admin> portcfgvexport 2/20 -t 2
```

SEE ALSO  portCfgEXPort, portDisable, portEnable, portShow
portCmd

Diagnoses intelligent ports.

**SYNOPSIS**

```
portcmd --ping [slot/][slot/][ge port
 -s src_ip -d dst_ip [-x | -crossport]
 [-n num_requests] [-s service_type] [-t ttl] [-w wait_time]
 [-z size][-v vlan_id [-c L2 Class-of-Service]]

portcmd --traceroute [slot/][slot/][ge port
 -s src_ip -d dst_ip [-x | -crossport]
 [-h max_hops][-f first_ttl] [-q type_of_service] [-w timeout]
 [-z size] [-v vlan_id [-c L2 Class-of-Service]]

portcmd --tperf [slot/][veport -sink | -source
 [-high | -medium | -low][-time duration] [-uni directional]
 [-random] [-pattern pattern] [-size pdu_size]
 [-interval interval]
```

**DESCRIPTION**

Use this command to invoke the end-to-end IP path performance (iperf) characterization feature, to ping or trace a route to a destination IP host from an intelligent GbE port, or to determine the path characteristics between a local data source and a remote data sink.

When issued with the **--tperf** option, this command determines the path characteristics to a remote host or tunnel destination. TPerf generates statistics every 30 seconds by default unless you specify a different value for **-interval**. The output displays the following information:

- **Tunnel ID**: Numeric identifier for the TPerf tunnel.
- **Traffic Priority**: High, Medium, or Low.
- **bytes tx**: Number of bytes transmitted.
- **bytes rx**: Number of bytes received.
- **PDUs tx**: Number of protocol data units transmitted.
- **PDUs rx**: Number of protocol data units received.
- **bad CRC headers rx**: Number of bad CRC headers received.
- **bad CRC payloads rx**: Number of bad CRC payloads received.
- **out of seq PDUs rx**: Number of out-of-sequence PDUs received.
- **flow control count**: Flow control count.
- **last rtt**: Last Round trip in milliseconds (RT traffic only).
VLAN tagging ensures that test traffic traverses the same path as real FCIP traffic. A VLAN tag entry must exist prior to issuing the `--ping` or `--traceroute` commands; this includes both the local and remote sides.

**NOTES**

The `-crc` option to `portCmd --tperf` is no longer supported as of Fabric OS v7.0.0.

End-to-end path characterization is not supported if an IPSec-enabled tunnel exists that uses the same source/local IP address.

Make sure to use the `--ping` command with a double-dash (`--`). If the dashes are omitted, a message displays indicating that the command is deprecated.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

This command has the following operands:

- **slot**
  
  For bladed systems only, specifies the slot number of the port to be configured, followed by a slash (`/`).

- **ge port**
  
  Specifies the port number of the GbE port on the blade.

- **--ping**
  
  Pings a destination IP address from one of the source IP interfaces on the GbE port. Valid arguments and their values include the following:

  - **-s src_ip**
    
    Specifies the source IP address that originates the ping request. IPv6 addresses are supported.

  - **-d dst_ip**
    
    Specifies the destination IP address to which to target the ping request. IPv6 addresses are supported.

  - **-x | -crossport**
    
    Specifies the source IP address as a crossport. A crossport is the nonlocal (secondary) XGE port to a VE_Port group that provides failover capabilities for the tunnel configured on the local XGE port. This operand is optional and supported only on the Brocade FX8-24 XGE ports.

  - **-n num_requests**
    
    Specifies the number of ping requests. Valid values are 1 to 255. The default is 4. This operand is optional.

  - **-q service_type**
    
    Specifies the type of service in the ping request. The default is 0 and `service_type` must be an integer from 0 to 255. This operand is optional.

  - **-t ttl**
    
    Specifies the time to live. Valid values are 1 to 255. The default is 100. This operand is optional.

  - **-w wait_time**
    
    Specifies the time to wait for the response of each ping request in milliseconds. The default is 5000 ms and the maximum wait time is 9000 ms (9 seconds). This operand is optional.
portCmd

-z size
Specifies the default packet size to a fixed size in bytes. The default is 64 bytes. In an IPv4 environment, the ICMP/IP header occupies 28 bytes. In an IPv6 environment it occupies 48 bytes. The total size, including ICMP/IP headers (28 or 48 bytes without IP options) cannot be greater than the IP MTU configured on the interface. This operand is optional.

-v vlan_id
Specifies the VLAN ID. Values must be in the range between 1 and 4094. There is no default value. Note that a VLAN tag entry must exist on the local and remote sides prior to issuing the -v option. A VLAN Tag table entry is dynamically maintained by the ipperf application. See the portCfg help page for details on creating a VLAN tag table.

-c L2 Class-of-Service
Specifies Class of Service/Priority, as defined by IEEE 802.1p. Values must be in the range between 0 and 7. The default is 0. This operand is optional with the -v option.

--traceroute
Traces the IP router hops used to reach the host dst_ip from one of the source IP interfaces on the GbE port. Valid arguments include the following:

-s src_ip
Specifies the local IP address to use for sourcing the probe packets. IPv6 addresses are supported.

-d dst_ip
Specifies the destination IP address to which to probe the IP router path. IPv6 addresses are supported.

-x | -crossport
Specifies the source IP address as a crossport. A crossport is the nonlocal (secondary) XGE port to a VE_Port group that provides failover capabilities for the tunnel configured on the local XGE port. This operand is optional and supported only on the Brocade FX8-24 XGE ports.

-h max_hops
Specifies the maximum hop limit used in the outgoing probe packets. The default value is 30 hops. This operand is optional.

-f first_ttl
Specifies the starting point for the "time to live" parameter. The default is 1. The command skips processing for those intermediate gateways that are less than the first_ttl hops. This operand is optional.

-q service_type
Specifies the type of service in the traceroute request. The default is 0 and service_type must be an integer from 0 to 255. This operand is optional.

-w wait_time
Sets the time, in milliseconds, to wait for a response to a probe. The default is 5000 milliseconds. The maximum wait time is 9000 milliseconds (9 seconds). This operand is optional.

-z size
Specifies the size, in bytes, of the trace route packet to use. The default is 64 bytes. In an IPv4 environment, the ICMP/IP header occupies 28 bytes. In an IPv6 environment, it occupies 48 bytes. The total size, including ICMP/IP headers (28 or 48 bytes without IP options), cannot be greater than the IP MTU configured on the interface. This operand is optional.
-v vlan_id

Specifies the VLAN ID. Values must be in the range between 1 and 4094. There is no default value. Note that a VLAN tag entry must exist on the local and remote sides prior to issuing the -v option. A VLAN Tag table entry is dynamically maintained by the ipperf application. See the portCfg help page for details on creating a VLAN tag table.

-c L2 Class-of-Service

Specifies Class of Service/Priority, as defined by the IEEE 802.1p specification. Values must be in the range between 0 and 7. The default value is 0. This operand is optional with the -v option.

--tperf

Determines the path characteristics to a remote host or tunnel destination. The tperf option requires two separate Brocade FX8-24 blades to function. One blade plays the role of a data sink and the other blade plays the role of the data source. TPerf also requires that you define a tunnel as a TPerf tunnel. Refer to portCfg fciptunnel for more information.

-sink | -source

Designates the switch to function either as a data sink or a data source. This operand is required.

When -sink is specified, TPerf begins to respond to traffic sent by the switch acting as the data source. The process continues to run until it is either terminated by user intervention (Ctrl + C) or, if a value for duration is specified with the -t option, until the process completes the set time frame.

The following optional arguments are ignored on the data sink, because it services all requests from the data source: -high, -medium, -low, -unidirectional, -random, -pattern, and -size.

When -source is specified, TPerf generates traffic until it is interrupted by user intervention (Ctrl + c) or, if a value for duration is specified with the -t option, until the process completes the set time frame. The TPerf module on the remote host will immediately begin generating traffic; it is therefore imperative that the data sink has been started on the opposing switch before the data source is started on the local switch.

The following arguments are optional:

-high

Generates high priority traffic.

-medium

Generates medium priority traffic.

-low

Generates low priority traffic.

If no traffic priority is specified only medium priority traffic is generated.

-time duration

Specifies the duration of the TPerf traffic flow in seconds. If a value for duration is not specified, the process continues to run until it is terminated with Ctrl + C.

-unidirectional

Generates traffic in one direction only. The default is round-trip.

-random

Specifies a random protocol data unit (PDU) size between 2048 and the size of the send request. Refer to -size below.
portCmd

- **pattern pattern**
  Specifies the test data pattern for the payload as one of the following values:
  
  0 | notspecified
  No pattern is specified. TPerf applies whatever is already set or in memory. This is the default value.

  1 | allzeros
  The specified pattern is "all zeros".

  2 | allones
  The specified pattern is "all ones".

  3 | incrementingbyte
  The specified pattern is "incrementing byte".

  4 | random
  The specified pattern is "random".

  5 | jitter
  The specified pattern is "jitter".

- **size pdu_size**
  Specifies the PDU size to use (not including headers). The valid range is between 2048 and 10112 bytes. The default is equivalent to the maximum segment size (MSS). This is the maximum size if the -random option is specified.

- **interval interval**
  Specifies the interval at which the statistics display is refreshed, in seconds. The default is 30 seconds.

**EXAMPLES**
To verify if packets can be sent to the destination IP address with maximum wait_time specified:

```
switch:admin> portcmd --ping 12/ge0 \
 -d 2007:7:30:32:227:77:0:60 -w 29000
Pinging 2007:7:30:32:227:77:0:60 from ip interface \
 2007:7:30:32:227:138:10:120 on 12/ge0 with 64
bytes of data
Reply from 2007:7:30:32:227:77:0:60: bytes=64 rtt=0ms ttl=255
Reply from 2007:7:30:32:227:77:0:60: bytes=64 rtt=1ms ttl=255
Reply from 2007:7:30:32:227:77:0:60: bytes=64 rtt=0ms ttl=255
Reply from 2007:7:30:32:227:77:0:60: bytes=64 rtt=0ms ttl=255
Ping Statistics for 2007:7:30:32:227:77:0:60:
 Packets: Sent = 4, Received = 4, Loss = 0 (0 percent loss)
 Min RTT = 0ms, Max RTT = 1ms Average = 0ms
```

To trace the IP router hops used to reach the remote (with packet size specified):

```
switch:admin> portcmd --traceroute 12/ge0 \
 -d 2007:7:30:32:227:77:0:60 -z 1452
Traceroute to 2007:7:30:32:227:77:0:60 from IP interface
hops max
 1 1 ms 0 ms 0 ms
Traceroute complete.
```
To verify if packets can be sent to the destination IP address using VLAN tagging with the -c option.
```
switch:admin> portcmd --ping 8/ge0 \n -s 192.168.10.1 -d 192.168.20.1 -v 10 -c 3
```

To trace the IP router hops used to reach the remote host using VLAN tagging with the -c option.
```
switch:admin> portcmd --traceroute 8/ge0 \n -s 192.168.10.1 -d 192.168.20.1 -v 10
```

To ping a failover crossport:
```
switch:admin> portcmd --ping 8/xge0 \n 192.168.11.20 -d 1.1.1.1 -x
```

To trace the route to a failover crossport:
```
switch:admin> portcmd --traceroute 8/xge0 \n 192.168.11.20 -d 1.1.1.1 -x
```

To set the path characteristic to source mode on the remote host using VLAN tagging with the -c option.
```
switch:admin> portcmd --ipperf 8/ge0 \n -s 192.168.10.1 -d 192.168.20.1 -S -v 10 -c 3
```

To create a TPerf data sink on VE_Port 16:
```
switch:admin> portcmd --tperf 16 -sink
TPerf has been configured successfully for 16
TPerf is servicing requests on 16 priority: high
TPerf is servicing requests on 16 priority: medium
TPerf is servicing requests on 16 priority: low
TPerf data source can now be started
```

To configure a Brocade FX8-24 blade as a TPerf data source (this example generates round-trip high, medium, and low priority traffic with a fixed PDU size of 2084 bytes. The payload pattern is a jitter pattern and the checksum is checked by the sink):
```
switch:admin> portcmd --tperf 16 -source \n -size 2048 -pattern 5
TPerf has been configured successfully for 16
TPerf is generating traffic on 16 priority: medium
```

<table>
<thead>
<tr>
<th>Tunnel ID: 16</th>
<th>High Priority</th>
<th>Medium Priority</th>
<th>Low Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>bytes tx</td>
<td>0</td>
<td>5280520</td>
<td>0</td>
</tr>
<tr>
<td>bytes rx</td>
<td>0</td>
<td>407240</td>
<td>0</td>
</tr>
<tr>
<td>PDUs tx</td>
<td>0</td>
<td>10183</td>
<td>0</td>
</tr>
<tr>
<td>PDUs rx</td>
<td>0</td>
<td>10182</td>
<td>0</td>
</tr>
<tr>
<td>out of seq PDUs rx</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>flow control count</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>last rtt</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

******************************************************************************
To configure a TPerf source so it generates round-trip high and low priority traffic with a random PDU size from 2048 to 10112 bytes (1 MSS) and with a payload pattern determined by previous settings saved in memory:

```
switch: admin> portcmd --tperf 16 -source -high -low -random
TPerf has been configured successfully for 16
TPerf is generating traffic on 16 priority: high
TPerf is generating traffic on 16 priority: low

Tunnel ID: 16
High Priority Medium Priority Low Priority
bytes tx 19800708 0 19168848
bytes rx 187200 0 183640
PDUs tx 4686 0 4598
PDUs rx 4685 0 4597
out of seq PDUs rx 0 0 0
flow control count 0 0 0
last rtt 5 0 5
**
```

To configure a TPerf source to generate one-way low priority traffic with a random PDU size from 2048 to 4000 bytes and a payload pattern of ones.

```
switch:admin> portcmd --tperf 16 -source -low
\-size 4000 -random -unidirectional -pattern 2
TPerf has been configured successfully for 16
TPerf is generating traffic on 16 priority: low
```

```
Tunnel ID: 16
High Priority Medium Priority Low Priority
bytes tx 0 0 19800708
bytes rx 0 0 0
PDUs tx 0 0 1434686
PDUs rx 0 0 0
out of seq PDUs rx 0 0 0
flow control count 0 0 0
last rtt N/A N/A N/A

```

To specify test data patterns for the source payload:

```
switch:admin> portcmd --tperf 16 -source -pattern random
switch:admin> portcmd --tperf 16 -source -pattern 4
```

```
switch:admin> portcmd --tperf 16 -source -pattern jitter
switch:admin> portcmd --tperf 16 -source -pattern 5
```

SEE ALSO portCfg, portShow
**portDebug**

Sets debug level and verbose level of port modules.

**SYNOPSIS**

```
portdebug dbg_lvl, vbs_lvl
```

**DESCRIPTION**

Use this command to set the debug level and verbose level of port modules.

**NOTES**

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

This command has the following operands:

- `dbg_lvl`
  Specify the debug level to be set for port modules; valid values are 1 to 5.

- `vbs_lvl`
  Specify the verbose level to be set for port modules; valid values are 1 to 5.

**EXAMPLES**

To set debug level and verbose level of port modules:

```
switch:admin> portdebug 3 4
```

**SEE ALSO**

`dbgShow`
portDecom

Decommissions and disables an E_Port without frame loss.

SYNOPSIS

portdecom

portdecom [slot]port

portdecom --help

DESCRIPTION

Use this command to disable an E_Port without frame loss. The E_Port can either be a single redundant
E_Port or an E_Port which is part of a trunk group. The port must be an operational E_Port with at least
one other redundant E_Port available to reach all domains that the E_Port can reach. Or the port must
be an operational E_Port which is part of a trunk group with at least one other member in the trunk. The
last member of the trunk group may also be decommissioned, if there are other available redundant
E_Ports.

Upon successful completion of the command all traffic flows on the port will have been moved to other
redundant paths and the port will be placed in a persistently disabled state. To bring the port back online
use the portCfgPersistentEnable command.

NOTES

The execution of this command requires that the lossless feature is enabled on both the local switch and
the remote switch on the other end of the E_Port. This command will fail for online ports, if the port is not
a fully operational E_Port or trunk port, lossless is not enabled on the local or remote switch, or no
alternate redundant path is available to route the traffic. A redundant path must be an E_Port connection
between the same pair of switches as the E_Port that is being decommissioned. Use the topologyShow
command to verify that alternate paths are available to reach all domains.

When decommissioning the member of a trunk group, all members must have an equal link cost. If a
member does not have an equal cost, the cost of the trunk as a whole may change after
decommissioning the port and cause routes to be changed. Refer to the linkCost command for more
information.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS

This command has the following operands:

slot

For bladed systems only, specifies the slot number of the ports to be disabled,
followed by a slash (/).

port

Specifies the E_Port to be decommissioned.

EXAMPLES

To decommission a port

switch:user> portdecom 2/5
The port has been decommissioned and persistently disabled.

SEE ALSO

dlSet, dlShow, linkCost, portCfgPersistentEnable, topologyShow
portDisable

Disables a port or a range of ports.

**SYNOPSIS**

```
portdisable [slot[/]port1[-port2] [...]
portdisable -i [index1[-index2] [...] [-f]]
portdisable -x [hex1[-hex2] [...]]
portdisable -slot [slot1[-slot2] [...]]
portdisable [slot[/]port -r disable_reason_string
portdisable -h
```

**DESCRIPTION**

Use this command to disable a port or a range of ports. If the port is connected to another switch when disabled, the fabric may reconfigure. Devices connected to this port can no longer communicate with the fabric.

You can identify a single port to be disabled by its port number or by its port index number in decimal or hexadecimal format. Port ranges are supported with port numbers, index numbers(decimal or hexadecimal) or by specifying a slot or a slot range. Use `switchShow` for a listing of valid ports, slots, and port index numbers.

Specifying multiple ports with the index (-i) or slot (-s) option is supported only if `PortSwap` is disabled. They are not supported on GbE ports and configured F_Port trunks. Use the -i option without a port index argument to display the `portSwap` status, or alternately use `portSwapShow`.

The front panel LED of a disabled port flashes amber in a two-second cycle. If the port was online before being disabled, a state transition will be indicated in one of the following ways: RSCN, SNMP trap, or Web pop-up window.

**NOTES**

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command is not supported on FCoE ports. To disable an FCoE port, use `fcoe --disable`.

**OPERANDS**

This command has the following operands:

- **slot**
  
  On bladed systems only, specifies the slot number of the ports to be disabled, followed by a slash (/).

- **port1[-port2]**
  
  Disables a single port or a range of ports identified by port numbers. The port range cannot span slots, but you can specify multiple port ranges pairs separated by a space, for example, 3/1-4 4/7-9.

- **-i index1[-index2]**
  
  Disables a port or a range of ports identified by port index numbers. You may specify multiple index ranges separated by a space, for example, -i 33-38 40-60.

- **-f**
  
  Ignores nonexisting ports. This operand is valid only with the -i option.
portDisable 2

Disables a port or a range of ports identified by port numbers, index number in hexadecimal format. You may specify multiple port ranges separated by a space, for example, -x 21-26 28-3c.

-slot [slot1[-slot2]]

Disables all ports on a slot or on a range of slots, for example, -s 3-5. You may specify multiple slot ranges separated by a space, for example, -s 3-5 8-10.

-r disable_reason_string

Specifies the reason for disabling the port. The string can be up to 16 characters long and must be enclosed in double quotation marks.

-h

Displays the command usage.

EXAMPLES

To disable a single port:

switch:admin> portdisable 2/4

To disable a range of ports:

switch:admin> portdisable 2/4-8

To disable multiple port ranges:

switch:admin> portdisable 2/24-26 3/10-12 4/3-4

To disable a port by specifying its index number:

switch:admin> portdisable -i 176

To disable a range of ports by specifying the corresponding port index range:

switch:admin> portdisable -i 170-176

To disable multiple ports by specifying multiple port index ranges:

switch:admin> portdisable -i 30-36 170-176

To disable range of ports by specifying port index numbers in hexadecimal format:

switch:admin> portdisable -x 1d-1e

To disable all ports on slots 3-5:

switch:admin> portdisable -s 3-5

To disable all ports on slots 3-5 and 9-12:

switch:admin> portdisable -s 3-5 9-12

To disable a port with a disable reason:

switch:admin> portdisable 2/2 -r "laser fault"

SEE ALSO

portCfgPersistentDisable, portCfgPersistentEnable, portEnable, portShow, portSwapDisable, portSwapShow, switchShow
portDPortTest

Initiates or terminates a D_Port test, or displays D_Port test results.

SYNOPSIS

portdporttest --start | --setarg [-nframes number | -time time]
[-framesize size] [-pattern pat_name]
-payload payload_pattern] [-fec] [-cr] [slot/]port_list

portdporttest --stop [slot/]port_list

portdporttest --restart [slot/]port_list

portdporttest --show [slot/]port_list | all

portdporttest --help

DESCRIPTION

Use this command to manually terminate or re-initiate testing on a diagnostic port (D_Port). The port
must be configured as a D_Port and physically connected to a second D_Port on a remote switch. Refer
to the portCfgDPort command for more information. The portdporttest --start command only needs to
be issued on one end of the link.

The DPort test performs the following diagnostics:
• An electrical loopback test (supported only on 16Gb SFPs capable of electrical loopback)
• An optical loopback test (supported only on 16Gb SFPs capable of optical loopback)
• A link traffic test
• A link distance measurement

Use the --setarg option to set the test parameters and exit. Use the --restart option to restart the test
with the already configured parameters.

Use the --show option with a port operand to display the test status for the specified ports at any time
during the test or after the diagnostics has completed. The command output includes the following
information for each configured D_Port:

Slot
The slot number on the local side of the link.

Port
The port number on the local side of the link

Remote WWNN
The world wide node name of the switch on the remote side of the link.

Remote WWPN
The world wide port name of the Host Bus Adapter (HBA) or device port on the
remote side of the link.

Remote Port
The port number on the remote side of the link

Mode
The testing mode: Automatic (initiated due to port online event) or Manual
(manually restarted using this command).

No. of test frames
Number of frames sent for link traffic test.
Test frame size
The test frame size in bytes.

Pattern
The pre-defined pattern name.

Payload
The user-defined payload pattern.

FEC (enabled/opt/active)
The forward error correction (FEC) status.

CR (enabled/opt/active)
The credit recovery (CR) status.

Start time
Date and time of test start

End time
Date and time of test completion

Status
On the link initiator, this field displays the overall test status as PASSED, FAILED, SKIPPED, IN PROGRESS, NOT STARTED, or STOPPED. On the link responder, the status displays PASSED, FAILED, STOPPED, or RESPONDER.

Test
For each sub-test, the command displays the Start time, test result (PASSED, FAILED, IN PROGRESS, NOT STARTED, STOPPED, or RESPONDER), estimated time in seconds, and diagnostic comments. Comments include the following:

No SFP or chip support
The test result is skipped because the SFP or port is not capable of D_Port functionality.

See remote port results
The test result related to this comment is RESPONDER. The port is in responder state and test results will be available at the initiator port on the remote side of the link.

Remote port is not ready to start the test
The test failed because the remote port is not ready to start the D_Port test.

Roundtrip link latency
Displays roundtrip link latency in nanoseconds or unknown when the test is in progress. Roundtrip link latency is the time required for the light to travel from a given port to the port at the remote side of the link and back again.

Estimated cable distance
The estimated physical distance of the interswitch link in meters.

Buffers required
The number of buffers required for the given frame size, distance, and speed.

Failure report
Displays details on the local port and remote port errors, if any, when the D_Port test fails.

Use the --show all command to display the following test summary information:

Port
The port number on the local side of the link

State
The port state: OFFLINE or ONLINE
**SFP Capabilities**
Electrical loopback (E) or optical loopback (O), or both (E, O)

**Test Result**
PASSED, FAILED, or STOPPED

**NOTES**
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command is supported only on Fibre Channel ports. SFP's must be Brocade-branded and run Fabric OS v7.0.0 or later. This command skips the optical loopback test for loopback plugs or when the port loops back to another D_P ort in the same switch.

**OPERANDS**
This command has the following operands:

- **slot**
  On bladed systems only, specifies the slot number of the ports to be configured, followed by a slash (/).

- **port_list**
  Specifies one or more ports, relative to the slot on bladed systems. Use `switchShow` for a listing of valid ports. A port list should be enclosed in double quotation marks and can consist of the following:
  - A single port, for example, "8" or "5/8" on blades systems.
  - A port range where beginning and end port are separated by a dash, for example, "8-13" or "5/8-13" on blades systems. A port range cannot span multiple slots.
  - A set of ports separated by spaces, for example "3 5 7 8"or 5/3 5/5 5/7 5/8 on bladed systems.
  - A set of ports separated by commas, for example "3,5,7,8"or 5/3,5,7,8 on bladed systems.
  - A wildcard '*' indicates all ports. The wild card should be enclosed in single quotation marks.

- **--start**
  Initiates the diagnostics on the specified D_Ports.

- **-nframes number**
  Specifies the number of frames to send in millions. The default value is 1 for 1 million frames.

- **-time time**
  Specifies the time duration in HH:MM format for which the frame traffic test will run.

- **-framesize size**
  Specifies the size of test frames that are generated to run the test. The range for the framesize is 36 to 2112 bytes. The size of the frames can be specified in multiples of 4; otherwise the nearest higher multiple of 4 value will be taken as frame size. Default value is 1024.

- **-pattern pat_name**
  Specifies the name of the predefined pattern to be used in the payload. Valid patterns are `BYTE_NOT`, `QUAD_NOT`, `WORD_NOT`, `BYTE_RAMP`, `QUAD_RAMP`, `WORD_RAMP`, `BYTE_LFSR`, `RANDOM`, `CRPAT`, `CSPAT`, `CHALF_SQ`, `CQTR_SQ`, `RDRAM_PAT`, `jCRPAT`, `jCJTPAT`, `jCSPAT`, `PRED_RAND`, `SMI_TEST`, `CJPAT`, `QUAD_NOTP`, `JSPAT`, `JTSPAT`. Use the `dataTypeShow` command to get the list of frame patterns.
-payload payload_pattern
  Specifies the user defined payload pattern in integer.

-fec
  Enables the forward error correction (FEC) during D-Port test. This sub-option is
  not supported on D_Ports configured with Dense Wavelength Division
  Multiplexing (DWDM).

-cr
  Enables the credit recovery (CR) during D-Port test.

--setarg
  Sets the D_Port test parameters and exits. The sub-options of --setarg are same
  as --start.

--stop
  Terminates the diagnostics on the specified D_Ports. Brocade recommends that
  you execute this command on both the local port and the remote port to properly
  terminate the D_Port tests.

--restart
  Restarts the D_Port diagnostic tests with the configured parameters.

--show
  Displays runtime status and results of the diagnostics.

--help
  Displays the command usage.

EXAMPLES
To initiate the D_Port test on a single port:
switch:admin> portdporttest --start

To terminate the D_Port test on a single port:
switch:admin> portdporttest --stop

To display the D_Port test results for a port while the test is in progress or after the test has completed:
switch:admin> portdporttest --show 42
D-Port Information:
======================================================================
Port:               42
Remote WWNN:        10:00:00:05:1e:e5:e4:00
Remote port:        343
Mode:               Manual
No. of test frames: 12 Million
Test frame size:    1024 Bytes
Pattern:            JTSPAT
FEC (enabled/option/active): Yes/No/No
CR (enabled/option/active): No/No/No
Start time:         Mon Jan 16 05:57:52 2012
End time:           Mon Jan 16 05:58:56 2012
Status: PASSED

Test	Start time	Result	EST (HH:MM:SS)	Comments
Electrical loopback | 05:57:52 | PASSED | -------- | ----------
Optical loopback | 05:58:07 | PASSED | -------- | ----------
Link traffic test | 05:58:14 | PASSED | -------- | ----------

Roundtrip link latency: 934 nano-seconds
Estimated cable distance: 1 meters
Buffers required: 1 (for 1024 byte frames at 16Gbps speed)

To display D_Port summary information:
```bash
switch:admin> portdporttest --show all 42
```

Port	State	SFP Capabilities	Test Result
24 | ONLINE | E,O | PASSED
26 | ONLINE | E,O | PASSED
33 | OFFLINE | --- | FAILED

To display the D_Port test results for a port when the test has failed:
```bash
switch:admin> portdporttest --show 3/20
```

D-Port Information:
```plaintext
Slot: 3
Port: 20
Remote WWNN: 10:00:00:05:33:7e:69:c4
Remote port: 28
Mode: Manual
No. of test frames: 1 Million
Test frame size: 1024 Bytes
FEC (enabled/option/active): Yes/No/No
CR (enabled/option/active): Yes/No/No
Start time: Mon Apr 8 12:16:12 2013
End time: Mon Apr 8 12:16:29 2013
Status: FAILED
```

Test	Start time	Result	EST (HH:MM:SS)	Comments
Electrical loopback | 12:16:13 | PASSED | -------- | ----------
Optical loopback | 12:16:18 | PASSED | -------- | ----------
Link traffic test | 12:16:29 | FAILED | -------- | Remote port is not ready to start the test

Roundtrip link latency: unknown

Failure report:
Remote port error(s): GENERIC, BAD_EOF, UNREACHABLE, SIGNAL_LOSS

Please use portstatsshow and porterrshow for more details on the above errors. Refer to file /var/tmp/dport/slot3port20_stats.txt, for link statistics prior to the port was set to D-Port.

SEE ALSO `dataTypeShow`, `fabricLog`, `portCfg`, `portCfgDPort`, `portShow`, `switchShow`
portEnable

Enables a port or a range of ports.

SYNOPSIS

\texttt{portenable [slot]/port�1[-port2] [...]}
\texttt{portenable \(-i \) [index1[-index2] [...] [-f]}
\texttt{portenable \(-x \) [hex1[-hex2] [...]}
\texttt{portenable \(-slot \) [slot1[-slot2]]}
\texttt{portenable \(-h \)}

DESCRIPTION

Use this command to enable a port or a range of ports. If a port is connected to another switch when this command is issued, the fabric may reconfigure. After the port is enabled, devices connected to the port can again communicate with the fabric. The front panel LED of a port that is enabled and online is green.

You can identify a single port to be enabled by its port number or by its port index number in decimal or hexadecimal format. Port ranges are supported with port numbers, index numbers (decimal or hexadecimal) or by specifying a slot or a slot range. Use \texttt{switchShow} for a listing of valid ports, slots, and port index numbers.

Specifying multiple ports with the index \(-i\) or slot \(-s\) option is supported only if \texttt{PortSwap} is disabled. They are not supported on GbE ports and configured F_Port trunks. Use the \(-i\) option without a port index argument to display the \texttt{portSwap} status, or alternately use \texttt{portSwapShow}.

For ports that come online after being enabled, the following indications might be sent to indicate a state transition: RSCN, SNMP trap, Web pop-up window.

This command fails if the switch is disabled, the port's blade is not fully enabled (faulted, powered off, or disabled), or if the port is persistently disabled.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command is not supported on FCoE ports. To enable an FCoE port, use \texttt{fcoe \--enable}.

OPERANDS

This command has the following operands:

\texttt{slot}

On bladed systems only, specifies the slot number of the ports to be enabled, followed by a slash (/).

\texttt{port1[-port2]}

Enables a single port or a range of ports identified by port numbers. The port range cannot span slots, but you can specify multiple port ranges separated by a space, for example 3/1-4 4/7-9.

\texttt{-i index1[-index2]}

Enables a port or a range of ports identified by port index numbers. You may specify multiple index ranges separated by a space, for example, 33-38 40-60.

\texttt{-f}

Ignores nonexisting ports. This operand is valid only with the \texttt{-i} option.
-x [hex1 [-hex2]]

Enables a port or a range of ports identified by port numbers, index number in hexadecimal format. You may specify multiple port ranges separated by a space, for example, -x 21-26 28-3c.

-slot [slot1[-slot2]]

Enables all ports on a slot or on a range of slots, for example, -s 3-5. Multiple slot ranges are not supported with this command.

-h

Displays the command usage.

EXAMPLES

To enable a single port:

```
switch:admin> portenable 2/4
```

To enable a range of ports:

```
switch:admin> portenable 2/4-8
```

To enable multiple port ranges:

```
switch:admin> portenable 2/24-26 3/10-12 4/3-4
```

To enable a port by specifying its index number:

```
switch:admin> portenable -i 176
portenable: portSwap feature enabled.
```

To enable a range of ports by specifying the corresponding port index range:

```
switch:admin> portenable -i 170-176
portenable: portSwap feature enabled.
```

To enable multiple ports by specifying multiple port index ranges:

```
switch:admin> portenable -i 30-36 170-176
portenable: portSwap feature enabled.
```

To enable a range of ports by specifying port index number in hexadecimal format:

```
switch:admin> portenable -x 1d-1e
```

To enable all ports on slot 3-5.

```
switch:admin> portenable -s 3-5
```

SEE ALSO

portCfgPersistentDisable, portCfgPersistentEnable, portDisable, portShow, portSwapDisable, portSwapShow, switchShow
portEncCompShow

Displays encryption and compression port configuration details.

SYNOPSIS

portenccompshow

DESCRIPTION

Use this command to display a list of ports that can be configured for encryption or compression. The command displays one section per ASIC and the ports configurable for that ASIC. The output includes the following information:

**User Port**

The port index number of the port to be configured. Use the `switchShow` command to identify the corresponding slot and port number.

**Encryption configured**

Displays "Yes" if encryption is enabled on the port. Displays "No" if encryption is disabled. This parameter is configured with the `portCfgEncrypt` command.

**Encryption active**

Displays the port's runtime status. "Yes" indicates that the port is online and enabled for encryption. "No" indicates that the port is enabled for encryption but offline, or not enabled for encryption.

**Compression configured**

Displays "Yes" if compression is enabled on the port. Displays "No" if compression is disabled. This parameter is configured with the `portCfgCompress` command.

**Compression active**

Displays the port's runtime status. "Yes" indicates that the port is online and enabled for compression. "No" indicates that the port is enabled for compression but offline, or not enabled for compression.

**Port Speed**

Displays the speed of the port. If the speed is configured as AUTO NEG, the speed of the port is taken as 16G.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display the port configuration and runtime status of the ports configurable for encryption or compression on a DCX 8510-8:

```
switch:admin> portenccompshow
User Encryption Compression Config
Port configured Active configured Active Speed
--
17 No No No No
18 No No No No
19 No No No No
20 No No No No
21 No No No No
22 No No No No
23 No No No No
144 Yes Yes Yes No 16G
145 No No No No
146 No No No No
```
## portEncCompShow

<table>
<thead>
<tr>
<th>Port</th>
<th>Encryption</th>
<th>Compression</th>
<th>NDep</th>
<th>NEncrypt</th>
<th>NCompress</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>147</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>148</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>149</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>16G</td>
</tr>
<tr>
<td>150</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>151</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port</th>
<th>Encryption</th>
<th>Compression</th>
<th>NDep</th>
<th>NEncrypt</th>
<th>NCompress</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>89</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>90</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>91</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>92</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>93</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>94</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>95</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>208</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>209</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>210</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>211</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>212</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

**SEE ALSO**  
portCfgEncrypt, portCfgCompress
portErrShow

Displays a port error summary.

SYNOPSIS

porterrshow

DESCRIPTION

Use this command to display an error summary for all ports. Counts are reported on frames transmitted by the port (Tx) or on frames received by the port (Rx). The display contains one output line per port. Numeric values exceeding 999 are displayed in units of thousands (k), millions (m), or giga (g) if indicated.

Values for the following parameters are displayed:

frames tx
Number of frames transmitted (Tx).

frames rx
Number of frames received (Rx).

enc in
Number of encoding errors inside frames received (Rx).

crc err
Number of frames with CRC errors received (Rx).

crc g_eof
Number of frames with CRC errors with good EOF received (Rx).

too shrt
Number of frames shorter than minimum received (Rx).

too long
Number of frames longer than maximum received (Rx).

bad eof
Number of frames with bad end-of-frame delimiters received (Rx).

enc out
Number of encoding error outside of frames received (Rx).

disc c3
Number of Class 3 frames discarded (Rx). This counter includes the sum of the following class 3 discard counters reported by the portStatsShow command: er_rx_c3_timeout, er_tx_c2_timeout, er_c2_dest_unreach, and er_other_disc. Refer to portStatsShow help for a description of these counters.

link fail
Number of link failures (LF1 or LF2 states) received (Rx).

loss sync
Number of times synchronization was lost (Rx).

loss sig
Number of times a loss of signal was received (increments whenever an SFP is removed) (Rx).

frjt
Number of transmitted frames rejected with F_RJT (Tx).

fbsy
Number of transmitted frames busied with F_BSY (Tx).
c3-timeout tx
The number of transmit class 3 frames discarded at the transmission port due to timeout (platform- and port-specific).

c3-timeout rx
The number of receive class 3 frames received at this port and discarded at the transmission port due to timeout (platform- and port-specific).

pcs err
The number of Physical Coding Sublayer (PCS) block errors. This counter records encoding violations on 10 Gbps or 16 Gbps ports.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command is not supported on FCoE ports.

OPERANDS
None

EXAMPLES
To display error counters for ports on a switch:

```
switch:admin> porterrshow
frames enc crc crc too too bad enc \
 tx rx in err g_eof shrt long eof out
=== \\
 0: 0 0 0 0 0 0 0 0 0 \\
 1: 2.5g 73m 0 0 0 0 0 0 1.2k \\
 2: 0 0 0 0 0 0 0 0 0 \\
 3: 0 0 0 0 0 0 0 0 667 \\

disc link loss loss frjt fbsy c3-timeout pcs
c3 fail sync sig tx rx err
=== \\
 0 2 4 0 0 0 0 \\
 1: 0 0 0 1 0 0 0 415.2k \\
 0 0 0 1 0 0 0 0 \\
 0 21 4 8 0 0 0 0 \\
(output truncated)
```

SEE ALSO  portShow, portStatsShow
**portFencing**

Configures the Fabric Watch port fencing feature.

**SYNOPSIS**

```
portfencing --show

portfencing --enable

port_type_list | all -area area_list | -area all

portfencing --disable

port_type_list | all -area area_list | -area all

portfencing --help
```

**DESCRIPTION**

Use this command to enable or disable the Fabric Watch port fencing feature for specified port types and Fabric Watch areas. Supported port types include E_Ports, optical F_Ports, copper F_Ports, physical ports, and Virtual E_Ports (VE_Ports). You can configure a specified port type or a list of port types to enable port fencing for one or more areas. Use the `all` option to indicate all port types or all areas.

Use the `--disable` option to disable port fencing for the specified areas on all ports of the specified port types. Use the `--show` option to display the configuration. The display includes the configured port types, error types, and port fencing status (disabled or enabled). Port fencing is disabled by default.

Port fencing monitors ports for erratic behavior and disables a port if specified error conditions are met. The `portFencing` command enables and configures the port fencing feature; it does not set the thresholds for port fencing. You must configure port thresholds with the `portThConfig` command before you can enable port fencing.

**NOTES**

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command requires a Fabric Watch license.

**OPERANDS**

This command has the following operands:

```
--show

Displays the port fencing status of all configured port types and area types.

--enable

Enables port fencing for one or more specified port types and areas. Specifying at least one port type and area is required. This command fails if thresholds are not set. Refer to `portThConfig` help for more information.

--disable

Disables port fencing for a specified area on all ports in a port type list. Upon successful execution Fabric Watch ceases monitoring the ports for errors in the disabled area. You must specify at least one port type and area when disabling port fencing.
```
The following operands are required with the --enable and --disable options.

**port_type_list | all**

Specifies one or more port types for which to enable or disable port fencing. When specifying multiple port types, the list members must be separated by a comma. Alternately, use the all option to specify all of the following port types:

- **e-port**
  Enables or disables port fencing for all E_Ports.
- **fop-port**
  Enables or disables port fencing for all optical F_Ports.
- **cu-port**
  Enables or disables port fencing for all copper F_Ports. This operand is supported only on embedded platforms and only on copper ports.
- **port**
  Enables or disables port fencing for all physical ports.

**-area area | -area all**

Specifies one or more Fabric Watch areas to be monitored by the port fencing feature. Areas are not case sensitive. Alternately, use the all option to specify all of the following areas:

- **CRC**
  Cyclic redundancy check error.
- **ITW**
  Invalid word transmission
- **PE**
  Protocol error
- **ST**
  State Change
- **LR**
  Link reset
- **C3TX_TO**
  Class 3 frame discard due to timeout.

**--help**

Displays the command usage.

**EXAMPLES**

To enable port fencing for the CRC area on all E_Ports:

```
switch:admin> portFencing --enable e-port -area crc
```

To enable port fencing for all areas on all E_Ports:

```
switch:admin> portFencing --enable e-port -area all
```

To enable port fencing for the CRC, ITW, and PE areas on all E_Ports:

```
switch:admin> portFencing --enable e-port -area CRC,ITW,PE
```

To enable port fencing for the ST area on all E_Ports and optical F_Ports:

```
switch:admin> portFencing --enable e-port,fopport -area ST
```

To enable port fencing for the ST area on all port types:

```
switch:admin> portFencing --enable all -area ST
```
To display the current port fencing configuration:

```
switch:admin> portFencing --show
```

<table>
<thead>
<tr>
<th>Port Type</th>
<th>Area</th>
<th>PF Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>disabled</td>
</tr>
<tr>
<td></td>
<td>ITW</td>
<td>enabled</td>
</tr>
<tr>
<td></td>
<td>LR</td>
<td>enabled</td>
</tr>
<tr>
<td></td>
<td>PE</td>
<td>enabled</td>
</tr>
<tr>
<td></td>
<td>ST</td>
<td>enabled</td>
</tr>
<tr>
<td>FOP-port</td>
<td>CRC</td>
<td>enabled</td>
</tr>
<tr>
<td></td>
<td>ITW</td>
<td>enabled</td>
</tr>
<tr>
<td></td>
<td>LR</td>
<td>enabled</td>
</tr>
<tr>
<td></td>
<td>C3TX_TO</td>
<td>enabled</td>
</tr>
<tr>
<td></td>
<td>PE</td>
<td>enabled</td>
</tr>
<tr>
<td></td>
<td>ST</td>
<td>enabled</td>
</tr>
<tr>
<td>Port</td>
<td>CRC</td>
<td>enabled</td>
</tr>
<tr>
<td></td>
<td>ITW</td>
<td>disabled</td>
</tr>
<tr>
<td></td>
<td>LR</td>
<td>disabled</td>
</tr>
<tr>
<td></td>
<td>C3TX_TO</td>
<td>disabled</td>
</tr>
<tr>
<td></td>
<td>PE</td>
<td>disabled</td>
</tr>
<tr>
<td></td>
<td>ST</td>
<td>disabled</td>
</tr>
</tbody>
</table>

SEE ALSO  fwHelp, portThConfig
portFlagsShow

Displays the port status bitmaps for all ports in a switch.

SYNOPSIS

    portflagsshow

DESCRIPTION

Use this command to display the following status for a port:

SNMP

Displays whether the port is online or offline.

Physical

Displays the port physical status. Valid values are In_Sync, No_Light (Condor 2 ports only), and No_SigDet (quad small form-factor pluggables (QSFPs) installed without cables). Refer to switchShow help for more information on these states.

Flags

Displays whether there is an SFP inserted in the port, whether the port is active, and the port type.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display the port status for all ports in the switch:

    switch:user> portflagsshow
    Port SNMP       Physical   Flags
    ------------------------------
    0 Online     In_Sync    PRESENT ACTIVE F_PORT G_PORT \ U_PORT LOGICAL_ONLINE LOGIN NOELP ACCEPT FLOGI
    1 Online     In_Sync    PRESENT ACTIVE E_PORT G_PORT \ U_PORT SEGMENTED CBL_LB LOGIN LED
    2 Offline    No_Module  PRESENT U_PORT LED
    3 Offline    No_Light   PRESENT U_PORT LED
    4 Offline    No_Module  PRESENT U_PORT LED
    5 Offline    No_Module  PRESENT U_PORT LED
    6 Offline    No_Module  PRESENT U_PORT LED
    7 Offline    No_Module  PRESENT U_PORT LED
    8 Offline    No_Module  PRESENT U_PORT LED
    9 Offline    No_Module  PRESENT U_PORT LED
    10 Online     In_Sync    PRESENT ACTIVE F_PORT G_PORT \ U_PORT LOGICAL_ONLINE LOGIN NOELP ACCEPT FLOGI
    11 Offline    No_Module  PRESENT U_PORT LED
    12 Offline    No_Module  PRESENT U_PORT LED
    13 Offline    No_Module  PRESENT U_PORT LED
    14 Offline    No_Module  PRESENT U_PORT LED
    15 Offline    No_Module  PRESENT U_PORT LED
    16 Offline    In_Sync    PRESENT ACTIVE F_PORT G_PORT \ U_PORT LOGICAL_ONLINE LOGIN NOELP ACCEPT FLOGI
    17 Online     In_Sync    PRESENT ACTIVE F_PORT G_PORT \ U_PORT LOGICAL_ONLINE LOGIN NOELP ACCEPT FLOGI
    18 Offline    No_Module  PRESENT U_PORT LED
To display the port status for QSFPs installed without cables (partial output):

```
6 16 Offline No_SigDet PRESENT U_PORT LED
6 17 Offline No_SigDet PRESENT U_PORT LED
6 18 Offline No_SigDet PRESENT U_PORT LED
6 19 Offline No_SigDet PRESENT U_PORT LED
```

To display the port status for QSFPs installed and connected with cables (partial output):

```
6 28 Online In_Tick PRESENT ACTIVE E_PORT \n T_PORT T_MASTER G_PORT U_PORT LOGICAL_ONLINE LOGIN LED
6 29 Online In_Tick PRESENT ACTIVE E_PORT T_PORT \n T_MASTER G_PORT U_PORT LOGICAL_ONLINE LOGIN LED
6 30 Online In_Tick PRESENT ACTIVE E_PORT \n T_PORT T_MASTER G_PORT U_PORT
```

SEE ALSO  portShow, switchShow
portLedTest

Cycles user port LEDs.

SYNOPSIS

portledtest
    [--slot slot_number]
    [-ports itemlist]
    [-uports itemlist]
    [-npass count]
    [-action value]

ceeportledtest
    [--slot slot_number]
    [-ports itemlist]
    [-npass count]
    [-action value]

DESCRIPTION

Use this command to exercise the user port LEDs in the current switch. When used without a slot or port specifier, all ports are tested.

For each port, the command cycles through the ON and OFF state by setting the ATTN LEDs to green for the ON condition and unlighted for the OFF condition. The SPEED LEDs are initially set to black before the test starts. The SPEED LEDs turn green while the test is running.

portLedTest and ceePortLedTest are platform-specific versions of the same test. Use ceePortLedTest on FCoE platforms only. Use fcipLedTest for GbE port testing on the Brocade 7800 and FX8-24. On all other platforms, use portLedTest.

This diagnostic cannot be run on an operational switch. You must disable the switch using the chassisDisable command before you can run this test. After the command completes, the ATTN LEDs flash amber, indicating that the command has finished and exited. Enable the switch using the chassisEnable command to set the ATTN LEDs back to black.

NOTES

You cannot interrupt the test by pressing the return key (<cr>).

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

--slot slot
    Specifies the slot number on bladed systems. When used without the port option, this option exercises all user ports in the specified slot. When used with the port option, only the ports specified for the specified slot are tested.

-ports itemlist
    Specifies a list of front-end blade ports to test. When a specific port is specified, the blade port reference is used. If you want to test a specific user port, you will need root access to the bladePortMap command to map the specified blade port to the desired user port. You can also use the -uports option to specify the user ports. Refer to itemList for more information on the itemlist parameter. When specifying ports on a chassis, the -ports operand must be preceded by the --slot operand.

-uports itemlist
    Specifies a list of user ports to test. If this operand is omitted, by default the test will run on all valid blade ports in the slot. Refer to itemList for more information on the itemlist parameter.
portLedTest

- **npass count**
  Specify the number of times to perform this test. The default value is 10.

- **action action**
  Specifies the LED color. Valid values include the following:

  0
  Cycle all Port LEDs.

  1
  Turn Port status LED off.

  2
  Turn Port status LED amber.

  3
  Turn Port status LED green.

  16
  Turn Port speed LED green.

  17
  Turn Port speed LED amber.

**EXAMPLES**

To test port LEDs on user port 1 use the corresponding value in the "BPI" column of the bladePortMap command (requires root permission):

```
switch:admin> portledtest --slot 1 -ports 213
Running portledtest
WARNING:
This test should NOT be aborted in the middle. If aborted, current
blade or the switch (in-case of Pizza box) may become unusable.
Reset the blade or the switch to recover.
PASSED.
```

To test port LEDs on a Brocade FCoE10-24 blade using default values:

```
switch:admin> ceeportledtest
PASSED.
```

**SEE ALSO**

fcipLedTest, itemList, switchDisable, switchEnable
portLogClear

Clears the port log.

SYNOPSIS  portlogclear

DESCRIPTION  Use this command to clear the port log. It is recommended that you clear the port log before triggering an activity so that the log displays only the log events related to that activity.

If the port log is disabled, portLogClear enables it. The port log is disabled automatically when certain errors occur to allow the collection of all the information needed to understand the cause of the error. When the port log is disabled, the events already present in the log are preserved, but new events are not collected.

The following errors disable the port log:

- FCPH, EXCHBAD
- FCPH, EXCHFREE
- NBFSM, DUPEPORTSCN
- UCAST, RELICPDB

Refer to the Fabric OS Message Reference for more information on these errors.

NOTES  The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS  None

EXAMPLES  To clear the port log:

switch:admin> portlogclear
switch:admin> portlogshow
port log is empty

SEE ALSO  portLogDump, portLogShow
portLogConfigShow

Displays the current port log configuration.

SYNOPSIS

    portlogconfigshow

DESCRIPTION

Use this command to display the current port log configuration.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display the current port log configuration:

    switch:admin> portlogconfigshow
    max portlog entries = 16384

SEE ALSO

    portLogResize
portLogDisable

Disables the port log facility.

SYNOPSIS  portlogdisable

DESCRIPTION Use this command to disable the port log facility.

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS None

EXAMPLES To display the port log facility:

switch:admin> portlogdisable

SEE ALSO portLogEnable
portLogDump

Displays the port log without page breaks.

SYNOPSIS

portlogdump [count[, saved]]

DESCRIPTION

Use this command to display the port log, listing all entries in the log without page breaks. This command
displays the same information as portLogShow, but portLogShow prompts you to press Enter between
each page.

For an explanation of the information displayed by this command, refer to the portLogShow command.

If the port log is disabled while this command is executed, a warning message is displayed. Refer to the
portLogClear command for more information.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS

This command has the following operands:

count

Specifies the maximum number of lines to be displayed. Only the most recent
count entries are displayed. This operand is optional.

saved

Specify a nonzero value to display the saved port log from the last switch fault.
Refer to upTime for conditions that cause a fault. The operand count is ignored
when displaying the saved log. This operand is optional.

EXAMPLES

To display 10 lines of the portlog on a Brocade DCX:

switch:user> portlogdump 10

time   task   event   port   cmd   args
-----------------------------------------------
Mon Nov 16 21:52:15 2009
21:52:15.214 FCPH   seq   106   7f0
ed210000,00000000,000073ee,10010082,00008000
21:52:15.214 PORT   Tx3   106  2032
   02ffffff,00ffffff,0000000,1301000
21:52:15.216 FCPH   read   106  2032
03ffffff,00ffffff,00000000,00008000,07010000
21:52:15.216 FCPH   seq   106   7f0
ed980000,07010000,00004143,0004001c,00008000
21:52:15.216 FCPH   write  106  2032
00ffffff,00ffffff,00000000,00008000,00000000
21:52:15.216 FCPH   seq   106   7f0
ed210000,00000000,000073ee,10010082,00008000
21:52:15.216 PORT   Tx3   106  2032
   02ffffff,00ffffff,0000000,1301000
21:52:15.218 FCPH   read   106  2032
03ffffff,00ffffff,00000000,00008000,06fe0000
21:52:15.218 FCPH   seq   106   7f0
ed980000,06fe0000,00004143,0004001c,00008000
21:52:15.220 FCPH   seq   106   7f0
ed980000,06fc0000,00004143,0004001c,00008000

SEE ALSO

portLogClear, portLogShow, upTime
portLogDumpPort

Displays the port log of a specified port without page breaks.

SYNOPSIS

portlogdumpport port_index

DESCRIPTION

Use this command to display the port log for a single port specified by its port index number. The command displays all entries in the log without any page breaks. This command is identical to portLogShowPort, except that portLogShowPort prompts you to press Enter to display the next page.

Port logs are circular log files in the switch firmware, which can save up to 65,536 entries depending on the hardware platform. Use portLogConfigShow to display the current size of the port log. Once the log has reached its maximum size, new entries displace the oldest ones. Port logs capture switch-to-device, device-to-switch, switch-to-switch, some device-to-device, and control information.

If the port log is disabled while this command is executed, a warning message is displayed. Refer to portLogClear command for more information.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operand:

port_index

Displays the port log for the a single port specified by its port index number. Use switchShow for a listing of valid port index numbers.

EXAMPLES

To display the port log dump for a port:

switch:user> portlogdumpport 14

time          task        event port  cmd  args
------------------------------------------------
08:35:27.899  tShell      pstate  14 OL1
08:35:27.899  tReceive    pstate  14 LR2
08:35:27.916  tReceive    pstate  14 AC
08:35:28.416  interrupt   scn     14    1
08:35:28.433  tFabric     ioctl   14   90  \
101d9910,0
08:35:28.433  tFabric     Tx      14  164  \
02fffffff,00000000,00000000,10000000
08:35:28.433  tReceive   Rx      14    0  \
c0fffffff,00000000,00000000,00000000
08:35:28.433  tReceive   Rx      14  164  \
03fffffff,00000000,00000000,02000000
08:35:28.433  tTransmit  Tx      14    0  \
c0fffffff,00000000,00000000,00000000
08:35:28.433  tFabric     ioctl   14   91  \
103646d8,0
08:35:28.466  tFabric     ioctl   14   a7   3c,1
(output truncated)

SEE ALSO

portLogDump, portLogClear, portLogShow, upTime
portLogEnable

Enables the port log facility.

SYNOPSIS  portLogEnable

DESCRIPTION  Use this command to enable the port log facility.

NOTES  The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS  None

EXAMPLES  To enable the port log facility:

switch:admin> portLogEnable

SEE ALSO  portLogDisable
portLogEventShow

Displays information about port log events.

SYNOPSIS

portlogeventshow

DESCRIPTION

Use this command to display information about the ID associated with the various port log events. The Disabled field indicates whether the port log for that event ID is disabled (1) or enabled (0).

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display information about port log events:

switch:admin> portlogeventshow

<table>
<thead>
<tr>
<th>ID</th>
<th>Event-Name</th>
<th>Disabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>start</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>disable</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>enable</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>ioctl</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Tx</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Tx1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Tx2</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Tx3</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Rx</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Rx1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Rx2</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Rx3</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>stats</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>scn</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>pstate</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>reject</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>busy</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>ctin</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>ctout</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>errlog</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>loopscn</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>create</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>debug</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>nbrfsm</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>timer</td>
<td>0</td>
</tr>
</tbody>
</table>

(output truncated)

SEE ALSO

portLogTypeDisable, portLogTypeEnable
portLoginShow

Displays port login status of devices attached to the specified port.

SYNOPSIS

portLoginShow [slot/port]

DESCRIPTION

Use this command to display port login status received from devices attached to the specified port. For
each login, this command displays the following fields:

Type

Type of login can display one of the following:

fd

FDISC, Discover F_Port Service Parameters or Virtual N_Port login.

fe

FLOGI, Fabric Login to Fabric F_Port.

ff

PLOGI, Port Login to specific N_Ports or well-known addresses like Name Server.

PID

The 24-bit Port ID of the attached device.

WorldWideName

The port's world wide name.

credit

The credit for this login as appropriate. This is BB (buffer-to-buffer) credit for Flogs
and EE (end-to-end) credit for PLOGIs.

df_sz

The default frame size for this login.

cos

Class of Services supported. This can be a combination of the following bits:

4

Class 2 is supported.

8

Class 3 is supported.

Further information about each login is displayed after these columns, including the Port ID of the
well-known address or N_Port that was the target of the PLOGI, if applicable.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

This command is not applicable to embedded FCoE ports. Use fcoeLoginShow.

OPERANDS

This command has the following operands:

slot

For bladed systems only, specify the slot number of the port to be displayed,
followed by a slash (/).

port

Specify the port for which to display login status information, relative to its slot for
bladed systems. Use switchShow for a list of valid ports.
portLoginShow

EXAMPLES To display the logins received by Port 23 (revealing one FLOGI (type fe) and two PLOGIs):

```sh
class:admin> portloginshow 23
Type PID World Wide Name credit df_sz cos
===
fe 201700 21:00:00:e0:8b:05:a3:c9 3 2048 8 scr=1
ff 201700 21:00:00:e0:8b:05:a3:c9 0 0 8 d_id=FFFC20
ff 201700 21:00:00:e0:8b:05:a3:c9 0 0 8 d_id=FFFFFC
```

SEE ALSO fcpProbeShow, portShow
portLogPdisc

Sets or clears the debug_pdisc_flag.

SYNOPSIS

portlogpdisc 0 | 1

DESCRIPTION

Use this command to set or clear the debug_pdisc_flag. This command is part of the environmental monitor. A setting of 1 enables logging of Port Discovery parameters. The PDISC log is disabled by default.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operand:

0 | 1

Specify 0 to clear or 1 to set the debug_pdisc_flag. The default is 0.

EXAMPLES

To set the debug_pdisc_flag:

switch:admin> portlogpdisc 1
PDISC log setting = 1

SEE ALSO

None
portLogReset

Enables the port log facility.

SYNOPSIS

    portlogreset

DESCRIPTION

Use this command to enable the port log facility.

NOTES

Refer to `portLogClear` for events that may disable the port log facility.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To enable the port log:

    switch:admin> portlogreset

SEE ALSO

None
portLogResize

Resizes the port log to include a specified number of entries.

SYNOPSIS   portlogresize num_entries

DESCRIPTION Use this command to resize the port log to include a specified number of entries. If the specified number of entries is less than the already configured port log size, there is no change.

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS This command has the following operand:

num_entries Specifies the number of port log entries. The valid range of values is 32,768 to 13,1072 for the Brocade Encryption Switch, DCX, and DCX-4S. For all other platforms, the range is 16,384 to 32,768.

EXAMPLES To resize the portlog:

switch:admin> portlogresize 17288

SEE ALSO portLogConfigShow
portLogShow

Displays the port log with page breaks.

SYNOPSIS

portlogshow [count[, saved]]

DESCRIPTION

Use this command to display the port log with page breaks. This command displays the same information as portLogDump, but one page at a time.

The port log is a circular log file in the switch firmware which can save up to 65,536 entries depending on the hardware platform. Use portLogConfigShow to display the current port log size. Once the log has reached the maximum size, new entries replace the oldest ones. The port log captures switch-to-device, device-to-switch, switch-to-switch, some device-to-device, and control information.

If the command is executed while the port log is disabled, a warning message is displayed. Refer to the portLogClear command for more information.

For each log entry, the following information is displayed:

Time
Displays the event date and time in milliseconds. The clock resolution is 16 milliseconds.

Task
Displays the name of the task that logged the event or "interrupt" if the event was logged in interrupt context, or "unknown" if the task no longer exists.

Event
Displays the task event that generated the log entry. Possible events include the following:

- start: A switch start or restart event.
- disable: A port is disabled.
- enable: A port is enabled.
- ioctl: A port I/O control is executed.
- Tx: A frame is transmitted (class is indicated).
- Rx: A frame is received (class is indicated).
- scn: A state change notification is posted.
- pstate: A port changes physical state.
- reject: A received frame is rejected.
- busy: A received frame is busy.
- ctin: A CT based request is received.
ctout  A CT based response is transmitted.
errlog  A message is added to the error log.
loopscn A loop state change notification is posted.
create A task is created.
debug  Indicates a debug message.
nbrfsm  Indicates a neighbor state transition.
sn  Indicates a speed negotiation state.
fcin  Indicates an incoming Fibre Channel information unit.
fcout  Indicates an outgoing Fibre Channel information unit.
read  Indicates an information unit header log from a read operation.
write  Indicates an information unit header log from a write operation.
err  Indicates an information unit header log of an FC error frame.
frame  Indicates a Fibre Channel frame payload.
nsRemQ  Indicates an interswitch name server query.
rscn  Indicates a Registered State Change Notification.
xalloc  Allocates an exchange.
xfree  Frees an exchange.
xerr  Indicates an exchange error.
xstate  Indicates an exchange state.
payload  Indicates a frame payload.

Port  Displays the port number that logged the event.

Cmd  Defined by the event. Displays a value defined by the event as follows:

ioctl  I/O control command code.
**portLogShow**

**Tx & Rx**  
Frame payload size.

**scn**  
New state (see state codes below).

**pstate**  
New physical state (see pstate codes below).

**ctin**  
The CT-subtype:

- **fc**: Simple Name Server.
- **f8**: Alias Server.

**ctout**  
The same as ctin.

**errlog**  
Error level (refer to **errShow**).

**loopsccn**  
The current loop state during loop initialization. Possible values areas follows:

- **OLP**: Offline (disconnected or nonparticipating).
- **LIP**: FL_Port entered INITIALIZING or OPEN_INIT state.
- **LIM**: LISM completed, FL_Port became the loop master.
- **BMP**: Loop init completed, FL_Port in MONITORING state.
- **OLD**: Port transitioned to the OLD_PORT state.
- **TMO**: Loop init times out.

**Args**  
Displays additional information about the event as follows:

- **start**: Start type: 0 = enable ports, 100 = disable ports.
- **disable**: State (refer to state codes).
- **enable**: Mode: 0 normal; nonzero loopback.

**Tx & Rx**  
Header words 0,1,4 (R_CTL,D_ID,S_ID,OX_ID,RX_ID) and the first payload word.

**reject**  
FC-PH reject reason.

**busy**  
FC-PH busy reason.
ctin
Argument 0 is divided into two 16-bit fields: [A] A bit map indicating whether subsequent arguments are valid (0001 means argument 1 is valid, 0003 means arguments 1 and 2 are valid). [B] The CT-based service command code.
Argument 1 is the first word of the CT payload, if applicable (as specified in [A]). Argument 2 is the second word of the CT payload, if applicable (as specified in [A]).

ctout
Argument 0 is also divided into two 16-bit fields: [A] a bit map indicating whether subsequent arguments are valid (0001 means argument 1 is valid, 0003 means arguments 1 and 2 are valid). [B] the CT command code indicating whether an accept (8002) or a reject (8001). If [B] is an accept, argument 1 and 2 represents the first and second words of the CT payload, if applicable (as specified in [A]). If [B] is a reject, argument 1 contains the CT reject reason and explanation code.

errlog
Error type (refer to errShow).

loopscn
The meaning further depends on each loop state:

OLP
Offline reason code, usually zero.

LIP
Reason code for LIPs initiated by FL_Port, if the code value is 800x (x ∈ [1,0xc], see below), or the lower two bytes of the LIP received, if the code value is other than 800x.

LIM
Usually zero.

BMP
Memory address for the loop bitmap.

OLD
Usually zero.

TMO
Encoded value of the state when loop initialization timed out. This value is usually equal to the first word of a loop init frame payload. Other possible values include the following:

2
LIP (req. INITIALIZING) timeout.

94
F0F0 ARB(F0) timeout.

40
CLS timeout.

Codes used in various fields are as follows:

state
Valid state values include the following:

1
Online

2
Offline

3
Testing
portLogShow

4  Faulty
5  E_Port
6  F_Port
7  Segmented

pstate
Valid pstate values include the following:

AC  Active State
LR1  Link Reset: LR Transmit State
LR2  Link Reset: LR Receive State
LR3  Link Reset: LRR Receive State
LF1  Link Failure: NOS Transmit State
LF2  Link Failure: NOS Receive State
OL1  Offline: OLS Transmit State
OL2  Offline: OLS Receive State
OL3  Offline: Wait for OLS State

LIP reason
Valid LIP reason codes include the following:

8001  Retry loop init.
8002  Start loop after gaining sync.
8003  Restart loop after port reset.
8004  LIP when a loop hangs.
8005  Restart loop if LIP received when sending out ARB(F0).
8006  LIP when an OPN returns.
8007  Restart loop when LIPs received in OLD_PORT AC state.
8008  Restart loop if loop not empty but E_Port loopback.
8009  LIP as requested by the LINIT ELS received.

800a  LIP as requested by the LPC ELS received.

### Speed Negotiation States

Valid states include the following:

- **INIT**
  
  Start negotiation.

- **NM**
  
  Negotiate master.

- **WS**
  
  Wait for signal.

- **NF**
  
  Negotiation follows.

- **NC**
  
  Negotiation complete.

### NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

### OPERANDS

This command has the following operands:

- **count**
  
  Specifies the maximum number of lines to display. Only the most recent count entries are displayed. This operand is optional.

- **saved**
  
  Specifies a nonzero value to display the saved port log from the last switch fault. Refer to `upTime` for a list of conditions that cause a fault. The count is ignored when the saved log is displayed. This operand is optional.

### EXAMPLES

To view the port log for a port:

```
switch:user> portlogshow 24
```

```
<table>
<thead>
<tr>
<th>time</th>
<th>task</th>
<th>event</th>
<th>port</th>
<th>cmd</th>
<th>args</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:05:30.384</td>
<td>PORT Rx</td>
<td>0</td>
<td>40</td>
<td>02fffffd,00ffffff,08fbffff,14000000</td>
<td></td>
</tr>
<tr>
<td>17:05:30.384</td>
<td>PORT Tx</td>
<td>0</td>
<td>0</td>
<td>c0ffffffd,00ffffffd,08fb0e02</td>
<td></td>
</tr>
<tr>
<td>17:05:30.384</td>
<td>PORT debug</td>
<td>0</td>
<td></td>
<td>00c0ffee,00fd0118,00000000,00000001</td>
<td></td>
</tr>
<tr>
<td>17:05:30.389</td>
<td>PORT Rx</td>
<td>1</td>
<td>40</td>
<td>02fffffffd,00ffffffd,08fdffff,14000000</td>
<td></td>
</tr>
<tr>
<td>17:05:30.389</td>
<td>PORT Tx</td>
<td>1</td>
<td>0</td>
<td>c0ffffffd,00ffffffd,08fd0e03</td>
<td></td>
</tr>
<tr>
<td>17:05:30.389</td>
<td>PORT debug</td>
<td>1</td>
<td></td>
<td>00c0ffee,00fd013c,00000000,00000001</td>
<td></td>
</tr>
<tr>
<td>17:05:30.504</td>
<td>PORT Rx</td>
<td>2</td>
<td>40</td>
<td>02fffffffd,00ffffffd,08feffff,14000000</td>
<td></td>
</tr>
<tr>
<td>17:05:30.504</td>
<td>PORT Tx</td>
<td>2</td>
<td>0</td>
<td>c0ffffffd,00ffffffd,08fe0e04</td>
<td></td>
</tr>
<tr>
<td>17:05:30.504</td>
<td>PORT debug</td>
<td>2</td>
<td></td>
<td>00c0ffee,00fd0182,00000000,00000001</td>
<td></td>
</tr>
<tr>
<td>17:05:30.507</td>
<td>PORT Rx</td>
<td>3</td>
<td>40</td>
<td>02fffffffd,00ffffffd,08fffff,14000000</td>
<td></td>
</tr>
<tr>
<td>17:05:30.507</td>
<td>PORT Tx</td>
<td>3</td>
<td>0</td>
<td>c0ffffffd,00ffffffd,08ff0e05</td>
<td></td>
</tr>
<tr>
<td>17:05:30.507</td>
<td>PORT debug</td>
<td>3</td>
<td></td>
<td>00c0ffee,00fd0148,00000000,00000001</td>
<td></td>
</tr>
<tr>
<td>17:05:31.081</td>
<td>PORT Tx</td>
<td>0</td>
<td>40</td>
<td>02fffffffd,00ffffffd,0e06ffff,14000000</td>
<td></td>
</tr>
<tr>
<td>17:05:31.082</td>
<td>PORT debug</td>
<td>0</td>
<td></td>
<td>00c0ffee,00fd0188,14000000,00000001</td>
<td></td>
</tr>
<tr>
<td>17:05:31.084</td>
<td>PORT Rx</td>
<td>0</td>
<td>0</td>
<td>c0ffffffd,00ffffffd,0e06902</td>
<td></td>
</tr>
<tr>
<td>17:05:31.772</td>
<td>PORT Tx</td>
<td>1</td>
<td>40</td>
<td>02fffffffd,00ffffffd,0e07ffff,14000000</td>
<td></td>
</tr>
<tr>
<td>17:05:31.772</td>
<td>PORT debug</td>
<td>1</td>
<td></td>
<td>00c0ffee,00fd014a,14000000,00000001</td>
<td></td>
</tr>
<tr>
<td>17:05:31.774</td>
<td>PORT Rx</td>
<td>1</td>
<td>0</td>
<td>c0ffffffd,00ffffffd,0e07906</td>
<td></td>
</tr>
</tbody>
</table>
```
portLogShow

17:05:31.775 PORT Tx  2  40  02ffffffd,00ffffffd,0e08ffffff,14000000
17:05:31.775 PORT debug  2      00c0ffee,00fd015c,14000000,00000001
17:05:31.777 PORT Rx  2  0  c0fffffffd,00fffffffd,0e080907
17:05:31.778 PORT Tx  3  40  02fffffffd,00fffffffd,0e09ffffff,14000000
17:05:31.779 PORT debug  3      00c0ffee,00fd015e,14000000,00000001
17:05:31.782 PORT Rx  3  0  c0fffffffd,00fffffffd,0e090908

SEE ALSO  portLogClear, portLogDump, upTime
portLogShowPort

Displays the port log of a specified port with page breaks.

SYNOPSIS  portlogshowport port_index

DESCRIPTION Use this command to display the port log of a specified port with page breaks. This command displays the same information as portLogDumpPort, except that portLogDumpPort does not prompt you to press Enter to display the next page.

If the command is executed while the port log is disabled, a warning message is displayed. Refer to the portLogClear command for more information.

NOTES Refer to the portLogShow command for a description of the data returned by this command.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS This command has the following operands:

port_index Displays the port log for a single port specified by its port index number. Use switchShow for a listing of valid port index numbers.

EXAMPLES To display the port log for port 14:

switch:user> portlogshowport 14

<table>
<thead>
<tr>
<th>time</th>
<th>task</th>
<th>event</th>
<th>port</th>
<th>cmd</th>
<th>args</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:35:28.483</td>
<td>tFabric</td>
<td>scn</td>
<td>14</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>08:35:27.899</td>
<td>tShell</td>
<td>pstate</td>
<td>14</td>
<td>OL1</td>
<td></td>
</tr>
<tr>
<td>08:35:27.899</td>
<td>tReceive</td>
<td>pstate</td>
<td>14</td>
<td>LR2</td>
<td></td>
</tr>
<tr>
<td>08:35:27.916</td>
<td>tReceive</td>
<td>pstate</td>
<td>14</td>
<td>AC</td>
<td></td>
</tr>
<tr>
<td>08:35:28.416</td>
<td>interrupt</td>
<td>scn</td>
<td>14</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>08:35:28.433</td>
<td>tFabric</td>
<td>ioctl</td>
<td>14</td>
<td>90</td>
<td>101d9910,0</td>
</tr>
<tr>
<td>08:35:28.433</td>
<td>tFabric</td>
<td>Tx</td>
<td>14</td>
<td>164</td>
<td>02fffffd,00fffffd,0005ffff,0000000</td>
</tr>
<tr>
<td>08:35:28.433</td>
<td>tReceive</td>
<td>Rx</td>
<td>14</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>08:35:28.433</td>
<td>tReceive</td>
<td>Rx</td>
<td>14</td>
<td>164</td>
<td>03fffffd,00fffffd,00050006,02000000</td>
</tr>
<tr>
<td>08:35:28.433</td>
<td>tTransmit</td>
<td>Tx</td>
<td>14</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>08:35:28.433</td>
<td>tFabric</td>
<td>ioctl</td>
<td>14</td>
<td>91</td>
<td>103646d8,0</td>
</tr>
<tr>
<td>08:35:28.433</td>
<td>tFabric</td>
<td>ioctl</td>
<td>14</td>
<td>92</td>
<td>103646d8,0</td>
</tr>
<tr>
<td>08:35:28.466</td>
<td>tFabric</td>
<td>ioctl</td>
<td>14</td>
<td>a7</td>
<td>3c,1</td>
</tr>
<tr>
<td>08:35:28.466</td>
<td>tFabric</td>
<td>pstate</td>
<td>14</td>
<td>LR1</td>
<td></td>
</tr>
<tr>
<td>08:35:28.466</td>
<td>tReceive</td>
<td>pstate</td>
<td>14</td>
<td>LR3</td>
<td></td>
</tr>
<tr>
<td>08:35:28.466</td>
<td>tReceive</td>
<td>pstate</td>
<td>14</td>
<td>AC</td>
<td></td>
</tr>
</tbody>
</table>

(output truncated)

SEE ALSO  portLogClear, portLogDumpPort, portLogShow, upTime
portLogTypeDisable

Disables the port log of a specified type.

SYNOPSIS

portlogtypedisable id

DESCRIPTION

Use this command to disable the port log for a specified port log type.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operand:

id

Specifies a nonzero value that corresponds to the port log type to be disabled. Use portLogEventShow for a listing of values corresponding to supported log types.

EXAMPLES

To disable logging of type 2 port log events:

switch:admin> portlogtypedisable 2

SEE ALSO

portLogDisable, portLogEventShow, portLogTypeEnable
portLogTypeEnable

Enables the port log of a specified port log type.

SYNOPSIS  portlogtypeenable id

DESCRIPTION Use this command to enable the port log for a specified port log type.

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS This command has the following operand:

   id Specifies a nonzero value that corresponds to the port log type to be enabled. Use
portLogEventShow for a listing of values corresponding to supported log types.

EXAMPLES To enable logging of type 2 port log events:

    switch:admin> portlogtypeenable 2

SEE ALSO portLogEventShow, portLogTypeDisable
portLoopbackTest

Performs a functional test of port N->N path.

SYNOPSIS
portloopbacktest
    [--slot slot]
    [-nframes count]
    [-lb_mode mode]
    [-spd_mode mode]
    [-ports itemlist]
    [-uports itemlist]

ceeportloopbacktest
    [--slot slot]
    [-nframes count]
    [-lb_mode mode]
    [-spd_mode mode]
    [-ports itemlist]

DESCRIPTION
Use this command to verify the functional operation of the switch by exercising the blade ports of the
switch.

The portLoopbackTest and ceePortLoopbackTest commands are platform-specific versions of the
same test. The portLoopbackTest command is supported on all Goldeneye2 and Condor-based
platforms. Use ceePortLoopbackTest on FCoE platforms only. On all other platforms, use
portLoopbackTest. Refer to the Fabric OS Troubleshooting and Diagnostics Guide, Appendix A, for a
table that correlates ASIC type with switch models.

This test sends frames from a given port's transmitter and loops them back into the same port's receiver.
The loopback is done at the parallel loopback path. The path traversed in this test does not include the
media or the fiber cable. Only one frame is transmitted and received at any given time.

The port LED blinking pattern depends on the hardware platform on which the test is run. On
Condor2-based platforms, the LEDs flicker green rapidly while the test is running. Only the ports on
which the test is running flicker green. On Condor3-based platforms, the LEDs on all ports will flash
amber, then turn to green, and then return to amber. After the test completes the lights turn to the
expected switch disabled pattern. This difference in LED patterns is due to a difference in the ASIC
design. Refer to the "Supported hardware and software" section in the Fabric OS Command Reference
for a mapping of ASIC types to switch models.

The test performs the following operations:
1. Sets all ports for parallel loopback.
2. Creates a frame F of maximum data size (2,112 bytes).
3. Transmits the frame F through port N.
4. Picks up the frame from the same port N.
5. Checks if any of the following eight statistic error counters report nonzero values:
   ENC_in, CRC_err, TruncFrm, FrmTooLong, BadEOF, Enc_out, BadOrdSet, DiscC3
6. Checks whether the transmit, receive, or class 3 receiver counters are stuck at some value.
7. Checks whether the number of frames transmitted is not equal to the number of frames received.
8. Repeats Steps two through seven for all ports until one of the following conditions is met:
   a. The number of frames (or pass count) requested is reached.
   b. All ports are marked bad.
At each pass, the frame is created from a different data type of a palette of seven. If seven passes are requested, seven different data types are used in the test. If eight passes are requested, the first seven frames use unique data types, and the eighth is the same as the first. The seven data types are:

- CSPAT: 0x7e, 0x7e, 0x7e, 0x7e, ...
- BYTE_LFSR: 0x69, 0x01, 0x02, 0x05, ...
- CHALF_SQ: 0x4a, 0x4a, 0x4a, 0x4a, ...
- QUAD_NOT: 0x00, 0xff, 0x00, 0xff, ...
- CQTR_SQ: 0x78, 0x78, 0x78, 0x78, ...
- CRPAT: 0xbc, 0xbc, 0x23, 0x47, ...
- RANDOM: 0x25, 0x7f, 0x6e, 0x9a, ...

NOTES

Do not abort this test prematurely, using CTRL-C or q to quit. Doing so may cause the test to report unexpected errors. Errors may vary depending on the hardware platform.

You cannot interrupt the test by pressing the return key (<cr>).

This command does not support High Availability (HA).

The Brocade DCX series cannot negotiate speeds of 1 Gbps.

This diagnostic cannot be run on an operational switch. You must disable the switch using the\n\nchassisDisable\ncommand before you can run this test. After the test completes, re-enable the switch\nusing the\nchassisEnable\ncommand. Do not use the\nswitchDisable\ncommand followed by manually\nshutting down the ports before running the test. This will not work because executing\nswitchEnable\nafter the test completes will leave the ports in the same state as before. The only way to bring the ports down before running the test and back up after the test completes is by using the\nchassisDisable\ncommand followed by the\nchassisEnable\ncommand.

The Brocade FCoE10-24 blade (ceePortLoopbackTest) supports only lb_mode 1, 2, and 8.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

- **--slot slot**
  Specifies the number of the slot on which to run the diagnostics. All eligible ports relative to the slot number are tested. The default is 0 and designed to operate on fixed-port-count products.

- **-nframes count**
  Specifies the number of frames to send. The test progresses until the specified number of frames has been transmitted on each port. The default value is 1.

- **-lb_mode mode**
  Specifies the loopback mode for the test. By default, this test uses the internal loopback. Valid values depend on the platform on which the command is executed. Unsupported values are rejected with an appropriate message. To run this test with mode values of 1 and 7, loopback cables must be connected to all front end ports or the test will fail.

  1  Port Loopback (loopback plugs)

  2  External (SERDES) loopback

  5  Internal (parallel) loopback

  7  Backend bypass & port loopback
portLoopbackTest

8

Backend bypass & SERDES loopback (supported only on a chassis)

-spd_mode mode

Specifies the speed mode for the test. This parameter controls the speed at which each port is operated. The speed option chosen or defaulted to must not exceed the speed capability of the SFP device or the test results will be unpredictable. For example, if you use an 8 Gbps SFP in a 16 Gbps-supported slot, you must use `spd_mode 8` option to specify 8 Gbps speed.

0

Runs test at 1 Gbps, 2 Gbps, 4 Gbps, and 8 Gbps on 8 Gbps ports. Runs test at 16 Gbps on 16 Gbps ports. (deprecated)

1

Runs test at 1 Gbps (deprecated).

2

Runs test at 2 Gbps.

4

Runs test at 4 Gbps.

8

Runs test at 8 Gbps (Default for 8 Gbps platforms).

10

Runs test at 10 Gbps (Default for 10 Gbps platforms).

16

Runs test at 16 Gbps (Default for 16 Gbps platforms).

-ports itemlist

Specifies a list of blade ports to test. By default, all of the blade ports in the specified slot (`--slot`) are used. You must have root access to the `bladePortMap` command if you want to map a specific front-end blade port to a user port. You can also use the `uports` option to specify the user ports. Refer to `itemList` for more information on the `itemlist` parameter.

-uports itemlist

Specifies a list of user ports to test. If this operand is omitted, by default the test will run on all valid blade ports in the slot. Refer to `itemList` for more information on the `itemlist` parameter.

DIAGNOSTICS

When it detects failures, the test may report one or more of the following error messages. If errors persist, contact Technical Support.

DATA

Data received does not match the data sent.

ERRSTAT

Errors were found in the ASIC statistics.

INIT

Port failed to initialize.

PORTDIED

A previously initialized port went to an uninitialized state.

STATS

Errors were found in the ASIC statistics.

TIMEOUT

Did not receive a frame in the given timeout period.
XMIT

Frame transmission failure.

EXAMPLES
To run a functional test in default mode:

```
switch:admin> portloopbacktest
Running portloopbacktest
PASSED.
```

To run a functional test on a Brocade FCoE10-24 blade:

```
switch:admin> ceeportloopbacktest
Running portloopbacktest
PASSED.
```

SEE ALSO  itemList
portMirror

Adds, deletes, or displays port mirror connections.

**SYNOPSIS**

```bash
portmirror

portmirror --show

portmirror --add [slot/]port SID DID

portmirror --delete SID DID
```

**DESCRIPTION**

Use this command to add, delete, or display a mirror connection between two ports, a source and a destination port. When used without operand, this command displays the usage.

Port mirroring allows you to configure any switch port in such a way that it will mirror the traffic passing in both directions between a specified source port (SID) and a destination port (DID) back to the configured mirror port. You can use this feature to troubleshoot Fiber Channel end-to-end link communications.

The port mirroring feature mirrors only those frames to the mirror port that contain the specified SID/DID. It does not mirror all frames transmitted or received for a given port. This restriction allows a single mirror port to mirror multiple mirror connections.

The **SID** must be located in the same domain where the mirror port is configured. The following configurations are supported.

- SID, DID and mirror port reside in the same blade.
- SID, DID and mirror port reside in the same switch (standalone platform).
- SID, DID and mirror port reside in different blades in the same chassis.
- SID, DID and mirror port reside in two different chassis or standalone switches connected through interchassis or interswitch links.

The **DID** can be either on the local switch or on a different switch. Any given SID can participate in either one or a maximum of three mirror connections, depending on the switch configuration and switch model associated with the SID.

Port mirroring makes use of ASIC resources, and the behavior of this command is therefore dependent on the hardware platform on which the feature is configured. Refer to the *Fabric OS Troubleshooting and Diagnostics Guide* for information on the following topics:

- Platforms that support the port mirroring feature
- Supported mirror connection maximums for each platform
- Platform-specific feature restrictions
- Special configuration considerations and configuration scenarios

A mirror connection may be rejected because of an invalid configuration, an unavailability of resources, duplicate entries, a mirror port that is not configured, or an offline connection port.

When issued with the **--show** option, this command displays the following information:

**Mirror_Port**

The port number of the mirror port that mirrors the traffic between a **SID** and a **DID**.

**SID**

Source Port ID.

**DID**

Destination Port ID.
State The state of the mirror connection. The state can either be "Defined" or "Enabled."
In both cases, the port mirroring connection is persistently stored. A connection
that is "Defined" has not been hardware-configured because at least one port is
not online. A connection that is "Enabled" has been configured in the hardware.

You must enable port mirroring on the port before you can configure mirror connections for that port. Use
\texttt{portcfg mirrorport --enable} to enable a port for port mirroring. Use the \texttt{portCfgShow} command to
display all mirror ports on a switch. The \texttt{switchShow} command displays the configured port as "Mirror
Port".

Use the \texttt{portPerfShow} command to display the total number of transmitted and received bytes for each
port. In the case of a mirror port, this command shows twice the amount of traffic, because the mirror port
transmits and receives the frames.

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

The port mirroring feature is not supported on all platforms. Refer to the \textit{Fabric OS Administrator's Guide}
for more information.

The port mirroring feature is supported in Virtual Fabric mode so long as the FC Routing service is not
enabled on the logical switch. Use the \texttt{fosConfig} command to disable the FC Routing service.

The Brocade 300, 5300, and most embedded switches can participate only in one mirror connection. All
other platforms support up to three mirror connections. These limitations hold regardless of whether
Virtual Fabrics are enabled or disabled.

When in-order deliver (IOD) is enabled, deleting a mirror connection can cause frame loss between the
SID and DID. If IOD is disabled, deleting a mirror connection may introduce an "order of delivery" error
between the SID and DID.

Port mirroring is not supported over FCIP links (VE tunnels) or on Condor 3 FC ports that have
encryption or compression enabled.

OPERANDS This command has the following operands:

\texttt{--show} Displays all configured mirror connections.

\texttt{--add} Adds a mirror connection between a source port and a destination port.

\texttt{slot} For bladed systems only, specifies the slot number of the port to be configured,
followed by a slash (/).

\texttt{port} Specifies the number of the port to be configured, relative to its slot for bladed
systems. This port is the mirror port, in which the mirror traffic is shown. Use
\texttt{switchShow} for a listing of valid ports.

\texttt{SID} Specifies the 3-byte source ID of the originator device in "0xDDAAPP" format,
where DD is the Domain ID, AA is the Area ID and PP is the AL_PA ID. For
example, 0x050200 has a domain ID of 5, an area ID of 2, and an AL_PA ID of 0.
The values for the \textsl{SID} and the \textsl{DID} cannot both be 0x000000.

\texttt{DID} Specifies the 3-byte DID destination ID of the destination device, in "0xDDAAPP"
format, where DD is Domain ID, AA is Area ID and PP is AL_PA ID. For example,
0x050200 has a domain ID of 5, an area ID of 2 and an AL_PA ID of 0. The values
for the \textsl{SID} and the \textsl{DID} cannot both be 0x000000.
--delete

Deletes a mirror connection between a source and a destination. You must specify a SID and a DID when deleting a mirror connection.

EXAMPLES

To configure a port as a mirror port:

```
switch:admin> portcfg mirrorport 18 --enable
Please confirm enable of Mirror Port: 17 (Y,y,N,n): [n] y
```

To verify that port mirroring is enabled on port 18:

```
switch:admin> portcfgshow 18
Area Number: 18
Speed Level: AUTO(HW)
Fill Word(On Active) 0(Idle-Idle)
Fill Word(Current) 0(Idle-Idle)
AL_PA Offset 13: OFF
Trunk Port ON
Long Distance OFF
VC Link Init OFF
Locked L_Port OFF
Locked G_Port OFF
Disabled E_Port OFF
Locked E_Port OFF
ISL R_RDY Mode OFF
RSCN Suppressed OFF
Persistent Disable OFF
LOS TOV enable OFF
NPIV capability ON
QOS E_Port AE
Port Auto Disable: OFF
Rate Limit OFF
EX Port OFF
Mirror Port ON
(output truncated)
```

```
switch:admin> switchshow | grep Online
switchState: Online
1 1 640100 id N2 Online FC G-Port
2 2 640200 id N2 Online FC E-Port \
 10:00:00:05:1e:36:01:26 "sw0" (downstream)
7 7 640700 id N4 Online FC F-Port \
 20:14:00:05:1e:a2:f9:b1
8 8 640800 id N2 Online FC F-Port \
 1 N Port + 2 NPIV public
10 10 640a00 id N2 Online FC Mirror Port
11 11 640b00 id N2 Online FC F-Port \
 21:00:00:e0:8b:10:1d:9d
12 12 640c00 id N4 Online FC F-Port \
 20:15:00:05:1e:a2:f9:b1
17 17 641100 id N2 Online FC E-Port \
 10:00:00:05:1e:a2:ec:9c "sw0" (downstream)
18 18 641200 id N2 Online FC Mirror Port
```

To add three mirror connection between three local device port pairs to mirror port 18:

```
switch:admin> portmirror --add 18 0x640c00 0x640800
switch:admin> portmirror --add 18 0x640700 0x640b00
switch:admin> portmirror --add 18 0x640700 0x640c00
```
To display the mirror connections:

```
switch:admin> portmirror --show
```

Number of mirror connection(s) configured: 3

<table>
<thead>
<tr>
<th>Mirror_Port</th>
<th>SID</th>
<th>DID</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>0x640c00</td>
<td>0x640800</td>
<td>Enabled</td>
</tr>
<tr>
<td>18</td>
<td>0x640700</td>
<td>0x640b00</td>
<td>Enabled</td>
</tr>
<tr>
<td>18</td>
<td>0x640700</td>
<td>0x640c00</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

To delete a port mirror connection between two local switch ports:

```
switch:admin> portmirror --delete 0x640700 0x640c00
```

To add a port mirror connection between a local switch port and a remote switch port:

```
switch:admin> portmirror --add 2/1 0x011400 0x240400
```

To delete a port mirror connection between a local switch port and a remote switch port:

```
switch:admin> portmirror --delete 0x011400 0x240400
```

SEE ALSO  portCfg, portCfgShow, switchShow
portName

Assigns or displays port names.

SYNOPSIS

portname
portname [slot]port [-n name]
portname -i [index1[-index2][...][-f] [-n name]]
portname -slot slot1[-slot2] [-n name]
portname -h

DESCRIPTION

Use this command to assign a port name to a specified port or to a range of ports. The port name is included in the portShow output; it should not be confused with the world wide port name.

When a port name is not configured, the portName command displays a default name in the portShow output. The format of the default name is as follows:

• On standalone platforms, the default port name displays as portportnumber, for example, "port10."
• On enterprise-class platforms, the default port name displays as slotslotnumberportportnumber, for example, "slot1por5."

You can identify a single port to be configured by its port number or by its port index number. Port ranges are supported with index numbers or by specifying a slot or a slot range. Use switchShow for a listing of valid ports, slots, and port index numbers. When issued without the name operand, this command displays the names of the specified ports or of all ports, if no port is specified.

Specifying multiple ports with the index (-i) or slot (-s) option is supported only if PortSwap is disabled. They are not supported on GbE ports and configured F_Port trunks. Use the -i option without a port index argument to display the portSwap status, or alternately use the portSwapShow command. When Ficon Management Server (FMS) mode is enabled, specifying a port range will fail. This is because FMS does not permit multiple ports to have the same port name. The first port in the range gets the port name, all other ports in the range will fail. Multiple ports can have the same port name in non-FMS mode.

Like all other configurable port attributes, port names persists across reboots and power cycles. They are not affected by the configDefault command, but they are cleared by portCfgDefault.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

slot

For bladed systems only, specifies the slot number of the ports to be configured, followed by a slash (/).

port

Assigns a name to a single port identified by its port number.

-i index1[-index2]

Assigns a name to a single port or to a range of ports identified by port index numbers, for example, -i 1/3-8 -n backup. You may specify multiple index ranges separated by a space, for example, -i 35-45 61-68 -n backup.

-f

Ignores nonexisting ports. This operand is valid only with the -i option.
-slot [slot1[-slot2]]

Assigns a name to all ports on a slot or on a range of slots, for example, -s 3-5 -n backup. Multiple slot ranges are not supported with this command.

-n name

Specifies the name to be assigned to the ports. The port name is a character string up to 128 characters, including spaces and characters, and excluding commas (,), semicolons (;), backslashes (\), and the at sign (@). When FICON Server Management mode is enabled, the port name character string can only be up to 24 characters in length. To erase a port name, execute the port name operand as an empty string in double-quotations (" "). This operand is optional; if omitted, the current port name is displayed.

Some characters require a qualifier or double quotation marks when used with a bash shell; for example, enter a single quotation mark as \', enter an exclamation mark as !, or enter a pipe (|) as "|".

-h

Displays the command usage.

**EXAMPLES**

To name a port tape drive 8:

```
switch:admin> portname 1/3 -n "Tape drive 8"
```

```
switch:admin> portname 1/3
Tape drive 8
```

To assign a name to a range of ports specified by port index numbers:

```
switch:admin> portname -i 22-26 -n backup
```

```
switch:admin> portname -i 22-26
port 22: backup
port 23: backup
port 24: backup
port 25: backup
port 26: backup
```

To assign a name to all ports on slot 1 and 2:

```
switch:admin> portname -s 1-2 -n backup
```

```
switch:admin> portname -s 1-2
port 416: backup
port 417: backup
port 418: backup
port 419: backup
port 420: backup
port 421: backup
(output truncated)
```

**SEE ALSO**

configDefault, portCfgDefault, portShow, portSwapDisable, portSwapShow, switchShow
portPerfShow

Displays port throughput performance.

SYNOPSIS

portperfshow

portperfshow [[slot]/port1[-[slot]/port2]]
  [-tx -rx | -tx | -rx] [ -t interval]

portperfshow -x hex1[-hex2]

portperfshow --help

DESCRIPTION

Use this command to display throughput information for all ports on a switch or chassis or to display the information for a specified port or port range. You can display throughput information about a single port identified by its port number or by its port index number in decimal or hexadecimal format. Port ranges are supported with port numbers, index numbers(decimal or hexadecimal) or by specifying a slot or a slot range.. Output includes the number of bytes received and transmitted per interval. Throughput values are displayed as either bytes, kilobytes (k), megabytes (m), or gigabytes (g). Values are rounded down.

The data is displayed one column per port plus one column that displays the total for these ports. Results display every second or over a specified interval. Press Enter, Ctrl-c, or Ctrl-d to terminate the command. To run this command one time only, specify an interval of zero.

When executed with the command line arguments -tx, -rx, or -tx -rx, this command displays the transmitter throughput, the receiver throughput, or both. For ports with status of "No_Module," "No_Light," "No_SigDet," or "Loopback" throughput is displayed as 0.

An asterisk (*) in the output indicates a SIM port that is generating or receiving traffic.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

When FastWrite or Tape Pipelining is enabled, the portPerfShow VE link output is different. The acceleration entity (FastWrite or Tape Pipelining) responds by sending XFER_RDY and status well ahead of the actual device’s response to the host. The host sends data which is stored near the device and is delivered to the device only when the device is ready. Consequently, the data may be stored near the target for some brief period of time. In this case, the portPerfShow output on the VE link may not match the output on the device port.

OPERANDS

This command has the following optional operands:

[slot]/port1[-[slot]/port2]

Displays throughput information for a single port or for a range of ports, relative to the slot number on bladed systems. Port numbers in a range must be separated by a dash (-), for example, 3-5, or 2/0-2/15. Port ranges cannot span slots. Use switchShow to display a listing of valid ports. Port operands are optional; if omitted, information for all ports is displayed.

-t time_interval

Specifies the interval, in seconds, between each sample. The default interval is one second. If no interval is specified, the default is used. To run this command one time only, specify an interval of zero.

-tx

Displays the transmitter throughput.
portPerfShow

-rx
Displays the receiver throughput.

-tx -rx
Displays the transmitter and receiver throughput.

-x hex1 [-hex2]
Displays a port or a range of ports identified by port numbers, index number in hexadecimal format.

EXAMPLES
To display performance information for all ports at a one second (default) interval:

```
switch:user> portperfshow
```

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>630.4m</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>630.4m</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>210.1m</td>
<td>840.5m</td>
<td>210.1m</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.5g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To display port performance for all ports with an interval of 5 seconds:

```
switch:user> portperfshow -t 5
```

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>630.4m</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>112</td>
<td>630.4m</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>210.1m</td>
<td>840.6m</td>
<td>210.1m</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.5g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(output stopped)
2  portPerfShow

To display performance on a single port with at a 5 second interval:

switch:user> portperfshow 0 -t 5

0      Total
=================
630.4m 630.4m

To display transmitter throughput for a single port at a 5 second interval:

switch:user> portperfshow 0 -tx -t 5

0
========
210.1m
0
========
210.1m
(output truncated)

To display receiver throughput for a single port at a 5 second interval:

switch:user> portperfshow 0 -rx -t 5

0
========
420.3m
0
========
420.2m
(output truncated)

To display port performance on a chassis for range of ports ("**" indicates a SIM port):

switch:user> portperfshow 0-2

0  1  2      Total
=================
*  0  *     0
To display port performance on a chassis for range of ports at an interval of 5 seconds:

```
switch:user> portperfshow 12/0-12/6 -t 5
```

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>slot 12: 840.6m</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>630.4m</td>
<td>1.4g</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>slot 12: 840.6m</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>630.4m</td>
<td>1.4g</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>slot 12: 840.6m</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>630.4m</td>
<td>1.4g</td>
<td></td>
</tr>
</tbody>
</table>
```

(output truncated)

To display performance information for a range of ports:

```
switch:user> portperfshow -x a-b
```

```
<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>11</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
```

SEE ALSO  portStatsShow
portRouteShow

Displays routing tables for the specified port.

SYNOPSIS

portrouteshow [slot]port

DESCRIPTION

Use this command to display the port address ID for a specified port and the contents of the following port routing tables:

**External unicast routing table**

Displays how the specified port forwards unicast frames to remote domains in the following format: \textit{domain\_number: ports\_bitmap}

- \textit{domain\_number} The remote domain ID to which frames are ultimately routed.
- \textit{ports\_bitmap} The port number on the ASIC pair to which frames for the domain ID forward in bitmap hex format; for example, 0x0100 indicates port 8 on the ASIC pair. The arrangement of ports on an ASIC pair is specific to the system type. For any active port, this table contains at least one entry, which routes unicast frames destined to the embedded port (value 0x10000) of the local domain.

**Internal unicast routing table**

Displays how the specified port forwards unicast frames to a locally attached NX\_Port in the following format: \textit{area\_number: ports\_bitmap}

- \textit{area\_number} The area number of a device (or set of looped devices) attached to the local switch.
- \textit{ports\_bitmap} The format of \textit{ports\_bitmap} is the same as the one used in the external unicast routing table.

**Broadcast routing table**

Displays how the specified port forwards broadcast frames. There is one bit map entry in this table, similar to the bit maps in the other tables; however, this table typically has only Bit 16 set (value 0x10000), indicating this port always routes broadcast frames to the embedded port, for handling by the firmware.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

- **slot**
  
  For bladed systems only, specifies the slot number of the port to display, followed by a slash (/).

- **port**
  
  Specifies the number of the port to display, relative to its slot for bladed systems.
EXAMPLES  To display the routing tables for a port:

switch:user> **portrouteshow 4/15**
port address ID: 0x02bf00
  external unicast routing table:
    1: 0x4 (vc=3)
    2: 0x10000 (vc=0)

  internal unicast routing table:
    60: 0x8000 (vc=2)
    63: 0x1000 (vc=5)

  broadcast routing table:
    0x10000

SEE ALSO  bcastShow, fabricShow, switchShow, topologyShow, uRouteShow
portShow

Displays status and configuration parameters for ports and GbE ports.

SYNOPSIS

portshow [slot][ge]port

portshow -i [ index1 [-index2] [...] [-f]

portshow -x [hex1-hex2] [...]]

portshow option [slot][ge_port] [optional_args]

portshow option [all | ve_port] arguments
[optional_arguments]

portshow option [all | ge_port] arguments
[optional_arguments]

DESCRIPTION

Use this command to display general port status and specific configuration parameters for a specified
port, GbE port, or VE_Port.

If this command is executed for a specified port with no additional options, it displays general status and
configuration for that port. If executed with optional arguments for a Gigabit Ethernet (GbE) port or
VE_Port, the command displays FCIP-related port configuration parameters specific to the Brocade 7800
switch and the Brocade FX8-24 blade.

The behavior of this command is platform-specific. Some command options are not available on all
platforms. Use the following section headings to navigate this page.

• Display general port status information on all platforms
  • Display IP Interface configurations on the Brocade 7800/FX8-24 platforms
    - portshow ipif - Displays the local IP interfaces.
    - portshow arp - Displays the content of the address resolution protocol (ARP) table.
    - portshow iproute - Displays static routes on the IP interface.
    - portshow vlantag - Displays the IP interface VLAN configuration.
  • Display FCIP tunnels, circuits, management interfaces and FICON statistics on the Brocade
    7800/FX8-24 platforms
    - portshow fciptunnel - Displays Fibre Channel over IP (FCIP) tunnels.
    - portshow fcipcircuit - Displays FCIP circuits.
    - portshow mgmtif - Displays the inband management interfaces.
    - portshow mgmtroute - Displays the routes for the inband management interfaces.
    - portShow xtun - Displays FICON and FCP emulation statistics and current runtime conditions.

To display the command usage on the switch, use portShow [action].

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

Some of the features supported by this command may require a license.

In an AD context, if one of the L_Ports or NPIV ports is a part of the current AD, the complete device
information attached to the port is shown in the output.
FUNCTION  General port status display commands supported on all platforms

SYNOPSIS  

```
portshow [slot[/][ge]port

portshow -i [index1[-index2] [...]] [-f]

portshow -x [hex1[-hex2] [...]]
```

DESCRIPTION  Use this command to display general port status and configuration parameters for the specified port. This command is valid on all platforms, but the output is platform-specific and not all fields are displayed on all platforms.

The following general information is displayed when the command is issued for a non-GbE port without additional arguments:

- **portIndex**  Index number assigned to the port.
- **portName**  Name assigned to the port by the `portName` command. On standalone platforms, the default port name is the port number, for example, "port5". On enterprise-class platforms, the default port name is a combination of the slot number and the port number, for example, "slot1port5".
- **portHealth**  Current health of the port (requires a Fabric Watch license).
- **Authentication**  Authentication type and associated parameters (if applicable) used on the port at port online.
  - None  No authentication was performed.
  - FCAP  FCAP authentication was performed.
  - DHCHAP  DHCHAP authentication was performed. Also displays DH group and hash type used for authentication.
- **portDisableReason**  Provides an explanation for the port’s disabled status.
- **portCFlags**  Port control flags.
- **portFlags**  A bit map of port status flags, including information on the type of port, whether it is fully online, and whether logins have been accepted. The port flags display ENCRYPT if the port has been enabled for encryption. The port flags display COMPRESS if the port has been enabled for compression. The port flags display D_PORT if the port has been enabled as a diagnostic port.
- **portType**  The port’s type and revision numbers.
- **POD Port**  Port on Demand License status.
- **portState**  The port’s SNMP state:
Online  Up and running.
Offline  Not online, see *portPhys* for more detail.
Testing  Running diagnostics.
Faulty  Failed diagnostics.
Persistently Disabled  Persistently disabled.

**Protocol**  Protocol used by the port: FC or FCoE.

**portPhys**  The port's physical state:

- **No_Card**  No interface card present.
- **No_Module**  No module (GBIC or other) present.
- **No_Light**  Module is not receiving light (Condor 2 ports only).
- **No_SigDet**  No signal detected; displays when a quad small form-factor pluggables (QSFPs) is installed without cables).
- **Mod_Inv**  Incompatible vendor or module speed mismatch.
- **No_Sync**  Receiving light but out of sync.
- **In_Sync**  Receiving light and in sync.
- **Laser_Flt**  Module is signaling a laser fault.
- **Port_Flt**  Port marked faulty.
- **Diag_Flt**  Port failed diagnostics.
- **Lock_Ref**  Locking to the reference signal.

**portScn**  The port's last State Change Notification.

**port generation number**  The port's generation number for the last offline state change.

**portId**  The port's 24-bit port ID.

**portIfId**  The user port's interface ID.

**portWwn**  The port's world wide name.
portShow

**portWwn of devices(s) connected**

The World Wide Port Names of connected devices.

**Distance**

The port's long-distance level. In the case of LD mode, the user configured
distance and actual distance also are displayed. See `portCfgLongDistance`
for information on long distance levels.

**Port part of other AD**

Yes or No.

**portSpeed**

The port's fixed speed (1, 2, 4, or 8 Gbps) or negotiated speed (N1 Gbps, N2
Gbps, N4 Gbps, N8 Gbps or AN).

**FEC**

Forward error correction (FEC) status: displays "active" if FEC is enabled on
the port and the port is online; displays "inactive" if the feature is disabled. Refer to the
`portCfgFec` command for more information.

**LE domain**

The LE domain ID.

**FC FastWrite**

The status of FC FastWrite (ON or OFF) (Deprecated).

If the port is configured as an EX_Port, the following additional port information is displayed:

**EX_Port Mode**

The port is configured as an EX_Port.

**Fabric ID**

The fabric ID assigned to this EX_Port; this is the fabric ID of the edge fabric
attached to this EX_Port.

**Front Phantom**

Information on the front phantom domain presented by this EX_Port. Includes the
preferred (if not active) or actual (if active) domain ID for the front domain and the
WWN of the front domain.

**Pr Switch Info**

Information on the principal switch of the edge fabric attached to this EX_Port.
Includes the domain ID and WWN of the principal switch.

**BB XLate**

Information on the xlate (translate) phantom domain presented at this port.
Includes the preferred (if not active) or actual (if active) domain ID for the xlate
phantom domain and the WWN of the xlate phantom domain. The xlate phantom
domain connected at this port is in the same fabric as the router and represents
the edge fabric connected to the EX_Port.

**Authentication Type**

Displays NONE or DH-CHAP. DH-CHAP is the only authentication type supported
on EX_Ports.

**DH Group**

Displays DH group [0-4] if DH-CHAP authentication is used. Otherwise displays
N/A.

**Hash Algorithm**

Displays hash type (MD5 or SHA-1) if DH-CHAP authentication is used. Otherwise, displays N/A.
**Edge fabric's primary WWN**

If the EX_Port is connected to an edge switch with FCS policy enforcement, the WWN of the primary FCS is displayed when the edge fabric is secure and the primary FCS is online. Otherwise, displays "No Primary".

**Edge fabric's version stamp**

If the EX_PORT is connected to an edge switch with FCS policy enforcement, the version of the security database is displayed. Otherwise displays N/A.

The `portShow` command displays FCoE ports with "Protocol: FCoE" and "portSpeed: 10Gbps". Only a subset of information is displayed. Refer to the Examples section for an illustration. Use `fcoe --cfgshow` and `fcoe --loginshow` to display FCoE-specific configuration details.

Following the general information, the command displays three columns of counters. The first column shows interrupt statistics:

- **Interrupts**
  - Total number of interrupts.
- **Unknown**
  - Interrupts that are not counted elsewhere.
- **Lli**
  - Low-level interface (physical state, primitive sequences).
- **Proc_rqrd**
  - Frames delivered for embedded N_Port processing.
- **Timed_out**
  - Frames that have timed out.
- **Rx_flushed**
  - Frames requiring translation.
- **Tx_unavail**
  - Frames returned from an unavailable transmitter.
- **Free_buffer**
  - Free buffer available interrupts.
- **Overrun**
  - Buffer overrun interrupts.
- **Suspected**
  - Transmission suspended interrupts.
- **Parity_err**
  - Central memory parity errors.
- **2_parity_err**
  - Secondary transmission parity errors.
- **CMI_bus_err**
  - Control message interface errors.

The second column displays link error status block counters.

The third column shows the number of F_RJTs and F_BSYs generated. For L_Ports, the third column also displays the number of loop initialization protocols (LIPs) received, number of LIPs transmitted, and the last LIP received.

**OPERANDS**

This command has the following port operands:

- **slot**
  - For bladed systems only, specifies the slot number of the port to be displayed, followed by a slash (/).
port

Specifies the number of the port to be displayed, relative to its slot for bladed systems. Use `switchShow` for a listing of valid port numbers.

`-i index1[-index2]`

Specifies a port or a range of ports identified by port index numbers. You can specify multiple index ranges separated by a space, for example, 33-38 40-60. Port indexes are supported only if `PortSwap` is disabled. They are not supported on GbE ports and configured F_Port trunks. Use the `-i` option without a port index argument to display the `portSwap` status, or alternately use `portSwapShow`.

`-x [hex1 [-hex2]]`

Specifies a port or a range of ports identified by port numbers, index number in hexadecimal format. You may specify multiple port ranges separated by a space, for example, `-x 21-26 28-3c`.

**EXAMPLES**

To display the current state of a D_Prot:

```
switch:admin> portShow 28
portName: port28
portHealth: No Fabric Watch License

Authentication: None
portDisableReason: None
portCFlags: 0x1
portFlags: 0x10004103 PRESENT ACTIVE E_PORT \
G_PORT D_PORT U_PORT LOGIN LED
LocalSwcFlags: 0x0
portType: 24.0
POD Port: Port is licensed
portState: 1 Online
Protocol: FC
portPhys: 6 In_Sync portScn: 0 Flow control mode 4
port generation number: 0
state transition count: 1

portId: 2d1c00
portIfId: 43020028
portWwn: 20:1c:00:05:33:13:2f:b3
portWwn of device(s) connected:

Distance: normal
portSpeed: 8Gbps

FEC: Inactive
LB domain: 0
FC Fastwrite: OFF
Interrupts: 0 Link_failure: 0 Frjt: 0
Unknown: 0 Loss_of_sync: 1 Fbsy: 0
Lli: 14 Loss_of_sig: 2
Proc_rqrd: 4 Protocol_err: 0
Timed_out: 0 Invalid_word: 0
Rx_flushed: 0 Invalid_crc: 0
Tx_unavail: 0 Delim_err: 0
Free_buffer: 0 Address_err: 0
Overrun: 0 Lr_in: 2
Suspended: 0 Lr_out: 0
Parity_err: 0 Ols_in: 0
2_parity_err: 0 Ols_out: 1
CMI_bus_err: 0
```
To display the current state of a port with encryption enabled:

```
switch:admin> portshow 10/44
portIndex: 348
portName: slot10port44
portHealth: No Fabric Watch License

Authentication: None
portDisableReason: None
portCFlags: 0x1
portFlags: 0x10000103 PRESENT ACTIVE E_PORT T_PORT\ T_MASTER G_PORT U_PORT ENCRYPT LOGIN
LocalSwcFlags: 0x0
portType: 24.0
portState: 1 Online
Protocol: FC
portPhys: 6 In_Sync portScn: 1 Online Trunk master port
port generation number: 44
state transition count: 12
```
To display an FCoE port:

```
switch:admin> portshow 8
portIndex: 8
portName:
portHealth: HEALTHY
Authentication: None
portDisableReason: None
portCFlags: 0x1
portFlags: 0x2cb03 PRESENT ACTIVE F_PORT G_PORT U_PORT
 LOGICAL_ONLINE LOGIN NOELP LED NSREG ACCEPT FLOGI
portType: 17.0
POD Port: Port is licensed
portState: 1 Online
Protocol: FCoE
portPhys: 6 In_Sync portScn: 32 F_Port
port generation number: 0
state transition count: 1

portId: 850800
portIfId: 43020028
portWwn: 20:08:00:05:1e:76:60:80
portWwn of device(s) connected:

Distance: normal
portSpeed: 10Gbps
```

FUNCTION
Display IP Interface configurations on the Brocade 7800/FX8-24 platforms

SYNOPSIS
```
portshow option [slot|ge_port [optional_args]
```

DESCRIPTION
Use this command to display FCIP-related configuration parameters on the Brocade 7800 switch and on the Brocade FX8-24 blade. The parameters displayed by this command are set with the `portCfg` command. The following displays are supported with this command:

- **portshow ipif** - Displays the local IP interfaces.
- **portshow iproute** - Displays static routes on the IP interface.
- **portshow arp** - Displays the content of the address resolution protocol (ARP) table.
- **portshow vlantag** - Displays the IP interface VLAN configuration.
- **portshow autoneg** - Displays autonegotiation status.

NOTES
IPv6 addresses are supported.

OPERANDS
This command has the following operands:

```
slot
ge_port
```

For bladed systems only, specifies the slot number of the port to be displayed, followed by a slash (/).

Specifies the number of the GbE port to be displayed relative to the slot number. The GbE ports are numbered ge0 - ge9 on the Brocade FX8-24 blade and ge0 - ge5 on the Brocade 7800 switch. The 10GbE ports on the Brocade FX8-24 blade are numbered xge0 and xge1. Use the `switchShow` command for a listing of valid ports.
ipif
Displays the IP interface ID, IP address, netmask, and MTU for IPv4 addresses. Displays the prefix instead of the netmask for IPv6 addresses. Flags are explained in the command output (refer to the example below).

iproute
Displays the IP address, netmask, gateway, metrics, and flags. Displays the prefix instead of the netmask for IPv6 addresses. A status flag for the IP routes indicates if a route is used for the management interfaces. A route definition that uses one of the internal interfaces has the words "Interface Management" printed at the end of the line.

arp
Displays the address resolution protocol (ARP) table. You can display the content of the ARP table, but you cannot modify its contents.

-lmac
Displays the local MAC address. This operand is optional.

vlantag
Displays the VLAN Tagging configuration. For each entry, the output displays the IP interface address, the destination IP address, the VLAN ID, the L2 CoS priority, and a flag. This display includes tunnel- and IPIF-level configurations. The following flags indicate the type of configuration:

Perm
Permanent entry. Permanent entries are configured at the IP interface level with the portCfg vlantag command.

Perm Net
Network-wide permanent entry. The same as the permanent entry except that no destination address was defined (defaults to 0.0.0.0), so traffic to all destinations is tagged.

App
Application layer VLAN configuration defined at the circuit level.

autoneg
Displays the atuonegotiation status.

EXAMPLES
To display the IP interface and static route configured on Brocade 7800:

```
switch:admin> portshow ipif ge0
Port: ge0
Interface IPv4 Address NetMask Effective MTU Flags
--
0 192.168.0.20 255.255.255.0 1500 U R M
1 192.168.0.21 255.255.255.0 1500 U R M

Interface IPv6 Address Len Effective MTU Flags

2 fe80::205:1eff:fed3:e6b2 64 1500 U R M
3 2000::20 64 1500 U R M
4 2000::21 64 1500 U R M
5 2000::22 64 1500 U R M

Flags: U=Up B=Broadcast D=Debug L=Loopback P=Point2Point R=Running
N=NoArp PR=Promisc M=Multicast S=StaticArp LU=LinkUp
```

```
switch:admin> portshow iproute ge0
```
### Port Show 2

#### Port: ge0

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Mask</th>
<th>Gateway</th>
<th>Metric</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.42.0.0</td>
<td>255.255.255.0</td>
<td>192.168.0.250</td>
<td>0</td>
<td>U G</td>
</tr>
<tr>
<td>192.168.0.0</td>
<td>255.255.255.0</td>
<td>*</td>
<td>0</td>
<td>U C</td>
</tr>
<tr>
<td>192.168.0.10</td>
<td>255.255.255.255</td>
<td>*</td>
<td>0</td>
<td>U H L</td>
</tr>
<tr>
<td>192.168.0.11</td>
<td>255.255.255.255</td>
<td>*</td>
<td>0</td>
<td>U H L</td>
</tr>
<tr>
<td>192.168.0.21</td>
<td>255.255.255.255</td>
<td>*</td>
<td>0</td>
<td>U C</td>
</tr>
<tr>
<td>192.168.0.250</td>
<td>255.255.255.255</td>
<td>*</td>
<td>0</td>
<td>U H L</td>
</tr>
</tbody>
</table>

#### IPv6 Address

<table>
<thead>
<tr>
<th>IPv6 Address</th>
<th>Len</th>
<th>Gateway</th>
<th>Metric</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000::</td>
<td>64</td>
<td>*</td>
<td>0</td>
<td>U C</td>
</tr>
<tr>
<td>2000::10</td>
<td>128</td>
<td>*</td>
<td>0</td>
<td>U H L</td>
</tr>
<tr>
<td>2000::11</td>
<td>128</td>
<td>*</td>
<td>0</td>
<td>U H L</td>
</tr>
<tr>
<td>2000::1:250</td>
<td>128</td>
<td>*</td>
<td>0</td>
<td>U H L</td>
</tr>
<tr>
<td>2001::</td>
<td>64</td>
<td>2000::1:250</td>
<td>0</td>
<td>U G</td>
</tr>
<tr>
<td>fe80::</td>
<td>64</td>
<td>*</td>
<td>0</td>
<td>U C</td>
</tr>
<tr>
<td>ff01::</td>
<td>32</td>
<td>*</td>
<td>0</td>
<td>U C</td>
</tr>
<tr>
<td>ff02::</td>
<td>32</td>
<td>*</td>
<td>0</td>
<td>U C</td>
</tr>
</tbody>
</table>

Flags: U=Usable G=Gateway H=Host C=created(Interface) S=Static L=LinkLayer(ARP)

### To display the IP interface and static route configured for failover crossports on the Brocade FX8-24:

```bash
switch:admin> portshow ipif 1/xge0
```

#### Port: 1/xge0

<table>
<thead>
<tr>
<th>Interface</th>
<th>IPv4 Address</th>
<th>NetMask</th>
<th>Effective MTU</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>192.168.10.10</td>
<td>255.255.255.0</td>
<td>1500</td>
<td>U R M</td>
</tr>
<tr>
<td>1</td>
<td>192.168.22.100</td>
<td>255.255.255.0</td>
<td>1500</td>
<td>U R M</td>
</tr>
<tr>
<td>2</td>
<td>192.168.22.102</td>
<td>255.255.255.0</td>
<td>1500</td>
<td>U R M</td>
</tr>
<tr>
<td>3</td>
<td>192.168.31.100</td>
<td>255.255.255.0</td>
<td>1500</td>
<td>U R M</td>
</tr>
<tr>
<td>4</td>
<td>192.168.31.102</td>
<td>255.255.255.0</td>
<td>1500</td>
<td>U R M</td>
</tr>
<tr>
<td>5</td>
<td>192.168.12.101</td>
<td>255.255.255.0</td>
<td>1500</td>
<td>U R M (crossport)</td>
</tr>
<tr>
<td>6</td>
<td>192.168.12.103</td>
<td>255.255.255.0</td>
<td>1500</td>
<td>U R M (crossport)</td>
</tr>
<tr>
<td>7</td>
<td>192.168.21.101</td>
<td>255.255.255.0</td>
<td>1500</td>
<td>U R M (crossport)</td>
</tr>
<tr>
<td>8</td>
<td>192.168.21.103</td>
<td>255.255.255.0</td>
<td>1500</td>
<td>U R M (crossport)</td>
</tr>
<tr>
<td>9</td>
<td>192.168.10.12</td>
<td>255.255.255.0</td>
<td>1500</td>
<td>U R M (crossport)</td>
</tr>
</tbody>
</table>

Flags: U=Up B=Broadcast D=Debug L=Loopback P=PointToPoint R=Running N=NoArp PR=Promisc M=Multicast S=StaticArp LU=LinkUp

```bash
switch:admin> portshow iproute 1/xge0
```

#### Port: 1/xge0

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Mask</th>
<th>Gateway</th>
<th>Metric</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.10.0</td>
<td>255.255.255.0</td>
<td>*</td>
<td>0</td>
<td>U C</td>
</tr>
<tr>
<td>192.168.22.0</td>
<td>255.255.255.0</td>
<td>*</td>
<td>0</td>
<td>U C</td>
</tr>
<tr>
<td>192.168.22.102</td>
<td>255.255.255.255</td>
<td>*</td>
<td>0</td>
<td>U C</td>
</tr>
<tr>
<td>192.168.22.200</td>
<td>255.255.255.255</td>
<td>*</td>
<td>0</td>
<td>U H L</td>
</tr>
<tr>
<td>192.168.31.0</td>
<td>255.255.255.0</td>
<td>*</td>
<td>0</td>
<td>U C</td>
</tr>
<tr>
<td>192.168.31.102</td>
<td>255.255.255.255</td>
<td>*</td>
<td>0</td>
<td>U C</td>
</tr>
<tr>
<td>192.168.31.200</td>
<td>255.255.255.255</td>
<td>*</td>
<td>0</td>
<td>U H L</td>
</tr>
<tr>
<td>192.168.10.0</td>
<td>255.255.255.0</td>
<td>*</td>
<td>0</td>
<td>U C (crossport)</td>
</tr>
<tr>
<td>192.168.12.0</td>
<td>255.255.255.0</td>
<td>*</td>
<td>0</td>
<td>U C (crossport)</td>
</tr>
</tbody>
</table>
To display the ARP tables on the Brocade 7800:

```
switch:admin> portshow arp ge0
```

```
Port: ge0
IP Address Mac Address Flags
--
192.168.0.10 00:05:1e:c3:f0:1a Resolved
192.168.0.11 00:05:1e:c3:f0:1a Resolved
192.168.0.250 00:00:00:00:00:00
2000::10 00:05:1e:c3:f0:1a Resolved
2000::11 00:05:1e:c3:f0:1a Resolved
2000::1:250 00:00:00:00:00:00
```

```
switch:admin> portshow arp ge5
No Arp Entries found
```

To display the VLAN tagging configurations on a Brocade 7800:

```
switch:admin> portshow vlantag ge0
```

```
Port: ge0
Interface Address VlanId L2CoS Flags
Destination Address ----------

fe80::205:1eff:feef:2200 55 0 APP
 2002:2055::1
fe80::205:1eff:feef:2200 55 0 APP
 2002:2050::112
2002:2055::143 55 0 APP
 2002:2055::1
2002:2055::143 55 0 Perm
 2002:2050::112
```

To display the automatic negotiation of 1GbE port:

```
switch:admin> portshow autoneg 1/ge2
Auto-Negotiation Configuration:
Port: 1/ge2
Auto-Negotiate: Enabled
```

**FUNCTION** Display FCIP tunnels, circuits, management interfaces and FICON statistics on the Brocade 7800/FX8-24

**SYNOPSIS** `portshow option [all | [slot]/ve_port]] arguments [optional_arguments]`
DESCRIPTION
Use this command to display configuration parameters and status information for FCIP tunnels and FCIP circuits on the GbE/10GbE ports on the Brocade 7800 and FX8-24 platforms. The FCIP tunnels on the local and remote GbE ports act as Virtual E_Ports (VE_Ports) connecting the local and remote fabrics. The following display options are supported on these platforms:

- **portShow fciptunnel** - Displays Fibre Channel over IP (FCIP) tunnels including the following:
  - Additional performance information
  - FICON configuration parameters
  - IPSec status (enabled or disabled), mode (legacy if configured) and key
  - Circuits with the tunnel
  - QoS statistics including performance for each priority
  - FCIP Tunnel hierarchy listing circuit IDs and TCP connection information for the tunnel
- **portShow fcipcircuit** - Displays status and configuration for FCIP circuits:
  - TCP statistics for the circuit
  - Circuit-level VLAN tagging configuration
  - Circuit-level Differentiated Services (DSCP) markings
- **portshow mgmtif** - Displays the inband management interfaces.
- **portshow mgmtroute** - Displays the routes for the inband management interfaces.
- **portShow xtun** - Displays FICON and FCP emulation statistics and current runtime conditions.

OPERANDS
This command has the following operands:

- **slot**
  For bladed systems only, specifies the slot number of the VE_Port to be displayed, followed by a slash (/).

- **ve_port**
  Displays information for a single specified FCIP tunnel. On the Brocade 7800/FX8-24, specify the VE_Port number associated with the tunnel configured on one of the GbE ports. VE_Ports are numbered 16-23 on the Brocade 7800 and 12-31 on the Brocade FX8-24 blade.

- **all**
  Displays information for all configured FCIP tunnels.

- **fciptunnel**
  Displays configuration and status per FCIP tunnel. The following operands are supported with **fciptunnel** and **fcipcircuit**.

- **-c | --circuit**
  Displays the FCIP circuits within the tunnel. This operand can be used with any other operand to include circuit displays.

- **-t | --tcp**
  Displays the TCP statistics for the circuit. The **-c** option must be specified with this option.

- **--reset**
  Displays time based set of statistics.

- **--lifetime**
  Displays the entire lifetime statistics for FCIP Tunnels, Circuits and the associated TCP connections. This option will ignore any time based deltas that were created previously set using the **--reset** option.

- **-p | --perf**
  Displays additional performance information for the specified FCIP tunnels.
portShow

--lifetime
Displays the entire lifetime statistics for FCIP Tunnels, Circuits and the associated TCP connections. This option will ignore any time based deltas that were created previously set using the --reset option.

-q | --qos
Displays the QoS statistics including performance for each priority. This operand is optional with the --perf option.

-i | --ipsec
Displays IPSec status (enabled or disabled) and key if enabled. If IPSec is enabled and configured in legacy mode, the mode information is displayed in parenthesis. This option is valid for portShow fciptunnel only.

-h | --hier
Displays the FCIP tunnel hierarchy listing basic circuit IDs and TCP connection information for the tunnel.

-s | --summary
Displays a summary view of the tunnel configuration parameters for a specific VE_Port. You can use the summary option with the -perf and the -qos option. When used with the -perf option, the summary option forces the --circuit option. Flags indicate ipsec-configured tunnels, legacy ipsec tunnels, and compression mode. Circuit flags indicate vlan tagging, crossport configuration, and ipv4 or ipv6 configuration.

-d | --detail
Displays a full view configuration details for all configured tunnels when used with the all port specifier. This view provides an alternative to specifying a specific VE_Port or to using the --perf option for a comprehensive view.

-l | --ip-address
Displays the IP addresses configured the specified circuits. You must use this option with either the --summary or the --circuit option.

fcipcircuit
Displays FCIP circuit configuration and status. The following operands are supported with portShow fcipcircuit:

circuit_ID
Specifies a single circuit within the FCIP tunnel. The circuit ID is an integer value between 1 and 19 on the Brocade FX8-24 and 1 and 7 on the Brocade 7800. This operand is required.

-t | --tcp
Displays the TCP statistics for the specified circuit.

--reset
Displays time based set of statistics.

--lifetime
Displays the entire lifetime statistics for FCIP Tunnels, Circuits and the associated TCP connections. This option will ignore any time based deltas that were created previously set using the --reset option.

-p | --perf
Displays additional performance information for the specified FCIP circuit.

--lifetime
Displays the entire lifetime statistics for FCIP Tunnels, Circuits and the associated TCP connections. This option will ignore any time based deltas that were created previously set using the --reset option.
-q | --qos

Displays the QoS statistics including performance for each priority. This operand is optional with the --perf option.

mgmtif

Displays the inband management interfaces configured for a specified GbE Port or for all GbE Ports. For each GbE Port, the display includes the interface status (enabled or disabled), the interface IPv4 Address, the netmask, effective MTU, and annotated port flags.

mgmtroute

Displays the management routes configured for a specified GbE Port or for all GbE Ports. For each GbE Port, the display includes the destination IPv4 Address, the netmask, the gateway address, and annotated port flags. The metric field is not valid for the Brocade 7800.

xtun

Displays FICON and FCP emulation statistics and current runtime conditions for a specified set of parameters. The following arguments are supported:

-fcp

Displays the SCSI FastWrite/Tape Pipelining command sub-menu when issued with a VE_Port number. The syntax for -fcp is as follows:

```
portshow xtun [slot[/]ve_port -fcp [level] [command] [param] [options]
```

The following optional operands are supported with -fcp to display FCP emulation statistics and status information:

-help

Displays the command usage. You must specify a VE_Port number to display the help functions, for example: `portshow xtun 7/12 -fcp -help`.

level

Specifies the level for which information is displayed. You can specify one or more of the following levels. With each additional level, this command generates progressively more information.

-port

Displays data at the port level.

-it

Displays data at the Initiator Target (SID/DID) FCP level.

-tn

Displays data at the Initiator Target nexus (SID/DID) level.

-ll

Displays data at the Initiator Target LUN (SID/DID/LUN) level.

-twb

Displays data at the Exchange (SID/DID/LUN/Exchange) level.

command

Specifies the type of information to be displayed. This operand is optional; if omitted, the default (-stats) is used. You can specify more than one command option. Valid commands include the following:

-stats

Displays FCP emulation statistics. This is the default display.

-info

Displays general FCP emulation information.

-cfg

Displays the FCP emulation configuration.
-dump  Displays a raw data dump including data for all information types.

param  Limits output to one or more of the following parameters, given the commands and levels specified with this command. This operand is optional; if omitted, output for all parameters is displayed. There is no default parameter.

-sid SID  Displays output for the specified SID only.

-did DID  Displays output for the specified DID only.

-lun LUN  Displays output for the specified LUN only.

-timer  Displays timer information only.

options  Affects all levels and commands globally. Only one option is supported.

-zero  Displays zero-valued statistics. Note that some commands may show zero-valued information regardless of whether or not this option is specified.

-ficon  Displays sub-menu for FICON emulation display commands when issued with a VE_Port number. The syntax for -ficon is as follows:

portshow xtun [slot/ve_port -ficon [command] [options]]

The following optional commands are supported with -ficon; if omitted, the usage for all parameters is displayed. The xtun -ficon command options include displays for all types of FICON Emulation.

-help  Displays the command usage. You must specify a VE_Port number to display the help functions, for example, portshow xtun 7/12 -ficon -help.

-stats  Displays global FICON Emulation statistics for the tunnel including FICON XRC Emulation, FICON Tape Write, FICON Tape Read, FICON Teradata Write, and FICON Teradata Read statistics.

-fdpb adrs  Displays FICON ports or a specific FICON Device Path Block.

-fchb adrs  Displays FICON logical partitions (LPARs) or a specific FICON Channel Control Block.

-fcub adrs  Displays FICON images (the same output as with -images) or a specific FICON Control Unit Block.

-images  Displays FICON images.

-fdcb adrs  Displays FICON devices or specific FICON Device Control Block.

-tapeperf  Starts the emulated Tape Read and Write performance monitor or displays the performance statistics.
when you first issue this command or any other performance monitor commands after a reboot, the command starts the performance monitor, takes a snapshot of current statistics, and saves them with a time stamp. When you issue the command again, it displays the time elapsed between the two iterations of the command and the average time delta statistics. A new time stamp and current statistics are saved as a basis for the next iteration.

-teraperf
Starts the emulated Teradata performance monitor or displays the performance statistics.

-printperf
Starts the emulated Printer performance monitor or displays the performance statistics.

-xrcperf
Starts the emulated XRC performance monitor or displays the performance statistics.

-structs
Displays FICON control block sizes.

-emul
Displays comprehensive FICON emulation statistics. Use one of the following options to display emulation statistics about a specific component.

-emulxrc
Displays FICON XRC emulation statistics.

-emultape
Displays FICON Tape emulation statistics.

-emultera
Displays FICON Teradata emulation statistics.

-emulprint
Displays FICON Printer emulation statistics.

-act
Displays the current Active Exchange information.

options
The following additional option is supported.

-clear
Resets the specified statistics. This operand is optional; it requires a preceding command.

-mem adrs length
Specifies the SE memory length in words to display. The valid range for length is 0 to 1024.

-dram2
Display the current usage of the dynamic memory allocator.

-pools
Display the current free pool allocation (FPA) buffer usage.

-tcb
Displays tunnel statistics.

-drshow
Displays the current Descriptor Ring status

-smem
Displays the current Shadow Memory data.
-rte

Displays the current Routing Info SE memory.

EXAMPLES

To display FCIP tunnel configuration parameters on the Brocade 7800 with Ficon enabled:

```bash
switch:admin> portshow fciptunnel 16
```

```text
Tunnel ID: 16
Tunnel Description:
Admin Status: Enabled
Oper Status: Up
Compression: On (Aggressive)
Fastwrite: Off
Tape Acceleration: Off
TPerf Option: Off
IPSec: Disabled
QoS Percentages: High 50%, Med 30%, Low 20%
Remote WWN: Not Configured
Local WWN: 10:00:00:05:1e:a5:54:bd
Peer WWN: 00:00:00:00:00:00:00:00
Circuit Count: 4
Flags: 0x00000000
FICON: On
 FICON XRC: Off
 FICON Tape Write: On
 FICON Tape Read: On
 FICON TinTir Emul: On
 FICON Dvc Acing: On
 FICON Read BLK-ID: On
 FICON Teradata Write: On
 FICON Teradata Read: On
 Tape Write Pipe: 63
 Tape Read Pipe: 65
 Tape Write Devs: 32
 Tape Read Devs: 32
 Tape Write Timer: 300
 Tape Max Chain: 3200000
 FICON OXID Base: 0x8000
 FICON Debug Flags: 0xf7c90000
```

To display an FCIP tunnel with FICON disabled:

```bash
switch:admin> portshow fciptunnel 16
```

```text
Tunnel ID: 16
Tunnel Description:
Admin Status: Enabled
Oper Status: Up
Compression: On (Aggressive)
Fastwrite: Off
Tape Acceleration: Off
TPerf Option: Off
IPSec: Disabled
QoS Percentages: High 50%, Med 30%, Low 20%
Remote WWN: Not Configured
Local WWN: 10:00:00:05:1e:a5:54:bd
Peer WWN: 00:00:00:00:00:00:00:00
Circuit Count: 4
Flags: 0x00000000
FICON: Off
```
To display an FCIP tunnel with additional circuit information:

```
switch:admin> portshow fciptunnel 1/12 -c
Tunnel ID: 1/12
 Tunnel Description:
 Admin Status: Enabled
 Oper Status: Up
 Compression: Off
 Fastwrite: Off
 Tape Acceleration: Off
 TPerf Option: Off
 IPSec: Disabled
 QoS Percentages: High 50%, Med 30%, Low 20%
 Remote WWN: Not Configured
 Local WWN: 10:00:00:05:1e:52:fe:00
 Peer WWN: 10:00:00:05:1e:39:a4:76
 Circuit Count: 2
 Flags: 0x00000000
 FICON: Off

 Circuit ID: 1/12.0
 Circuit Num: 0
 Admin Status: Enabled
 Oper Status: Up
 Connection Type: Default
 Local IP: 192.168.12.100
 Metric: 0
 Failover Group ID: (Not Config/Active)
 Min Comm Rt: 2500000
 Max Comm Rt: 2500000
 SACK: On
 Min Retrans Time: 100
 Max Retransmits: 8
 Keepalive Timeout: 10000
 Path MTU Disc: 0
 VLAN ID: (Not Configured)
 L2CoS: (VLAN Not Configured)
 DSCP: F: 0 H: 0 M: 0 L: 0
 Flags: 0x00000000

 Circuit ID: 1/12.1
 Circuit Num: 1
 Admin Status: Enabled
 Oper Status: Up
 Connection Type: Default
 Remote IP: 192.168.12.201
 Local IP: 192.168.12.101
 Metric: 1
 Failover Group ID: 1
 Min Comm Rt: 2500000
 Max Comm Rt: 2500000
 SACK: On
 Min Retrans Time: 100
 Max Retransmits: 8
 Keepalive Timeout: 10000
```
Path MTU Disc: 0
VLAN ID: (Not Configured)
L2CoS: (VLAN Not Configured)
DSCP: F: 0 H: 0 M: 0 L: 0
Flags: 0x00000000

To display additional performance parameters on tunnel 1/12 (add -c to display all circuits):

switch:admin> portshow fciptunnel 1/12 --perf
-------------------------------------------
Tunnel ID: 1/12
Tunnel Description:
Admin Status: Enabled
Oper Status: Up
Compression: Off
Fastwrite: Off
Tape Acceleration: Off
TPerf Option: Off
IPSec: Disabled
QoS Percentages: High 50%, Med 30%, Low 20%
Remote WWN: Not Configured
Local WWN: 10:00:00:05:1e:52:fe:00
Peer WWN: 10:00:00:05:1e:39:a4:76
Circuit Count: 2
Flags: 0x00000000
FICON: Off
Oper Status: Up
Flow Ctrl State: Off
Connected Count: 1
Tunnel Duration: 3 days, 19 hours, 32 minutes, 33 seconds
Compression Statistics:
  0 Uncompressed Bytes
  0 Compressed Bytes
  1.00 : 1 Compression Ratio
Performance Statistics: Overall Throughput
  30945748 Output Bytes
  15 Bps 30s Avg, 93 Bps Lifetime Avg
  70653 Output Packets
  0 pkt/s 30s Avg, 0 pkt/s Lifetime Avg
  6856512 Input Bytes
  305 Bps 30s Avg, 208 Bps Lifetime Avg
  92029 Input Packets
  0 pkt/s 30s Avg, 0 pkt/s Lifetime Avg
TCP Stats:
  1444818696 Output Bytes
  16044954 Output Packets
  841543704 Input Bytes
  16054360 Input Packets
  Retransmits: 0
  Round Trip Time: 0 ms
  Out of Order: 0
  Slow Starts: 0

To display TCP connections for the circuits on the tunnel:

switch:admin> portshow fciptunnel 2/12 -c --tcp
-------------------------------------------
Tunnel ID: 1/12
Tunnel Description:
Admin Status: Enabled
Oper Status: Up
Compression: Off
Fastwrite: Off
Tape Acceleration: Off
TPerf Option: Off
IPSec: Disabled
QoS Percentages: High 50%, Med 30%, Low 20%
Remote WWN: Not Configured
Local WWN: 10:00:00:05:1e:52:fe:00
Peer WWN: 10:00:00:05:1e:39:a4:76
Circuit Count: 2
Flags: 0x00000000
FICON: Off

-------------------------------------------

Circuit ID: 1/12.0
  Circuit Num: 0
  Admin Status: Enabled
  Oper Status: Up
  Connection Type: Default
  Local IP: 192.168.12.100
  Metric: 0
  Failover Group ID: (Not Config/Active)
  Min Comm Rt: 2500000
  Max Comm Rt: 2500000
  SACK: On
  Min Retrans Time: 100
  Max Retransmits: 8
  Keepalive Timeout: 10000
  Path MTU Disc: 0
  VLAN ID: (Not Configured)
  L2CoS: (VLAN Not Configured)
  DSCP: F:  0 H:  0 M:  0 L:  0
  Flags: 0x00000000

-------------------------------------------

TCP Connection 1/12.0:15240899
  Priority: F-Class
  Flags: 0x00000000
  Duration: 3 days, 19 hours, 34 minutes, 52 seconds
  Local Port: 3225
  Remote Port: 49641
  Max Seg Size: 1420
  Adaptive Rate Limiting Statistics:
    None (F-Class)
  Sender Statistics:
    Bytes Sent: 105833704
    Packets Sent: 1135102
    Round Trip Time 0 ms, HWM 0 ms, Variance 0, HWM 0
    Send Window: 20832768 bytes, scale: 9
    Slow Starts: 0
    Slow Start Threshold: 16777216
    Congestion Window: 16778636
    TCP Op State: slow start
    Next Seq: 0x009a8d38, Min: 0x009a8d38, Max: 0x009a8d38
    Unacked data: 0
    Retransmit Timeout: 100 ms, Duplicate ACKs 0
    Retransmits: 0, max: 0
    Fast ReTx: 0, HWM 0, Slow ReTx: 0
  Receiver Statistics:
    Bytes Received: 61392676
Packets Received: 1135181
Receive Window: 20832768 Bytes, max: 20832768
Negotiated Window Scale: 9
RecvQ Bytes: 0
RecvQ Next: 0xc1750b4a Min: 0xc1750b4a Max: 0xc2b2ed4a
Out Of Sequence Pkts: 0, HWM 0, Total 0
Keepalive:
Keepalive Timeout: 60 s
Keepalive Interval: 15 s
Inactivity: 120 s
-------------------------------------------
TCP Connection 1/12.0:15240900
Priority: F-Class
(Output truncated)

To display the time based set of statistics:

switch:admin> portshow fciptunnel 23 -tcp --reset
-------------------------------------------
Output deleted
-------------------------------------------
switch:admin> portshow fciptunnel 23 -tcp
-------------------------------------------
Tunnel ID: 23
Tunnel Description:
Admin Status: Enabled
Oper Status: Up
Compression: On (Standard)
Fastwrite: Off
Tape Acceleration: Off
TPerf Option: Off
IPSec: Disabled
QoS Percentages: High 50%, Med 30%, Low 20%
Remote WWN: Not Configured
Local WWN: 10:00:00:05:1e:55:6a:45
Peer WWN: 10:00:00:05:1e:55:66:45
Circuit Count: 4
Flags: 0x00000000
FICON: On
FICON XRC: On
FICON Tape Write: On Tape Read: On Read Blk-ID: On
FICON Teradata Write: On Teradata Read: On
FICON Printer Emulation: Off
FICON Dvc Acking: On
FICON TntTir Emul: On
Tape Write Pipe: 32
Tape Write Devs: 16
Tape Write Timer: 300
Tape Max Chain: 3200000
Tape Read Pipe: 32
Tape Read Devs: 16
FICON OXID Base: 0x8000
FICON Debug Flags: 0xf7c90010
Oper Status: Up
Flow Ctrl State: Off
Connected Count: 0
Tunnel Duration: 2 hours, 36 minutes, 34 seconds
Compression Statistics:
152885204600 Uncompressed Bytes
80192731716 Compressed Bytes
1.91 : 1 Compression Ratio

Performance Statistics: Overall Throughput
82879746348 Output Bytes
19487713 Bps 30s Avg, 8822625 Bps Delta Lifetime Avg
37163437 Output Packets
6350 pkt/s 30s Avg, 3956 pkt/s Delta Lifetime Avg
40600187284 Input Bytes
2680991 Bps 30s Avg, 4321927 Bps Delta Lifetime Avg
30888269 Input Packets
2708 pkt/s 30s Avg, 3288 pkt/s Delta Lifetime Avg

TCP Stats:
87741527068 Output Bytes
119987815 Output Packets
40680294864 Input Bytes
89303680 Input Packets
Retransmits: 0
Round Trip Time: 0 ms
Out Of Order: 0
Slow Starts: 0

-------------------------------------------
Circuit ID: 23.0
Circuit Num: 0
Admin Status: Enabled
Oper Status: Up
Connection Type: Default
Remote IP: 192.168.12.64
Local IP: 192.168.12.63
Metric: 0
Failover Group ID: (Not Config/Active)
Min Comm Rt: 500000
Max Comm Rt: 1000000
SACK: On
Min Retrans Time: 100
Max Retransmits: 8
Keepalive Timeout: 1000
Path MTU Disc: 0
VLAN ID: (Not Configured)
L2CoS: (VLAN Not Configured)
DSCP: F: 0 M: 0 L: 0
Flags: 0x00000000
Flow Ctrl State: Off
Connected Count: 0
Circuit Duration: 2 hours, 36 minutes, 35 seconds

Performance Statistics: Overall Throughput
20720842324 Output Bytes
4877353 Bps 30s Avg, 2205518 Bps Delta Lifetime Avg
9290619 Output Packets
1587 pkt/s 30s Avg, 988 pkt/s Delta Lifetime Avg
10151571068 Input Bytes
669529 Bps 30s Avg, 1080529 Bps Delta Lifetime Avg
7722317 Input Packets
677 pkt/s 30s Avg, 821 pkt/s Delta Lifetime Avg

TCP Stats:
21937437276 Output Bytes
29992889 Output Packets
10171728532 Input Bytes
22328467 Input Packets
Retransmits: 0
Round Trip Time: 0 ms
Out Of Order: 0
Slow Starts: 0

-----------------------
TCP Connection 23.0:7939164
Priority: F-Class
Flags: 0x00000000
Duration: 2 hours, 36 minutes, 34 seconds
Local Port: 3225
Remote Port: 49270
Max Seg Size: 1420
Adaptive Rate Limiting Statistics:
  None (F-Class)
Sender Statistics:
  Bytes Sent: 8897112
  Packets Sent: 117187
  Round Trip Time 0 ms, HWM 0 ms, Variance 0, HWM 0
  Send Window: 20971520 bytes, scale: 9
  Slow Starts: 0
  Slow Start Threshold: 16777216
  TCP Op State: slow start
  Next Seq: 0xde83816c, Min: 0xde83816c, Max: 0xde83816c
  Unacked data: 0
  Retransmit Timeout: 100 ms, Duplicate ACKs 0
  Retransmits: 0, max: 0
  Fast ReTx: 0, HWM 0, Slow ReTx: 0
Receiver Statistics:
  Bytes Received: 4222280
  Packets Received: 115720
  Receive Window: 20971520 Bytes, max: 20971520
  Negotiated Window Scale: 9
  RecvQ Bytes: 0
  RecvQ Next: 0x3088a742 Min: 0x3088a742 Max: 0x31c8a742
  Out Of Sequence Pkts: 0, HWM 0, Total 0
Keepalive:
  Keepalive Timeout: 60 s
  Keepalive Interval: 15 s
  Inactivity: 120 s
-----------------------
TCP Connection 23.0:7939754
Priority: Low
Flags: 0x00000000
Duration: 2 hours, 36 minutes, 34 seconds
Local Port: 3225
Remote Port: 49276
Max Seg Size: 1420
Adaptive Rate Limiting Statistics:
  Min Rate: 100000 kbps
  Max Rate: 1000000 kbps
  Cur Rate: 100000 kbps
  Soft Limit: 100000 kbps
Sender Statistics:
  Bytes Sent: 8565060
  Packets Sent: 110783
  Round Trip Time 0 ms, HWM 0 ms, Variance 0, HWM 0
  Send Window: 20971520 bytes, scale: 9
  Slow Starts: 0
  Slow Start Threshold: 16777216
  TCP Op State: slow start
  Next Seq: 0x4fa616f8, Min: 0x4fa616f8, Max: 0x4fa616f8
Unacked data: 0
Retransmit Timeout: 100 ms, Duplicate ACKs 0
Retransmits: 0, max: 0
Fast ReTx: 0, HWM 0, Slow ReTx: 0

Receiver Statistics:
Bytes Received: 4133688
Packets Received: 110955
Receive Window: 20971520 Bytes, max: 20971520
Negotiated Window Scale: 9
RecvQ Bytes: 0
RecvQ Next: 0x30a7f86a Min: 0x30a7f86a Max: 0x31e7f86a
Out Of Sequence Pkts: 0, HWM 0, Total 0

Keepalive:
Keepalive Timeout: 60 s
Keepalive Interval: 15 s
Inactivity: 120 s

(output truncated)

To display the entire lifetime statistics for FCIP Tunnels, Circuits and the associated TCP connections:

```
switch:admin> portshow fciptunnel 23 -tcp --lifetime
```

Tunnel ID: 23
Tunnel Description:
Admin Status: Enabled
Oper Status: Up
Compression: On (Standard)
Fastwrite: Off
Tape Acceleration: Off
TPerf Option: Off
IPSec: Disabled
QoS Percentages: High 50%, Med 30%, Low 20%
Remote WWN: Not Configured
Local WWN: 10:00:00:05:1e:55:6a:45
Peer WWN: 10:00:00:05:1e:55:66:45
Circuit Count: 4
Flags: 0x00000000
FICON: On
FICON XRC: On
FICON Tape Write: On Tape Read: On Read Blk-ID: On
FICON Teradata Write: On Teradata Read: On
FICON Printer Emulation: Off
FICON Dvc Acking: On
FICON TinTir Emul: On
Tape Write Pipe: 32
Tape Write Devs: 16
Tape Write Timer: 300
Tape Max Chain: 3200000
Tape Read Pipe: 32
Tape Read Devs: 16
FICON OXID Base: 0x8000
FICON Debug Flags: 0xf7c90010
Oper Status: Up
Flow Ctrl State: Off
Connected Count: 1
Tunnel Duration: 5 hours, 30 minutes, 23 seconds
Compression Statistics:
207251690852 Uncompressed Bytes
109385761312 Compressed Bytes
1.89 : 1 Compression Ratio
Performance Statistics: Overall Throughput
114091792780 Output Bytes
  19320544 Bps 30s Avg, 5755235 Bps Lifetime Avg
67033271 Output Packets
  6297 pkt/s 30s Avg, 3381 pkt/s Lifetime Avg
7107040940 Input Bytes
  2720064 Bps 30s Avg, 3585070 Bps Lifetime Avg
56640493 Input Packets
  2732 pkt/s 30s Avg, 2857 pkt/s Lifetime Avg
TCP Stats:
122056754516 Output Bytes
195607261 Output Packets
71229250140 Input Bytes
153491322 Input Packets
Retransmits: 0
Round Trip Time: 0 ms
Out Of Order: 0
Slow Starts: 0

-------------------------------------------
Circuit ID: 23.0
  Circuit Num: 0
  Admin Status: Enabled
  Oper Status: Up
  Connection Type: Default
  Remote IP: 192.168.12.64
  Local IP: 192.168.12.63
  Metric: 0
  Failover Group ID: (Not Config/Active)
  Min Comm Rt: 500000
  Max Comm Rt: 1000000
  SACK: On
  Min Retrans Time: 100
  Max Retransmits: 8
  Keepalive Timeout: 1000
  Path MTU Disc: 0
  VLAN ID: (Not Configured)
  L2CoS: (VLAN Not Configured)
  DSCP: F: 0 H: 0 M: 0 L: 0
  Flags: 0x00000000
  Flow Ctrl State: Off
  Connected Count: 2
  Circuit Duration: 5 hours, 13 minutes, 23 seconds

Performance Statistics: Overall Throughput
28334631612 Output Bytes
  4821852 Bps 30s Avg, 1506760 Bps Lifetime Avg
16316394 Output Packets
  1570 pkt/s 30s Avg, 867 pkt/s Lifetime Avg
17317395800 Input Bytes
  681865 Bps 30s Avg, 920893 Bps Lifetime Avg
13594066 Input Packets
  683 pkt/s 30s Avg, 722 pkt/s Lifetime Avg
TCP Stats:
30502940684 Output Bytes
48830155 Output Packets
17783179804 Input Bytes
38309732 Input Packets
Retransmits: 0
Round Trip Time: 0 ms
Out Of Order: 0
Slow Starts: 0

TCP Connection 23.0:7939164
Priority: F-Class
Flags: 0x00000000
Duration: 5 hours, 13 minutes, 24 seconds
Local Port: 3225
Remote Port: 49270
Max Seg Size: 1420
Adaptive Rate Limiting Statistics:
None (F-Class)
Sender Statistics:
Bytes Sent: 17816460
Packets Sent: 234832
Round Trip Time 0 ms, HWM 0 ms, Variance 0, HWM 0
Send Window: 20971520 bytes, scale: 9
Slow Starts: 0
Slow Start Threshold: 16777216
Congestion Window: 16778636
TCP Op State: slow start
Next Seq: 0xde886fec, Min: 0xde886fec, Max: 0xde886fec
Unacked data: 0
Retransmit Timeout: 100 ms, Duplicate ACKs 0
Retransmits: 0, max: 0
Fast ReTx: 0, HWM 0, Slow ReTx: 0
Receiver Statistics:
Bytes Received: 8448124
Packets Received: 233586
Receive Window: 20971520 Bytes, max: 20971520
Negotiated Window Scale: 9
RecvQ Bytes: 0
RecvQ Next: 0x308d98aa Min: 0x308d98aa Max: 0x31cd98aa
Out Of Sequence Pkts: 0, HWM 0, Total 0
Keepalive:
Keepalive Timeout: 60 s
Keepalive Interval: 15 s
Inactivity: 120 s

TCP Connection 23.0:7939754
Priority: Low
Flags: 0x00000000
Duration: 5 hours, 13 minutes, 24 seconds
Local Port: 3225
Remote Port: 49276
Max Seg Size: 1420
Adaptive Rate Limiting Statistics:
Min Rate: 100000 kbps
Max Rate: 1000000 kbps
Cur Rate: 100000 kbps
Soft Limit: 100000 kbps
Sender Statistics:
Bytes Sent: 17157436
Packets Sent: 222094
Round Trip Time 0 ms, HWM 0 ms, Variance 0, HWM 0
Send Window: 20971520 bytes, scale: 9
Slow Starts: 0
Slow Start Threshold: 16777216
Congestion Window: 16778636
TCP Op State: slow start
Next Seq: 0x4faaefe8, Min: 0x4faaefe8, Max: 0x4faaefe8
To display IPSec parameters on an IPSec-enabled tunnel:

```
switch:admin> portshow fciptunnel 17 -i
```

---

Tunnel ID: 17
Tunnel Description:
  Admin Status: Enabled
  Oper Status: Empty
  Compression: Off
  Fastwrite: Off
  Tape Acceleration: Off
  TPPerf Option: Off
  IPSec: Enabled
  IPSec Key: '01234567890123456789012345678901'
  QoS Percentages: High 50%, Med 30%, Low 20%
  Remote WWN: Not Configured
  Local WWN: 10:00:00:05:1e:c3:f0:16
  Peer WWN: 00:00:00:00:00:00:00:00
  Circuit Count: 0
  Flags: 0x00000000
  FICON: Off

To display the FCIP tunnel hierarchy on the Brocade FX8-24:

```
switch:admin> portshow fciptunnel 1/12--hier
```

---

FCIP Tunnel 1/12
  High Level Tunnel Stats:
    Operational Status: Up
    Connected Count: 1
    Max Comm Rate: 2500000
    Compression Ratio: 1 : 1
    Compressed Bytes: 0
    Uncompressed Bytes: 0
    Bytes In: 68942140
    Bytes In Avg: 85
    Bytes Out: 30983544
    Bytes Out Avg: 16
    Packets In: 92126
    Packets In Avg: 0
    Packets Out: 70728
    Packets Out Avg: 0
    Aggregate TCP Stats:
portShow

<p>| TCP Bytes In: 842506236 | TCP Bytes Out: 1446465008 |
| TCP Packets In: 16072571 | TCP Packets Out: 16063156 |
| Retransmits: 0 | Longest RTT: 0 ms |
| Out Of Sequence: 0 | Slow Starts: 0 |
| Circuit Count: 2 | TCP Count: 24 |
| Circuits: |
| --&gt; Circuit 1/12.1 |
|   | High Level Circuit Stats: |
|   | Operational Status: Up |
|   | Connected Count: 1 |
|   | Max Comm Rate: 2500000 |
|   | Bytes In: 712 |
|   |   Bytes In Avg: 0 |
|   | Bytes Out: 700 |
|   |   Bytes Out Avg: 0 |
|   | Packets In: 4 |
|   |   Packets In Avg: 0 |
|   | Packets Out: 5 |
|   |   Packets Out Avg: 0 |
|   | Aggregate TCP Stats: |
|   |   TCP Bytes In: 68632640 |
|   |   TCP Bytes Out: 174210892 |
|   |   TCP Packets In: 2639463 |
|   |   TCP Packets Out: 2639467 |
|   |   Retransmits: 0 |
|   |   Longest RTT: 0 ms |
|   |   Out Of Sequence: 0 |
|   |   Slow Starts: 0 |
|   | TCP Count: 12 |
|   | TCP Connections: |
|   |   --&gt; TCP Conn 1/12.1:15240914 |
|   |   --&gt; TCP Conn 1/12.1:15240915 |
|   |   --&gt; TCP Conn 1/12.1:15240916 |
|   |   --&gt; TCP Conn 1/12.1:15241504 |
|   |   --&gt; TCP Conn 1/12.1:15241505 |
|   |   --&gt; TCP Conn 1/12.1:15241506 |
|   |   --&gt; TCP Conn 1/12.1:15241307 |
|   |   --&gt; TCP Conn 1/12.1:15241308 |
|   |   --&gt; TCP Conn 1/12.1:15241309 |
|   |   --&gt; TCP Conn 1/12.1:15241111 |
|   |   --&gt; TCP Conn 1/12.1:15241111 |
|   |   --&gt; TCP Conn 1/12.1:15241112 |
| --&gt; Circuit 1/12.0 |
|   | High Level Circuit Stats: |
|   | Operational Status: Up |
|   | Connected Count: 1 |
|   | Max Comm Rate: 2500000 |
|   | Bytes In: 68941428 |
|   |   Bytes In Avg: 82 |
|   | Bytes Out: 30982844 |
|   |   Bytes Out Avg: 11 |
|   | Packets In: 92122 |
|   |   Packets In Avg: 0 |
|   | Packets Out: 70723 |
|   |   Packets Out Avg: 0 |</p>
<table>
<thead>
<tr>
<th>Aggregate TCP Stats:</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP Bytes In: 773873596</td>
</tr>
<tr>
<td>TCP Bytes Out: 1272254116</td>
</tr>
<tr>
<td>TCP Packets In: 13433108</td>
</tr>
<tr>
<td>TCP Packets Out: 13423689</td>
</tr>
<tr>
<td>Retransmits: 0</td>
</tr>
<tr>
<td>Longest RTT: 0 ms</td>
</tr>
<tr>
<td>Out Of Sequence: 0</td>
</tr>
<tr>
<td>Slow Starts: 0</td>
</tr>
<tr>
<td>TCP Count: 12</td>
</tr>
<tr>
<td>TCP Connections:</td>
</tr>
<tr>
<td>--&gt; TCP Conn 1/12.0:15240899</td>
</tr>
<tr>
<td>--&gt; TCP Conn 1/12.0:15240900</td>
</tr>
<tr>
<td>--&gt; TCP Conn 1/12.0:15240901</td>
</tr>
<tr>
<td>--&gt; TCP Conn 1/12.0:15241489</td>
</tr>
<tr>
<td>--&gt; TCP Conn 1/12.0:15241490</td>
</tr>
<tr>
<td>--&gt; TCP Conn 1/12.0:15241491</td>
</tr>
<tr>
<td>--&gt; TCP Conn 1/12.0:15241292</td>
</tr>
<tr>
<td>--&gt; TCP Conn 1/12.0:15241293</td>
</tr>
<tr>
<td>--&gt; TCP Conn 1/12.0:15241294</td>
</tr>
<tr>
<td>--&gt; TCP Conn 1/12.0:15241096</td>
</tr>
<tr>
<td>--&gt; TCP Conn 1/12.0:15241097</td>
</tr>
</tbody>
</table>

To display a tunnel on a Brocade FX8-24 with automatic compression enabled:

```
switch:admin> portshow fciptunnel 1/21
Tunnel ID: 1/21
Tunnel Description:
 Admin Status: Enabled
 Oper Status: Up
 Compression: On (Auto-Mode)
 Fastwrite: Off
 Tape Acceleration: Off
 TPerf Option: Off
 IPSec: Disabled
 QoS Percentages: High 50%, Med 30%, Low 20%
 Remote WWN: Not Configured
 Local WWN: 10:00:00:05:1e:52:fe:00
 Peer WWN: 10:00:00:05:1e:39:a4:76
 Circuit Count: 2
 Flags: 0x00000000
 FICON: Off
```

To display a tunnel on a Brocade FX8-24 with automatic compression enabled in summary view (The "A" flag indicates Auto-Mode):

```
switch:admin> portshow fciptunnel 1/21 -s

Tunnel Circuit OpStatus Flags Uptime TxMBps RxMBps ConnCnt CommRt Met/G

1/21 - Up A------ 31m29s 0.00 0.00 2 - -/-
1/21 0 1/xge1 Up ---4--s 31m29s 0.00 0.00 2 2500/2500 0/-
1/21 1 1/xge0 Up ---4--s 31m29s 0.00 0.00 2 2500/2500 1/-

Flags: tunnel: c=compression m=moderate compression
portShow

To display a tunnel on a Brocade FX8-24 with IPSec enabled in legacy mode:

switch:admin> portshow fc iptunnel 1/12

To display a summary view of the FCIP tunnel and circuits showing then legacy flag for the tunnel:

switch:admin> portshow fc iptunnel 8/12 -s

To display a summary view of an FCIP tunnel and its circuits on the Brocade FX8-24 with the --perf option:

switch:admin> portshow fc iptunnel 7/12 --summary --perf
To display a summary view of the QoS configuration on FCIP tunnels and circuits on the Brocade FX8-24:

```
switch:admin> portshow fciptunnel 7/12 --summary --qos
```

```
Tunnel  Circuit Priority  Uptime    Tx Bps   Rx Bps TxPkts/s RxPkts/s
------- ---------------- ----------------- - -----------------------
1/22    -       -        2d23h10m   0.00     0.00    0.00     0.00
1/22    -       F-Class  2d23h10m   0.00     0.00    0.00     0.00
1/22    -       High     2d23h10m   0.00     0.00    0.00     0.00
1/22    -       Medium   2d23h10m   0.00     0.00    0.00     0.00
1/22    -       Low      2d23h10m   0.00     0.00    0.00     0.00
```

```
switch:admin> portshow fciptunnel 7/12 --summary --qos --circuit
```

```
Tunnel Circuit  Priority  Uptime  Tx Bps   Rx Bps TxPkts/s RxPkts/s
--------------------------------------------------------------------
1/22   -        -        2d23h11m    0.00    0.00    0.00     0.00
1/22   -        F-Class  2d23h11m    0.00    0.00    0.00     0.00
1/22   -        High     2d23h11m    0.00    0.00    0.00     0.00
1/22   -        Medium   2d23h11m    0.00    0.00    0.00     0.00
1/22   -        Low      2d23h11m    0.00    0.00    0.00     0.00
1/22   0 1/xge0 -        2d23h11m    0.00    0.00    0.00     0.00
1/22   0 1/xge0 F-Class  2d23h11m    0.00    0.00    0.00     0.00
1/22   0 1/xge0 Medium   2d23h11m    0.00    0.00    0.00     0.00
1/22   0 1/xge0 Low      2d23h11m    0.00    0.00    0.00     0.00
1/22   1 1/xge1 -        2d23h11m    0.00    0.00    0.00     0.00
1/22   1 1/xge1 F-Class  2d23h11m    0.00    0.00    0.00     0.00
1/22   1 1/xge1 High     2d23h11m    0.00    0.00    0.00     0.00
1/22   1 1/xge1 Medium   2d23h11m    0.00    0.00    0.00     0.00
1/22   1 1/xge1 Low      2d23h11m    0.00    0.00    0.00     0.00
```

To display the IP addresses configured for the circuits on the Brocade FX8-24:

```
switch:admin> portshow fciptunnel all --circuit --ip-address
```

```
Tunnel Circuit   Local IP Address               Remote IP Address
------------------------------------------------------------------
1/12   -         192.168.12.100                 192.168.12.200
1/12   0 1/xge0  192.168.12.101                 192.168.12.201
1/21   -         192.168.21.100                 192.168.21.200
1/21   0 1/xge0  192.168.21.101                 192.168.21.201
1/22   -         192.168.22.100                 192.168.22.200
1/22   0 1/xge0  192.168.22.101                 192.168.22.201
1/31   -         192.168.31.100                 192.168.31.200
1/31   0 1/xge0  192.168.31.101                 192.168.31.201
```

To display all FCIP circuits on the Brocade FX8-24:

```
switch:admin> portshow fcipcircuit all
```

```
Tunnel Circuit OpStatus Flags  Uptime TxMBps RxMBps ConnCnt CommRt Met/G
------------------------------------------------------------------------
1/12 0 1/xge1 Up ---4--s 3d2m 000 0.00 1 2500/2500 0/-
```
To display the details for all FCIP circuits on the Brocade FX8-24 (Note that both circuits are configured as initiators):

```
switch:admin> portshow fcipcircuit all --detail
```

<table>
<thead>
<tr>
<th>Circuit ID</th>
<th>Circuit Num</th>
<th>Admin Status</th>
<th>Oper Status</th>
<th>Connection Type</th>
<th>Remote IP</th>
<th>Local IP</th>
<th>Metric</th>
<th>Failover Group ID</th>
<th>Min Comm Rt</th>
<th>Max Comm Rt</th>
<th>SACK</th>
<th>Min Retrans Time</th>
<th>Max Retransmits</th>
<th>Keepalive Timeout</th>
<th>Path MTU Disc</th>
<th>VLAN ID</th>
<th>L2CoS</th>
<th>DSCP</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/12.0</td>
<td>0</td>
<td>Enabled</td>
<td>Up</td>
<td>Initiator</td>
<td>192.168.12.100</td>
<td>192.168.12.100</td>
<td>0</td>
<td>(Not Config/Active)</td>
<td>25000000</td>
<td>25000000</td>
<td>On</td>
<td>100</td>
<td>8</td>
<td>10000</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0x00</td>
</tr>
<tr>
<td>1/12.1</td>
<td>1</td>
<td>Enabled</td>
<td>Up</td>
<td>Initiator</td>
<td>192.168.12.101</td>
<td>192.168.12.101</td>
<td>1</td>
<td>(Not Config/Active)</td>
<td>25000000</td>
<td>25000000</td>
<td>On</td>
<td>100</td>
<td>8</td>
<td>10000</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0x00</td>
</tr>
</tbody>
</table>
Flags: 0x00000000

Circuit ID: 1/21.0
Circuit Num: 0
Admin Status: Enabled
(Output truncated)

To display a single circuit (circuit 0 on tunnel 16) with VLAN tagging configuration:

switch:admin> portshow fcipcircuit 16 0

Circuit ID: 16.0
Circuit Num: 0
Admin Status: Enabled
Oper Status: In Progress
Connection Type: Default
Remote IP: 192.168.2.20
Local IP: 192.168.2.10
Metric: 0
Failover Group ID: (Not Config/Active)
Min Comm Rt: 25000000
Max Comm Rt: 25000000
SACK: On
Min Retrans Time: 100
Max Retransmits: 8
Keepalive Timeout: 10000
Path MTU Disc: 0
VLAN ID: 300
L2CoS: F: 7 H: 5 M: 3 L: 1
DSCP: F: 0 H: 0 M: 0 L: 0
Flags: 0x00000000

To display additional performance parameters for a circuit:

switch:admin> portshow fcipcircuit 1/12 0 --perf

Tunnel ID: 1/12
Tunnel Description:
Admin Status: Enabled
Oper Status: Up
Compression: Off
Fastwrite: Off
Tape Acceleration: Off
TPerc Option: Off
IPSec: Disabled
QoS Percentages: High 50%, Med 30%, Low 20%
Remote WWN: Not Configured
Local WWN: 10:00:00:05:1e:52:fe:00
Peer WWN: 10:00:00:05:1e:39:a4:76
Circuit Count: 2
Flaggs: 0x00000000
FICON: Off
Oper Status: Up
Flow Ctrl State: Off
Connected Count: 1
Tunnel Duration: 3 days, 19 hours, 54 minutes, 5 seconds
Compression Statistics:
 0 Uncompressed Bytes
 0 Compressed Bytes
 1.00 : 1 Compression Ratio
To display QoS prioritization for the default circuit:

```bash
switch:admin> portshow fcipcircuit 1/12 0 --perf --qos
```

Circuit ID: 1/12.0
- Circuit Num: 0
- Admin Status: Enabled
- Oper Status: Up
- Connection Type: Default
- Local IP: 192.168.12.100
- Metric: 0
- Failover Group ID: (Not Config/Active)
- Min Comm Rt: 2500000
- Max Comm Rt: 2500000
- SACK: On
- Min Retrans Time: 100
- Max Retransmits: 8
- Keepalive Timeout: 10000
- Path MTU Disc: 0
- VLAN ID: (Not Configured)
- L2Cos: (VLAN Not Configured)
- DSCP: F: 0 H: 0 M: 0 L: 0
- Flags: 0x00000000
- Flow Ctrl State: Off
- Connected Count: 1
- Circuit Duration: 3 days, 19 hours, 57 minutes, 42 seconds

Performance Statistics - Priority: F-Class
- Oper Status: Up
- Flow Ctrl State: Off
- Connected Count: 1
- Duration: 3 days, 19 hours, 57 minutes, 42 seconds
- 4732308 Output Bytes
- 0 pkt/s 30s Avg, 14 Bps Lifetime Avg
- 41359 Output Packets
- 0 pkt/s 30s Avg, 0 pkt/s Lifetime Avg
- 7223112 Input Bytes
- 27 Bps 30s Avg, 21 Bps Lifetime Avg
- 45277 Input Packets
- 0 pkt/s 30s Avg, 0 pkt/s Lifetime Avg
- TCP Stats:
portShow

318824216 Output Bytes
3419555 Output Packets
184935644 Input Bytes
3419605 Input Packets
Retransmits: 0
Round Trip Time: 0 ms
Out Of Order: 0
Slow Starts: 0

Performance Statistics - Priority: High
Oper Status: Up
Flow Ctrl State: Off
Connected Count: 1
Duration: 3 days, 19 hours, 57 minutes, 41 seconds
0 Output Bytes
 0 Bps 30s Avg, 0 Bps Lifetime Avg
0 Output Packets
 0 pkt/s 30s Avg, 0 pkt/s Lifetime Avg
0 Input Bytes
 0 Bps 30s Avg, 0 Bps Lifetime Avg
0 Input Packets
 0 pkt/s 30s Avg, 0 pkt/s Lifetime Avg
TCP Stats:
 308550696 Output Bytes
 3310618 Output Packets
 176126080 Input Bytes
 3310620 Input Packets
 Retransmits: 0
 Round Trip Time: 0 ms
 Out Of Order: 0
 Slow Starts: 0

Performance Statistics - Priority: Medium
Oper Status: Up
Flow Ctrl State: Off
Connected Count: 1
Duration: 3 days, 19 hours, 57 minutes, 43 seconds
26358236 Output Bytes
 17 Bps 30s Avg, 79 Bps Lifetime Avg
29611 Output Packets
 0 pkt/s 30s Avg, 0 pkt/s Lifetime Avg
61983140 Input Bytes
 298 Bps 30s Avg, 187 Bps Lifetime Avg
47166 Input Packets
 0 pkt/s 30s Avg, 0 pkt/s Lifetime Avg
TCP Stats:
 340704236 Output Bytes
 3429074 Output Packets
 239375444 Input Bytes
 3438474 Input Packets
 Retransmits: 0
 Round Trip Time: 0 ms
 Out Of Order: 0
 Slow Starts: 0

Performance Statistics - Priority: Low
Oper Status: Up
Flow Ctrl State: Off
Connected Count: 1
Duration: 3 days, 19 hours, 57 minutes, 42 seconds
0 Output Bytes
 0 Bps 30s Avg, 0 Bps Lifetime Avg
0 Output Packets
To display the inband management interface for all GbE Ports on a Brocade 7800:

```
switch:admin> portshow mgmtif all

Inband Management: ge0 Enabled
Interface IPv4 Address    NetMask         Effective MTU  Flags
--------------------------------------------------------------
0     20.20.0.151     255.255.255.0   1500

Inband Management: ge1 Enabled
Interface IPv4 Address    NetMask         Effective MTU  Flags
--------------------------------------------------------------
0     20.20.1.151     255.255.255.0   1500

Inband Management: ge2 Enabled
Interface IPv4 Address    NetMask         Effective MTU  Flags
--------------------------------------------------------------
0     20.20.2.151     255.255.255.0   1500

Flags: U=Up B=Broadcast D=Debug L=Loopback P=Point2Point R=Running
N=NoArp PR=Promisc M=Multicast S=StaticArp LU=LinkUp
```

To display the inband management interface for a single GbE Port on a Brocade 7800:

```
switch:admin> portshow mgmtif ge0

Inband Management: ge0 Enabled
Interface IPv4 Address    NetMask         Effective MTU  Flags
--------------------------------------------------------------
0     20.20.0.151     255.255.255.0   1500

Flags: U=Up B=Broadcast D=Debug L=Loopback P=Point2Point R=Running
N=NoArp PR=Promisc M=Multicast S=StaticArp LU=LinkUp
```

To display the IP routes for all management interfaces on a Brocade 7800:

```
switch:admin> portshow mgmtroute all

Inband Management Routes:
Port: ge0
IP Address    Mask    Gateway    Metric    Flags
--------------------------------------------------------------
20.20.0.0.0  255.255.255.0    *    0    U
```
Port: ge1
IP Address Mask Gateway Metric Flags

192.168.1.0 255.255.255.0 20.20.1.250 0 U G
20.20.1.0 255.255.255.0 * 0 U

Port: ge2
IP Address Mask Gateway Metric Flags

20.20.2.0 255.255.255.0 * 0 U

Flags: U=Usable G=Gateway H=Host C=Created(Interface) S=Static
L=LinkLayer(Arp)

To display the route for a single management interface on a Brocade 7800:

switch:admin> portshow mgmtroute ge1
Inband Management Routes:
Port: ge1
IP Address Mask Gateway Metric Flags

192.168.1.0 255.255.255.0 20.20.1.250 0 U G
20.20.1.0 255.255.255.0 * 0 U

Flags: U=Usable G=Gateway H=Host C=Created(Interface) S=Static
L=LinkLayer(Arp)

To display FCP emulation statistics using the command with two levels and a single command:

switch:admin> portshow xtun 1/13 -fcp -itl -itn -stats

To display FCP emulation statistics, information, and configuration information using the command with a single level and three commands:
switch:admin> portshow xtun 1/13 -fcp -itl -stats \ -info -cfg

To display FICON statistics on the Brocade 7800:

switch:admin> portshow xtun 16 -ficon -stats

FICON FCIP Tunnel Statistics:
STATISTICS (decimal Emulation Common Statistical Counts (decimal)
===
TotalIngressFrames = 12280588298
TotalEgressFrames = 6131098914
TotalFCEgressFrames = 1119802559
TotalCmds = 994174108
TotalEmulDvcLvlAcks = 5382
TotalEmulatedOps = 393653297
MaxRetryQueueDepth = 1201 MaxEgressQueueDepth = 3249
TotalCUBusyResponses = 0 TotalCUEndResponses = 0
TotalEmulatedCUBusys = 0 TotalEmulCUEnd = 0
TotalSelectiveResets = 0 TotalChLinkBusy = 0
TotalCancels = 0 TotalAborts = 0
TotalEmulErrors = 0 TotalCuLinkBusy = 0
TotalPurgePaths = 0 Xport LRC CheckErrors= 0
Generated Link Busys = 70 Failed Generate Frame = 0
WIRE Buffer Percentages
LocalFree= 95 LocalLow= 93
PeerFree= 95 PeerLow=93

XBAR Buffer Percentages
LocalFree= 98 LocalLow= 97
PeerFree= 98 PeerLow=97

FICON Configuration Status:

FICON Host side Paths = 0 Device Side Paths= 1
FICON LPARS Connected = 2 Curr LCUs = 5 Total Devices= 65
Current Egress Q Count= 0 RetryQCnt = 0
Current Free Headers = 32712 HdrsInUse = 0
Active Emulation Count= 4

XRC Emulation Statistical Counts (decimal)

Total Emulated RT Accepted Status = 458399
Total Emulated RRS Chains = 1475797
Total Emulated RRS Commands = 1475797
Total Received RRS Bytes = 59031880
Total XRC RRS Requests in Bytes = 86871314608
Average RRS Request BlkSize = 40
Average RRS Requests per Chain = 1
Largest RRS Request Byte Count = 58864
Ratio of RRS Read Bytes to the
Requested Read bytes = 0 read : 1000 requested

Tape Write Emulation Statistical Counts (decimal)

Current Bytes in write pipe = 0
Maximum Bytes in write pipe = 0
Largest write chain processed = 4128769
Total number of emulated Write Bytes= 9005990808925
Number of emulated Write Chains = 113180437
Total number of emulated Write CCWs = 272902411
Average Emulated Writes Blocksize = 33000
Average Writes in Emulated Chains = 2
Write emulation slowdowns = 0
Slowdowns at Start of Chain = 0
Slowdowns at End of chain = 0
Single Chain Emulation Counter = 0
Write Paced Count = 0
Current Host side Write FDCB Count = 0
Max Concurrent Write FDCB Count = 0
Current Write Limited FDCB Count = 0

Tape Read Emulation Statistical Counts (decimal)

Total number of emulated Read Bytes = 9724178015167
Total number of emulated Read Chains= 280472860
Total number of emulated Read CCWs = 291325165
Average Emulated Bytes per chain = 34670
Average Emulated Read Blocksize = 33379
Average CCWs in Emulated Chains = 1
Read Block Paced Count = 0
Read Channel Program Paced Count = 0
Read Not Ready Situations Count = 1
Current Read FDCBs Count = 0
Max Concurrent Read FDCB Count = 0
Current Read Limited FDCB Count = 0
To display the FICON Device Path Blocks:

```
switch:admin> portshow xtun 23 -ficon -fdpb
```

```
FDPB (FICON Device Path Block - one per path) Count = 4

<table>
<thead>
<tr>
<th>(0x)</th>
<th>Side Path:</th>
<th>Emul Type Tag</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>041004E000</td>
<td>H</td>
<td>0x1763016401******</td>
<td>Yes</td>
</tr>
<tr>
<td>flg=10</td>
<td>parms=2001F0</td>
<td>typ=002086</td>
<td>mod=A04 mfg=IBM plnt=02</td>
</tr>
<tr>
<td>0410062880</td>
<td>H</td>
<td>0x17630164FE******</td>
<td>No</td>
</tr>
<tr>
<td>flg=10</td>
<td>parms=2001F2</td>
<td>typ=002086</td>
<td>mod=A04 mfg=IBM plnt=02</td>
</tr>
<tr>
<td>0410084000</td>
<td>H</td>
<td>0x176308640E******</td>
<td>Yes</td>
</tr>
<tr>
<td>flg=10</td>
<td>parms=2001F2</td>
<td>typ=002086</td>
<td>mod=A04 mfg=IBM plnt=02</td>
</tr>
</tbody>
</table>
```

```
EgrOx IngOx Valid VTN
  ===== ===== ===== ===
  0     1   Y     1
  sq=0000000E77DF tg=80F0
  0     0   Y     1
  sq=0000000E77DF tg=80F2
  1     1   Y     1
  sq=0000000E77DF tg=80F2
(Output split)
```

To display the FICON Channel Blocks (all blocks and a specified block):

```
switch:admin> portshow xtun 16 -ficon -fchb 041055B680
```

```
FCHB (FICON CHannel Block - one per LPAR) Count = 1

<table>
<thead>
<tr>
<th>(0x)</th>
<th>Side Path:</th>
<th>CU Count</th>
<th>Emul ChTIN CuTIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>041055B680</td>
<td>D</td>
<td>0x106301640106****</td>
<td>0x0004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x0000</td>
<td>0x0000</td>
</tr>
</tbody>
</table>
```

```
FCHB Flags:

tinInProgress=N  emuTinAckPending=N  emuTinInProgress=N
emuTirAckPending=N  emuTinLackPending=N  emuTirPending=N
emuTirReceived=N  emuTirFinalAckPend=N  emuTirPending=N
emuTinSuccessful=N  emuTinReceived=N  emuTirSent=N
fcrPresent=N  fchbValid=Y
```

```
FCHB Control variables:
tinOrigOxid=0xFFFF  tinOrigOxid=0xFFFF  tinAckRxid=0xFFFF
tinAckOrigOxid=0xFFFF  allocChOxid=0xFFFF  allocChOIdx=0x0000
tinTirOxid=0xFFFF
```

```
(Output split)
```
To display FICON FCUB information (FICON Images accessed through the tunnel)

```
switch:admin> portshow xtun 23 -ficon -fcub
```

FCUB (FICON Control Unit Block) Count = 29

```
FC Egress parms:
(0x) Side Path: devRange DevCnt Model \ 
============= ==== ================== ========  ====  ===== \ 
0410083800 H 0x17630164010604** 00-0F 0x10 3490 \ 
0410047500 H 0x17630164010605** 00-0F 0x10 3490 \ 
0410048E80 H 0x17630164010606** 00-0F 0x10 3490 \ 
0410049700 H 0x17630164010607** 00-0F 0x10 3490 \ 
0410054000 H 0x17630164010004** - 0x00 0000 \ 
041006B100 H 0x17630864030600** - 0x7F 0x80 3990 \ 
041006C000 H 0x17630864030601** - 0x7F 0x80 3990 \ 
04100A4000 H 0x17630864030000** - 0x00 0000 \ 
04100B2000 H 0x176308640E0600** - 0x00 0000 \ 
04100B3100 H 0x176308640E0601** - 0x00 0000 \ 
04100B7880 H 0x176308640E0602** - 0x00 0000 \ 
04100B7880 H 0x176308640E0603** - 0x00 0000 \ 
04100B7880 H 0x176308640E0604** - 0x00 0000 \ 
04100B7880 H 0x176308640E0605** - 0x00 0000 \ 
041007A000 H 0x176308640E0606** - 0x00 0000 \ 
```

```
FC Egress parms:
Type LPE BL CHPID Tag V Ve P B P VC EGID
==== === == ===== ========== = == = = = == ====
TAPE Yes 00F0 0x15698E1E Y Y 2 0 1 0 02 000D
TAPE Yes 00F0 0x15B5E15F Y Y 2 0 2 0 02 000D
TAPE Yes 00F0 0x15D1509C Y Y 2 0 4 0 02 000D
TAPE Yes 00F0 0x150D3FDD Y Y 2 0 2 0 02 000D
UNKN No 00F0 0x15CDB71F Y Y 2 0 1 0 02 000D
DISK Yes 00F2 0x1538206F Y Y 2 0 4 0 02 0007
DISK Yes 00F2 0x15E44F2E Y Y 2 0 1 0 02 0007
UNKN No 00F2 0x159C196E Y Y 2 0 3 0 02 0007
UNKN No 00F2 0x152D3BA3 Y Y 2 0 3 0 02 0007
UNKN No 00F2 0x15F154E2 Y Y 2 0 4 0 02 0007
UNKN No 00F2 0x1595E521 Y Y 2 0 4 0 02 0007
UNKN No 00F2 0x155C86A7 Y Y 2 0 1 0 02 0007
UNKN No 00F2 0x1580E986 Y Y 2 0 1 0 02 0007
UNKN No 00F2 0x15E45825 Y Y 2 0 3 0 02 0007
```

(output split and truncated)

To reset the Device Path Block statistics:

```
switch:admin> portshow xtun 16 -ficon -fdpb -clear
```

To display a FICON Teradata, Tape, or XRC emulation statistics for a specified Device Control Block:

```
switch:admin> portshow xtun 16 -ficon -fdcb 0x041008B980
FDCB (FICON Device Control Block):Port=10 Side=Host Active=No
```

```
FDCB
(0x) hDom hPrt dDom dPrt lch lcu dev state
==================== === === === === === === === =====
0x041008B980 63 04 64 02 02 08 03 0x00
```
CONTROL
=======
active = No Send_SYR = No crrSet = No
xrcEstablished = No sssSet = No dvcAckEmulInProg = No
discardIgrFrames= No resetEmulPending = No interceptLack = No
interceptLack2 = No onStartPendingQueue= No discardEgrFrames = No
deferDeviceType = No emulBaAcceptPending= No mappingOxid = No
xrcEmulEnable = Yes tapeWriteEmulEnable= Yes tapeReadEmulEnabled= Yes
dvcAckEmulEnable= Yes tapeReadEmulEnable= Yes tapeWriteEmulEnabled= Yes
dvcAckEmulEnable= Yes fdcbLocked = Yes vtnValid = Yes
fcrPresent = No deviceNotInstalled = No onCuBusyQueue = No
egressParmsSet = Yes statusFlags = 0x4000

QUEUE COUNTS
==============
fcEgressQueue = 0 egressQMax = 0
ficonRetryQueue = 0 retryQMax = 0
cmdHdrQueue = 0 cmdHdrQMax = 32

MISC (hex)
==========
state = 0x00 prevState = 0x18 lastStateArray= 0x1C371415
statusFlags = 0x4000
errorCode = 0x00 ingressOxid = 0xFFFF
egressOxid = 0xFFFF allocatedOxid= 0xFFFF unsolIngrOxid = 0xFFFF
lastStatus = 0x0C lastCmd = 0x00 tokenFlags = 0x00
token = 0x00000000 endingChOxid = 0xFFFF
emulDvcAckSeqs= 0x00000003 lastEvtFromCu= 0x00 priorEvtFrmCu = 0x85
abortOxid = 0xFFFF fdcbWorkSched = 0
deviceType = 0x54455241

EMUL_HDR (hex)
==============
funct = 0x00 msg = 0x00
parm1 = 0x00 parm2 = 0x00000000

STATS (dec)
===========
cmdCount = 274865
emulatedOps = 274565 resequencedIuCount = 0
cancelCount = 0 selectiveResetCount = 1
purgePathCount = 0 abortCount = 0
normStatus = 274408 attnStatus = 0
attnBusyStatus = 0 ceStatus = 0
deStatus = 0 retryStatus = 0
immRetryStatus = 0 devBusyStatus = 0
cuBusyStatus = 0 ceDeUxStatus = 1
deUxStatus = 0 pendDeStatus = 0
deUcStatus = 0 unusualStatus = 0
chLinkBusyCount = 1 cuLinkBusyCount = 0
unusualStsArray = 0x00000000
pGb = 0x0000000000 tag = 0x0285CF9E
senseDeviceType = 0xFF30884000000000
ingressFrameCount= 0x0000000000011ADCE
portShow

egressFrameCount = 0x0000000000000432AB

TERADATA CONTROL
+++++++++++++++ writeSuspendFlag = OFF finalStatusPndg = OFF waitCuRsp = OFF
++ cuBusyRsp = OFF suspendCompleted = OFF retransPending = OFF
++ synStatusSent = OFF unitCheckPndg = OFF unansweredExchg = OFF
++ queuedCntlFrame = OFF controlFunctAct = OFF controlFunctDon = OFF
++ unitChkPresented = OFF senseDataSaved = OFF ssnDataPresente = OFF
++ waitingForSenseData = OFF lackOwed = OFF retransLbySent = OFF
++ readEmulAct = OFF writeEmulAct = OFF iuPacingNeeded = ON

TERADATA MISC
============
writeTrigger = 0x00000000 readBlkTrigger = 0x0000
teraDhEndCount = 0x0 teraEsCount = 0x0000
maxWritePipe = 0x0000 maxReadPipe = 0x0000
teraCmdCode = 0x64 teraStatus = 0x0d
emulTeraWriteOps = 0x00043085 emulTeraReadOps = 0x00000000
emulTeraWrtBytes = 0x00000001679cb8b0 emulTeraReadBytes = 0x0000000000000000
emulTeraWriteCcws = 0x00043085 emulTeraReadCcws = 0x00000000
multiUnitCheckCnt = 0x00000000 currentWriteChain = 160
largestWriteChain = 43936
bytesInWritePipe = 0 atMaxWrtBytesCount = 0

IU Pacing Values:
crrsIssued = 0 creditsOutstanding = 0 currentCreditBurst = 0

Historic Emulation Headers:
==========================
current index = 1
ToPeerEmulHdr[0]=funct=2:msg=1:p1=0x0000:p2=0x0000:p3=0x0285cf9e
ToPeerEmulHdr[1]=funct=2:msg=7:p1=0x0000:p2=0x3085:p3=0x00000000
ToPeerEmulHdr[2]=funct=2:msg=7:p1=0x0000:p2=0x3085:p3=0x00000000
ToPeerEmulHdr[3]=funct=2:msg=18:p1=0x0000:p2=0x3085:p3=0x00000000
current index = 0
FromPeerEmulHdr[0]=funct=2:msg=15:p1=0x0000:p2=0x03066:p3=0x00000003
FromPeerEmulHdr[1]=funct=7:msg=8:p1=0x0000:p2=0x0062:p3=0x00000000
FromPeerEmulHdr[2]=funct=7:msg=6:p1=0x0000:p2=0x0000:p3=0x00000000
FromPeerEmulHdr[3]=funct=7:msg=8:p1=0x0000:p2=0x0062:p3=0x00000000
convIngressOxid = 0xffff convIngressOxid = 0xffff
timedOps = 0x000043066

TERA IO TIMING:
===============
last elapsedTime = 0.397
maxElapsedTime = 0.504
totalTime = 145.132
longIOtimes = 0x0000005D
startOfChainDelayCnt= 0x0000 endOfChainDelayCnt = 0x5B
readPacedCount = 0x0000 writePacedCount = 0x0000

Ave Chain SIO time = 0.000 seconds

ReadPipe Cntls:
===============
readBlkEmulation=OFF entireCP=OFF waitForAccept=OFF
endOfCP=OFF commandRetry=OFF goToIdleState=OFF
To display FICON emulation statistics on the Brocade 7800 (as the following examples show, this command can display emulation statistics for Teradata, Tape, XRC, and Printer depending on the FICON devices and FICON Emulation Features that are enabled on the tunnel.):

```
switch:admin> portshow xtun 16 -ficon -emultera
TERA EMULATION STATS
+-----------------------+-------+-----------------+------------------------+----------+----------+----------+------------+
|  FDCB_Ptr  |     Path       |H|State|Emul|Emul|Rtry| Emulated  |
|   (0x)     |     (0x)       |D|     |Pipe|Q'd | Qd | Tera Ops  |
+-----------------------+-------+-----------------+------------------------+----------+----------+----------+------------+
|0x041008B980|1063046402020803|H| 0x00| N/A|0000|0000|     274565|
|0x041009F880|106304640202080A|H| 0x40|0x20|00A2|0000|     239301|
+-----------------------+-------+-----------------+------------------------+----------+----------+----------+------------+

Emulated |RdAvg |Emulated  |WtAvg |
Read CCWs | Size |Write CCWs| Size |
+----------+------+----------+------+
| 0|     0| 274565| 21974|
| 239301| 19152|0|     0|
+----------+------+----------+------+
(Output split and truncated)

switch:admin> portshow xtun 23 -ficon -emultape
TAPE EMULATION STATS
+-----------------------+-------+-----------------+------------------------+----------+----------+----------+------------+
|  FDCB_Ptr  |     Path       |H|State|Emul|Emul|Rtry| Emulated  |
|   (0x)     |     (0x)       |D|     |Pipe|Q'd | Qd | Tape Ops  |
+-----------------------+-------+-----------------+------------------------+----------+----------+----------+------------+
|0x0410035B80|1763016401060400|H| 0x00| N/A|0000|0000|    1600736|
|0x041004FB80|1763016401060401|H| 0x00| N/A|0000|0000|    1289333|
|0x0410051B80|1763016401060402|H| 0x00| N/A|0000|0000|    1676656|
|0x0410053B80|1763016401060403|H| 0x00| N/A|0000|0000|    1415437|
|0x0410055B80|1763016401060404|H| 0x00| N/A|0000|0000|    1091518|
[...]

Emulated |RdAvg |Emulated  |WtAvg |
Read CCWs | Size |Write CCWs| Size |
+----------+------+----------+------+
| 2009759| 35349| 2623717| 37496|
| 2219436| 36556| 2095033| 35679|
| 2468974| 37978| 2031144| 35180|
| 1980115| 36013| 2323892| 36152|
| 2223665| 37441| 2123746| 34138|
[...]
(Output split and truncated)
To display FICON emulation statistics for the FCIP tunnel:

```
switch:admin> portshow xtun 23 -ficon -stats
FICON FCIP Tunnel=7 Statistics:
Emulation Common Statistical Counts (decimal)
==
TotalIngressFrames = 1824707656
TotalEgressFrames = 1665499614
TotalFCEgressFrames = 136476952
TotalCmds = 152548501
TotalEmulDvcLvlAcks = 81667
TotalEmulatedOps = 23893981
Idle Accepted Status = 8000016
Idle Not Accpt Status = 11886003
MaxRetryQueueDepth = 0 MaxEgressQueueDepth = 2316
TotalCUBusyResponses = 0 TotalCUEndResponses = 0
TotalEmulatedCUBusy = 0 TotalEmulCUEnd = 0
TotalSelectiveResets = 0 TotalChLinkBusy = 0
TotalCancels = 0 TotalAborts = 0
```
portShow

TotalEmulErrors = 0
TotalPurgePaths = 0
Generated Link Busys = 0
Xport LRC CheckErrors = 0
Failed Generate Frame = 0

TotalCuLinkBusy = 0
TotalEmulErrors = 0
TotalPurgePaths = 0
Xport LRC CheckErrors = 0
Generated Link Busys = 0

WIRE Buffer Percentages
LocalFree = 95
LocalLow = 94
PeerFree = 95
PeerLow = 93

XBAR Buffer Percentages
LocalFree = 98
LocalLow = 97
PeerFree = 98
PeerLow = 97

FICON Configuration Status:
-------------------------------------------------------------------
FICON Host side Paths = 3
Device Side Paths = 1
FICON LPARS Connected = 5
Curr LCUs = 17
Total Devices = 200
Current Egress Q Count = 0
RetryQCnt = 0
Current Free Headers = 892
HdrsInUse = 0
Active Emulation Count = 4

XRC Emulation Statistical Counts (decimal)
-------------------------------------------------------------------
Total Emulated RRS Chains = 1950996
Total Emulated RRS Commands = 18732495
Total Received RRS Bytes = 145156149548
Total XRC RRS Requests in Bytes = 315684784416
Average RRS Request BlkSize = 7748
Average RRS Requests per Chain = 9
Largest RRS Request Byte Count = 12714240
Ratio of RRS Read Bytes to the Requested Read bytes = 459 read : 1000 requested

Tape Write Emulation Statistical Counts (decimal)
-------------------------------------------------------------------
Current Bytes in write pipe = 0
Maximum Bytes in write pipe = 21359520
Largest write chain processed = 4128769
Total number of emulated Write Bytes = 1374007085422
Number of emulated Write Chains = 11665734
Total number of emulated Write CCWs = 39204146
Average Emulated Writes Blocksize = 35047
Average Writes in Emulated Chains = 3
Write emulation slowdowns = 138931
Slowdowns at Start of chain = 83938
Slowdowns at End of chain = 54993
Current Host side Write FDCB Count = 4
Max Concurrent Write FDCB Count = 16
Current Write Limited FDCB Count = 0

Tape Read Emulation Statistical Counts (decimal)
-------------------------------------------------------------------
Total number of emulated Read Bytes = 1299985900584
Total number of emulated Read Chains = 10277251
Total number of emulated Read CCWs = 35565516
Average Emulated Bytes per chain = 126491
Average Emulated Read Blocksize = 36551
Average CCWs in Emulated Chains = 3
Current Read FDCBs Count = 0
Max Concurrent Read FDCB Count = 16
Current Read Limited FDCB Count = 0

Tera Write Emulation Statistical Counts (decimal)
-------------------------------------------------------------------
Current Bytes in write pipe = 0
Maximum Bytes in write pipe = 1405952
Largest write chain processed = 43936
Total number of emulated Write Bytes = 19204226768
Number of emulated Write Chains = 989882
Total number of emulated Write CCWs = 989882
Average Emulated Writes Blocksize = 19400
Average Writes in Emulated Chains = 1
Write emulation slowdowns = 114
Slowdowns at Start of Chain = 0
Slowdowns at End of chain = 114
Single Chain Emulation Counter = 0
Write Paced Count = 0
Current Host side Write FDCB Count = 1
Max Concurrent Write FDCB Count = 1
Current Write Limited FDCB Count = 0

Tera Read Emulation Statistical Counts (decimal)
--------------------------------------------------
Total number of emulated Read Bytes = 17688908128
Total number of emulated Read Chains = 825572
Total number of emulated Read CCWs = 825572
Average Emulated Bytes per chain = 21426
Average Emulated Read Blocksize = 21426
Average CCWs in Emulated Chains = 1
Read Block Paced Count = 0
Read Not Ready Situations Count = 0
Current Read FDCBs Count = 1
Max Concurrent Read FDCB Count = 1
Current Read Limited FDCB Count = 1

Printer Write Emulation Statistical Counts (decimal)
-----------------------------------------------------------
Current Bytes in write pipe = 0
Maximum Bytes in write pipe = 45627
Largest write chain processed = 9150
Total number of emulated Write Bytes = 27375500
Number of emulated Write Chains = 3500
Total number of emulated Write CCWs = 6500
Average Emulated Writes Blocksize = 4211
Average Writes in Emulated Chains = 1
Current Host side Write FDCB Count = 1
Max Concurrent Write FDCB Count = 1
Current Write Limited FDCB Count = 1

FICON Debug Flags (ftrace and others) = 0xffc98030 (Default = 0xf7c90000)
--------------------------------------------------------------------------
Bit 31 [0x80000000] = 1 : TRIGGER_ON_SELRESET
Bit 30 [0x40000000] = 1 : TRIGGER_ON_PURGEPATH
Bit 29 [0x20000000] = 1 : TRIGGER_ON_RRS_MISS
Bit 28 [0x10000000] = 1 : TRIGGER_ON_LRJ
Bit 27 [0x08000000] = 1 : TRIGGER_ON_UNIT_CHECK
Bit 26 [0x04000000] = 1 : TRIGGER_ON_LOOKUP_FAIL
Bit 25 [0x02000000] = 1 : TRIGGER_ON_FDCB_ABORT
Bit 24 [0x01000000] = 1 : TRIGGER_ON_NOFDCB_ABORT
Bit 23 [0x00800000] = 1 : TRIGGER_ON_LINKDOWN
Bit 22 [0x00400000] = 1 : TRIGGER_ON_SENSE_CMD
Bit 21 [0x00200000] = 0 : TRIGGER_ON_BUSYATTN
Bit 20 [0x00100000] = 0 : TRIGGER_ON_XRCUNS
To display FICON Teradata Read and Write performance data:

```
switch:admin> portshow xtun 16 -ficon -teraperf
Tera Performance Monitor Data:
===============================
Sample Time Period in ms: 4318

Tera Write Performance Data:

Emulated Chains per sec: 1186
Emulated CCWs per sec: 1186
Ave Write Block Size: 22617
Emulated Write BPS: 26831514

Tera Read Performance Data:

Emulated Chains per sec: 1069
Emulated CCWs per sec: 1069
Ave Read Block Size: 10780
Emulated Read BPS: 11531104
```

To display FICON Printer performance data:

```
switch:admin> portshow xtun 23 -ficon -printperf
Printer Performance Monitor Data:
===================================
Sample Time Period in ms: 7460

No Emulated Printer operations

No Emulated Read operations
```

To display FICON tape performance data:

```
switch:admin> portshow xtun 23 -ficon -tapeperf
Tape Performance Monitor Data:
================================
Sample Time Period in ms: 2461
Tape Write Performance Data:

Emulated Chains per sec: 480
```
Emulated CCWs per sec: 3069
Ave Write Block Size: 32760
Emulated Write BPS: 100540440

No Emulated Read operations

To display FICON XRC performance data:

switch:admin> portshow xtun 23 -ficon -xrcperf

XRC Performance Monitor Data:
============================
Sample Time Period in ms: 11340
Emulated Chains per sec: 16
Emulated RRS Cmnds per sec: 16
Emulated RRS Bytes per sec: 640
Average RRS Update Size: 40

SEE ALSO authUtil, portCfg, portLoginShow, portCfgLongDistance, switchShow
portStats64Show

Displays the 64-bit hardware statistics for a port.

**SYNOPSIS**

```bash
portstats64show [slot[/]port [-long]]
```

**DESCRIPTION**

Use this command to display 64-bit hardware statistics for a specified port. When used without the `-long` option, two integers are reported for most values, the lower and upper 32-bits are reported as two separate numbers. In this case, the top word is the most significant. When issued with the `-long` option, the command displays the counters as one single 64-bit number.

- **stat64_wtx**: Number of 4-byte words transmitted.
- **stat64_wrx**: Number of 4-byte words received.
- **stat64_ftx**: Number of frames transmitted.
- **stat64_frx**: Number of frames received.
- **stat64_c2_frx**: Number of class 2 frames received.
- **stat64_c3_frx**: Number of class 3 frames received.
- **stat64_lc_rx**: Number of link control frames received.
- **stat64_mc_rx**: Number of multicast frames received.
- **stat64_mc_to**: Number of multicast timeouts.
- **stat64_mc_tx**: Number of multicast frames transmitted.
- **tim64_rdy_pri**: Number of times R_RDY was high priority.
- **tim64_txcrd_z**: Number of times that the TX BB_credit was at zero.
- **er64_enc_in**: Number of encoding errors inside of frames.
- **er64_crc**: Number of frames with CRC errors.
- **er64_trunc**: Number of frames shorter than minimum.
- **er64_toalong**: Number of frames longer than maximum.
- **er_bad_eof**: Number of frames with bad end-of-frame.
- **er64_enc_out**: Number of encoding error outside of frames.
er64_disc_c3
Number of class 3 frames discarded.

er64_pcs_blk
Number of Physical Coding Sublayer (PCS) block errors. This counter records encoding violations on 10 Gbps or 16 Gbps ports.

stat64_rateTxFrame
Tx frame rate (frames/second).

stat64_rateRxFrame
Rx frame rate (frames/second).

stat64_rateTxPeakFrame
Tx peak frame rate (frames/second).

stat64_rateRxPeakFrame
Rx peak frame rate (frames/seconds).

stat64_rateTxWord
Tx Word rate (words/seconds).

stat64_rateRxWord
Rx Word rate (words/seconds).

stat64_rateTxPeakWord
Tx peak Word rate (words/sec).

stat64_rateRxPeakWord
Rx peak Word rate (words/sec).

stat64_aveTxFrameSize>
Average Tx Frame size

stat64_aveRxFrameSize>
Average Rx Frame size

stat64_PRJTFramees
Number of P_RJT frames transmitted.

stat64_PBSYFrames
Number of P_BSY transmitted.

stat64_inputBuffersFull
Number of occasions on which input buffers are full.

stat64_rxClass1Frames
Number of class 1 frames received.

stat64_aveTxFrameSize>
Average Tx Frame size, based on the word and frame counts during the last five seconds.

stat64_aveRxFrameSize>
Average Rx Frame size, based on the word and frame counts during the last five seconds.

The following counters provided by SNMP are displayed with `portStats64Show -long` on switches running Fabric OS v6.4.0 or later:

swConnUnitZeroTenancy, zero_tenancy
Number of times a zero tenancy occurred.

swConnUnitFLNumOfTenancy, fl_tenancy
Number of times the FL_Port had a loop tenancy.

swConnUnitNLNumOfTenancy, nl_tenancy
Number of times any NL_Port had a loop tenancy.
swConnUnitStopTenancyStarvation, Starve_stop
Number of loop tenancies stopped due to starvation.

swConnUnitOpend, opened
Number of times the FL_Port entered OPENED state.

swConnUnitTransferConnection, transfer
Number of times the FL_Port entered TRANSFER state.

swConnUnitOpen, open
Number of times the FL_Port entered OPEN state.

swConnUnitInvalidARB, er_inv_arb
Number of invalid arbitrated loops (ARBs).

The following counters are platform-specific and applicable only to Condor2 and Goldeneye2 ASICs only. Refer to the Fabric OS Troubleshooting and Diagnostics Guide, Appendix A, for a table that correlates ASIC type with switch models.

swConnUnitFTB1Miss, er_type1_miss
The number of FCR frames with transmit errors.

swConnUnitFTB2Miss, er_type2_miss
The number of frames with routing errors.

swConnUnitFTB6Miss, er_type6_miss
The number of FCR frames with receive errors.

swConnUnitZoneMiss, er_zone_miss
Number of frames with hard zoning miss

swConnUnitLunZoneMiss, er_lun_zone_miss
Number of frames with logical unit number (LUN) zoning miss.

swConnUnitStatRxMulticastToObjects, stat_mc_to
The number of multicast timeouts.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command is not supported on FCoE ports.

OPERANDS
This command has the following operands:

slot
For bladed systems only, specify the slot number of the port to be displayed, followed by a slash (/).

port
Specify a port number to be displayed, relative to its slot for bladed systems. Use switchShow to display a list of valid ports.

-long
Displays the counters as one single 64-bit number. This operand is optional; if omitted, the lower and upper 32-bits are reported as two separate numbers.

EXAMPLES
To display the 64-bit hardware statistics for a port:

```bash
switch:user> portStats64Show 4/15

stat64_wtx 0 top_int : 4-byte words transmitted
21618 bottom_int : 4-byte words transmitted
stat64_wrx 0 top_int : 4-byte words received
22492 bottom_int : 4-byte words received
```
<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>stat64_frx</td>
<td>0</td>
<td>Frames transmitted</td>
</tr>
<tr>
<td></td>
<td>596</td>
<td>Frames transmitted</td>
</tr>
<tr>
<td>stat64_frx</td>
<td>0</td>
<td>Frames received</td>
</tr>
<tr>
<td></td>
<td>614</td>
<td>Frames received</td>
</tr>
<tr>
<td>stat64_c2_frx</td>
<td>0</td>
<td>Class 2 frames received</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Class 2 frames received</td>
</tr>
<tr>
<td>stat64_c3_frx</td>
<td>0</td>
<td>Class 3 frames received</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Class 3 frames received</td>
</tr>
<tr>
<td>stat64_lc_rx</td>
<td>0</td>
<td>Link control frames received</td>
</tr>
<tr>
<td></td>
<td>462</td>
<td>Link control frames received</td>
</tr>
<tr>
<td>stat64_mc_rx</td>
<td>0</td>
<td>Multicast frames received</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Multicast frames received</td>
</tr>
<tr>
<td>stat64_mc_to</td>
<td>0</td>
<td>Multicast timeouts</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Multicast timeouts</td>
</tr>
<tr>
<td>tim64_rdy_pri</td>
<td>0</td>
<td>Time R_RDY high priority</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Time R_RDY high priority</td>
</tr>
<tr>
<td>tim64_txcrd_z</td>
<td>34211</td>
<td>Time BB_credit zero</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Time BB_credit zero</td>
</tr>
<tr>
<td>er64_enc_in</td>
<td>0</td>
<td>Encoding errors inside of frames</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Encoding errors inside of frames</td>
</tr>
<tr>
<td>er64_crc</td>
<td>0</td>
<td>Frames with CRC errors</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Frames with CRC errors</td>
</tr>
<tr>
<td>er64_trunc</td>
<td>0</td>
<td>Frames shorter than minimum</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Frames shorter than minimum</td>
</tr>
<tr>
<td>er64_toolong</td>
<td>0</td>
<td>Frames longer than maximum</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Frames longer than maximum</td>
</tr>
<tr>
<td>er64_bad_eof</td>
<td>0</td>
<td>Frames with bad end-of-frame</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Frames with bad end-of-frame</td>
</tr>
<tr>
<td>er64_enc_out</td>
<td>135762</td>
<td>Encoding error outside of frames</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Encoding error outside of frames</td>
</tr>
<tr>
<td>stat64_rateTxFrame</td>
<td>0</td>
<td>Tx frame rate (fr/sec)</td>
</tr>
<tr>
<td>stat64_rateRxFrame</td>
<td>0</td>
<td>Rx frame rate (fr/sec)</td>
</tr>
<tr>
<td>stat64_rateTxPeakFrame</td>
<td>9</td>
<td>Tx peak frame rate (fr/sec)</td>
</tr>
<tr>
<td>stat64_rateRxPeakFrame</td>
<td>9</td>
<td>Rx peak frame rate (fr/sec)</td>
</tr>
<tr>
<td>stat64_rateTxWord</td>
<td>0</td>
<td>Tx Word rate (words/sec)</td>
</tr>
<tr>
<td>stat64_rateRxWord</td>
<td>0</td>
<td>Rx Word rate (words/sec)</td>
</tr>
<tr>
<td>stat64_rateTxPeakWord</td>
<td>264</td>
<td>Tx peak Word rate (words/sec)</td>
</tr>
<tr>
<td>stat64_rateRxPeakWord</td>
<td>272</td>
<td>Rx peak Word rate (words/sec)</td>
</tr>
<tr>
<td>stat64_aveTxFrameSize</td>
<td>504</td>
<td>Average Tx Frame size</td>
</tr>
<tr>
<td>stat64_aveRxFrameSize</td>
<td>511</td>
<td>Average Rx Frame size</td>
</tr>
<tr>
<td>stat64_FRJTFrames</td>
<td>0</td>
<td>4-byte words transmitted</td>
</tr>
<tr>
<td>stat64_PBSYFrames</td>
<td>0</td>
<td>4-byte words transmitted</td>
</tr>
<tr>
<td>stat64_inputBuffersFull</td>
<td>0</td>
<td>4-byte words transmitted</td>
</tr>
<tr>
<td>stat64_rxClass1Frames</td>
<td>0</td>
<td>4-byte words transmitted</td>
</tr>
<tr>
<td>stat64_aveTxFrameSize</td>
<td>0</td>
<td>Average Tx Frame size</td>
</tr>
<tr>
<td>stat64_aveRxFrameSize</td>
<td>0</td>
<td>Average Rx Frame size</td>
</tr>
</tbody>
</table>
To display the counters as one single 64-bit number:

```
switch:admin> portstats64show 12 -long
zero64_tenancy 0 zero_tenancy
fl64_tenancy 0 number of times FL has the tenancy
nl64_tenancy 0 number of times NL has the tenancy
starve64_stop 0 tenancies stopped due to starvation
opened64 0 FL_Port opened
transfer64 0 loop_transfer
open64 0 loop_open
er64_inv_arb 0 Invalid ARB
er64_type1_miss 0 frames with FTB type 1 miss
er64_type2_miss 0 frames with FTB type 2 miss
er64_type6_miss 0 frames with FTB type 6 miss
er64_zone_miss 0 frames with hard zoning miss
er64_lun_zone_miss 0 frames with LUN zoning miss
lli64 0 Low level interrupts
```

SEE ALSO  portStatsClear, portStatsShow
portStatsClear

Clears port hardware statistics.

SYNOPSIS

portStatsClear [slot!]port

portStatsClear -i [index1[-index2] [...] [-f]]

portStatsClear -x [hex1[-hex2] [...]]

portStatsClear -slot [slot1[-slot2]][...]

portStatsClear -h

DESCRIPTION

Use this command to clear the hardware statistics for the specified ports. Including ALPA-based CRC monitor, End-to-End monitor, and Filter-based performance monitor statistics.

You can identify a single port to be cleared by its port number or by its port index number in decimal or hexadecimal format. Port ranges are supported with port numbers, index numbers(decimal or hexadecimal) or by specifying a slot or a slot range. Use switchShow for a listing of valid ports, slots, and port index numbers.

Specifying multiple ports with the index (-i) or slot (-s) option is supported only if PortSwap is disabled. They are not supported on GbE ports and configured F_Port trunks. Use the -i option without a port index argument to display the portSwap status, or alternately use portSwapShow.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command is not supported on FCoE ports.

OPERANDS

This command has the following operands:

slot

For bladed systems only, specify the slot number of the port to be cleared, followed by a slash (/).

port

Clears a single port identified by the port number, relative to its slot on bladed systems. Port ranges are not supported with this command. Use switchShow for a listing of valid ports.

-i index1[-index2]

Clears a single port or a range of ports identified by port index numbers. You may specify multiple index ranges separated by a space, for example, -i 33-47 65-73.

-f

Ignores nonexisting ports. This operand is valid only with the -i option.

-x [hex1[-hex2]]

Clears a port or a range of ports identified by port numbers, index number in hexadecimal format. You may specify multiple port ranges separated by a space, for example, -x 21-26 28-3c.

-slot [slot1[-slot2]]

Clears all ports on a slot or on a range of slots, for example, -s 3-5. You may specify multiple slot ranges separated by a space, for example, -s 3-5 8-10.
-h

Displays the command usage.

**EXAMPLES**

To clear hardware statistics for a single port specified by its port number:

```
switch:admin> portstatsclear 4/15
```

To clear hardware statistics for a single port specified by its index number:

```
switch:admin> portstatsclear -i 25
```

To clear hardware statistics for a range of ports specified by their index numbers:

```
switch:admin> portstatsclear -i 32-40
```

To clear hardware statistics for multiple port ranges specified by their index numbers:

```
switch:admin> portstatsclear -i 32-40 50-56
```

To clear hardware statistics for all ports on slots 3-5:

```
switch:admin> portstatsclear -s 3-5
```

To clear hardware statistics for all ports on slots 3-5 and 7-10:

```
switch:admin> portstatsclear -s 3-5 7-10
```

To clear hardware statistics for range of ports specified in hexadecimal format:

```
switch:admin> portstatsclear -x 1d-1e
```

**SEE ALSO**

`portStats64Show`, `portStatsShow`, `portSwapDisable`, `portSwapShow`, `switchShow`
portStatsShow

Displays port hardware statistics.

SYNOPSIS

portstatsshow [slot[/]port
portstatsshow -i [index1[-index2][...][[-f]]
portstatsshow -x [hex1[-hex2][...]]
portstatsshow -slot [slot1[-slot2][...]]
portstatsshow ge [slot[/]ge port
portstatsshow ip [slot[/]ge port [ip_address]
portstatsshow fcip [slot[/]ge port [tunnel_number]
portstatsshow -h

DESCRIPTION

Use this command to display port hardware statistics counters. Some counters are platform- or
port-specific and display only on those platforms and ports. All statistics have a maximum 32-bit value of
4,294,967,295.

You can display statistics of a single port to be cleared by its port number or by its port index number in
decimal or hexadecimal format. Port ranges are supported with port numbers, index numbers(decimal or
hexadecimal) or by specifying a slot or a slot range. Use switchShow for a listing of valid ports, slots,
and port index numbers.

Specifying multiple ports with the index (-i) or slot (-s) option is supported only if PortSwap is disabled.
They are not supported on GbE ports and configured F_Port trunks. Use the -i option without a port index
to display the portSwap status, or alternately use portSwapShow.

The command output may include the following fields (Tx indicates frames transmitted by the port; Rx
indicates frames received by the port).

stat_wtx

The number of 4-byte words transmitted.

stat_wrx

The number of 4-byte words received.

The size of stat_wrx in portstatsshow is fixed for 32 bit, use portstats64show for
64-bit counters. If the stat_wrx counter is used for 64 bit, it wraps very quickly and
the counter may not increment.

stat_ftx

The number of class 2, class 3, and control frames transmitted.

stat_frx

The number of class 2, class 3, and control frames received.

stat_c2_frx

The number of class 2 frames received.

stat_c3_frx

The number of class 3 frames received.

stat_lc_rx

The number of link control frames received.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>stat_mc_rx</code></td>
<td>The number of multicast frames received.</td>
</tr>
<tr>
<td><code>stat_mc_to</code></td>
<td>The number of multicast timeouts.</td>
</tr>
<tr>
<td><code>stat_mc_tx</code></td>
<td>The number of multicast frames transmitted.</td>
</tr>
<tr>
<td><code>tim_rdy_pri</code></td>
<td>The number of times that sending R_RDY or VC_RDY primitive signals was a higher priority than sending frames, due to diminishing credit reserves in the transmitter at the other end of the fiber. This parameter is sampled at intervals of 1.8 microseconds, and the counter is incremented by 1 if the condition is true.</td>
</tr>
<tr>
<td><code>tim_txcrd_z</code></td>
<td>The number of times that the port was unable to transmit frames because the transmit BB credit was zero. The purpose of this statistic is to detect congestion or a device affected by latency. This parameter is sampled at intervals of 2.5 microseconds, and the counter is incremented if the condition is true. Each sample represents 2.5 microseconds of time with zero Tx BB Credit. An increment of this counter means that the frames could not be sent to the attached device for 2.5 microseconds, indicating degraded performance.</td>
</tr>
<tr>
<td><code>tim_txcrd_z_vc</code></td>
<td>The number of times that the port was unable to transmit frames because the transmit BB credit was zero for each of the port's 16 Virtual Channels (VC 0-15). The purpose of this statistic is to detect congestion or a device affected by latency. This parameter is sampled at intervals of 2.5 microseconds (microseconds), and the counter is incremented if the condition is true. Each sample represents 2.5 microseconds of time with zero Tx BB Credit. An increment of this counter means that the frames could not be send to the attached device for 2.5 microseconds, indicating degraded performance (platform- and port-specific).</td>
</tr>
<tr>
<td><code>er_enc_in</code></td>
<td>The number of encoding errors inside frames.</td>
</tr>
<tr>
<td><code>er_crc</code></td>
<td>The number of frames with cyclic redundancy check (CRC) errors.</td>
</tr>
<tr>
<td><code>er_trunc</code></td>
<td>The number of frames shorter than the minimum frame length.</td>
</tr>
<tr>
<td><code>er_toolong</code></td>
<td>The number of frames longer than the maximum frame length.</td>
</tr>
<tr>
<td><code>er_bad_eof</code></td>
<td>The number of frames with bad end-of-frame.</td>
</tr>
<tr>
<td><code>er_enc_out</code></td>
<td>The number of encoding error outside frames.</td>
</tr>
<tr>
<td><code>er_bad_os</code></td>
<td>The number of invalid ordered sets (platform- and port-specific).</td>
</tr>
<tr>
<td><code>er_pcs_blk</code></td>
<td>The number of Physical Coding Sublayer (PCS) block errors. This counter records encoding violations on 10 Gbps or 16 Gbps ports. This is applicable only on platforms that support 10 Gbps or 16 Gbps ports.</td>
</tr>
<tr>
<td><code>er_rx_c3_timeout</code></td>
<td>The number of receive class 3 frames received at this port and discarded at the transmission port due to timeout (platform-and port-specific).</td>
</tr>
</tbody>
</table>
er_tx_c3_timeout
The number of transmit class 3 frames discarded at the transmission port due to
timeout (platform- and port-specific).

er_unroutable
The number of frames discarded because they cannot be routed.

er_unreachable
The number of frames discarded because the destination port cannot be reached.
This field is specific to Condor 3-based platforms.

er_c3_dest_unreach
The number of class 3 frames discarded because the destination cannot be
reached. This field is specific to Condor 2-based platforms.

er_other_discard
The number of other discarded due to route lookup failures or other reasons.

er_zone_discard
The number of class 3 frames discarded due to zone mismatch.

er_type1_miss
The number of FCR frames with transmit errors.

er_type2_miss
The number of frames with routing errors.

er_type6_miss
The number of FCR frames with receive errors.

er_zone_miss, er_lun_zone_miss
The number of frames discarded due to hard zoning miss or LUN zoning miss. If
Rx port hard zoning is enabled, frames will be discarded at the Rx port. If TX port
hard zoning is enabled, frames will be discarded at the TX port. If both RX and TX
port hard zoning is enabled, frames will be discarded at the RX port. (LUN zoning
is currently not supported.)

er_crc_good_eof
The number of CRC errors with good end-of-frame (EOF) (platform- and
port-specific).

er_inv_arb
The number of invalid arbitrated loops (ARBs).

er_single_credit_loss
The number of times the port lost a single VC_RDY primitive signal or a single
frame.

er_multi_credit_loss
The number of times the port lost multiple VC_RDY primitive signals or multiple
frames.

compression_ratio
The ratio based on the last 5 second sampled accumulated value. It is
represented in percentage. If the port is configured for compression, this value is
displayed.

open
The number of times the FL_Port entered OPEN state.

transfer
The number of times the FL_Port entered TRANSFER state.

opened
The number of times the FL_Port entered OPENED state.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>starve_stop</td>
<td>The number of loop tenancies stopped due to starvation.</td>
</tr>
<tr>
<td>fl_tenancy</td>
<td>The number of times the FL_Port had a loop tenancy.</td>
</tr>
<tr>
<td>nl_tenancy</td>
<td>The number of times the NL_Port had a loop tenancy.</td>
</tr>
<tr>
<td>zero_tenancy</td>
<td>The number of times a zero tenancy occurred.</td>
</tr>
<tr>
<td>ge_stat_tx_frms</td>
<td>The number of frames transmitted on the GbE port.</td>
</tr>
<tr>
<td>ge_stat_tx_octets</td>
<td>The number of octets transmitted on the GbE port.</td>
</tr>
<tr>
<td>ge_stat_tx_unicast_frms</td>
<td>The number of unicast frames transmitted on the GbE port.</td>
</tr>
<tr>
<td>ge_stat_tx_mcast_frms</td>
<td>The number of multicast frames transmitted on the GbE port.</td>
</tr>
<tr>
<td>ge_stat_tx_bcast_frms</td>
<td>The number of broadcast frames transmitted on the GbE port.</td>
</tr>
<tr>
<td>ge_stat_tx_vlan_frms</td>
<td>The number of VLAN frames transmitted on the GbE port.</td>
</tr>
<tr>
<td>ge_stat_tx_pause_frms</td>
<td>The number of pause frames transmitted on the GbE port.</td>
</tr>
<tr>
<td>ge_stat_rx_frms</td>
<td>The number of frames received on the GbE port.</td>
</tr>
<tr>
<td>ge_stat_rx_octets</td>
<td>The number of octets received on the GbE port.</td>
</tr>
<tr>
<td>ge_stat_rx_unicast_frms</td>
<td>The number of unicast frames received on the GbE port.</td>
</tr>
<tr>
<td>ge_stat_rx_mcast_frms</td>
<td>The number of multicast frames received on the GbE port.</td>
</tr>
<tr>
<td>ge_stat_rx_bcast_frms</td>
<td>The number of broadcast frames received on the GbE port.</td>
</tr>
<tr>
<td>ge_stat_rx_vlan_frms</td>
<td>The number of VLAN frames received on the GbE port.</td>
</tr>
<tr>
<td>ge_stat_rx_pause_frms</td>
<td>The number of pause frames received on the GbE port.</td>
</tr>
<tr>
<td>ge_err_carrier</td>
<td>The number of times the GbE port lost carrier sense.</td>
</tr>
<tr>
<td>ge_err_length</td>
<td>The number of times an invalid length error was observed on the GbE port.</td>
</tr>
<tr>
<td>ge_err_crc</td>
<td>The number of CRC Errors received on the GbE port.</td>
</tr>
<tr>
<td>ge_err_abort</td>
<td>The number of frames aborted on the GbE port.</td>
</tr>
<tr>
<td>ge_err_overrun</td>
<td>The number of overruns observed on the GbE port.</td>
</tr>
</tbody>
</table>
The number of times an overflow of the first in first out (FIFO) queue was observed on the GbE port.

ge_err_hdr_cksum
The number of checksum errors observed on the GbE port.

ip_err_tcp_data_chksum
The number of IP TCP data checksum errors observed on the GbE port.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command is not supported on FCoE ports.

OPERANDS
This command has the following operands:

slot
For bladed systems only, specifies the slot number of the port to be displayed, followed by a slash (/).

port
Displays statistics for a single port identified by the port number, relative to its slot on bladed systems. Specify the optional ge option to display the GbE port hardware statistics. Port ranges are not supported with this command. Use switchShow for a listing of valid ports.

-i index1[-index2]
Displays statistics for a single port or for a range of ports identified by port index numbers. You may specify multiple index ranges separated by a space, for example, -i 33-47 65-73.

-f
Ignores nonexisting ports. This operand is valid only with the -i option.

-x [hex1 [-hex2]]
Specifies a port or a range of ports identified by port index numbers in hexadecimal format. You may specify multiple port ranges separated by a space, for example, -x 21-26 28-3c.

-slot [slot1[-slot2]]
Displays statistics for all ports on a slot or on a range of slots, for example, -s 3-5. You may specify multiple slot ranges separated by a space, for example, -s 3-5 8-10.

ge
Displays the GbE port statistics.

ip
Displays all GbE port statistics related to IP addresses that are not zero. This operand is not supported on the Brocade 7800 and FX8-24 platforms.

-ip_address
Specifies an IP address to display statistics only for the specified IP address. This operand is optional and valid only with the ip option.

fcip
Displays the GbE statistics on all FCIP tunnels. This operand is not supported on the Brocade 7800 and FX8-24 platforms.

tunnel_number
Specifies a tunnel ID to display statistics only for the specified FCIP tunnel. This operand is optional and valid only with the fcip option.
portStatsShow

-h

Displays the command usage.

EXAMPLES

To display the basic set of statistics for port 1/13 on a Condor3-based platform:

switch:admin> portstatsshow 1/13
stat_wtx 0 4-byte words transmitted
stat_wrx 0 4-byte words received
stat_ftx 0 Frames transmitted
stat_frx 0 Frames received
stat_c2_frx 0 Class 2 frames received
stat_c3_frx 0 Class 3 frames received
stat_lc_rx 0 Link control frames received
stat_mc_rx 0 Multicast frames received
stat_mc_to 0 Multicast timeouts
stat_mc_tx 0 Multicast frames transmitted
tim_rdy_pri 0 Time R_RDY high priority
tim_txcrd_z 0 Time TX Credit Zero (2.5Us ticks)
tim_txcrd_z vc 0-3: 0
   4-7: 0
   8-11: 0
   12-15: 0
er_enc_in 0 Encoding errors inside of frames
er_crc 0 Frames with CRC errors
er_trunc 0 Frames shorter than minimum
er_too_long 0 Frames longer than maximum
er_bad_eof 0 Frames with bad end-of-frame
er_enc_out 0 Encoding error outside of frames
er_bad_os 0 Invalid ordered set
er_rx_c3_timeout 0 Class 3 receive frames discarded due to timeout
er_tx_c3_timeout 0 Class 3 transmit frames discarded due to timeout
er_c3_dest_unreach 0 Class 3 frames discarded due to destination unreachable
er_other_discard 0 Other discards
er_type1_miss 0 frames with FTB type 1 miss
er_type2_miss 0 frames with FTB type 2 miss
er_type6_miss 0 frames with FTB type 6 miss
er_zone_miss 0 frames with hard zoning miss
er_lun_zone_miss 0 frames with LUN zoning miss
er_crc_good_eof 0 Crc error with good eof
er_inv_arb 0 Invalid ARB
compression_ratio 6 Average compression ratio
open 0 loop_open
transfer 0 loop_transfer
opened 0 FL_Port opened
starve_stop 0 tenancies stopped due to starvation
fl_tenancy 0 number of times FL has the tenancy
nl_tenancy 0 number of times NL has the tenancy
zero_tenancy 0 zero tenancy
phy_stats_clear_ts 04-22-2013 MDT Mon 17:08:41 Timestamp of phy_port stats clear
lgc_stats_clear_ts 04-22-2013 MDT Mon 17:08:41 Timestamp of lgc_port stats clear
To display the basic set of statistics using port index numbers:

switch:admin> portStatsshow -i 13
switch:admin> portStatsshow -i 13-23
switch:admin> portStatsshow -i 4-6 22-30

To display the basic set of statistics using slot numbers:

switch:admin> portStatsshow -s 3-5
switch:admin> portStatsshow -s 3-5 10-13

To display GbE port statistics for GbE1 on the Brocade 7800:

switch:admin> portStatsshow ge 8/ge1
ge_stat_tx Frm     1523916  GE transmitted frames
ge_stat_tx Octets  152411630 GE transmitted octets
ge_stat_tx Ucast Frms 1523907 GE transmitted unicast frames
ge_stat_tx Mcast Frms  0  GE transmitted multicast frames
ge_stat_tx Bcast Frms  9  GE transmitted broadcast frames
ge_stat_tx Vlan Frms  0  GE transmitted vlan frames
ge_stat_tx Pause Frms  0  GE transmitted pause frames
ge_stat_rx Frm     1512154  GE received frames
ge_stat_rx Octets  149255230 GE received octets
ge_stat_rx Ucast Frm 1512154 GE received unicast frames
ge_stat_rx Mcast Frm  0  GE received multicast frames
ge_stat_rx Bcast Frm  0  GE received broadcast frames
ge_stat_rx Vlan Frm  0  GE received vlan frames
ge_stat_rx Pause Frm  0  GE received pause frames
ge_err_carrier     0  GE lost carrier sense
ge_err_length     0  GE invalid length
ge_err_crc         0  GE CRC Errors
ge_err_abort       0  GE abort frames
ge_err_overrun     0  GE overruns
ge_err_fif_ovf    0  GE Fifo overflow

To display the basic set of statistics using port index number specified in hexadecimal format:

switch:admin> portStatsshow -x 11f
port:  287
=======
stat_wtx  422  4-byte words transmitted
stat_wrx  560  4-byte words received
stat_ftx  16  Frames transmitted
stat_fr  16  Frames received
(output is truncated

SEE ALSO  portErrShow, portShow, portSwapDisable, portSwapShow
portSwap

Swaps two ports or removes swapping of ports.

SYNOPSIS

portswap [slot1]/port1 [slot2]/port2

portswap --restore

DESCRIPTION

Use this command to swap the 24-bit port address (PID) for a pair of ports or to remove swapping of ports. When swapping both ports must be disabled prior to executing this command and the port-swapping feature must be enabled using portSwapEnable.

The result of this operation is persistent across reboots and power cycles. Use portSwapShow to display the swapped ports along with their new port address.

Port swap information is kept in its own database; it cannot be manipulated by editing the configuration database displayed by configShow and configUpload. To undo a previous port swap, execute portSwap again on the same two ports.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

You cannot swap E_ports that are configured as part of a TI zone. The TI zone information is lost when you swap the E_ports. To work around this issue, reconfigure your TI zones rather than swapping the ports.

This command is not allowed if one or both the ports are from a faulty blade.

OPERANDS

This command has the following operands:

slot1

For bladed systems only, specifies the slot number of the first port whose area number is to be swapped, followed by a slash (/).

port1

Specifies the number of the first port whose address is to be swapped, relative to its slot for bladed systems. Use switchShow to display a listing of valid ports.

slot2

For bladed systems only, specifies the slot number of the second port whose area number is to be swapped, followed by a slash (/).

port2

Specifies the number of the second port whose port address is to be swapped, relative to its slot for bladed systems.

--restore

Removes swapping of all ports.
EXAMPLES

To swap area numbers between a pair of ports:

```
switch:admin> portswap 8/1 8/2
portswap done
```

```
switch:admin> portswapshow
PortSwap is enabled
Slot Slotport Swport Address
==
 8 1 193 0x01c200
 8 2 194 0x01c100
```

To cancel the swapping of ports:

```
switch:admin> portswap --restore
portswap done
```

SEE ALSO

portDisable, portEnable, portShow, portSwapDisable, portSwapEnable, portSwapShow, switchShow
portSwapDisable

Disables the PortSwap feature.

SYNOPSIS

portswapdisable

DESCRIPTION

Use this command to disable the PortSwap feature. The portSwap command cannot be used after this feature is disabled.

The disabled state of the PortSwap feature is persistent across reboots and power cycles.

Enabling or disabling the PortSwap feature does not affect previously performed PortSwap operations.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To disable the PortSwap feature:

switch:admin> portswapdisable

SEE ALSO

portSwap, portDisable, portEnable, portShow, portSwapEnable, portSwapShow, switchShow
portSwapEnable

Enables the PortSwap feature.

SYNOPSIS  portswapenable

DESCRIPTION  Use this command to enable the PortSwap feature. The portSwap command cannot be used unless the feature is first enabled with this command.

The enabled state of the PortSwap feature is persistent across reboots and power cycles.

Enabling or disabling the PortSwap feature does not affect previously performed PortSwap operations.

NOTES  The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS  None

EXAMPLES  To enable the PortSwap feature:

    switch:admin> portswapenable

SEE ALSO  portSwap, portDisable, portEnable, portShow, portSwapDisable, portSwapShow, switchShow
portSwapShow

Displays the state of the PortSwap feature.

SYNOPSIS

portswapshow

DESCRIPTION

Use this command to display the state of the PortSwap feature and information about swapped ports. If portSwap is enabled and ports have been swapped, the command displays the enabled status as well as the swapped ports and the new port address (the 24-bit PID) for these ports. If portSwap is disabled, the command shows the disabled status and indicates whether or not swapped ports exist on the switch.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display a switch with PortSwap enabled and information for swapped ports:

```
Console message:
2009/10/09-21:22:45, [PSWP-1001], 482, SLOT 6 | FID 51, INFO, DCX_105_51, PID for port 12/0 and port 12/63 are swapped. New PID for port 12/0 is 0x697000 and port 12/63 is 0x69e3c0.
```

```
switch:admin> portswapshow
PortSwap is enabled
Slot Slotport Swport Address
==
 12 0 112 0x697000
 12 63 895 0x69e3c0
```

To display the portSwap status on a switch when the feature is disabled and no ports are swapped:

```
switch:admin> portswapshow
PortSwap is disabled.
Existing Portswap condition is still effective.
Only future Portswap operations are not allowed.

No ports have been swapped
```

SEE ALSO

portSwap, portDisable, portEnable, portShow, portSwap, portSwapDisable, portSwapEnable, switchShow
portTest

Performs a functional test of a switch in a live fabric.

SYNOPSIS

porttest

[-ports itemlist]
[-iteration count]
[-userdelay time]
[-timeout time]
[-pattern pattern]
[-patsize size]
[-seed seed]
[-listtype porttype]

DESCRIPTION

Use this command to isolate problems in a single replaceable element and to trace problems to near-end
terminal equipment, far-end terminal equipment, or the transmission line. You can perform this test on a
daily basis or as needed to verify the persistence of failures detected earlier.

This command verifies the functional operation of the switch by sending frames from a port's transmitter,
and looping the frames back through an external fiber cable into the port's receiver. The test exercises all
switch components from the main board, to the fibre cable, to the media (of the devices and the switch),
and back to the main board.

The cables and media connected should be of the same type: a short-wavelength media (switch) port
should be connected to another short-wavelength media (device) port using a short-wavelength cable; a
long-wavelength port should be connected to a long-wavelength port, and a copper port should be
connected to a copper port.

Only one frame is transmitted and received at any given time. The port LEDs flicker green while the test
is running.

This command supports E_Ports, F_Ports (must support ELS Echo), L_Port, and N->N loopback ports.
In addition, on switches running Fabric OS v6.4.0 and later, you can now use portTest on port
configurations that previously caused nonspecific test results or were skipped by portTest. The following
ports are now support the portTest diagnostics:

- Ports with index numbers greater than 255.
- Ports with swapped areas.
- Ports in shared area regions.
- Ports in logical switches.
- Ports in Base Switches.
- Long Distance ports.

This command is currently not supported on the following ports or switch configurations:

- Interchassis links (ICL) ports
- F_Ports connected to an Access Gateway
- EX_Ports
- E_Ports connected to EX_Ports
- The portTest diagnostics is not supported in Access Gateway mode.

This command performs the following operations:

1. Initiates tests on certain ports (portTest command).
2. Stops active tests on certain ports (stopPortTest command).
3. Takes a snapshot of the test result (portTestShow command).
Use the `stopPortTest` command to stop the test. Refer to the `stopPortTest` help page for more information.

Use the `portTestShow` command to view the current status of `portTest`. Refer to the `portTestShow` help page for more information.

If there is a port type change during `portTest` execution, the test continues on a given port as long as it can be supported and it is asked to do so. If a request was made to test all ports on a given switch, `portTest` starts a new test appropriate for the new port type.

**NOTES**
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**
This command has the following operands:

- **-ports itemlist**
  Specifies the list of user ports to test. By default, all user ports in the switch are tested. Refer to the `itemList` help page for more information.

- **-iteration count**
  Specifies the number of times (or number of frames per port) to execute this test. Specify 0 to run the test in timeout mode, or specify -1 to run the test indefinitely. The default value is 20.

- **-userdelay time**
  Specifies the delay between frames sent by `portTest`, in milliseconds. The default value is 10 milliseconds.

- **-timeout time**
  Specifies the number of seconds to run the test. Setting the iteration to 0 puts the `portTest` process into timeout mode. The default value is 0.

- **-pattern pattern**
  Specifies the pattern of the test packet payload. The pattern is selected from a set of twenty predefined pattern types. Use the `dataTypeShow` command to view the patterns supported with `portTest`. For each pattern, the `dataTypeShow` command displays the name, the pattern type number, and an example. Specify the pattern by its type number. If `pattern` is not specified, it defaults to RANDOM (type=11).

- **-patsize size**
  Specifies the size of the pattern. The default pattern size is 1024 bytes. The range is 4 to 2048 bytes.

- **-seed seed**
  Specifies the seed value to be used with the pattern. The default seed value is 0xaa.

- **-listtype porttype**
  Specifies the type of ports on which to run `portTest`. Valid values for `porttype` include the following:

- **-1**
  All ports (default).

- **-2**
  All L_Ports.

- **-3**
  All F_Ports.

- **-4**
  All E_Ports.
All N->N loopback ports.

**EXAMPLES**

To run a functional test on an active switch:

```
switch:admin> porttest -ports 1/1-1/3
```

**SEE ALSO**

portLoopbackTest, portTestShow, spinFab, stopPortTest
portTestShow

Displays information from `portTest`.

**SYNOPSIS**

```
porttestshow [-ports itemlist]
```

**DESCRIPTION**

Use this command to display a snapshot of information from `portTest`. The command output displays statistical data about past test runs and values for parameters that were set when the test was run. Refer to the `portTest` help page for more information on the displayed parameters. The output includes the following information:

- **Port number**
  - Displays test status for the port. Values are PASS or FAIL.

- **PortType**
  - Type of port tested.

- **PortState**
  - Current State of `portTest`. Values are NO TEST, TESTING, or TEST DONE.

- **PortTypeToTest**
  - Groups of ports tested. Values are ALL_PORTS, ALL_E_PORTS, ALL_L_PORTS, ALL_F_PORTS, ALL_LB_PORTS, or SINGLE_PORT.

- **Pattern**
  - The pattern of the test packets payload.

- **Seed**
  - The seed value used with the selected pattern. The default seed value is 0xaa.

- **UserDelay**
  - The delay between frames sent by `portTest` in milliseconds. The default value is 10 milliseconds (ms).

- **TotalIteration**
  - Total number of test iterations.

- **CurrentIteration**
  - Current test iteration.

- **TotalFail**
  - Total number of failed tests.

- **ConsecutiveFail**
  - Number of consecutive failed tests.

- **StartTime**
  - `portTest` start time.

- **StopTime**
  - `portTest` end time.

- **Timeout**
  - Number of timed out tests.

- **ErrorCode**
  - Error code, if any.
NOTES  The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS  This command has the following operand:

   -ports itemlist

       Displays test results for the specified ports. This operand is optional; if omitted, data for all ports are displayed. Refer to the itemList help page for further details.

EXAMPLES  To display information from portTest:

    switch:admin> porttestshow 1
    Port 1 : PASS
    PortType: OTHER              PortState: NO TEST
    PortInternalState: INIT      PortTypeToTest: NO_TEST
    Pattern: 0x0      Seed: 0x0            UserDelay: 0
    TotalIteration: 0            CurrentIteration: 0
    TotalFail: 0                 ConsecutiveFail: 0
    StartTime: NONE              StopTime:  NONE
    Timeout: 0                         ErrorCode: 0

SEE ALSO  portLoopbackTest, portTest, spinFab, stopPortTest
portThConfig

Configures Fabric Watch event thresholds per port type.

SYNOPSIS

portthconfig --set port_type -area area
[-timebase time_base]
[-highthreshold -value value -trigger above | below
-action actions]
[-lowthreshold -value value -trigger above | below
-action actions]
[-buffer value][-nosave]

portthconfig --apply port_type -area area
[-thresh_level def | cust][-action_level def | cust]

portthconfig --cancel port_type -area area
[-thresh_level def | cust][-action_level def | cust]

portthconfig --show [port_type] [-area area]
[[-current | [[-thresh_level cust | def]
[-action_level cust | def]]]

portthconfig --pause | --continue port_type
-area area[,area,...] | all
-port port_list | all

portthconfig --help

DESCRIPTION

Use this command to configure thresholds for Fabric Watch event monitoring for all ports of a specified
 type and to display the configuration and current port status in real time. In addition to the areas
traditionally monitored by Fabric Watch, this command supports monitoring Class 3 discard frames on all
ports of a specified type. If frame discard errors or any other configured areas exceed the currently
effective threshold settings, the Fabric Watch daemon can take one or more of the following actions:

• Send an SNMP message.
• Log a RASlog message.
• Send an E-mail alert.
• Locks the port log.
• Fence the port if port fencing is enabled (not applicable to E_Ports). Refer to portFencing help for
  more information.

Class 3 frames may be discarded on a port because of timeout, destination unreachable, or other
reasons. This command only monitors Class 3 frames that are discarded because of timeout, and is
applicable only to Brocade 8 G platforms.

The portThConfig follows a transaction model. When you configure thresholds and actions with the
--set option, the changes are saved persistently to nonvolatile storage, but the changes do not become
effective until you execute portThConfig --apply. The --apply option allows you to toggle between
default settings and your own saved custom configuration and to apply actions and thresholds
separately. You may choose to use default thresholds together with a customized subset of available
actions, or you may modify some of the thresholds and use the default actions. Use the -nosave option
to save the configuration nonpersistently, and use --cancel to remove a nonpersistent configuration.

This command configures thresholds per port_type and the configuration is applied to all ports of the
specified type. Configurable ports include E_Ports, optical F_Ports, copper F_Ports, physical ports, and
Virtual E_Ports (VE_Ports).
NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command requires a Fabric Watch license.

For more information on port threshold configuration procedures, including default values for specific area high/low thresholds, refer to the Fabric Watch Administrator's Guide.

OPERANDS
This command has the following operands:

port_type
Specifies the port type for which to configure or display Fabric Watch settings. This operand is optional with the --show option. With all configuration options it is required. Valid port types include one of the following:

e-port
Configures or displays all E_Ports (not supported in Access Gateway mode).
fop-port
Configures or displays all optical F_Ports.
fcu-port
Configures or displays all copper F_Ports. This operand is supported only on embedded platforms and only on copper ports.
port
Configures or displays all physical ports.
ve-port
Configures or displays all VE_Ports. Only a subset of areas can be configured for this port type. When setting VE_Port thresholds for the packet loss area (PKTLOSS), the threshold value accepts up to two decimal points, for example, -value 0.60. The VE_Port type is not supported in Access Gateway mode.

-area area
Specifies the area monitored by the Fabric Watch daemon. This operand is optional with the --show option. With all configuration options it is required.

The following areas are valid when configuring or displaying configuration settings on E_Ports, optical F_Ports, copper F_Ports, and physical ports. Area values are not case-sensitive.

CRC
Cyclic redundancy check error
ITW
Invalid transmission word
C3TX_TO
Class 3 transmit frames discarded due to timeout.
LOS
Loss of synchronization
LF
Link failure
RX
Receive error
TX
Transmit error
PE
Protocol error
Only the following areas are valid for VE_Ports.

**LR**
Link reset

**TU**
Trunk Utilization

**UTIL**
Port utilization

**PKTLOSS**
Packet loss

**ST**
State change

**SL**
Loss of signal

**--set**
Configures the Fabric Watch thresholds for monitoring a specified area for all ports of a specified port type. When configuring a threshold, you must specify a port type and area. The following operands are optional and valid only with the **--set** option. Defaults are used unless you configure custom settings. Defaults parameters vary depending on the area and platform. Refer to the *Fabric Watch Administrator's Guide* for specific details.

**-timebase** *time_base*
Specifies the time interval between two samples to be compared. Valid intervals include the following:

- **day**
  Samples are compared once a day.

- **hour**
  Samples are compared once every hour.

- **minute**
  Samples are compared once every minute.

**-highthreshold** *value*
Specifies the high threshold value for triggering a specified alert action. To change the default value, provide an integer *value*.

**-lowthreshold** *value*
Specifies the low threshold for triggering a specified alert action. To change the default value, provide an integer value.

**-trigger** *above | below*
Specifies the actions for in range port behavior. In range is defined as the space above the low threshold and below the high threshold.

**-action** *actions*
Specifies the actions triggered by a configured event condition. Valid values include one or more of the following actions. If more than one action is specified, the actions must be separated by commas. To change the existing configuration of actions, you must first issue the command with the **none** option to reset the existing configuration, and then reissue the command with the new configuration of actions.

- **raslog**
  Event triggers a RASlog message.

- **snmp**
  Event triggers an SNMP trap.
email
Event triggers an e-mail.

portlog
Locks the port log. Following an event, the port log locks to retain information about an event, preventing the information from being overwritten as the log becomes full.

none
Event triggers no action.

-buffer value
Specifies the buffer value for in range behavior. A buffer defines a zone within which event criteria are met, rather than a single threshold value. This operand is valid only with the -trigger options.

-nosave
Prevents the configuration changes from being saved persistently. This option allows you to make and view changes without overwriting the saved configuration. When you use --set with the -nosave option and the switch reboots your changes will be lost.

--apply
Applies the custom or default configuration for thresholds, actions, or both. This command allows you to toggle between custom and default settings. The specified configuration takes effect upon execution of this command. When you select custom, the saved configuration becomes effective. You must specify a port type and area when applying a configuration.

--cancel
Cancels a nonpersistent custom configuration. This command effectively undoes the -nosave operation without reboot. You must specify a port type and area type with this command. Thresholds and alarm levels are optional with this command; if omitted, all nonpersistent configurations for the specified port type and area type are canceled.

--show
Displays the threshold configuration or run-time status for all configured port types and areas. You can optionally specify a port type to display the threshold for ports of that type only. The display includes the port persistence time value in seconds, which is set by the fwSet command. Specify an area to display the area-specific configuration only. When issued without operands, this command displays Fabric Watch thresholds for all classes and areas.

-current
Displays current values for a specified port type and area, as registered by Fabric Watch, or for all port types and areas. The output includes PortType, Area, Port number, Circuit ID (for the Brocade 7800 and FS8-24 only), Value, State, and Monitoring State (pause or continue). The State field reports whether the current value is above, in range, or below (info) the configured threshold.

The following operands are optional with the --apply, --cancel, and --show options; if omitted, the default thresholds are used.

-thresh_level def | cust
Configures or displays default or custom threshold configuration settings.

-action_level def | cust
Configures or displays default or custom configuration settings.
--pause | --continue arguments
Pauses or resumes monitoring. The following arguments are required:

class
Specifies the class.

-area area[,area]... | all
Specifies the area. You can either specify one or more areas separated by a comma, or you can specify all to indicate all areas.

-port port_list | all
Specifies one or more ports or all ports. The port_list operand supports one of the following values:
- A single port number preceded by the slot number on bladed systems.
- A set of comma-separated port numbers, preceded by the slot number on bladed systems, for example, 3,8,15, or 1/1/9,2/7.
- A port range, for example 3-24 or 1/1-1/9. A port range cannot span slots.

--help
Displays the command usage.

EXAMPLES
To set custom thresholds for the port class and CRC area with E-mail alerts:

```
switch:admin> portthconfig --set port -area crc \
 -highthreshold -value 2 \
 -trigger above -action email
switch:admin> portthconfig --set port -area crc \
 -highthreshold -value 2 \
 -trigger below -action email
switch:admin> portthconfig --set port -area crc \
 -lowthreshold -value 1 \
 -trigger above -action email
switch:admin> portthconfig --set port -area crc \
 -lowthreshold -value 1 \\
```

To apply the new custom settings so they become effective:

```
switch:admin> portthconfig --apply port -area crc \
 -action cust -thresh_level cust
```

To set custom thresholds for the VE_Port class and UTIL area with SNMP alerts and save the thresholds nonpersistently:

```
switch:admin> portthconfig --set ve-port -area util \
 -highthreshold -value 2 \
 -trigger above -action snmp -nosave
switch:admin> portthconfig --set ve-port -area util \
 -highthreshold -value 2 \
 -trigger below -action snmp -nosave
switch:admin> portthconfig --set ve-port -area util \
 -lowthreshold -value 1 \
```
-trigger above -action snmp -nosave

switch:admin> portthconfig --set ve-port -area util \
   -lowthreshold -value 1 \
   -trigger below -action snmp -nosave

To cancel the custom settings that have previously been saved nonpersistently:

switch:admin> portthconfig --cancel ve-port -area \
   util -action_level cust -thresh_level cust

To display the port threshold configuration for all port types and areas:

switch:admin> portthconfig --show
PortType: E-port
   Area    : CRC
   ThLevel : Def
   ActLevel: Def
   High    :
      Custom:
         TimeBase: Minute
         Value : 1000
         Trigger : Above Action: None
         Trigger : Below Action: None
      Default:
         TimeBase: Minute
         Value : 1000
         Trigger : Above Action: None
         Trigger : Below Action: None
   Low:
      Custom:
         TimeBase: Minute
         Value : 0
         Trigger : Above Action: None
         Trigger : Below Action: None
      Default:
         TimeBase: Minute
         Value : 0
         Trigger : Above Action: None
         Trigger : Below Action: None
   Buffer:
      Custom:
         Value : 100
      Default:
         Value : 100

Port persistence time = 18s

Area    : ITW
ThLevel : Def
ActLevel: Def
High    :
      Custom:
         TimeBase: Minute
         Value : 1000
         Trigger : Above Action: None
         Trigger : Below Action: None
      Default:
         TimeBase: Minute
         Value : 1000
To display threshold configuration and current status for E_Port CRC errors:

```
switch:admin> portthconfig --show e-port -area crc
PortType: E-port
Area : CRC
ThLevel : Def
ActLevel: Def
High :
 Custom:
 TimeBase: Minute
 Value : 1000
 Trigger : Above Action: None
 Trigger : Below Action: None
 Default:
 TimeBase: Minute
 Value : 500
 Trigger : Above Action: None
 Trigger : Below Action: None
Low:
 Custom:
 TimeBase: Minute
 Value : 0
 Trigger : Above Action: None
 Trigger : Below Action: None
 Default:
 TimeBase: Minute
 Value : 0
 Trigger : Above Action: None
 Trigger : Below Action: None
```

Trigger : Below Action: None
Default:
  TimeBase: Minute
  Value : 1000
  Trigger : Above Action: None
  Trigger : Below Action: None

Low:
  Custom:
    TimeBase: Minute
    Value : 0
    Trigger : Above Action: None
    Trigger : Below Action: None
  Default:
    TimeBase: Minute
    Value : 0
    Trigger : Above Action: None
    Trigger : Below Action: None

Buffer:
  Custom:
    Value : 100
  Default:
    Value : 100
Port persistence time = 18s

To pause and continue E_Port monitoring:

switch:admin> portthconfig --pause e-port -area all -port all
switch:admin> portthconfig --show e-port -current

<table>
<thead>
<tr>
<th>PortType</th>
<th>Area</th>
<th>PortNo</th>
<th>C#</th>
<th>Value</th>
<th>State</th>
<th>Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Pause</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Pause</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Pause</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Pause</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Pause</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Pause</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Pause</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Pause</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Pause</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Pause</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Pause</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Pause</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Pause</td>
</tr>
</tbody>
</table>

(output truncated)

switch:admin> portthconfig --continue e-port -area all -port all
switch:admin> portthconfig --show e-port -current

<table>
<thead>
<tr>
<th>PortType</th>
<th>Area</th>
<th>PortNo</th>
<th>C#</th>
<th>Value</th>
<th>State</th>
<th>Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Continue</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Continue</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Continue</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Continue</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Continue</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Continue</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Continue</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Continue</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Continue</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Continue</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Continue</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Continue</td>
</tr>
</tbody>
</table>

Fabric OS Command Reference
To display current values for CRC errors for all E_Ports:

```
switch:admin> portthconfig --show e-port -area CRC -current
```

<table>
<thead>
<tr>
<th>PortType</th>
<th>Area</th>
<th>PortNo</th>
<th>C#</th>
<th>Value</th>
<th>State</th>
<th>Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>000009</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Continue</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>000010</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Continue</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>000011</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Continue</td>
</tr>
<tr>
<td>E-port</td>
<td>CRC</td>
<td>000012</td>
<td>n/a</td>
<td>0</td>
<td>Info</td>
<td>Continue</td>
</tr>
<tr>
<td>(output truncated)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To display current values for CRC errors on all optical F_Ports:

```
switch:admin> portthconfig --show fop-port -area CRC -current
```

<table>
<thead>
<tr>
<th>PortType</th>
<th>Area</th>
<th>PortNo</th>
<th>Value</th>
<th>State</th>
<th>Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOP-port</td>
<td>CRC</td>
<td>000019</td>
<td>0</td>
<td>Info</td>
<td>Continue</td>
</tr>
</tbody>
</table>

SEE ALSO fwHelp, portFencing, sysMonitor, thConfig
portTrunkArea

Assigns or removes a trunk area (TA) from a port or port trunk group; displays masterless F_Port trunking configuration.

SYNOPSIS

porttrunkarea --enable [slot[/]port1[-port2] -index port_index

porttrunkarea --disable [slot[/]port1[-port2]

porttrunkarea --disable all

porttrunkarea --show disabled | enabled | trunk | all

porttrunkarea --show slot[/port1[-port2]

DESCRIPTION

Use this command to assign a static trunk area (TA) on a port or port trunk group, to remove a TA from a port or group of ports in a trunk, and to display masterless F_Port trunking information. The TA is identified by the port index number displayed in the output of the switchShow command.

Masterless F_Port trunking interoperates between the Access Gateway (AG) and Condor-based platforms. It is designed to (1) prevent reassignments of virtual addresses when F_Ports come back online after going offline and (2) to increase N_Port bandwidth.

Assigning a TA to a port or trunk group enables F_Port masterless trunking on that port or trunk group. When a TA is assigned to a port or trunk group, the ports immediately acquire the TA as the area of their process IDs (PID). Likewise, when a TA is removed from a port or trunk group, the ports revert to the default area as their PID.

Use the --show option to obtain configuration details including the following information.

Slot

On enterprise-class platforms, displays the slot number.

Port

Displays the port number.

Type

Displays online masterless trunked F_Port or EX_Port if applicable. Otherwise displays --.

State

Displays Trunk Master, Slave, or --.

Master

Displays the master port of the trunk group.

TA

On standalone switches, displays the user assigned TA number.

DA

On standalone switches, displays the default port area. The default area can be a port swapped area.

TI

On enterprise-class platforms, displays the user-assigned TA port index.

DI

On enterprise-class platforms, displays the default port index. The default port index can be a port swapped area.
The `--show trunk` option displays the following information:

**Trunk Index**

- Displays the trunk index.

**ptA->ptB**

- `ptA` indicates the local user port; `ptB` indicates the remote user port.

**sp**

- Port speed in Gbps.

**Bandwidth**

- The bandwidth (Rx, Tx, and the combined total for Tx+Rx) of the trunk group. Values are displayed as either bits per second (Bps), kilobits per second (Kbps), megabits per second (Mbps), or gigabits per second (Gbps), rounded down to the next integer.

**Throughput**

- Displays the throughput (Rx, Tx, and the combined total for Tx+Rx) of the trunk group. Results are displayed for the previous second. Values are displayed as either bits per second (Bps), kilobits per second (kbps), megabits per second (Mbps), or gigabits per second (Gbps), rounded down to the next integer.

**%**

- Displays the percentage of link utilization (Rx, Tx, and the combined total for Tx+Rx). Even when the link utilization is 100%, the throughput value will be lesser than the bandwidth value, due to the 8b/10b encoding and the control words transmitted. For example, the throughput for an 8 Gbps link at 100% utilization would be approximately 6.8 Gbps.

**deskew**

- The time difference for traffic to travel over each F_Port trunk as compared to the F_Port trunk with the shortest travel time in the group. The value is expressed in nanoseconds divided by 10. The firmware automatically sets the minimum deskew value of the shortest F_Port trunk travel time to 15.

**Master**

- Identifies the master port of the trunk group.

Execution of this command is subject to the following restrictions:

- Only F_Port trunk ports are allowed to be part of a TA. E/F/L/EX_Port will be persistently disabled. Private L_Ports remain online but will not run traffic.
- Only one trunk master per TA is permitted. The second trunk master is persistently disabled.
- The entire TA trunk group shares the same port WWN.
- The port must be disabled before a TA can be assigned to a port or removed from a trunk group.
- There is one port whose Default Area is the same as its Trunk Area. You cannot remove that port from the trunk group unless the TA is removed from all ports in the trunk group.
- You must enable trunking on all ports to be included in a TA before you can create a TA. Use `portCfgTrunkPort` or `switchCfgTrunk` to enable Trunking on a port or on all ports of a switch.
- N_Port ID Virtualization (NPIV) support is provided for up to 255 devices per TA. Note that this decreases the number of devices available per port, because all participating ports share the same area.
- F_Port trunking is only supported in CORE PID formats.
- Certain port configuration features are not supported within a TA and the command fails if one of these features is enabled on a port within the trunk group. These features include FastWrite, Port Swapping, Port Mirroring, Long Distance, Interchassis links (ICL), and FICON.
- Ports from different Admin Domains are not allowed to join the same Trunk Area group.
- Ports included in a TA share the same port index. The original port index may be removed in the process. This means that D, I zones referring to these indices are no longer part of the switch. For details and workarounds, refer to the Fabric OS Administrator's Guide.

- Device Connection Control (DCC) Policy must be removed from ports prior to creating a TA. You can re-enable DCC policy after creating the TA.

- You cannot assign a TA while AG mode is enabled.

**NOTES**
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, “Using Fabric OS Commands” and Appendix A, “Command Availability” for details.

Masterless F_Port trunking requires an ISL Trunking license.

**OPERANDS**
This command supports the following operands:

- **slot**
  On enterprise-class platforms, specifies the slot number, followed by a slash (/).

- **port1[-port2]**
  Specifies a single port or a port range, relative to its slot on bladed systems. For example, 9/8-15 on an enterprise-class platform indicates slot 9, ports 8 to 15. Port ranges should fall in the octet (8 port) trunk range starting from port 0 on a switch or blade.

- **--enable**
  Creates a TA assigned to the specified ports. Use this option with one of the following operands:

  - **-area area_number**
    On single processor switches, specifies the port area number for the static TA to be created. The TA must fall within the 8 port trunk group starting from port 0 on a switch or blade. The TA must be a default area of an existing port in a given port group. However, you may add ports to the trunk group even when a trunk group has already been assigned by using the same area of the octet trunk group. Use `switchShow` for a list of valid port area or index numbers.

  - **-index port_index**
    On enterprise-class platforms, specifies the port index for the static TA to be created. The port index must fall within the 8 port trunk group starting from port 0 on a switch or blade. The TA must be a default index of an existing port in a given port group. However, you may add ports to the trunk group even when a trunk group has already been assigned by using the same index of the octet trunk group. Use `switchShow` for a list of valid port indexes.

- **--disable**
  Removes specified ports from a TA. If a port with the same default area as the TA assigned for the trunk group is removed, all ports in the trunk group must be explicitly specified for removal.

  - **all**
    Optionally removes all TA assigned ports on the switch. This option disables masterless F_Port trunking on all ports. All TA assigned ports must be disabled for this option to succeed.

- **--show**
  Displays masterless F_Port trunking information. When using this option, specify one of the following operands:

  - **[slot[/port1[-port2]]**
    Displays configuration for a specified port or port range.
trunk
Displays configuration details for the port trunk group, including user port, neighboring user port, and master port properties.

enabled
Displays configuration details for all ports included in a user assigned TA (all ports on which masterless F_Port trunking is enabled).

disabled
Displays configuration details for all ports not included in a user assigned TA (all ports on which masterless F_Port trunking is not enabled).

all
Displays configuration details for all ports on a switch.

**EXAMPLES**
To enable masterless F_Port trunking on a standalone switch:
1. Disable ports 10-11 by executing `portdisable port` for each port to be included in the TA.
2. Enable Trunk Area for ports 10-11 with area number 37:

   ```
 switch:admin> porttrunkarea --enable 10-11 -index 11
 2009/05/15-12:43:10, [SWCH-1012], 60, FID 128, INFO, sw0, Trunk Area (11) has been enabled for one or more ports
 Trunk area 11 enabled for ports 10 and 11.
   ```
3. Re-enable ports 10-11 by executing `portenable port` for each port in the TA.
4. Show switch/port information:

   ```
 switch:admin> switchshow
 [...]
 Index Port Address Media Speed State Proto
 ===
 [...]
 11 10 030b00 id N4 No_Light FC
 11 11 030b00 id N4 No_Light FC
 [...]
   ```
5. Display TA-enabled port configuration:

   ```
 switch:admin> porttrunkarea --show enabled
 Port Type State Master TA DA

 10 -- -- -- 11 10
 11 -- -- -- 11 11
   ```
To disable masterless F_Port trunking on ports 10-11:

```
switch:admin> porttrunkarea --disable 10-11
ERROR: port 11 has to be disabled
``` 
Disable each port prior to removing ports from the TA. Then reissue the command:

```
switch:admin> porttrunkarea --disable 10-11
Trunk area 11 disabled for ports 10 and 11.
```
To display trunk details for a user assigned TA 25 that includes ports 24-25:

```
switch:admin> porttrunkarea --show trunk
Trunk Index 25: 25->0 sp: 8.000G
 bw: 16.000G deskew 15 MASTER
 Tx: Bandwidth 16.00Gbps, Throughput 1.63Gbps (11.84%)
 Rx: Bandwidth 16.00Gbps, Throughput 1.62Gbps (11.76%)
 Tx+Rx: Bandwidth 32.00Gbps, Throughput 3.24Gbps (11.80%)

 24->1 sp: 8.000G bw: 8.000G deskew 15
 Tx: Bandwidth 16.00Gbps, Throughput 1.63Gbps (11.84%)
 Rx: Bandwidth 16.00Gbps, Throughput 1.62Gbps (11.76%)
 Tx+Rx: Bandwidth 32.00Gbps, Throughput 3.24Gbps (11.80%)
```

To configure a TA on an enterprise-class platform including ports 13 and 14 on slot 10 with port index of 125:

1. Disable the ports to be included in the TA.
2. Enable TA for ports 13 and 14 on slot 10 with port index of 125:

```
switch:admin> porttrunkarea --enable 10/13-14 -index 125
Trunk index 125 enabled for ports 10/13 and 10/14.
```

3. Show the TA port configuration (ports still disabled):

```
switch:admin> porttrunkarea --show enabled
Slot Port Type State Master TI DI

10 13 -- -- -- 125 125
10 14 -- -- -- 125 126

```

4. Enable ports 13 and 14:

```
switch:admin> portenable 10/13
switch:admin> portenable 10/14
```

5. Show the TA port configuration after enabling the ports:

```
switch:admin> porttrunkarea --show enabled
Slot Port Type State Master TI DI

10 13 F-port Master 10/13 125 125
10 14 F-port Slave 10/13 125 126
```

**SEE ALSO** portCfgTrunkPort, portCfgShow, portShow, switchCfgTrunk, switchShow
portZoneShow

Displays the enforced zone type of the F_Ports and FL_Ports of a switch.

SYNOPSIS  portzoneshow

DESCRIPTION Use this command to display the enforced zone type of the F_Ports and FL_Ports of a switch. Output shows virtual port number (decimal), physical port number (decimal), online status, and if online, port type. If the current zone configuration has been disabled by **cfgDisable**, the fabric is in non-zoning mode, in which all devices see each other. When default zoning is enabled with "No Access" mode, "No Effective configuration: (No Access)" is displayed.

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS None

EXAMPLES To display the zone membership information of ports:

```
switch:user> portzoneshow
[OUTPUT TRUNCATED]
PORT: 160 (160) Offline
PORT: 161 (161) Offline
PORT: 162 (162) Offline
PORT: 163 (163) Offline
PORT: 164 (164) Offline
PORT: 165 (165) Offline
PORT: 166 (166) Offline
PORT: 167 (167) Offline
PORT: 168 (168) FL-Port Enforcement: HARD WWN
 defaultHard: 0 IFID: 0x4332000a
PORT: 169 (169) Offline
PORT: 170 (170) Offline
PORT: 171 (171) Offline
PORT: 172 (172) Offline
PORT: 173 (173) Offline
PORT: 174 (174) Offline
PORT: 175 (175) Offline
PORT: 176 (176) F-Port Enforcement: HARD WWN
 defaultHard: 0 IFID: 0x4342002a
PORT: 177 (177) Offline
PORT: 178 (178) Offline
PORT: 179 (179) Offline
PORT: 180 (180) Offline
(output truncated)
```

SEE ALSO  **cfgShow**, **switchShow**
powerOffListSet

Sets the order in which slots are powered off.

SYNOPSIS

powerofflistset

DESCRIPTION

Use this command to Modify the order in which slots are powered off. This command displays the current order, and then prompts you interactively to confirm or modify the power-off position for each slot.

Whenever a power supply goes out of service or a field-replaceable unit (FRU) RU is inserted, the system's available power is compared to the system's required power to determine if there is enough power to operate. If less than the required power is available, the power-off list is processed, until there is sufficient power for the system to operate.

If the system's power supply drops abruptly to insufficient levels, the power-off list cannot be processed. The sudden lack of power causes the CP board processors to cease executing the firmware.

For example, if only one power supply is available to power a fully loaded system and the power supply is removed from the chassis, all system operations terminate immediately, and the power-off list cannot be processed. However, if the system is running on two power supplies (this is not recommended) and one goes into a predicted fail state (in which the power supply is still supplying power), the power-off list is processed as described.

The power-off list does not affect the order, in which slots are powered on. On power-on or when an additional power supply is added, slots are processed sequentially, starting at slot 1.

NOTES

- CP blade slots are not included in the power-off list.
- Command output may vary depending on the hardware platform.
- Some FRUs may use significant power, but cannot be powered off by the software. For example a missing blower FRU may change the power computation enough to affect how many slot blades can be powered up.
- The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To modify the power-off list order:

```
switch:admin> powerofflistset

Slot Current POL

10 1st
9 2nd
8 3rd
7 4th
4 5th
3 6th
2 7th
1 8th

1st slot to be powered off: (1..10) [10] 1
2nd slot to be powered off: (2..10) [9] 2
3rd slot to be powered off: (3..10) [8] 3
4th slot to be powered off: (4..10) [7] 4
5th slot to be powered off: (7..10) [7] 10
```
powerOffListSet

6th slot to be powered off: (7..9) [8] 9
7th slot to be powered off: (7..8) [8] 8
8th slot to be powered off: (7..7) [7] 7

<table>
<thead>
<tr>
<th>Old POL</th>
<th>New POL</th>
<th>Power Off Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>1st</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>2nd</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>3rd</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>4th</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>5th</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>6th</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>7th</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>8th</td>
</tr>
</tbody>
</table>

Proceed to change the POL order? (yes, y, no, n): [no] y

SEE ALSO  chassisShow, powerOffListShow, psShow, slotPowerOff, slotPowerOn, slotShow
powerOffListShow

Displays the order in which slots are powered off.

SYNOPSIS

powerofflistshow

DESCRIPTION

Use this command to display the order in which the physical slots are powered off.

Whenever a power supply goes out of service or a field-replaceable unit (FRU) is inserted, the system's available power is compared to the system's required power to determine if there is enough power to operate. If less than the required power is available, the power-off list is processed, until there is sufficient power for the system to operate.

The following rules apply when the power-off list is processed:

• If a power supply starts predicting failure, so that there will not be enough power for all blades, the powered-up port blades are powered down in the order in which they appear on the power-off list.
• If you replace a failed power supply, or you remedy an existing power-supply shortage by inserting a new power supply, the previously powered-down blades are powered up in the reverse order of the power-on list. Note that this is different from the order in which the blades in the system usually come up. The original powering up of blades does not consult the power-off-list; it simply proceeds from the lower-numbered slots to the higher-numbered slots.
• If you add a new blade to the chassis, and there is not enough power available to operate the additional hardware (because you may only have one power supply) the newly inserted blade will be denied power and the existing powered-on blades stay powered on.
• If the system's power supply drops abruptly to insufficient levels, the power-off list cannot be processed. The sudden lack of power causes the CP board processors to cease executing the firmware. For example, if only two power supplies are available to power a fully loaded chassis that requires at least two power supplies, and one power supply is removed from the chassis, all system operations terminate immediately, and the power-off list cannot be processed. However, if the system is running on two power supplies (this is not recommended in this case) and one goes into a predicted fail state (in which the power supply is still supplying power), the power-off list is processed as described.

NOTES

Command output may vary depending on the hardware platform.

Control processor (CP) blades are not included in the power-off list.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display the slot power off list order:

    switch:admin> powerofflistshow

    Slot 10 will be powered off 1st
    Slot  9 will be powered off 2nd
    Slot  8 will be powered off 3rd
    Slot  7 will be powered off 4th
    Slot  6 will be powered off 5th
powerOffListShow

Slot 5 will be powered off 6th
Slot 4 will be powered off 7th
Slot 3 will be powered off 8th
Slot 2 will be powered off 9th
Slot 1 will be powered off 10th

SEE ALSO chassisShow, powerOffListSet, psShow, slotPowerOff, slotPowerOn, slotShow
psShow

Displays power supply status.

SYNOPSIS

psshow

DESCRIPTION

Use this command to display the current status of the switch power supplies.

The status of each supply is displayed as:

OK
Power supply functioning correctly.

absent
Power supply not present.

unknown
Unknown power supply unit installed.

predicting failure
Power supply is present but predicting failure.

faulty
Power supply present but faulty (no power cable, power switch turned off, fuse blown, or other internal error).

For certain switch models, the OEM serial ID data displays after each power supply status line.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To view the status of the power supplies:

switch:admin> psshow

Power Supply #1 is OK
DELTA DPS-1001AB-1E 23000000601 S1 IXD0111000088
Power Supply #2 is faulty
DELTA DPS-1001AB-1E 23000000601 S1 IXD0111000162
Power Supply #3 is OK
DELTA DPS-1001AB-1E 23000000601 S1 IXD0111000120
Power Supply #4 is absent

SEE ALSO

chassisShow, fanShow
rasAdmin

Configures RASlog message generation.

SYNOPSIS

rasadmin --enable [-log MSG-ID] [-syslog MSG-ID] [-module MODULE-ID]

rasadmin --disable [-log MSG-ID] [-syslog MSG-ID] [-module MODULE-ID]

rasadmin --set -log MSG-ID -severity value


rasadmin --help

DESCRIPTION

Use this command to enable or disable RASlog message logging for selected messages or groups of
messages (modules), to change the default severity level for a specified message, and to display
configured RASlog settings. The -log, -module, and -severity configuration and display options apply to
external messages (Message ID 1001-4999) and are available to any user with admin privileges.

An INFO RASlog message is generated for every message that is enabled or disabled. In addition, the
list of disabled RASlog messages are collected as part of the supportSave command

The changes made by this command are persistent across reboots, high availability failover, and
firmware downloads.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

This command does not disable messages of type FFDC or AUDIT. When you disable logging for a
message that has both AUDIT and LOG attributes, the message will not be logged as a RASlog
message, but it will continue to be written to the Audit log.

OPERANDS

This command has the following operands:

--disable

Disables logging for a specified RASlog message or for all messages grouped in a
RASlog module.

--enable

Enables logging for a specified RASlog message or for all messages grouped in a
RASlog module. Message logging is enabled by default. This command re-enables logging of messages that were previously disabled.

One of the following options must be specified when you disable or enable
message logging:

-log MSG-ID

Enables or disables logging for the specified message.

-log MODULE-ID

Enables or disables logging for all message included in the specified module.

-syslog MSG-ID

Enables or disables logging for an internal message.
--set -log MSG-ID
   Changes the default severity level of the specified message.

   -severity value
   Specifies a new severity level for the message. Valid values include INFO,
   WARNING, ERROR, CRITICAL, and DEFAULT.

--show -disabled
   Displays all messages that have been disabled.

--show -log MSG-ID
   Displays the logging status of the specified message.

--show -module MODULE-ID
   Displays the logging status of all messages included in the specified module.

--show -severity MSG-ID
   Displays the severity of the specified messages.

--show -all
   Displays all external RASlog messages, their status (enabled or disabled), their
   configured severity and their default severity.

--show -syslog
   Displays the list of internal RASLog messages that are configured to display on
   the system console and the syslog server.

EXAMPLES
To disable logging of a single message:

switch:admin> rasadmin --disable -log NSM-1009
2012/07/20-13:30:41, [LOG-1005], 378, SLOT 4 | CHASSIS, INFO,
   PLUTO_25, Log message NSM-1009 has been disabled.

To re-enable logging of a single message that was previously disabled:

switch:admin> rasadmin --enable -log NSM-1009
2012/07/20-13:30:41, [LOG-1005], 378, SLOT 4 | CHASSIS, INFO,
   PLUTO_25, Log message NSM-1009 has been enabled.

To disable logging of all messages that belong to the NSM module:

switch:admin> rasadmin --disable -module NSM
2012/07/20-13:28:37, [LOG-1007], 375, SLOT 4 | CHASSIS, INFO,
   PLUTO_25, Log Module NSM has been disabled.

To re-enable logging of all messages that belong to the NSM module:

switch:admin> rasadmin --enable -module NSM
2012/07/20-13:28:37, [LOG-1007], 375, SLOT 4 | CHASSIS, INFO,
   PLUTO_25, Log Module NSM has been enabled.

To change the severity level of a RASlog message:

switch:admin> rasadmin --set -log SEC-1203 -severity WARNING

Message       Severity
SEC-1203:     WARNING

To display a list of all messages that have been disabled:

switch:admin> rasadmin --show -disabled
Message    Status   Default Severity   Current Severity
IPAD-1002  DISABLED  INFO               INFO
IPAD-1003  DISABLED  INFO               INFO
To display the status and configuration of messages that belong to the specified module:

```
switch:admin> rasadmin --show -module RM
Message Status Default Severity Current Severity
RM-1001 ENABLED INFO INFO
RM-1023 ENABLED INFO INFO
RM-1024 ENABLED INFO INFO
RM-1020 ENABLED INFO INFO
RM-1021 ENABLED INFO INFO
RM-1022 ENABLED INFO INFO
```

To display the status and configuration of a specified message.

```
switch:admin> rasadmin --show -log IPAD-1002
Message Status Default Severity Current Severity
IPAD-1002 DISABLED INFO INFO
```

To display the status and configuration for all external messages:

```
switch:admin> rasadmin --show -all
Message Status Default Severity Current Severity
FCIP-1000 ENABLED CRITICAL CRITICAL
FCIP-1001 ENABLED INFO ERROR
FCIP-1002 ENABLED INFO INFO
```

To enable an internal RASlog messages to be sent to syslog (this is done per instruction from support):

```
switch:admin> rasadmin --enable -syslog RAS-5001
2012/07/20-13:49:35, [LOG-1009], 385, SLOT 4 | CHASSIS, INFO, PLUTO_25,
Internal Log message RAS-5001 has been enabled for syslog logging.
```

To disable an internal RASlog messages to be sent to syslog (this is done per instruction from support):

```
switch:admin> rasadmin --disable -syslog RAS-5001
2012/07/20-13:49:35, [LOG-1010], 385, SLOT 4 | CHASSIS, INFO, PLUTO_25,
Internal Log message RAS-5001 has been disabled for syslog logging.
```

SEE ALSO rasMan
rasMan

Displays RASlog message text and documentation.

SYNOPSIS

rasman message_id

rasman --help

DESCRIPTION

Use this command to display documentation for a specified RASlog message. The message is specified by its message ID. The command output is identical to the documentation provided in the Fabric OS Message Reference. For each message, the command displays the following information:

MESSAGE

Displays the message text.

MESSAGE TYPE

Displays the message type. The message type can be one or more of the following: LOG, FFDC, or AUDIT.

CLASS

A class value is displayed for audit messages only. Supported audit classes include SECURITY, FIRMWARE, FABRIC FW (Fabric Watch), LS (logical switch), CLI, MAPS, and RAS.

SEVERITY

Indicates the message severity as one of the following: INFO, ERROR, WARNING, CRITICAL.

PROBABLE CAUSE

Describes what may be causing the message.

RECOMMENDED ACTION

Describes the recommended action.

NOTES

This command is available to all supported Brocade roles, including root.

This command displays only external messages in the numeric range of 1000-4999.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

message_id

Specifies the message ID in the following format: <module ID>-<message number>. The message ID is case sensitive and should be entered exactly as shown in the RASlog message displayed on the console. For example, FW-1140 is a valid message ID, but fw-1140 is not valid.

--help

Displays the command usage.

EXAMPLES

To display documentation for a ZONE audit message:

switch:admin> rasman ZONE-3018
Log Messages

MESSAGE  ZONE-3018 - Event: <Event Name> Status: success,
          Info: <AD object type> <AD object name>
has been deactivated.

MESSAGE TYPE
AUDIT

CLASS
FABRIC

SEVERITY
INFO

PROBABLE CAUSE
Indicates that the specified Admin Domain (AD) object has been deactivated.

RECOMMENDED ACTION
Verify that the event was planned. If the event was planned, no action is required. If the event was not planned, take appropriate action as defined by your enterprise security policy.

SEE ALSO rasAdmin
**reBoot**

Reboots the control processor (CP).

**SYNOPSIS**

reboot [-f]

**DESCRIPTION**

Use this command to perform a "cold reboot" (power off/restart) of the control processor. This operation may be disruptive, and the command prompts for confirmation before executing. When you reboot a switch connected to a fabric, all traffic to and from that switch stops. All Fibre Channel ports on that switch including E_Ports become inactive until the switch comes back online.

The behavior of this command depends on the platform:

- When issued on a standalone (single-processor) switch, this command performs a cold reboot of the switch.
- When issued on an enterprise-class platform (Brocade DCX, DCX-4S, or 48000) with two CPs (active and standby), the following rules apply:
  - When the Standby CP reboots, it goes down and there is no failover because there is no traffic on that switch. When the Standby CP comes up again, it is temporarily no longer in sync with the Active CP.
  - When the Active CP reboots, it fails over to the Standby CP. The Standby CP becomes the new Active CP and traffic is disrupted.
  - When HA is in sync, and reboot -f is issued on the Active CP of a director, the Standby CP takes over as the active CP without traffic disruption. If HA is not in sync, and reboot -f is issued on the Active CP, the Standby CP takes over as the Active CP and traffic is disrupted.
  - When HA is disabled and reboot or reboot -f is issued on the Active CP, both the Active and Standby CPs reboot with the original mastership retained. The original Active CP remains the Active CP after the reboot, and the original Standby CP remains the Standby CP. After the reboot, HA is enabled.
  - When HA is disabled and reboot or reboot -f is issued on the Standby CP, the Standby CP reboots without prompting. It boots up with the default switch only, even if the Active CP has multiple logical switches configured. After the Standby CP boots up, HA is still disabled.

**NOTES**

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

- **-f**

  Causes the CP to fail over to the Standby CP without affecting any of the Fibre Channel Ports. Note that the recommended way to force a failover without affecting any Fibre Channel ports is to issue the haFailover command.

**EXAMPLES**

To reboot a standalone switch with a single CP:

```
switch:admin> reboot
Warning: This command would cause the switch to reboot and result in traffic disruption.
Are you sure you want to reboot the switch [y/n]? y

Broadcast message from root (pts/0) Sun Feb 28 19:49:45 2010...
The system is going down for reboot NOW !
```
To reboot a CP on a DCX when HA is enabled:

```bash
switch:admin> reboot
Warning: This command is being run on a control processor (CP) based system and will cause the active CP to reboot.
Are you sure you want to reboot the active CP [y/n]? y

Broadcast message from root (pts/0) Sun Feb 28 19:49:45 2010...

The system is going down for reboot NOW !
```

To reboot a CP on a DCX when `haFailover` is disabled:

```bash
switch:admin> reboot

This command is being run on a control processor (CP) based system. Because HA is disabled, it will cause both active CP and the standby CP to reboot. After reboot, the HA will be enabled.

Do you want to continue [y/n] y

Broadcast message from root (pts/0) Sun Feb 28 19:49:45 2010...

The system is going down for reboot NOW !
```

**SEE ALSO**  `fastBoot`, `haDisable`, `haEnable`, `haFailover`
relayConfig

Sets and displays the relay host IP address.

SYNOPSIS

relayconfig --config -rla_ip relay_ip
   -rla_dname domain_name

relayconfig --show

relayconfig --help

DESCRIPTION

Use this command to configure or display the relay host that is used to send the Monitoring and Alerting Policy Suite (MAPS) e-mail notifications. You can configure the e-mail recipients using the mapsConfig --emailcfg command.

For an e-mail alert to function correctly, add the CP0 and CP1 IP addresses and host names to DNS and also set the domain name and name server. The ipAddrShow and dnsConfig commands can be used to set and verify this information.

NOTES

This command requires a Fabric Vision license.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

--config
   Sets the relay host IP address and domain name.
   -rla_ip relay_ip
   Specifies the IP address of the relay host.
   -rla_dname domain_name
   Specifies the domain name of the relay host.

--show
   Displays the relay host configuration.

--help
   Displays the command usage.

EXAMPLES

To set relay host IP address:

switch:admin> relayconfig --config -rla_ip 10.70.212.168 \ 
   -rla_dname "mail.brocade.com"

To display the relay host configuration:

switch:admin> relayconfig --show
Relay Host:        10.70.212.168
Relay Domain Name: mail.brocade.com

SEE ALSO

mapsConfig
roleConfig

Manages user-defined roles.

SYNOPSIS

roleconfig --add role_name [-desc description] [class rbac_class_list] [-perm permission]

roleconfig --change role_name [-class rbac_class_list] [-perm permission] [-desc description]

roleconfig --delete role_name [-force]

roleconfig --copy new_role -role source_role

roleconfig --show role_name | -all [default]

roleconfig --help

DESCRIPTION

Use this command to create or modify user-defined roles, to define permissions for these roles based on
role-based access control (RBAC) permissions and meta-object format (MOF) classes, and to display
the configured roles. Two types of access control restriction exist in Fabric OS:

• Restriction by MOF class: A MOF class groups similar Fabric OS commands into feature sets that
share the same access permissions. By assigning one or more MOF classes to a role, the account
with the specified role can access all the commands included in these classes. For example, the
predefined role ZoneAdmin can access the commands under the MOF class Zoning, but not those
under the UserManagement class. With the roleConfig command you could define a special admin
role called myzonesec and assign access to this role for both the zoning and the userManagement
class.

• Restriction by RBAC access level: You can further restrict access by setting RBAC one of the
following access levels for the role. The RBAC permissions are set per class.
  - O = observe
  - OM = observe-modify
  - N = none/not available

Use the --show option to display information about user-defined roles and default roles. Use the
classConfig command to display information about MOF classes and associated commands. Note that
you cannot modify the predefined Fabric OS roles.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS

This command has the following operands:

--add

Creates a role with the specified name and optional attributes. The new role is
created with two default RBAC classes, "localuserenvironement" and "nocheck"
and has the default permissions observe and modify ("OM"). A configuration
download will always reset the permissions of these two default classes to "OM."

--change

Modifies an existing user-defined role.
role_name

Specifies the name for the role to be created or modified. The name must be unique; it is case-insensitive and can contain only alpha characters. The role name must be at least 4 characters long and cannot exceed 16 characters. The maximum number of user-defined roles allowed on a chassis is 256. This operand is required.

The following operands are optional with --add and --change:

-desc description

Specifies a description for the role of up to 63 characters. Colons (: ) are not permitted.

-class class_list

Specifies one or more MOF classes to which the role should have access. Classes must be separated by commas. The requested class permissions cannot be higher than those of the Fabric OS Admin role.

-perm permissions

Specifies the RBAC permissions for the role. The RBAC permissions restrict what the user can do with the commands included in the classes to which the role has access. Valid RBAC permissions include the following:

OM

Observe and modify.

O

Observe only.

N

No access. This parameter is not valid with the --add option.

--delete role_name [-force]

Deletes the specified user-defined role. This command prompts for confirmation unless you use the -force option. The role must exist in the database and the role cannot currently be assigned to a user account. You cannot delete any of the predefined Fabric OS roles.

--copy

Clones an existing user-defined role by copying an existing role to a new role name. The new role inherits all the classes and permissions of the source role. You can further modify the newly created role. The following operands are required:

new_role

The name for the new role must be unique; it is case-insensitive and can contain only alpha characters. The role name must be at least 4 characters long and cannot exceed 16 characters.

-role source_role

Specified the name of the exiting role to be copied.

--show

Displays information about the specified roles. For each role, the command displays the role name, description, assigned classes and RBAC permissions for each class. The following displays options are exclusive:

role_name

Displays information about the specified user-defined role.

-all [default]

Displays a listing of all user-defined roles. When used together with the optional -default option, both the user-defined roles and the predefined Fabric OS roles are displayed.
--help

Displays the command usage.

EXAMPLES

To create a role with Zoning and SecurityAdmin permissions and OM access:

```
switch:admin> roleconfig --add myzonesec -d "Zone and Security Admin" -c Security, zoning -p OM
```

To change the access permissions of the previously created role and to display the results:

```
switch:admin> roleconfig --change myzonesec -c pki -p N
switch:admin> roleconfig --change myzonesec -c security -p O
switch:admin> roleconfig --change myzonesec -c zoning -p OM
```

```
switch:admin> roleconfig --show myzonesec
Role Name : myzonesec
Description : Zone and Security Admin

<table>
<thead>
<tr>
<th>RBAC Class</th>
<th>Permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security</td>
<td>O</td>
</tr>
<tr>
<td>Zoning</td>
<td>OM</td>
</tr>
</tbody>
</table>
```

Role permissions changed successfully.

To copy the role myzonesec:

```
switch:admin> roleconfig --copy superrole -r myzonesec
```

Role 'superrole' is copied successfully.

To delete a role:

```
switch:admin> roleconfig --delete -r myzonesec
You are going to delete a user defined role.
Are you sure? [yes, y, no, n] [no] y
```

Role 'myzonesec' is deleted successfully.

SEE ALSO

classConfig
routeHelp

Displays a list of FSPF-related commands.

SYNOPSIS

routehelp

DESCRIPTION

Use this command to display a list of fabric-shortest-path-first (FSPF)-related commands.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display a list of routing-related commands:

switch:admin> routehelp

aptPolicy          Get and set Advanced Performance Tuning policy
bcastShow          Print broadcast tree information
dlsReset           Turn off Dynamic Load Sharing
dlsSet             Turn on Dynamic Load Sharing
dlsShow            Print state of Dynamic Load Sharing
dspfShow           Print FSPF global information
interfaceShow      Print FSPF interface information
iodReset           Turn off In-Order Delivery
iodSet             Turn on In-Order Delivery
iodShow            Print state of In-Order Delivery
linkCost           Set or print the FSPF cost of a link
LSDbShow           Print Link State Database entry
nbrStateShow       Print neighbor's summary information
nbrStatsClear      Reset FSPF neighbor's counters
topologyShow       Print paths to domain(s)
uRouteConfig       Configure static unicast route
uRouteRemove       Remove static unicast route
uRouteShow         Print port's unicast routing info

SEE ALSO

bcastShow, interfaceShow, uRouteShow
rtLogTrace

Manages real-time trace logging.

SYNOPSIS

rtlogtrace --enable

rtlogtrace --disable

rtlogtrace --show

rtlogtrace --help

DESCRIPTION

Use this command to enable or disable real-time trace logging and to indicate whether the feature is enabled or disabled.

The RTLog facility captures the most recent hardware events and low-level software interrupts on Brocade DCX platforms in real time. When enabled, the RTLog traces are collected as part of the supportSave utility. The RTLog generates no console output. The RTLog is enabled by default and persistent across reboots. The rtLogTrace configuration is lost after a power cycle.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

--enable

Enables the RTLog on the active Control Processor (CP). The RTLog becomes effective on the standby CP after a failover or a reboot of the active CP.

--disable

Disables the RTLog.

--show

Displays the current status of the RTLog as enabled or disabled.

--help

Displays the command usage.

EXAMPLES

To enable the RTLog:

Switch:admin> rtlogtrace --enable

To disable the RTLog:

Switch:admin> rtlogtrace --disable

To display the RTLog status:

Switch:admin> rtlogtrace --show

SEE ALSO

None
secActiveSize

Displays the size of the active security database.

SYNOPSIS     secactivesize

DESCRIPTION   Use this command to display the size of the active security database. The command also displays the maximum database size.

For switches running Fabric OS v6.2.0 and later, the maximum security database size is 1 megabyte per logical switch. With up to eight partitions, the total database size on a chassis can be up to 8 megabytes. On switches that are not Virtual Fabric-capable, the security database is limited to 1 megabyte. For switches running earlier versions of Fabric OS (up to v5.3.0), the maximum size is 256 Kilobytes.

NOTES         The effective security DB size is the lowest supported by the fabric. The presence of a Standby CP that runs an earlier version of the operating system will drop the effective security DB size on an Active CP that runs Fabric OS v6.2.0.

The Brocade 200E is unable to handle the maximum DB size supported in v6.2.0 and issues a compact flash warning when the active security database is close to the 1 MB limit.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS      None

EXAMPLES      To display the size of the active security database:

switch:admin> secactivesize
    Size of security active data: 35 bytes \\
    (Max 1048576 bytes)

SEE ALSO      secDefineSize, secGlobalShow
secAuthSecret

Manages the DH-CHAP shared secret key information.

SYNOPSIS

secauthsecret --show
secauthsecret --set
secauthsecret --remove value | --all

DESCRIPTION

Use this command to manage the DH-CHAP shared secret key database used for authentication. This command displays, sets, and removes shared secret key information from the database or deletes the entire database. If you are performing set or remove operations, when the command is completed new data is saved persistently. New data is effective with the next authentication request. The configuration applies to a switch instance only.

Port level authentication security must be enabled before encryption configuration can be enabled. Pre-shared secret keys should be configured on both ends of the ISL to perform authentication. For encrypted ports, an authentication key of 32 characters is recommended. Spaces are not allowed.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

--show

Lists the WWNs for which a shared secret is configured. In Access Gateway mode, since you cannot configure using domain ID or switchname, these fields will be displayed as -1 and Unknown respectively.

--set

Sets shared secrets. You can set shared secrets for F_Port, N_Port in Access Gateway mode and E, EX_Port and F_Port on Fabric OS. This command is interactive. In Access Gateway mode, you can specify only a WWN. In Fabric OS, you can specify a WWN or switchname or domain ID. Spaces are not allowed.

--remove [wwn | domain | swname]

Removes the specified WWN entry from the database. If a domain name is specified, it is converted to a WWN and then the entry is removed. If no option is specified, the command is interactive. In Access Gateway mode, you can specify only a WWN. In Fabric OS, you can specify a WWN or switchname or domain ID.

--remove --all

Deletes the entire secret key database.

EXAMPLES

To list the shared secret WWN:

switch:admin> secauthsecret --show

<table>
<thead>
<tr>
<th>WWN</th>
<th>DId</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00:00:69:60:69:80:5b:e8</td>
<td>1</td>
<td>switch</td>
</tr>
</tbody>
</table>
To list the shared secret WWN in Access Gateway mode:

```
switch:admin> secAuthSecret --show

WWN DId Name

10:00:00:60:69:80:5b:e8 -1 Unknown
```

To set the shared secret:

```
switch:admin> secAuthSecret --set

This command sets up secret keys for the DH-CHAP authentication. The minimum length of a secret key is 8 characters and maximum 40 characters. Setting up secret keys does not initiate DH-CHAP authentication. If switch is configured to do DH-CHAP, it is performed whenever a port or a switch is enabled.

Warning: Please use a secure channel for setting secrets. Using an insecure channel is not safe and may compromise secrets.

Following inputs should be specified for each entry.

1. WWN for which secret is being set up.
2. Peer secret: The secret of the peer that authenticates to peer.
3. Local secret: The local secret that authenticates peer.

Press Enter to start setting up shared secrets >

Enter WWN, Domain, or switch name (Leave blank when done): 10:00:00:60:69:80:5b:e8
Enter peer secret:
Re-enter peer secret:
Enter local secret:
Re-enter local secret:

Enter WWN, Domain, or switch name (Leave blank when done): Are you done? (yes, y, no, n): [no] y
Saving data to key store... Done.
```

To delete the entire secret key database:

```
switch:admin> secAuthSecret --remove --all

This command deletes database of DH-CHAP secret keys. If a fabric requires authentication, deleting this database may cause switch to segment from the fabric.

Do want to remove secret key database? (yes, y, no, n): [no] y
Deleting secret key database... Done.
```

SEE ALSO None
secCertUtil

Manages certificates on a switch.

SYNOPSIS

secCertUtil

secCertUtil genkey [-nowarn] [-keysize 1024 | 2048]

secCertUtil delkey [-nowarn]-[all]

secCertUtil gencsr [-country country code] [-state state]
[-locality locality] [-org organization]
[-orgunit organization unit] [-cn common name]

secCertUtil delcsr [-nowarn]

secCertUtil showcsr

secCertUtil generate [-fcapall | -commoncertall][-keysize 1024 | 2048]

secCertUtil delete [-ldapcacert certificate name] | -fcapcacert | -fcapswcert | -fcapall | -commoncertall | certificate name][-nowarn]

secCertUtil export [-ldapcacert [-certname certificate name]] | -fcapswcert | -fcapscsr | -fcapcacert | -commonswcert | -commonswcsr | -commoncacert
[-protocol ftp | scp] [-ipaddr IP address] [-remotedir remote directory] [-login login name] [-password password]

secCertUtil import [-ldapcacert | -fcapswcert] | -fcapcacert | -config cacert | -config swcert [-enable https]
- commonswcert | -commoncacert

secCertUtil show [-ldapcacert] | [-fcapall] | [-fcapswcert] | [-commoncertall] | [filename]

DESCRIPTION

Use this command to manage third-party certificates on a switch, including Public Key Infrastructure (PKI) based certificates, Lightweight Directory Access Protocol (LDAP) certificates, and FCAP certificates. This command also imports or exports Certificate Signing Requests (CSRs) from or to a remote host. This command supports IPV4 and IPV6 addresses.

Use this command to do the following:

- Generate a public/private key pair.
- Delete a public/private key pair.
- Generate a CSR.
- Delete a CSR.
- List existing certificates on a switch.
- Display the contents of a certificate or CSR.
- Delete a specified certificate.
secCertUtil

- Import or export a certificate.
- Configure a SSL certificate file name.
- Enable secure protocols.

This command takes an action and associated arguments. If only an action is specified, this command prompts interactively for input values of the associated arguments. The command runs noninteractively when the arguments associated with a given action are specified on the command line. When invoked without operands, this command displays the usage.

This command is also supported in Access Gateway mode, for FCAP authentication between AG and the switch.

**NOTES**
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

Before you import a certificate from Windows system, convert the certificate to a Unix file format with the dos2unix utility.

**OPERANDS**
This command has the following operands:

- **genkey**
  Generates a public/private key pair. This is the first step in setting up a third-party certificate. The following operands are optional; when omitted, the command prompts interactively for input values to these operands.

  - **-keysize 1024 | 2048**
    Specifies the size of the key. Valid values are 1024 or 2048 bits. The greater the value, the more secure is the connection; however, performance degrades with size. The keys are generated only after all existing CSRs and certificates have been deleted.

  - **-nowarn**
    Specifies that no warning is given when overwriting or deleting data. If this operand is omitted, the command prompts for confirmation before existing CSRs and certificates are deleted.

- **delkey**
  Deletes all public/private key pairs with the exception of Encryption-related certificates and key pairs. This command prompts for confirmation unless **-nowarn** is specified.

  - **-nowarn**
    Executes the delete operation without confirmation.

  - **-all**
    Deletes all public/private key pairs including Encryption-related certificates and key pairs.

- **gencsr**
  Generates a new CSR for the switch. This is the second step in setting up a third-party certificate. The following operands are optional; if omitted, the command prompts for answers to a series of questions. If only one or a few operands are specified, the command prompts for input to the remaining questions. When all questions are answered, a CSR is generated and placed in a file named *ip_address.csr*, where *ip_address* is the IP address of the switch.

  - **-country country code**
    Specifies the country. Provide a two-letter country code, for example, US.

  - **-state state**
    Specifies the state. Provide the full name, for example, California. If the state consists of multiple words, it must be enclosed in double quotes.
-locality locality
   Specifies the city. Provide the full name, for example, "San Jose". If the locality
   consists of multiple words, it must be enclosed in double quotes.

-org organization
   Specifies the organization. Provide the full name, for example, Brocade. If the
   organization consists of multiple words, it must be enclosed in double quotes.

-orgunit organization unit
   Specifies the organizational unit, for example, your department name. If the
   organizational unit consists of multiple words, it must be enclosed in double
   quotes.

-cn common name
   Specifies the common name. Provide a fully qualified Domain Name, or IP
   address.

showcsr
   Displays the content of the CSR on the switch without page breaks. Use the pipe
   operator followed by the "more" option to display the content one page at a time.

delcsr [-nowarn]
   Deletes the CSR. This command prompts for confirmation before deleting the
   CSR unless -nowarn is specified.

generate
   Generates the certificate.

   -fcapall
      Generates FCAP switch CSR, passphrase, and key.

   -commoncertall
      Generate the CSR and key file with key size of 1024 or 2048 for the common
      certificate.

      -keysize 1024 | 2048
      Specifies the size of the key. Valid values are 1024 or 2048. bits. The greater
      the value, the more secure is the connection; however, performance
      degrades with size.

delete
   Deletes the specified certificate. Specify one of the following operands:

   -ldapcacert
      Deletes all LDAP CA certificates. You must specify a file name when deleting the
      LDAP CA certificates. All LDAP certificates are concatenated in a single file. Use
      show -ldapcacert to list that file name on the switch. You cannot delete an
      individual certificate.

   -fcapcacert
      Deletes the FCAP CA certificate.

   -fcapswcert
      Deletes the FCAP SW certificate.

   -fcapall
      Deletes all FCAP objects including the switch CSR, keys, pass phrase, Root CA
      certificate, and switch certificate.

   -commoncertall
      Deletes the CSR, key file with key size of 1024 or 2048, switch certificates for the
      common certificate.

   certificate name
      The name of the certificate to be deleted.
-nowarn

Deletes the specified file without confirmation. This operand is optional.

export

Exports a CSR to a host. This command is typically used to submit a CSR to the Certification Authority (CA) that issues the certificate. The following operands are optional; if omitted, the command prompts interactively for your input.

-ldapcacert -certname certificate name

Exports an LDAP CA certificate from the switch to a remote host. You must specify the name of the LDAP CA certificate to be exported. Use the show option for a list of existing certificates.

-fcapswcert

Exports the FCAP switch certificate from the switch to the remote host. The certificate is exported with the same filename it had when it was imported.

-fcapswcsr

Exports the FCAP switch CSR certificate from the switch to the remote host. The FCAP switch CSR is exported as switchIPfcapSw.csr.

-fcapcacert

Exports the FCAP CA certificate from the switch to the remote host. The FCAP CA certificate is exported as switchIPfcapRootCA.pem.

-commonswcert

Exports the switch certificate from the switch to the remote host. It is exported with the switch IP address as the file name.

-commonswcsr

Exports the switch CSR certificate from the switch to the remote host. The certificate name is in the format ip_addresscommonSw.csr.

-commoncacert

Exports the CA certificate from the switch to the remote host. The certificate name is in the format ip_addresscommonRootCA.pem.

-protocol ftp | scp

Specifies the protocol as either FTP or SCP.

-ipaddr IP address

Specifies the IP address of the remote host.

-remotedir remote directory

Specifies the remote directory. Provide a fully qualified path name.

-login login name

Specifies the login name for the server.

-password password

Specifies the password for the user account. When using SCP, for security reasons, do not enter a password on the command line. Use the interactive version instead.

import

Imports a certificate. Use this command to import a certificate from the server or to download a certificate issued by a CA after sending the CSR to the CA. Specify one of the following certificates:

-ldapcacert

Imports an LDAP CA certificate.

-fcapswcert

Imports an FCAP switch certificate.
-fcapcacert
Imports an FCAP CA certificate.

-config cacert
Imports a CA certificate.

-config swcert [-nowarn]
Imports an SSL certificate. If -nowarn is specified, the SSL certificate import is blocked without warning if the certificate is invalid. If -nowarn is omitted, you are prompted for confirmation before importing an invalid switch certificate. However, you will be able to import the invalid certificate. The -nowarn option effectively prevents you from importing an invalid swcert certificate.

-enable https
Enables secure https. Optionally use this operand with -config swcert only.
The following operands are optional with import; if omitted, the command prompts interactively for your input.

-commonswcert
Imports the switch certificate. Optionally, you can enable HTTPS using the -enable https and -config swcert options.

-commoncacert
Imports the CA certificate.

-protocol ftp | scp
Specifies the protocol as either FTP or SCP.

-ipaddr IP address
Specifies the IP address of the remote host.

-remotedir remote directory
Specifies the remote directory. Provide a fully qualified path name.

-certname certificate name
Specifies the certificate name.

-login login name
Specifies the login name for the server.

-password password
Specifies the password for the user account. When using SCP, for security reasons, do not enter a password on the command line. Use the interactive version instead.

show
Lists all existing PKI-based certificates on the switch. The following operands are optional and exclusive.

-ldapcacert
Displays the certificate file name.

-fcapall
Indicates whether FCAP-related files exist or are empty.

-fcapswcert
Displays the contents of the FCAP SW certificate.

-commoncertall
Indicates whether CommonCert-related files exist or are empty.

-filename
Displays the contents of the specified certificate.
To generate a public/private key pair in interactive mode:

```
switch:admin> seccertutil genkey
```

Generating a new key pair will automatically do the following:
1. Delete all existing CSRs.
2. Delete all existing certificates.
3. Reset the certificate filename to none.
4. Disable secure protocols.

Continue (yes, y, no, n): [no] y
Select key size [1024 or 2048]: 1024
Generating new rsa public/private key pair
Done.

To generate a public/private key pair in noninteractive mode:

```
switch:admin> seccertutil genkey -nowarn -keysize 1024
```
Generating new rsa public/private key pair
Done.

To generate a CSR in interactive mode:

```
switch:admin> seccertutil gencsr
```
Country Name (2 letter code, eg, US): US
State or Province Name (full name, eg, California): California
Locality Name (eg, city name): "San Jose"
Organization Name (eg, company name): Brocade
Organizational Unit Name (eg, department or section name): IT
Common Name (Fully qualified Domain Name, or IP address): 192.168.38.206
Generating CSR, file name is: 192.168.38.206.csr
Done

To generate a CSR in noninteractive mode:

```
```
Generating CSR, file name is: 192.168.38.206.csr
Done

To delete the CSR in interactive mode:

```
switch:admin> seccertutil delcsr
```
WARNING!!!

About to delete CSR: /etc/fabos/certs/sw0/10.20.5.82.csr
ARE YOU SURE (yes, y, no, n): [no] y

To delete a CSR in noninteractive mode:

```
switch:admin> seccertutil delcsr -nowarn
```
To import an LDAP certificate from a remote host to the local switch in interactive mode:

```bash
switch:admin> seccertutil import -ldapcacert
Select protocol [ftp or scp]: ftp
Enter IP address: 195.168.38.206
Enter remote directory: /users/home/remote_certs
Enter certificate name (must have ".crt", ".cer" or ".pem" suffix): ldap.cer
Enter Login Name: mylogin
Enter Password: password
Success: imported certificate [ldap.cert].
```

To import an LDAP certificate from a remote host to the local switch in noninteractive mode:

```bash
Success: imported certificate [ldap.cert].
```

To import an FCAP switch certificate in interactive mode:

```bash
switch:admin> seccertutil import -fcapswcert
Select protocol [ftp or scp]: scp
Enter IP address: 10.32.2.25
Enter remote directory: /users/myname/OPENSSL
Enter certificate name (must have ".pem" suffix): 01.pem
Enter Login Name: myname
myname@10.32.2.25's password:
Success: imported certificate [01.pem].
```

To import an FCAP CA certificate in interactive mode:

```bash
switch:admin> seccertutil import -fcapcacert
Select protocol [ftp or scp]: scp
Enter IP address: 10.32.2.25
Enter remote directory: /users/myname/OPENSSL
Enter certificate name (must have ".pem" suffix): CACert.pem
Enter Login Name: myname
myname@10.32.2.25's password:
Success: imported certificate [CACert.pem].
```

To import a PKI-based certificate with configure and enable option in interactive mode:

```bash
switch:admin> seccertutil import -config swcert -enable https
Select protocol [ftp or scp]: ftp
Enter IP address: 192.168.38.206
Enter remote directory: /users/home/mycerts
Enter certificate name (must have ".crt" or ".cer" ".pem" or "psk" suffix): filename.crt
Enter Login Name: username
Enter Password: password
Success: imported certificate [filename.crt].
Certificate file in configuration has been updated.
Secure http has been enabled.
```
To import a PKI-based certificate with configure and enable option in noninteractive mode:

```bash
switch:admin> seccertutil import -config swcert \
 -enable https -protocol ftp -ipaddr 195.168.38.206 \
 -remotedir /users/home/remote_certs -certname file.crt \
 -login abcd -password passwd
Success: imported certificate [file.crt].
Certificate file in configuration has been updated.
Secure http has been enabled.
```

To export the switch certificate from the switch to the remote host in interactive mode:

```bash
switch:admin> seccertutil import -commonswcert
Select protocol [ftp or scp]: scp
Enter IP address: 10.32.2.25
Enter remote directory: /users/mynam/OPENSSL
Enter certificate name (must have "pem" suffix): 01.pem
Enter Login Name: myname
myname@10.32.2.25's password:
Success: imported certificate [01.pem].
```

To export the switch certificate from the switch to the remote host in noninteractive mode:

```bash
switch:admin> seccertutil import -commonswcert \
 -ipaddr 10.32.2.25 -remotedir /users/mynam/OPENSSL \
 -certname 01.pem -login myname -password passwd
Success: imported certificate [01.pem].
```

To export an LDAP CA certificate from the local switch to a remote host in interactive mode:

```bash
switch:admin> seccertutil export -ldapcacert
Select protocol [ftp or scp]: scp
Enter IP address: 192.168.38.206
Enter remote directory: /users/home/remote/mycerts
Enter Login Name: username
Enter LDAP certificate name (must have "pem" \
 or "crt" or "cer" suffix): ldap.cer
Password: password
Success: exported LDAP certificate
```

To export an LDAP CA certificate from the local switch to a remote host in noninteractive mode:

```bash
switch:admin> seccertutil export -ldapcacert \
 -protocol ftp -ipaddr 192.168.38.206 \
 -remotedir /users/home/remote_certs \
 -certname ldap.cer -login abcd -passwd passwd
Success: exported LDAP certificate
```

To export an FCAP switch certificate in interactive mode:

```bash
switch:admin> seccertutil export -fcapswcert
Select protocol [ftp or scp]: scp
Enter IP address: 10.32.2.25
Enter remote directory: /users/mynam/OPENSSL
Enter Login Name: myname
myname@10.32.2.25's password:
Success: exported FCAP switch certificate
```
To export an FCAP switch CSR in interactive mode:

```
switch:admin> seccertutil export -fcapswcsr
Select protocol [ftp or scp]: scp
Enter IP address: 10.32.2.25
Enter remote directory: /users/mynname/OPENSSL
Enter Login Name: myname
mynname@10.32.2.25’s password:
Success: exported FCAP switch CSR
```

To delete an LDAP CA certificate in interactive mode:

```
switch:admin> seccertutil delete -ldapcacert filename.pem
WARNING!!!
About to delete certificate: filename.cer
ARE YOU SURE (yes, y, no, n): [no] y
Deleted LDAP certificate successfully
```

To delete an LDAP CA certificate in noninteractive mode:

```
switch:admin> seccertutil delete -ldapcacert filename.pem
Deleted LDAP certificate successfully
```

To delete all FCAP PKI objects:

```
switch:admin> seccertutil delete -fcapall
WARNING!!!
About to delete FCAP-Files:
ARE YOU SURE (yes, y, no, n): [no] y
```

To generate FCAP PKI objects:

```
switch:admin> seccertutil generate -fcapall -keysize 1024
Generating a new key pair will automatically do the following:
1. Delete all existing CSRs.
2. Delete existing switch certificate.
3. Reset the certificate filename to none.

Continue (yes, y, no, n): [no] y
Installing Private Key and Csr...
Switch key pair and CSR generated...
```

To display the FCAP PKI objects:

```
switch:admin> seccertutil show -fcapall
List of fcap files:
Passphrase : Exist
Private Key : Exist
CSR : Exist
Certificate : Empty
Root Certificate: Exist
```

To display the LDAP certificate file name on a switch:

```
switch:admin> seccertutil show -ldapcacert
List of ldap ca certificate files:
Sample.cer
```
To display the content of the CSR one page at a time:
   switch:admin> seccertutil showcsr | more

To display the contents of an FCAP SW certificate:
   switch:admin> seccertutil show -fcapswcert

To display the contents of a PKI-based or LDAP CA certificate:
   switch:admin> seccertutil show filename

SEE ALSO None
secDefineSize

Displays the size of the defined security database.

SYNOPSIS  

secdefinesize

DESCRIPTION  

Use this command to display the size of the defined security database. The command also displays the maximum database size.

For switches running Fabric OS v6.2.0 and later, the maximum security database size is 1 Megabyte per logical switch. With up to eight partitions, the total database size on a chassis can be up to 8 Megabytes. On switches that are not Virtual Fabric-capable, the security database is limited to 1 Megabyte. For switches running earlier versions of Fabric OS (up to v5.3.0), the maximum size is 256 Kilobytes.

The effective security DB size is the lowest supported by the fabric. The presence of a Standby CP that runs an earlier version of the operating system drops the effective security DB size on an Active CP that runs Fabric OS v6.2.0 or later.

NOTES  

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS  

None

EXAMPLES  

To display the size of the defined security database

```
switch:admin> secdefinesize
Size of security defined data: 35 bytes \
(Max 1048576 bytes)
```

SEE ALSO  

secActiveSize, secGlobalShow
secGlobalShow

Displays the current internal security state information.

SYNOPSIS

secglobalshow

DESCRIPTION

Use this command to display security server-specific information as a snapshot of its current state. The output may include information about the following:

- General security parameters
- The latest zone transaction
- The current status of the RCS transaction
- The state of the Domain
- wwnDL state

This command is intended primarily for debugging purposes by technical support staff. The information displayed may not be supported between releases and is subject to change without notice.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To view the current security state:

switch:admin> secglobalshow

----General Security Information----
flag 1, saveflag 0
transId 0
Queue Size 0
final Rca 0
reliablemsg 0
reliablePhase 0
Primary pub key: Empty
Primary Version 0
Primary WWN 10:00:00:05:1e:01:23:e0 (local switch)
Stamp 0

----The latest zone transaction--
last retVal from zone: not used
last zone size when calling zone: not used

----The latest RCS STATUS----
RCS was enabled
sec_aca: free
RCS latest Phase: Completion
RCS Message ==> RCS transaction completes.

----DataBase STATUS----
Retry Role 0
Retry Query0
Security Active DataSize 35 bytes

-----Domain State-----

Active Sum 215b
Security Defined DataSize 35 bytes
Define Sum 215b
secGlobalShow

Zone Size (include enabled configuration) 312 bytes
Zone sum e04b215b
sec_db: free
primaryDLPhase 0
----wwnDL State-----

pid  tid  key  sec  usec

-------- LOG CACHE --------
14:08:50 813905136 secipadm_ipchange receives notification
14:08:50 850588912 secProcessIPChange starts processing
14:08:50 850588912 secProcessIPChange acks completion
(Output truncated)

SEE ALSO  secActiveSize, secDefineSize
secHelp

Displays information about security commands.

SYNOPSIS

sechelp

DESCRIPTION

Use this command to display a list of security commands with a brief description of the commands.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display a list of security commands:

switch:admin> sechelp
fipscfg            Configure FIPS mode operation
secactivesize      Displays size of the active (security) database
secauthcertificate Configure FCAP switch certificate properties
secauthsecret      Creates/Manages DHCHAP secret key details
seccertutil        Creates/Manages/Displays third party PKI certificates
secdefinesize      Displays size of the defined (security) database
secglobalshow      Displays current internal security state information
secpolicyabort     Aborts changes to defined policy
secpolicyactivate  Activates all policy sets
secpolicyadd       Adds members to an existing policy
secpolicycreate    Creates a new policy
secpolicydelete    Deletes an existing policy
secpolicydump      Displays all members of existing policies
secpolicyfcsmove   Moves a member in the FCS policy
secpolicyremove    Removes members from an existing policy
secpolicysave      Saves defined policy set and sends to all switches
secpolicyshow      Shows members of one or more policies
secstatsreset      Resets security statistics
secstatsshow       Displays security statistics
sshutil            Configure SSH authentication options

SEE ALSO

None
secPolicyAbort

Aborts all unsaved changes to the defined database.

SYNOPSIS

secpolicyabort

DESCRIPTION

Use this command to abort all changes to the defined security database that have not been saved to
flash memory and to abort changes to policy creation and modification operations from all the switches if
a fabric-wide consistency policy is not set for the particular policy.

NOTES

When an FCS policy is enabled, this command can be issued only from the Primary FCS switch.

Only the user who made the changes to the defined database may use this command to abort them.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS

None

EXAMPLES

To abort all changes that have not been saved to nonvolatile memory:

    primaryfcs:admin> secpolicyabort
    Unsaved data has been aborted.
    primaryfcs:admin> secpolicyabort
    No new data to abort.

SEE ALSO

secPolicyActivate, secPolicyAdd, secPolicyDelete, secPolicyDump, secPolicyRemove,
secPolicySave, secStatsShow
secPolicyActivate

Saves and activates the Defined Security Policy Set.

SYNOPSIS    secpolicyactivate

DESCRIPTION  Use this command to activate the current defined security policy to all switches in the fabric. This
activates the policy set on the local switch or all switches in the fabric depending on the fabric-wide
consistency policy.

If there are changes to the SCC, DCC, or FCS policies in the current CLI or API transaction that have not
been saved to the Defined Security Policy Set, then this command saves the changes to the Defined
Security Policy Set first, and then activates it. If there are no changes, but the Defined Security Policy Set
differs from the Active Security Policy Set, then the Defined Security Policy Set is activated. If there are
no changes and the Defined Security Policy Set is the same as the Active Security Policy Set, then
nothing is done.

After activation the defined policy set becomes the Active Policy Set.

Use secPolicyShow to display the members of an existing policy in the Active or Defined Security Policy
Sets.

NOTES      The behavior of this command is the same for tolerant and strict fabric-wide consistency.
When an FCS policy is enabled, this command can be issued only from the Primary FCS switch.

Any modifications to the SCC, DCC, and FCC DB are saved and activated. When secPolicyActivate is
issued after the secPolicySave command, it might fail.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS   None

EXAMPLES   To activate the defined security policy set on all switches in the fabric:

    switch:admin> secpolicyactivate
    About to overwrite the current Active data.
    ARE YOU SURE (yes, y, no, n): [no] y
    secpolicyactivate command was completed successfully.

SEE ALSO   fddCfg, secPolicyAbort, secPolicyAdd, secPolicyDelete, secPolicyDump, secPolicyRemove,
secPolicySave, secPolicyShow
secPolicyAdd

Adds members to an existing security policy.

SYNOPSIS

secpolicyadd "name","member[;member...]" [-legacy]

DESCRIPTION

Use this command to add one or more members to an existing access policy.

Each policy corresponds to a management method. The list of members of a policy acts as an access control list for that management method. Before a policy is created, there is no enforcement for that management method; all access is granted. After a policy has been created and a member has been added to the policy, that policy becomes closed to all access except from included members. If all members are then deleted from the policy, all access is denied for that management method (the DCC_POLICY is an exception).

Attempting to add a member to a policy that already is a member causes this command to fail.

In a Virtual Fabric Environment, when you create a DCC lockdown policy on a logical switch, the DCC policy is created for each port in the chassis, even though the ports are not currently present in the local logical switch. This is done to provision the DCC policy for the ports that may be moved later. If a policy seems stale at any point, use secPolicyDelete to remove all stale DCC policies.

Fabric-wide consistency policies can be configured on per logical switch basis, which applies the FCS policy to the corresponding fabric connecting to the logical switch. Automatic policy distribution for DCC, SCC and FCS remains unchanged in Fabric OS v6.2.0 and can be configured on a per logical switch basis.

On switches running Fabric OS v7.1.0 or later, all DCC and SCC security policy members are sorted based on their world wide names (WWNs) in order to avoid a segmentation of ports. This is not the case for switches running earlier firmware versions; on these switches, security member lists are unsorted. When a switch with an unsorted security policy member list tries to join a switch that runs Fabric OS v7.1.0 or later and is configured with an ordered security policy list, port segmentation occurs because of mismatching security policy lists. To prevent this from happening, use the -legacy option to add security policy members in a manner that matches the order of security policy members in Fabric OS v7.0.0 and earlier.

NOTES

When an FCS policy is enabled, this command can be issued only from the Primary FCS switch. The secpolicyadd command can be issued on all switches for SCC and DCC policies as long as fabric-wide consistency policy is not set for the particular policy.

Do not add the WWNs of front or translate (xlate) domains to the FCS policy if the edge fabric is connected to an FC Router.

Backup FCS switches typically cannot modify the policy. However, if the Primary FCS switch in the policy list is not reachable, then a backup FCS switch is allowed to modify the policy. If all the reachable backup FCS switches are running pre-v5.3.0 versions of Fabric OS, a non-FCS v5.3.0 switch is allowed to modify the policy so that a new switch can be added to the policy.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.
secPolicyAdd

OPERANDS

This command has the following operands:

"name"

Specify the name of an existing policy to which you want to add members. Valid values for this operand include the following:

- DCC_POLICY_nnn
- FCS_POLICY
- SCC_POLICY

The specified policy name must be capitalized.

The DCC_POLICY_nnn name has the common prefix DCC_POLICY_ followed by a string of user-defined characters. These characters do not have to be capitalized like regular policy names, but they are case-sensitive.

"member"

Specify a list of one or more member switches to be included in the security policy. The list must be enclosed in quotation marks; members must be separated by semicolons. Depending on the policy type, members are specified as follows.

FCS_POLICY or SCC_POLICY Members

This policy type requires member IDs to be specified as WWN strings, Domains, or switch names. If Domain IDs or switch names are used, the switches associated must be present in the fabric or the command fails.

DCC_POLICY Members

The DCC_POLICY_nnn is a list of device port names associated with a specific switch and port index combination. An empty DCC_POLICY does not stop access to the switch. The device port name is specified by its port WWN string. The switch and port index combination must be in the switch port format, where switch can be specified as a WWN, a domain, or a switch name, and port is specified by port numbers separated by commas and enclosed in either brackets or parentheses; for example, (2, 4, 6). Ports enclosed in brackets include the devices currently attached to those ports.

The following examples illustrate several ways to specify the port values:

(1-6) Selects ports 1 through 6.
(*) Selects all ports on the switch.
[3, 9] Selects ports 3 and 9 and all devices attached to those ports.
[1-3, 5] Selects ports 1 through 3 and 5 and all devices attached to those ports.
[*] Selects all ports on the switch and devices currently attached to those ports.

-legacy

Adds a security policy with the desired order.

EXAMPLES

To add a member to the SCC_POLICY using the device WWN:

```
primaryfcs:admin> secpolicyadd "SCC_POLICY", "12:24:45:10:0a:67:00:40"
Member(s) have been added to SCC_POLICY.
```

    primaryfcs:admin> secpolicyadd "DCC_POLICY_abc", \
    Member(s) have been added to DCC_POLICY_abc.

To add a security policy:

    switch:admin> secpolicyadd SCC_POLICY,\
        "10:00:00:05:1e:a3:01:d9" -legacy
    switch:admin> secpolicyshow

    ____________________________________________
    ACTIVE POLICY SET
    ____________________________________________

    DEFINED POLICY SET
    SCC_POLICY
    WWN                     DId  swName
    -------------------------------------
    10:00:00:05:1e:a1:ef:b9   2    sw0
    10:00:00:05:1e:a3:00:59   5    sw0
    10:00:00:05:1e:a2:f9:09   3    sw0
    10:00:00:05:1e:a3:01:d9   3    sw0

    SEE ALSO distribute, fddCfg, secPolicyAbort, secPolicyActivate, secPolicyDelete, secPolicyDump, secPolicyRemove, secPolicySave
secPolicyCreate

Creates a new security policy.

SYNOPSIS

    secpolicycreate "name" [, "member[;member...]"] [-legacy]

DESCRIPTION

Use this command to create a new policy and to edit Switch Connection Control (SCC), Device
Connection Control (DCC), and Fabric Configuration Server (FCS) policies on the local switch. All
policies can be created only once, except for the DCC_POLICY_nnn. Each DCC_POLICY_nnn must
have a unique name. This command can be issued on all switches in the current fabric for SCC and DCC
policies if they are not intended to be fabric-wide.

Adding members while creating a policy is optional. You can add members to a policy later, using the
secPolicyAdd command.

Each policy corresponds to a management method. The list of members of a policy acts as an access
control list for that management method. Before a policy is created, there is no enforcement for that
management method, which is all access is granted. After a policy is created and a member is added to
the policy, that policy is closed to all access except to included members. If all members are then deleted
from the policy, all access is denied for that management access method.

All newly created policies are saved on the local switch only, unless the switch has a fabric-wide
consistency policy for that policy.

In a Virtual Fabric environment, when you create a DCC lockdown policy on a logical switch, the DCC
policy is created for each port in the chassis, even though the ports are not currently present in the local
logical switch. This is done to provision the DCC policy for the ports that may be moved later. If a policy
seems stale at any point, use the secPolicyDelete command to remove all stale DCC policies.

Fabric wide consistency policies can be configured on a logical switch basis, which applies the FCS
policy to the corresponding fabric connecting to the logical switch. Automatic policy distribution behavior
for DCC, SCC and FCS remains unchanged in Fabric OS v6.2.0 or later and can be configured on a
logical switch basis.

On switches running Fabric OS v7.1.0 or later, all DCC and SCC security policy members are sorted
based on their world wide names (WWNs) in order to avoid a segmentation of ports. This is not the case
for switches running earlier firmware versions; on these switches, security member lists are unsorted.
When a switch with an unsorted security policy member list tries to join a switch that runs Fabric OS
v7.1.0 or later and is configured with an ordered security policy list, port segmentation occurs because of
mismatching security policy lists. To prevent this from happening, use the -legacy option to create
security policy members in a manner that matches the order of security policy members in Fabric OS
v7.0.0 and earlier.

NOTES

When an FCS policy is enabled, this command can be issued only from the Primary FCS switch.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS

This command has the following operands:

"name"

Specify the name of the policy you want to create. Valid values for this operand include the following:

- DCC_POLICY_nnn
- SCC_POLICY
- FCS_POLICY
secPolicyCreate

The specified policy name must be capitalized.
The DCC_POLICY_nnn name has the common prefix DCC_POLICY_ followed by
a string of user-defined characters. These characters do not have to be
capitalized like regular policy names. Valid values for DCC_POLICY_nnn are
user-defined alphanumeric or underscore characters. The maximum length is 30
characters, including the prefix DCC_POLICY_.

secPolicyCreate DCC_POLICY "*" may be used to indicate DCC lockdown. This
command creates a unique policy for each port in the fabric locking it down to the
device connected or creating an empty policy to disallow any device to be
connected to it. This can be done only when there are no other DCC policies
defined on the switch. The switch must be in an enabled state for DCC lockdown
to succeed. On a disabled switch, executing secPolicyCreate DCC_POLICY "*"
will not create any DCC policies.

"member"

Specify one or more members to be included in the security policy. The member
list must be enclosed in double quotation marks and members separated by
semicolons. The member list must be separated from the name field by a comma
and a space. Depending on the policy type, members are specified as follows:

**DCC_POLICY Members**
The DCC_Policy_nnn is a list of devices associated with a specific switch and port
index combination. An empty DCC_Policy does not stop access to the switch.
The device is specified by its port WWN. The switch and port combination must be
in the switch port format.

switch can be specified using a WWN, domain, or switch name.

port can be specified by port numbers separated by commas and enclosed in
either brackets or parentheses: for example, (2, 4, 6). Ports enclosed in brackets
include the devices currently attached to those ports.

The following examples illustrate several ways to specify the port values:

(1-6)
Selects ports 1 through 6.

(*)
Selects all ports on the switch.

[3, 9]
Selects ports 3 and 9 and all devices attached to those ports.

[1-3, 5]
Selects ports 1 through 3 and 5 and all devices attached to those ports.

[*]
Selects all ports on the switch and devices currently attached to those ports.

**SCC_POLICY and FCC_POLICY Members**
This policy type requires member IDs to be specified as WWN strings, domains,
or switch names. If domain or switch names are used, the switches associated
must be present in the fabric or the command fails.

To add all switches in the current fabric as members of the policy, enter an
asterisk enclosed in quotation marks ("*) as the member value. This feature cannot
be used by the other security commands.

**-legacy**
Creates a security policy with desired order.
EXAMPLES

To create an FCS policy (While creating the FCS policy, the local switch WWN is automatically included in the list. Switches included in the FCS list are FCS switches and the remaining switches in the fabric are non-FCS switches. Out of the FCS list, the switch that is in the first position becomes the Primary FCS switch and the remaining switches become backup FCS switches. If the first switch in the FCS list is not reachable, the next switch becomes the Primary):

```bash
primaryfcs:admin> secpolicycreate "FCS_POLICY", "3; 4"
FCS_POLICY has been created.
```


```bash
DCC_POLICY_aB_7 has been created.
```

To create a SCC policy in a fabric with three switches:

1. Check if a policy exists.

```bash
switch:admin> secpolicyshow
```

2. Identify switches in the fabric.

```bash
switch:admin> fabricshow
```

3. Create a SCC policy that includes switches with domain IDs 2 and 4.

```bash
switch:admin> secpolicycreate "SCC_POLICY","2;4"
SCC_POLICY has been created.
```

4. Activate the policy.

```bash
switch:admin> secpolicyactivate
```

To create an SCC policy that includes all switches in the fabric:

```bash
switch:admin> secpolicycreate "SCC_POLICY","*
SCC_POLICY has been created.
```

To create a security policy:

```bash
switch:admin> secpolicycreate SCC_POLICY,
"10:00:00:05:1e:a1:ef:b9; 10:00:00:05:1e:a3:00:59;
10:00:00:05:1e:a2:ff:09" -legacy
SCC_POLICY created as user specified.
```

```bash
switch:admin> secpolicyshow
```

ACTIVE POLICY SET
secPolicyCreate

---

**DEFINED POLICY SET**

<table>
<thead>
<tr>
<th>SCC_POLICY</th>
<th>WWN</th>
<th>DId</th>
<th>swName</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10:00:00:05:1e:a1:ef:b9</td>
<td>2</td>
<td>sw0</td>
</tr>
<tr>
<td></td>
<td>10:00:00:05:1e:a3:00:59</td>
<td>5</td>
<td>sw0</td>
</tr>
<tr>
<td></td>
<td>10:00:00:05:1e:a2:f9:09</td>
<td>3</td>
<td>sw0</td>
</tr>
</tbody>
</table>

secPolicyDelete

Deletes an existing security policy.

SYNOPSIS

`secpolicydelete name`

DESCRIPTION

Use this command to delete an existing security policy from the defined security database. Run
`secPolicyActivate` to delete the policies from the active security policy list. Deleting a security policy
does not cause any traffic disruption.

Each policy corresponds to a management method. The list of members of a policy acts as an access
control list for that management method. Before a policy is created, there is no enforcement for that
management method; all access is granted. After a policy has been created and a member has been
added to the policy, that policy becomes closed to all access except from included members. If the policy
is deleted all access is granted.

NOTES

When an FCS policy is enabled, this command can be issued only from the Primary FCS switch.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS

The following operand is required:

"name"

Specify the name of a security policy to delete. The policy name must be
capitalized. Quotation marks are optional. Once a security policy is deleted,
fabric-wide switch access through that method is unrestricted. Valid security policy
names include the following:

- **DCC_POLICY_nnn**: Deletes the specified Device Connection Control (DCC) policy. The
  DCC_POLICY_nnn name has the common prefix DCC_POLICY_ followed by a
  string of user-defined characters. These characters do not have to be capitalized.

- **ALL_DCC_POLICY**: Deletes all DCC policies from the defined policy list.

- **ALL_STALE_DCC_POLICY**: Deletes all stale DCC policies from the defined policy list. DCC policies become
  stale when the ports are removed from a logical switch.

- **SCC_POLICY**: Deletes the Switch Connection Control policy from the defined policy list.

- **FCS_POLICY**: Deletes the Fabric Configuration Server policy from the defined policy list.

EXAMPLES

To delete an existing security policy:

```
switch:admin> secpolicydelete "DCC_POLICY_ab1"
About to delete policy DCC_POLICY_ab1.
Are you sure (yes, y, no, n):[no] y
DCC_POLICY has been deleted.
```

To delete all existing DCC policies in the fabric:

```
primaryfcs:admin> secpolicydelete ALL_DCC_POLICY
About to clear all the DCC policies
ARE YOU SURE (yes, y, no, n): [no] y
```
To delete all stale DCC policies in the fabric:

```console
primaryfcs:admin> secpolicydelete ALL_STALE_DCC_POLICY
About to clear all STALE DCC policies
ARE YOU SURE (yes, y, no, n): [no] y
```

secPolicyDump

Displays the members of one or all existing security policies.

**SYNOPSIS**

```
secpolicydump ["listtype"] ["name"]
```

**DESCRIPTION**

Use this command to display, without page breaks, the members of an existing policy in the active and defined (saved) databases. When issued without operands, this command displays the members of all security policies.

**NOTES**

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command can be issued from all FCS switches in the fabric.

**OPERANDS**

This command has the following optional operands:

- "listtype"
  - Specifies the database to display, enclosed in double quotation marks. The name for an active database is "Active"; the name for a saved, defined database is "Defined". If listtype is not specified, all databases are displayed.

- "name"
  - Specifies the security policy for which to display the members. Valid values for this operand include the following:
    - DCC_POLICY_nnn
    - FCS_POLICY
    - SCC_POLICY
  - The specified policy name must be capitalized and enclosed in double quotation marks.
  - The DCC_POLICY_nnn name has the common prefix DCC_POLICY_ followed by a string of user-defined characters. These characters do not have to be capitalize. If name is not specified, all existing policies are displayed.

**EXAMPLES**

To display all security policy information from all databases without page breaks:

```
switch:admin> secpolicydump
ACTIVE POLICY SET
FCS_POLICY
<table>
<thead>
<tr>
<th>Pos</th>
<th>Primary WWN</th>
<th>DId</th>
<th>swName</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10:00:00:60:69:30:15:5c</td>
<td>1</td>
<td>primaryfcs</td>
</tr>
<tr>
<td>2</td>
<td>10:00:00:60:69:30:1e:62</td>
<td>4</td>
<td>switch</td>
</tr>
</tbody>
</table>
```

```
DEFINED POLICY SET
FCS_POLICY
<table>
<thead>
<tr>
<th>Pos</th>
<th>Primary WWN</th>
<th>DId</th>
<th>swName</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10:00:00:60:69:30:15:5c</td>
<td>1</td>
<td>primaryfcs</td>
</tr>
<tr>
<td>2</td>
<td>10:00:00:60:69:30:1e:62</td>
<td>4</td>
<td>switch</td>
</tr>
</tbody>
</table>
```
To display all security policies in the active database:
```
switch:admin> secpolicydump "active"
```

```
__
ACTIVE POLICY SET
FCS_POLICY
Pos Primary WWN DId swName
--
1 Yes 10:00:00:05:1e:39:5f:67 3 NeptuneSec
2 No 10:00:00:05:1e:90:09:4a - Unknown
SCC_POLICY
WWN DId swName
--
10:00:00:05:1e:39:5f:67 3 NeptuneSec
10:00:00:05:1e:90:09:4a - Unknown
DCC_POLICY_h1
Type WWN DId swName
--
Switch 10:00:00:05:1e:39:5f:67 3 NeptuneSec.
 =Index=> 34.
Device 21:00:00:e0:8b:13:5e:8d
Device 21:00:00:e0:8b:13:5e:8e
```

To display all security policies in the defined database:
```
switch:admin> secpolicydump "Defined"
```

```

DEFINED POLICY SET
FCS_POLICY
Pos Primary WWN DId swName
--
1 Yes 10:00:00:05:1e:39:5f:67 3 NeptuneSec
2 No 10:00:00:05:1e:90:09:4a - Unknown
SCC_POLICY
WWN DId swName
--
10:00:00:05:1e:39:5f:67 3 NeptuneSec
10:00:00:05:1e:90:09:4a - Unknown
DCC_POLICY_h1
Type WWN DId swName
--
Switch 10:00:00:05:1e:39:5f:67 3 NeptuneSec.
 =Index=> 34.
Device 21:00:00:e0:8b:13:5e:8d
Device 21:00:00:e0:8b:13:5e:8e
```

To display the FCS policies in the defined database:
```
switch:admin> secpolicydump "Defined","FCS_POLICY"
```

```
__
DEFINED POLICY SET
FCS_POLICY
Pos Primary WWN DId swName
--
1 Yes 10:00:00:05:1e:39:5f:67 3 NeptuneSec
2 No 10:00:00:05:1e:90:09:4a - Unknown
```
To display the SCC policies in the defined database:

```
switch:admin> secpolicydump "Defined","SCC_POLICY"

DEFINED POLICY SET
SCC_POLICY
 WWN DId swName

10:00:00:05:1e:39:5f:67 3 NeptuneSec
10:00:00:05:1e:90:09:4a - Unknown
```

To display the SCC policies in the active database:

```
switch:admin> secpolicydump "Active","SCC_POLICY"
__
ACTIVE POLICY SET
SCC_POLICY
 WWN DId swName

10:00:00:05:1e:39:5f:67 3 NeptuneSec
10:00:00:05:1e:90:09:4a - Unknown
```

SEE ALSO  
secPolicyFCSMove

Moves a member in the FCS policy.

SYNOPSIS

secpolicyfcsmove [from, to]

DESCRIPTION

Use this command to move an FCS member from one position to another position in the FCS list. Only one FCS can be moved at a time. The first FCS switch in the list that is also present in the fabric is the Primary FCS.

NOTES

If a backup FCS is moved to the first position, it becomes the primary FCS after activation.

An FCS policy must be enabled to execute this command, and the command must be issued from the primary FCS switch.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

from

Specify the position of the FCS switch you want to move.

to

Specify the position to which you want to move the FCS switch.

EXAMPLES

To move the backup FCS switch from position 2 to position 3 in the FCS list (interactively):

switch:admin> secpolicyfcsmove

Pos  Primary WWN                     DId  swName.
=================================================================  
1   Yes     10:00:00:60:69:10:02:18   1  switch5.
2   No      10:00:00:60:69:00:00:5a   2  switch60.
3   No      10:00:00:60:69:00:00:13   3  switch73.

Please enter position you'd like to move \ from : (1..3) [1] 2

Please enter position you'd like to move \ to : (1..3) [1] 3

==================================================================

DEFINED POLICY SET

FCS_POLICY

Pos  Primary WWN                     DId  swName

1   Yes     10:00:00:60:69:10:02:18   1  switch5.
2   No      10:00:00:60:69:00:00:13   3  switch73.
3   No      10:00:00:60:69:00:00:5a   2  switch60.

To move Backup FCS switch from position 3 to position 1 in the FCS list (non-interactively):

switch:admin> secpolicyshow

ACTIVE POLICY SET

1   Yes     10:00:00:05:1e:39:5f:67   1  switch1
2   No      10:00:00:05:1e:04:ef:0e   4  switch2
secPolicyFCSMove

3   No     10:00:00:05:1e:35:cd:ef 200 switch3

switch:admin> secpolicyfcsmove 3,1

____________________________________________________
DEFINED POLICY SET
FCS_POLICY
Pos   Primary WWN                     DId swName
-------------------------------------------------
1   No     10:00:00:05:1e:35:cd:ef 200 switch3
2   Yes    10:00:00:05:1e:39:5f:67   2 switch1
3   No     10:00:00:05:1e:04:ef:0e   4 switch2

switch:admin> secpolicyactivate
About to overwrite the current Active Policy Set.
ARE YOU SURE (yes, y, no, n): [no] y
secpolicyactivate command was completed successfully.

switch:admin> secpolicyshow

________________________________________________
ACTIVE POLICY SET
FCS_POLICY
Pos   Primary WWN                     DId swName
-------------------------------------------------
1   Yes    10:00:00:05:1e:35:cd:ef 200 switch3
2   No     10:00:00:05:1e:39:5f:67   2 switch1
3   No     10:00:00:05:1e:04:ef:0e   4 switch2

SEE ALSO  secpolicyAbort, secpolicyActivate, secpolicyAdd, secpolicyCreate, secpolicyDelete, secpolicyDump, secpolicyRemove, secpolicySave, secpolicyShow
secPolicyRemove

Removes members from an existing security policy.

SYNOPSIS

secpolicyremove "name", "member[;member...]"

DESCRIPTION

Use this command to remove one or more members from an existing security policy. It is not possible to
remove all members from the FCS_POLICY; the local switch WWN cannot be deleted from the FCS policy. In the case of SCC policy, if it is empty after removing all members, all access to the switch itself
would be disallowed.

NOTES

If an FCS policy is enabled, this command must be issued from the primary FCS switch.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS

This command has the following operands:

"name"

Specify the name of an existing policy you want to remove members from. This
operand is required. Valid values for this operand include the following:

- DCC_POLICY_nnn
- FCS_POLICY
- SCC_POLICY

The specified policy name must be capitalized.

The DCC_POLICY policy name has the common prefix DCC_POLICY_ followed
by a string of user-defined characters. These characters do not have to be
capitalized like regular policy names, but are case-sensitive.

"member"

Specify a member or list of members to delete from the policy. The list must be
enclosed in quotation marks; members must be separated by semicolons. This
operand is required. Depending on the policy type, members can be specified
using IP address, WWN, domain, or switch name.

WWN Member Policy Types

The following policy types require members be specified by WWN address:

- FCS_POLICY
- SCC_POLICY

These policy types require member IDs be specified as WWN strings, domains, or
switch names. If domain or switch names are used, the switches associated must
be present in the fabric or the command fails.

DCC_POLICY Members

The DCC_Policy_nnn is a list of devices associated with a specific switch and port
combination. The device is specified with a WWN string. The switch and port
combination must be specified in the switch port format where switch can be
specified by switch WWN, domain, or switch name. The port parameter can be
specified by port number separated by commas, and enclosed in either brackets
or parentheses: for example, (2, 4, 6). Ports enclosed in brackets include the
devices currently attached to those ports.

The following examples illustrate several ways to specify the port values:

(1-6)

Selects ports 1 through 6.
(*) Selects all ports on the switch.

[3, 9] Selects ports 3 and 9 and all devices attached to those ports.

[1-3, 5] Selects ports 1 through 3 and 5 and all devices attached to those ports.

[*] Selects all ports on the switch and devices currently attached to those ports.

**EXAMPLES** To remove a member that has a WWN of 12:24:45:10:0a:67:00:40 from SCC policy:

```
switch:admin> secpolicyremove "SCC_POLICY", "12:24:45:10:0a:67:00:40"
Member(s) have been removed from SCC_POLICY.
```

**SEE ALSO** secPolicyAbort, secPolicyActivate, secPolicyAdd, secPolicyCreate, secPolicyDelete, secPolicyDump, secPolicySave, secStatsShow
secPolicySave

Saves a defined security policy to persistent memory.

SYNOPSIS

secpolicysave

DESCRIPTION

Use this command to save a defined security policy to persistent memory. SecPolicySave saves the modified SCC, DCC, and FCS policies to the Defined Security Policy Set on the local switch.

NOTES

This command is always a local switch operation. A fabric-wide consistency configuration does not affect the behavior of this command.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To save a defined policy set to persistent memory:

switch:admin> secpolicysave
secPolicySave command was completed successfully.

SEE ALSO

fddCfg, secPolicyAbort, secPolicyActivate, secPolicyAdd, secPolicyCreate, secPolicyDelete, secPolicyDump, secPolicyRemove, secStatsShow
secPolicyShow

Displays an existing security policy including the FCS policy.

SYNOPSIS

```
secPolicyShow ["policy_set","name"]
```

DESCRIPTION

Use this command to display the members of an existing policy in the Active or Defined security policy set. The command can be issued from all FCS switches.

This command displays the policy database one page at a time. Use the secPolicyDump command to display the policy database without page breaks.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

"policy_type"

Specify which policy to display, in quotation marks. Valid values are "Active", "Defined", or an asterisk (*) for both Active and Defined. This operand is optional. If not specified, all databases are displayed.

"name"

Specify the name of the security policy you want to view, in quotation marks. The specified policy name must be capitalized. This operand is optional. Valid values for this operand include the following:

- DCC_POLICY_nnn
- FCS_POLICY
- SCC_POLICY

The DCC_POLICY_nnn name has the common prefix DCC_POLICY_ followed by a string of user-defined characters. These characters do not have to be capitalized like regular policy names, but they are case-sensitive.

EXAMPLES

To display all security policies from active databases:

```
switch:admin> secpolicyshow "active"
```

```
ACTIVE POLICY SE
FCS_POLICY

<table>
<thead>
<tr>
<th>Pos</th>
<th>Primary WWN</th>
<th>Did</th>
<th>swName</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10:00:00:60:69:30:15:5c</td>
<td>1</td>
<td>primaryfcs</td>
</tr>
<tr>
<td>2</td>
<td>10:00:00:60:69:30:1e:62</td>
<td>4</td>
<td>switch</td>
</tr>
</tbody>
</table>
```
To display all security policies from defined databases:

```
switch:admin> secpolicyshow "defined"
```

<table>
<thead>
<tr>
<th>FCS_POLICY</th>
<th>Pos</th>
<th>Primary WWN</th>
<th>DId</th>
<th>swName</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>10:00:00:60:69:30:15:5c</td>
<td>1</td>
<td>primaryfcs</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10:00:00:60:69:30:1e:62</td>
<td>4</td>
<td>switch</td>
</tr>
</tbody>
</table>

SEE ALSO  

fddCfg, secPolicyAbort, secPolicyActivate, secPolicyAdd, secPolicyCreate, secPolicyDelete, secPolicyDump, secPolicyRemove, secPolicySave
secStatsReset

Resets one or all security statistics to 0.

**SYNOPSIS**

```
secstatsreset [name][,"domain[:domain]"
```

**DESCRIPTION**

Use this command to reset one or all security statistics to 0. This command can be issued on any switch to reset the security statistics on the local switch or chassis. If an FCS policy is enabled and secStatsReset is issued on the primary FCS switch, this command can reset security statistics for any or all switches in the fabric.

**NOTES**

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

When invoked without operands, this command displays the security statistics on the local switch or chassis. The following operands are optional:

- **name**
  Specify the name of a security statistic you would like to reset. The specified policy name must be capitalized. If executed on the primary FCS, specify an asterisk (*) to reset all security policies. Valid values for this operand include the following:
  - TELNET_POLICY
  - HTTP_POLICY
  - SCC_POLICY
  - DCC_POLICY
  - LOGIN
  - INVALID_CERT
  - AUTH FAIL
  - TS_OUT_SYNC
  - NO_FCS
  - INCOMP_DB
  - ILLEGAL_CMD
  To access DCC policies, enter DCC_POLICY. Violations are not tracked for individual DCC policies. The statistics for all DCC_POLICY violations are grouped together.

- **domain(s)**
  Specify a list of domain IDs on which to reset the security statistics. Specify an asterisk (*) to represent all switches in the fabric or specify a list of domains, separated by semicolons and enclosed in quotation marks. This option can only be executed when an FCS policy is enabled and when the command is issued from the primary FCS switch. When domain is specified, the name operand is required.

**EXAMPLES**

To reset all statistics on the local switch:

```
switch:admin> secstatsreset
About to reset all security counters.
ARE YOU SURE [yes, y, no, n]:[no] y
Security statistics reset to zero.
```
To reset DCC_POLICY statistics on domains 1 and 69:

    primaryfcs:admin> secstatsreset DCC_POLICY, "1;69"
    Reset DCC_POLICY statistic.

SEE ALSO  secStatsShow
secStatsShow

Displays one or all security statistics.

SYNOPSIS  secstatsshow [name[,"domain[;domain]"]]

DESCRIPTION Use this command to display one or all security statistics. This command can be issued on any switch to display local security statistics. If an FCS policy is enabled and secStatsShow is issued on the primary FCS switch, this command can retrieve and display the security statistics for any or all switches in the fabric.

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS When invoked without operands, this command displays the security statistics on the local switch or chassis. The following operands are optional:

name Specify the name of the security statistic you want to view. The specified policy name must be capitalized. If executed on the primary FCS, specify an asterisk (*) to represent all security policies in the fabric. Valid values for this operand include the following:
- TELNET_POLICY
- HTTP_POLICY
- SCC_POLICY
- DCC_POLICY
- LOGIN
- AUTH FAIL
- TS_OUT_SYNC
- NO_FCS
- INCOMP_DB
- ILLEGAL_CMD
To access DCC policies, enter DCC_POLICY. Violations are not tracked for individual DCC policies. The statistics for all DCC_POLICY violations are grouped together.

The INVALID_CERT policy name is not supported.

domain Specify one or more domains for which to display the security statistics. Specify an asterisk (*) in quotation marks to represent all switches in the fabric or specify a list of domains separated by semicolons. This option can only be executed when an FCS policy is enabled and the command is issued from the primary FCS switch. When domain is specified, the name operand is required.
EXAMPLES To display the LOGIN policy statistics for the local domain.

switch:admin> secstatsshow LOGIN

Fabric Statistics:

Domain 1:
Name    Value
=========================================
LOGIN    2

To display statistic information for TELNET_POLICY for all switches in the fabric from the primary FCS switch.

primaryfsc:admin> secstatsshow TELNET_POLICY,"**

Fabric Statistics:

Domain 1:
Name    Value
=========================================
TELNET_POLICY    0

Domain 69:
Name    Value
=========================================
TELNET_POLICY    0

Domain 70:
Name    Value
=========================================
TELNET_POLICY    0

SEE ALSO secStatsReset
sensorShow

Displays sensor readings.

SYNOPSIS

    sensorshow

DESCRIPTION

Use this command to display the current temperature, fan, and power supply status and readings from
sensors located on the switch. The actual location of the sensors varies, depending on the switch type.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS

None

EXAMPLES

To view all sensor values:

    switch:admin> sensorshow
    sensor  1: (Temperature) is Ok, value is 39 C
    sensor  2: (Temperature) is Absent
    sensor  3: (Temperature) is Absent
    sensor  4: (Temperature) is Absent
    sensor  5: (Temperature) is Ok, value is 26 C
    sensor  6: (Temperature) is Ok, value is 27 C
    sensor  7: (Fan        ) is Ok, speed is 2537 RPM
    sensor  8: (Fan        ) is Ok, speed is 2537 RPM
    sensor  9: (Fan        ) is Ok, speed is 2556 RPM
    sensor 10: (Power Supply ) is Ok
    sensor 11: (Power Supply ) is Absent
    sensor 12: (Power Supply ) is Ok
    sensor 13: (Power Supply ) is Absent

SEE ALSO

    fanShow, tempShow
serDesTuneMode

Configures and displays SerDes tuning values.

SYNOPSIS

serdestunemode --set
serdestunemode --reset
serdestunemode --show
serdestunemode --autoenable
serdestunemode --autodisable
serdestunemode --autoreset
serdestunemode --autoshow
serdestunemode --help

DESCRIPTION

Use this command to configure and display SerDes tuning values on the Brocade FC8-16 blade and to control tuning optimization of backend links for all Brocade FC8-xx blades.

When used with the --set, --reset and --show options, this command enables or disables the SerDes tuning mode for the Brocade FC8-16 port blade and to display the configuration.

Enabling SerDes tuning mode for the Brocade FC8-16 port blade is indicated under the following conditions:

• You have a Brocade FC8-16 blade installed in slot 2 or in slot 7 (or in both slots) in a DCX-4S chassis with a CR4S-8 core blade.
• You notice increasing numbers of CRC errors on ports 1/11, 2/0, 2/1, 2/3, 2/4, 2/5, 2/8, 2/10, 6/58 and 7/1.

Enabling SerDes tuning mode change the SerDes values on the above-mentioned ports in slots 1, 2 and 7 along with their peer ports, provided the port blades are FC8-16s and the peer is a CR4S-8 core blade. SerDes tuning mode changes take effect immediately and are saved persistently.

When used with the --autoenable, --autodisable, --autoreset and --autoshow options, this command configures SerDes tuning optimization for backend SerDes errors. SerDes tuning optimization is indicated when you receive RASLog errors of type C2-5825 indicating a CRC error with a good EOF. Brocade highly recommends that you contact your service provider if you encounter such errors. If the error appears to be an isolated incident, you may enable auto SerDes tuning for a short period of time (24-48 hours) to see if this resolves the problem. Then disable the function to reduce the risk of resetting register values unnecessarily if single occurrence errors are encountered. If the errors persist contact your service provider.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

--set

Enables SerDes tuning mode and sets new SerDes values on FC8-16 blades in slots 1, 2 and 7 and on peer ports in the CR4S-8 core blade.
serDesTuneMode

--reset
Disables SerDes tuning mode and resets SerDes values to default on FC8-16 blades in slots 1, 2 and 7 and on peer ports in the CR4S-8 core blade.

--show
Indicates whether the SerDes tuning mode is enabled or disabled.

--autoenable
Enables SerDes tuning optimization on all backend ports.

--autodisable
Disables further tuning optimization but retains all current tuning values identified by the algorithm.

--autoreset
Disables further tuning optimization and resets all tuning values back to their default values. If SerDes tune mode or was set, the configuration is restored.

--autoshow
Displays whether SerDes tuning optimization is enabled or disabled.

--help
Displays the command usage.

EXAMPLES
To enable SerDes tuning mode on a DCX-4S chassis with two FC8-16 blades and to display the configuration:

switch:admin> serdestunemode --set
serdestunemode is turned on
New serdes values set on slot = 1
New serdes values set on slot = 2
New serdes values set on slot = 7

switch:admin> serdestunemode --show
serdestunemode is enabled

To disable SerDes tuning mode and reset the SerDes values to defaults and to display the configuration:

switch:admin> serdestunemode --reset
serdestunemode is turned off
New serdes values reset on slot = 1
New serdes values reset on slot = 2
New serdes values reset on slot = 7

switch:admin> serdestunemode --show
serdestunemode is disabled

To enable SerDes tuning optimization on all backend ports and to display the configuration:

switch:admin> serdestunemode --autoset
Autotunemode is turned on

switch:admin> serdestunemode --show
Autotunemode is turned on

To disable SerDes tuning optimization on all backend ports and retain all current tuning values:

switch:admin> serdestunemode --autodisable
Autotunemode is turned off

switch:admin> serdestunemode --show
Autotunemode is turned off
To disable SerDes tuning optimization on all backend ports and reset all tuning values to their default values:

```
switch:admin> serdestunemode --autoreset
AutoTune Resetting Default Tuning On Next Poll
```

```
switch:admin> serdestunemode --show
Autotunemode is in reset state
```

SEE ALSO  None
setContext

Sets the logical switch context to a specified FID.

SYNOPSIS

    setcontext [FID | switchname]

DESCRIPTION

Use this command to set the logical switch context to a specified fabric ID (FID) or unique switch name. The FID uniquely defines a partition as a logical switch. Use lscfg --show to display currently configured partitions and their FIDs.

A logical switch context defines the boundaries within which a user can execute commands in a Virtual Fabric-aware environment. In a Virtual Fabric-aware environment, all commands are context-specific. When a user executes a switch-wide command, the command applies to the current logical switch context.

On legacy platforms, or if a logical switch context is not set explicitly, switch commands apply to the default logical switch context (FID 128). When the context is changed, switch-wide commands apply to the new logical switch context.

You must have chassis permissions to access all logical switches in the chassis and to use the setContext command to change the current context to any partition configured on the chassis. A user without chassis permissions can change contexts only within the list of FIDs specified in the user's access permissions. Refer to userConfig for more information.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

If a logical switch FID is deleted, users logged in to that switch are logged out.

OPERANDS

This command has the following operand:

FID

Specifies the fabric ID of the logical switch instance for which the context is set.

switchname

Specifies the name of the logical switch for which the context is set.

EXAMPLES

To change the logical switch context to FID 20:

    switch:admin> setcontext 20

To change the logical switch context to switch_20:

    switch:admin> setcontext switch_20

SEE ALSO

    IsCfg, userConfig
setDbg

Sets the debug level of the specified module.

SYNOPSIS

    setDbg [module_name][level]

DESCRIPTION

Use this command to set the debug level of a specified module. Debug levels filter the display of debug messages to the serial console. By default, no debug messages are displayed.

High debug level values can generate a large volume of messages, degrading the system response time. The set of supported modules and their current debug levels are displayed by the command dbgShow.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

module_name

Specify the name of the module for which you want to view the debug and verbosity levels. Module names are case-sensitive. This operand is optional; if omitted, this command displays the debug and verbose level for all modules.

level

Specify the debug level for the specified module (0 to 9). A zero (0) value (default) specifies that no messages are to display. Higher values cause more messages from that module to display. This operand is optional; if omitted, this command displays the current debug and verbose level of the specified module.

EXAMPLES

To set the debug level for a module named NS to value 3:

    switch:admin> setDbg NS 3
    switch:admin> dbgShow NS
    Module NS, debug level = 3, verbose level = 0

SEE ALSO

    dbgShow
setVerbose

Specifies module verbose level.

SYNOPSIS

setverbose [module_name][level]

DESCRIPTION

Use this command to set the verbose level of the specified module. These levels filter the display of the debug message to the serial console. By default, no debug messages are displayed.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

module_name
    Specify the name of the module for which the verbose level is to be set; module names are case-sensitive.

level
    Specify the verbose level (0 to 9).

EXAMPLES

To set the verbose level of a module named NS to value 3:

switch:admin> setverbose NS 3
switch:admin> dbgshow NS
Module NS, debug level = 0, verbose level = 3

SEE ALSO
dbgShow, setDbg
sfpShow

Displays Small Form-factor Pluggable (SFP) transceiver information.

SYNOPSIS
sfpshow
sfpshow [slot]geport [ -f]
sfpshow -all
sfpshow -health

DESCRIPTION
Use this command to display information about Serial Identification SFPs, also known as module definition "4" SFPs. These SFPs provide extended information that describes the SFP capabilities, interfaces, manufacturer, and other information.

Use this command without operands to display a summary of all SFPs in the switch. For each port, the summary displays the SFP type and, for serial ID SFP, the vendor name and SFP, serial number, and speed capability (in Gbps). Refer to switchShow for an explanation of the two-letter codes.

Use this command with a port number to display detailed information about the serial ID SFP in the specified port. In this mode, this command displays values described in the "Gigabit Interface Converter" spec by Sun Microsystems, et al. The detailed view also displays the total number of Fabric Watch state transitions for each SFP and a time stamp of the last polling time. The power-on time is displayed for 16 Gbps SFPs and QSFPs only.

To configure the SFP state changes, use the fwFruCfg command. Use the -f option to refresh the SFP information. This option is valid only when the sfpShow command is issued for a specific port.

Use the -all operand to display detailed information for all available SFPs. On switches running Fabric OS v7.0.0 or later, this view includes the power on time for the switch in years and hours.

For "smart" SFPs including mini-SFPs, this command displays additional fields, including module temperature, voltage, received optical power, transmitted optical power (long wave only), laser diode drive current, optional status/control register, alarm and warning flags, as well as high and low thresholds programmed on the SFPs.

A "Can not read Serial Data!" message indicates that an SFP ID could not be detected on that location (it could be a fixed port type, or an unsupported SFP type, or an interchassis link without a cable).

NOTES
The sfpShow command does not reflect changes in the sfpShow output if any SFPs are replaced or removed while a port or a switch is disabled.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
This command has the following operands:

slot
For bladed systems only, specifies the slot number of the port to display, followed by a slash (/)

port
Specifies the number of the port for which to display the SFP information, relative to its slot for bladed systems. Use switchShow for a list of valid ports. This operand is optional; if omitted, this command displays a summary of all SFPs on the switch.
-f
Refreshes the SFP information. This option is valid only when sfpShow is issued for a specific port.

-all
Displays detailed data for all available SFPs on the switch. This operand is not compatible with slot/port operands.

-health
Displays SFP health status information from Fabric Watch for 10 Gbps and 16 Gbps SFPs and for 16Gbps QSFPs (Quad SFPs). When Fabric Watch monitoring of SFPs is enabled with the thMonitor command, Fabric Watch monitors diagnostic SFP parameters such as current, voltage, receiver power, transmit power, and temperature. When any of these parameters crosses user-configured low and high thresholds the SFP health state changes. Possible health states include the following:

Green
SPF operates within Fabric Watch thresholds.

Yellow
At least one SFP parameter monitored by Fabric Watch has crossed a low or high threshold.

No License
The switch does not have a Fabric Watch License.

Unknown
This state displays for 8 Gbps, 4 Gbps and 2 Gbps SPF types not supported by this feature.

Paused
Health monitoring is not enabled on the switch.

EXAMPLES
To display SFP information including SFP health parameters on a Brocade DCX 8510-8:

switch:admin> sfpshow -health
Slot 1/Port 0: id
Slot 1/Port 1: id
Slot 1/Port 2: id
Slot 1/Port 3: id
Slot 1/Port 4: id
Slot 1/Port 5: id
Slot 1/Port 6: id
Slot 1/Port 7: id
Slot 1/Port 8: id
Slot 2/Port 9: id
Slot 2/Port 10: id
Slot 2/Port 11: id
Slot 2/Port 12: id
Slot 2/Port 13: id
Slot 2/Port 14: id
Slot 2/Port 15: id
Slot 3/Port 0: id (sw) Vendor: BROCADE \
    Serial No: HAA110491000HJ2 Speed: 4,8,16_Gbps Health: Green
Slot 3/Port 1: id (sw) Vendor: BROCADE \
    Serial No: HAA110491000HN2 Speed: 4,8,16_Gbps Health: Green
Slot 3/Port 2: id (sw) Vendor: BROCADE \
    Serial No: HAA110491000HZ2 Speed: 4,8,16_Gbps Health: Green
Slot 3/Port 3: id (sw) Vendor: BROCADE \
    Serial No: HAA110491000HS2 Speed: 4,8,16_Gbps Health: Green
Slot 3/Port 4: id (sw) Vendor: BROCADE \
    Serial No: HAA110491000HM2 Speed: 4,8,16_Gbps Health: Green
Slot 3/Port 5: id (sw) Vendor: BROCADE \
    Serial No: HAA110491000HY2 Speed: 4,8,16_Gbps Health: Green
Slot 3/Port 6: id (sw) Vendor: BROCADE \
    Serial No: HAA110491000J62 Speed: 4,8,16_Gbps Health: Green
Output truncated

To display detailed information about a single 16G QSPP:

switch:user> sfpshow 12/36
Identifier: 3 SFP
Connector: 7 LC
Transceiver: 7004404000000000 4,8,16_Gbps M5 sw Short_dist
Encoding: 6 64B66B
Baud Rate: 140 (units 100 megabaud)
Length 9u: 0 (units km)
Length 9u: 0 (units 100 meters)
Length 50u: 3 (units 10 meters)
Length 62.5u: 0 (units 10 meters)
Length Cu: 0 (units 1 meter)
Vendor Name: BROCADE
Vendor OUI: 00:05:1e
Vendor PN: 57-0000088-01
Vendor Rev: A
Wavelength: 850 (units nm)
Options: 003a Loss_of_Sig,Tx_Fault,Tx_Disable
BR Max: 0
BR Min: 0
Serial No: HAF1105300009BY
Date Code: 101227
DD Type: 0x68
Enh Options: 0xf2
Status/Ctrl: 0xb0
Pwr On Time: 1.03 years (9014 hours)
E-Wrap Control: 0
O-Wrap Control: 0
Alarm flags[0,1] = 0x5, 0x0
Warn Flags[0,1] = 0x5, 0x0

<table>
<thead>
<tr>
<th></th>
<th>Alarm</th>
<th>Warn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td></td>
<td>-5</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>Current</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>12.000</td>
</tr>
<tr>
<td></td>
<td>2.000</td>
<td>11.500</td>
</tr>
<tr>
<td>Voltage</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td></td>
<td>3000.0</td>
<td>3600.0</td>
</tr>
<tr>
<td></td>
<td>3100.0</td>
<td>3500.0</td>
</tr>
</tbody>
</table>
RX Power:    -4.0    dBm (402.0 uW) 10.0   uW 1258.9 uW 15.8   uW 1000.0 uW
TX Power:    -3.1    dBm (492.7 uW)125.9  uW   1000.0 uW 15.8  uW   794.3  uW

State transitions: 2
Last poll time: 02-03-2012 UTC Fri 07:36:05

To display SFP information when a new SFP is inserted in a disabled port:

```
switch:user> sfpshow 0
Identifier: 3 SFP
Connector: 7 LC
Transceiver: 540c404000000000 2,4,8_Gbps M5,M6 sw Short_dist
Encoding: 1 8B10B
Baud Rate: 85 (units 100 megabaud)
Length 9u: 0 (units km)
Length 9u: 0 (units 100 meters)
Length 50u: 5 (units 10 meters)
Length 62.5u:2 (units 10 meters)
Length Cu: 0 (units 1 meter)
Vendor Name: BROCADE
Vendor OUI: 00:05:1e
Vendor PN: 57-1000012-01
Vendor Rev: A
Wavelength: 850 (units nm)
Options: 003a Loss_of_Sig,Tx_Fault,Tx_Disable
BR Max: 0
BR Min: 0
Serial No: UAF109280000J24
Date Code: 090711
DD Type: 0x68
Enh Options: 0xfa
Status/Control: 0x0
Alarm flags[0,1] = 0x0, 0x0
Warn Flags[0,1] = 0x0, 0x0

Temperature: Not Available
Current : Not Available
Voltage : Not Available
RX Power : Not Available
TX Power : Not Available
Last poll time: Polling has not started
```

To display detailed information about all SFPs:

```
switch:user> sfpshow -all
(output truncated)
============
Slot 8/Port 50:
============

Slot 8/Port 51:
============

Slot 8/Port 52:
============

QSFP No: 13 Channel No:0
Identifier: 13 QSFP+
```
To display mini-SFPs on a DCX-4S with a FC8-64 blade:

switch:user> setcontext 52
switch:user> sfpshow

Slot 8/Port 60: id (sw) Vendor: BROCADE Serial No: UYA109291003972 Speed: 2,4,8_Gbps

Slot 8/Port 61: id (sw) Vendor: BROCADE Serial No: UYA109301011012 Speed: 2,4,8_Gbps

Slot 8/Port 62: id (sw) Vendor: BROCADE Serial No: UYA109291004082 Speed: 2,4,8_Gbps

To display mini-SFP details on a DCX with an FC8-64 blade:

switch:user> sfpshow 12/8
Identifier: 3 SFP
Connector: 7 LC
Transceiver: 540c402000000000 2,4,8_Gbps \ M5,M6 sw Inter_dist
Encoding: 1 8B10B
Baud Rate: 85 (units 100 megabaud)
Length 9u: 0 (units km)
Length 9u: 0 (units 100 meters)
Length 50u: 5 (units 10 meters)
Length 62.5u: 3 (units 10 meters)
Length Cu: 0 (units 1 meter)
Vendor Name: BROCADE
Vendor OUI: 00:05:21
Vendor PN: 57-1000046-01
Vendor Rev: A
Wavelength: 850 (units nm)
Options: 001a Loss_of_Sig,Tx_Fault,Tx_Enable
BR Max: 0
BR Min: 0
Serial No: UYA109301009212
Date Code: 090723
DD Type: 0x68
Enh Options: 0xf0
Status/Ctrl: 0x80
Alarm flags[0,1] = 0x0, 0x0
Warn Flags[0,1] = 0x0, 0x0

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Warn</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>Temperature: 30</td>
<td>90</td>
</tr>
<tr>
<td>Centigrade</td>
<td>-15</td>
</tr>
<tr>
<td>Current: 5.648</td>
<td>8.500</td>
</tr>
<tr>
<td>mAmps</td>
<td>2.000</td>
</tr>
<tr>
<td>Voltage: 3300.0</td>
<td>2800.0</td>
</tr>
<tr>
<td>mVolts</td>
<td>2970.0</td>
</tr>
<tr>
<td>RX Power: -2.5 dBm</td>
<td>0.0uW</td>
</tr>
<tr>
<td>(565.9 uW)</td>
<td>0.0uW</td>
</tr>
<tr>
<td>TX Power: -2.6 dBm</td>
<td>50.0uW</td>
</tr>
<tr>
<td>(551.6 uW)</td>
<td>800.0uW</td>
</tr>
<tr>
<td>State transitions: 1</td>
<td></td>
</tr>
<tr>
<td>Last poll time: 02-03-2012 UTC Fri 07:36:05</td>
<td></td>
</tr>
</tbody>
</table>

To display detailed information for GbE port 0 on a Brocade 7800 extension switch:

```
switch:admin> sfpshow ge0
Identifier: 3 SFP
Connector: 0
Transceiver: 00000000008000000 id
Encoding: 1 8B10B
Baud Rate: 13 (units 100 megabaud)
Length 9u: 0 (units km)
Length 9u: 0 (units 10 meters)
Length 50u: 0 (units 10 meters)
Length 62.5u: 0 (units 10 meters)
Length Cu: 100 (units 1 meter)
Vendor Name: BROCADE
Vendor OUI: 00:05:1e
Vendor PN: 57-1000042-01
Vendor Rev: A
Wavelength: 0 (units nm)
Options: 0010 Tx_Disable
BR Max: 0
BR Min: 0
Serial No: CZA109302000053
Date Code: 090504
DD Type: 0x0
Enh Options: 0x0
```
To display detailed information about a QSFP:

```
switch:admin> sfpShow 8/0
QSFP No: 0 Channel No:0
Identifier: 13 QSFP+
Connector: 12 MPO Parallel Optic
Transceiver: 0000000000000004 10_Gbps.id
Encoding: 5 64B66B
Baud Rate: 103 (units 100 megabaud)
Length 9u: 0 (units km)
Length 50u (OM3): 100 (units m)
Length 62.5u:0 (units m)
Vendor Name: BROCADE
Vendor OUI: 00:17:6a
Vendor PN: 57-1000042-01
Vendor Rev: 01
Wavelength: 850 (units nm)
Options: 00000fde
Max Case Temp: 70 C)
Device Tech: 0x00
Serial No: XXXXXX16
Date Code: 100722
DD Type: 0x8
Enh Options: 0x0
Status/Ctrl: 0x0
Alarm flags[0,1] = 0x0, 0x0
Warn Flags[0,1] = 0x0, 0x0

+-----------------+-----------------+-----------------+-----------------+-----------------+
<p>| | Alarm | Warn |</p>
<table>
<thead>
<tr>
<th></th>
<th>low</th>
<th>high</th>
<th>low</th>
<th>high</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature:</td>
<td>36</td>
<td>-5</td>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>Current:</td>
<td>6.132</td>
<td>mAmps</td>
<td>0.500</td>
<td>10.000</td>
</tr>
<tr>
<td>Voltage:</td>
<td>3285.8</td>
<td>mVolts</td>
<td>2970.0</td>
<td>3630.0</td>
</tr>
<tr>
<td>RX Power:</td>
<td>-0.3</td>
<td>dBm (926.2uW)</td>
<td>44.6 uW</td>
<td>2187.8 uW</td>
</tr>
<tr>
<td>State transitions:</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last poll time:</td>
<td>05-29-2013 UTC Wed 11:11:47</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

SEE ALSO  fwFruCfg, switchShow, thMonitor
**shellFlowControlDisable**

Disables XON/XOFF flow control on the console serial port.

**SYNOPSIS**

```
shellflowcontroldisable
```

**DESCRIPTION**

Use this command to disable XON/XOFF flow control on the console serial port. Flow control is disabled by default.

Because this command changes the flow control on the console serial port, it must be executed from a session that is logged in from the console serial port. This command cannot run from a Telnet session.

This setting is saved in the configuration database; therefore, it is persistent across reboots and power cycles.

**NOTES**

On dual-CP systems, a reboot on the standby CP is required for this command to take effect. No action is required on the active CP.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

None

**EXAMPLES**

To disable flow control:

```
switch:admin> shellflowcontroldisable
Disabling flowcontrol
flow control is now disabled
```

**SEE ALSO**

`shellFlowControlEnable`
shellFlowControlEnable

Enables XON/XOFF flow control on the console serial port.

SYNOPSIS

shellflowcontrolenable

DESCRIPTION

Use this command to enable XON/XOFF flow control to the shell task. Flow control is disabled by default. Because this command changes the flow control on the console serial port, it must be executed from a session that is logged in from the console serial port. This command cannot run from a Telnet session. This setting is saved in the configuration database; therefore, it is persistent across reboots and power cycles.

NOTES

On dual-CP systems, a reboot on the standby CP is required for this command to take effect. No action is required on the active CP.

If flow control is enabled and if the console output is suspended for an extended period of time, the switch might reboot. It is recommended to disable the flow control, using shellFlowControlDisable.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To enable flow control:

    switch:admin> shellflowcontrolenable
    Enabling flowcontrol
    flow control is now enabled

SEE ALSO

shellFlowControlDisable
slotPowerOff

Removes power from a slot.

SYNOPSIS

slotpoweroff slot

DESCRIPTION

Use this command to turn off the power to a blade unit. The slot must have a valid blade unit present and the blade unit must be of a type that can be powered off.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operand:

slot

Specify the slot number of the blade to be powered down. This operand is required.

EXAMPLES

To power off blade unit 3:

switch:admin> slotpoweroff 3
Slot 3 is being powered off

SEE ALSO

powerOffListSet, powerOffListShow, slotPowerOn, slotShow
slotPowerOn

Restores power to a slot.

SYNOPSIS

    slotpoweron slot

DESCRIPTION

Use this command to turn on the power to a blade unit. The slot must have a valid blade unit present and
the blade unit must be currently powered off. The slotShow command reports such slots as being in the
state of INSERTED, NOT POWERED ON.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS

This command has the following operand:

    slot

    Specify the slot number of the blade to be powered on. This operand is required.

EXAMPLES

To power on blade unit 3:

    switch:admin> slotpoweron 3

    Powering on slot 3.

SEE ALSO

    slotPowerOff, slotShow
slotShow

Displays the status of all slots in the system.

SYNOPSIS

slotshow [-m] [-p]

DESCRIPTION

Use this command to display the current status of each slot in the system. Depending on the option used, the command retrieves information on blade type, blade ID, status, Brocade model name, and power usage for each slot in the switch or chassis.

This command does not display the model names for unsupported blades. If a blade is not supported, only the Blade ID is displayed, and the Status field registers as FAULTY(9). Use the list below to identify the model name associated with an unsupported blade.

When no operand is specified, **slotShow** displays the blade type, blade ID, and status for each slot. In this view, the fields and their possible values are as follows:

**Slot**

Displays the physical slot number.

**Blade Type**

Displays the blade type as one of the following:

- **SW BLADE**
  The blade is a switch.

- **CP BLADE**
  The blade is a control processor.

- **CORE BLADE**
  The blade is a core switch blade.

- **AP BLADE**
  The blade is an application processor.

- **UNKNOWN**
  The blade not present or its type is not recognized.

**ID**

Displays the blade type ID as one of the following:

- **16**
  CP256 control processor blade

- **17**
  FC4-16 port blade

- **18**
  FC4-32 port blade

- **31**
  FC4-16IP port blade

- **33**
  FA4-18 port blade

- **36**
  FC4-48 port blade

- **37**
  FC8-16 switch blade

- **43**
  FS8-18 application processor blade
46  CR4S-8 core blade
50  CP8 control processor blade
51  FC8-48 switch blade
52  Core8 core blade
55  FC8-32 switch blade
74  FCoE10-24 application processor blade
75  FX8-24 application processor blade
77  FC8-64 switch blade
96  FC16-48 switch blade
97  FC16-32 switch blade
98  CR16-8 core blade
99  CR16-4 core blade
125 FC8-32E switch blade
126 FC8-48E switch blade

**Status**

Displays the status of the blade as one of the following:

**VACANT**
The slot is empty.

**INSERTED, NOT POWERED ON**
The blade is present in the slot but is turned off.

**POWERING UP**
The blade is present and powering on.

**LOADING**
The blade is present, powered on, and loading the initial configuration.

**DIAG RUNNING POST1**
The blade is present, powered on, and running the POST (power-on self-test).

**DIAG RUNNING POST2**
The blade is present, powered on, and running the reboot power on self tests.

**INITIALIZING**
The blade is present, powered on, and initializing hardware components.

**ENABLED**
The blade is on and fully enabled.
DISABLED
The blade is powered on but disabled.

FAULTY
The blade is faulty because an error was detected. A fault code of 53 may also indicate the possibility of a rolling reboot detection (RRD) on the specified blade. In the case of an RRD, investigate and correct the cause, then reboot the control processor (CP) to recover the blade.

UNKNOWN
The blade is inserted but its state cannot be determined.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

In a DCX-4S, slot 5 is occupied by a control processor blade (Blade ID 50). On a DCX, slot 5 is occupied by the core blade (Blade ID 52).

OPERANDS
This command supports the following operands:
-p
In addition to the basic slot status view, displays the following information about power consumption:
• Total direct current (DC) power consumption for the chassis and individual values for each blade (in Watts). Usage for other components such as the WWN card or fans is included in the calculation but not listed per component. Note that the data displayed in the "DC Power Consumption" column and in the summary field "Total DC Power consumption" indicate the maximum allowed power consumption, not a real-time value. Real-time power consumption data is displayed for 16G platforms only with the chassisShow command.
• Total alternating current (AC) power consumption in Watts. This value indicates the maximum allowed AC power consumption; it is not a real-time value.
• AC efficiency, as a percentage of total and BTU.
• Power efficiency in Watts/port and Watts/Gb.

-m
In addition to the basic slot status view, displays the Brocade model name for each blade.

EXAMPLES
To display the status of all slots on a DCX 8510-8:

```
switch:user> slotshow
Slot Blade Type ID Status

1 SW BLADE 97 ENABLED
2 SW BLADE 96 ENABLED
3 SW BLADE 97 ENABLED
4 SW BLADE 96 ENABLED
5 CORE BLADE 98 ENABLED
6 CP BLADE 50 ENABLED
7 CP BLADE 50 ENABLED
8 CORE BLADE 98 ENABLED
9 SW BLADE 125 ENABLED
10 SW BLADE 126 ENABLED
11 SW BLADE 37 ENABLED
12 SW BLADE 55 ENABLED
```
To display the Brocade model name for each blade on a Brocade DCX 8510-8:

```
switch:user> slotshow -m
```

<table>
<thead>
<tr>
<th>Slot</th>
<th>Blade</th>
<th>Type</th>
<th>ID</th>
<th>Model Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SW BLADE</td>
<td>97</td>
<td>FC16-32</td>
<td>ENABLED</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SW BLADE</td>
<td>96</td>
<td>FC16-48</td>
<td>ENABLED</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SW BLADE</td>
<td>97</td>
<td>FC16-32</td>
<td>ENABLED</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SW BLADE</td>
<td>96</td>
<td>FC16-48</td>
<td>ENABLED</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CORE BLADE</td>
<td>98</td>
<td>CR16-8</td>
<td>ENABLED</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CP BLADE</td>
<td>50</td>
<td>CP8</td>
<td>ENABLED</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CP BLADE</td>
<td>50</td>
<td>CP8</td>
<td>ENABLED</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CORE BLADE</td>
<td>98</td>
<td>CR16-8</td>
<td>ENABLED</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>SW BLADE</td>
<td>125</td>
<td>FC8-32E</td>
<td>ENABLED</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>SW BLADE</td>
<td>126</td>
<td>FC8-48E</td>
<td>ENABLED</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>SW BLADE</td>
<td>37</td>
<td>FC8-16</td>
<td>ENABLED</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>SW BLADE</td>
<td>55</td>
<td>FC8-32</td>
<td>ENABLED</td>
<td></td>
</tr>
</tbody>
</table>

Total DC Power Consumption: 2195 watts
Total AC Power Consumption: 2438 watts AC @ 90% efficiency (8321 BTU)
Power Efficiency: 0.85 watts per port, 0.12 watts per Gb

To display power consumption information on a Brocade DCX 8510-8:

```
switch:user> slotshow -p
```

<table>
<thead>
<tr>
<th>Slot</th>
<th>Blade</th>
<th>Type</th>
<th>ID</th>
<th>DC Power Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UNKNOWN</td>
<td></td>
<td></td>
<td>VACANT</td>
</tr>
<tr>
<td>2</td>
<td>AP BLADE</td>
<td>43</td>
<td>235</td>
<td>ENABLED</td>
</tr>
<tr>
<td>3</td>
<td>UNKNOWN</td>
<td></td>
<td></td>
<td>VACANT</td>
</tr>
<tr>
<td>4</td>
<td>SW BLADE</td>
<td>97</td>
<td>125</td>
<td>ENABLED</td>
</tr>
<tr>
<td>5</td>
<td>CORE BLADE</td>
<td>98</td>
<td>260</td>
<td>ENABLED</td>
</tr>
<tr>
<td>6</td>
<td>CP BLADE</td>
<td>50</td>
<td>40</td>
<td>ENABLED</td>
</tr>
<tr>
<td>7</td>
<td>CP BLADE</td>
<td>50</td>
<td>40</td>
<td>ENABLED</td>
</tr>
<tr>
<td>8</td>
<td>CORE BLADE</td>
<td>98</td>
<td>260</td>
<td>ENABLED</td>
</tr>
<tr>
<td>9</td>
<td>AP BLADE</td>
<td>75</td>
<td>250</td>
<td>ENABLED</td>
</tr>
<tr>
<td>10</td>
<td>SW BLADE</td>
<td>97</td>
<td>125</td>
<td>ENABLED</td>
</tr>
<tr>
<td>11</td>
<td>SW BLADE</td>
<td>77</td>
<td>130</td>
<td>ENABLED</td>
</tr>
<tr>
<td>12</td>
<td>SW BLADE</td>
<td>96</td>
<td>180</td>
<td>ENABLED</td>
</tr>
</tbody>
</table>

To display the Brocade model name for each blade on a Brocade DCX 8510-4:

```
switch:user> slotshow -m
```

<table>
<thead>
<tr>
<th>Slot</th>
<th>Blade</th>
<th>Type</th>
<th>ID</th>
<th>Model Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UNKNOWN</td>
<td></td>
<td></td>
<td>VACANT</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SW BLADE</td>
<td>96</td>
<td>FC16-48</td>
<td>ENABLED</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CORE BLADE</td>
<td>99</td>
<td>CR16-4</td>
<td>ENABLED</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CP BLADE</td>
<td>50</td>
<td>CP8</td>
<td>ENABLED</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CP BLADE</td>
<td>50</td>
<td>CP8</td>
<td>ENABLED</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CORE BLADE</td>
<td>99</td>
<td>CR16-4</td>
<td>ENABLED</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>UNKNOWN</td>
<td></td>
<td></td>
<td>VACANT</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>UNKNOWN</td>
<td></td>
<td></td>
<td>VACANT</td>
<td></td>
</tr>
</tbody>
</table>
To display power consumption information on a Brocade DCX 8510-4:

```
switch:user> slotshow -p
Slot Blade Type ID DC Power Status Consumption

 1 UNKNOWN - VACANT
 2 SW BLADE 96 180 ENABLED
 3 CORE BLADE 99 200 ENABLED
 4 CP BLADE 50 40 ENABLED
 5 CP BLADE 50 40 ENABLED
 6 CORE BLADE 99 200 ENABLED
 7 UNKNOWN - VACANT
 8 AP BLADE 43 235 ENABLED
```

Total DC Power Consumption:
1149 watts

Total AC Power Consumption:
1276 watts AC @ 90% efficiency (4355 BTU)

Power Efficiency:
3.32 watts per port, 0.83 watts per Gb

To display power consumption information on a DCX-4S:

```
switch:user> slotshow -p
Slot Blade Type ID DC Power Status Consumption

 1 SW BLADE 77 130 ENABLED
 2 SW BLADE 51 115 ENABLED
 3 CORE BLADE 46 60 ENABLED
 4 CP BLADE 50 40 ENABLED
 5 CP BLADE 50 40 ENABLED
 6 CORE BLADE 46 60 ENABLED
 7 AP BLADE 74 250 ENABLED
 8 AP BLADE 74 250 ENABLED
```

Total DC Power Consumption:
1199 watts

Total AC Power Consumption:
1332 watts AC @ 90% efficiency (4546 BTU)

Power Efficiency:
1.04 watts per port, 0.26 watts per Gb

**SEE ALSO** bladeDisable, bladeEnable, chassisShow, slotPowerOff, slotPowerOn
snmpConfig

Manages the SNMP agent configuration.

SYNOPSIS

snmpConfig --show | --set | --default | --enable | --disable

   [snmpv1 | snmpv3 | accessControl | mibCapability | systemGroup | secllevel]

snmpConfig --set mibCapability

   [-mib_name mib_name [-bitmask bit_mask]]

snmpConfig --enable | --disable mibCapability

   -mib_name mib_name [trap_name trap_name]

snmpConfig --enable | --disable snmpv1

snmpConfig --help

DESCRIPTION

Use this command to manage the configuration of the SNMP agent in the switch. The configuration
includes SNMPv1 and SNMPv3 configuration, access control list (ACL), MIB capability, system group,
and security level settings. The command supports set, reset to default, and display operations.

The SNMP Agent configuration interface is interactive for all parameters except mibCapability, which
can be configured both interactively and with command line options on platforms running Fabric OS
v6.4.0 and later. The enhanced command line interface supports enabling or disabling a single MIB or all
MIBs, configuring a single trap only, and managing traps in excess of 32.

The SNMPv3 configuration supports sending inform requests as an alternative to trap requests. Traps
are unreliable because the receiver does not send any acknowledgment when it receives a trap. The
sender cannot determine if the trap was received. However, an SNMP manager that receives an inform
request acknowledges the message with an SNMP response protocol data unit (PDU). If the manager
does not receive an inform request, it does not send a response. If the sender never receives a
response, the inform request can be sent again. For this reason, informs are more likely to reach their
intended destination.

All values successfully changed by this command take effect immediately and are persistent across
power cycles and reboots.

In Fabric OS v7.0.0 and later, you can use this command to block or unblock access to SNMPv1/v2c. If
SNMPv1/v2c access is blocked, all requests for v1/v2c version will be dropped by the switch, and
SNMPv1 traps will be blocked from being sent, even if trap destinations are present. Enforcement of this
feature takes precedence over other SNMP security related features, such as accessControl or secllevel.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

Informs are not supported for IPv6 addresses.

OPERANDS

This command has the following operands:

--help

   Displays the command usage.

--show

   Displays the SNMP agent configuration data of the specified category. When used
   with the snmpv1 operand, this command displays whether access to
   SNMPv1/v2c is enabled or disabled.
---set

Sets the SNMP agent configuration data of the specified category. This operand displays the current settings and then prompts you to change the values for each parameter.

---default

Sets the SNMP agent configuration data for a specified item to the default values. Generally, these default values may be available in the configuration database. The command sets to factory defaults if the SNMP agent configuration parameters are not available in the configuration database.

---enable

Enables the SNMP agent configuration for the specified category. This operand is valid only with mibCapability and snmpv1. When used with the snmpv1 operand, this command restores access to SNMPv1/v2c.

---disable

Disables the SNMP agent configuration for the specified category. This operand is valid only with mibCapability and snmpv1. When used with the snmpv1 operand, this command blocks access to SNMPv1/v2c. All requests for v1/v2c version will be dropped by the switch, and SNMPv1 traps will be blocked from being sent, even if trap destinations are present.

snmpv1

Selects SNMPv1-related configuration parameters. These parameters include the community string, trap recipient IP address, and trap severity level associated with each trap recipient IP address. When "0" is configured as a trap port, traps can be received at the default port 162.

snmpv3

Selects SNMPv3-related configuration parameters. These parameters include the user name, authentication protocol and password, the privacy protocol and password, the SNMPv3 trap recipient's IP address, its associated user index and trap severity level. When "0" is configured as a trap port, traps can be received at the default port 162.

The --set snmpv3 command supports an interactive option to enable or disable informs by setting the parameter "SNMP Informs Enabled" to true or false. If informs are enabled, all trap destinations receive inform requests. If informs are disabled, all trap destinations receive trap requests. When informs are enabled, the engine ID must be set to correspond to the management engine IP address (see example). Informs are by default disabled. IPv6 Informs are currently not supported.

accessControl

Selects access-control-related parameters. These parameters include the access host subnet area and access permission (read-write).

mibCapability

Selects configuration parameters related to the SNMP agent's MIBs and trap capability parameters. These parameters include MIBs and traps supported by the SNMP agent.

systemGroup

Selects configuration parameters related to the system group. These parameters include sysDescr, sysLocation, sysContact, and authentication failure trap.

secLevel

Sets the SNMP security level.
SNMPv1 Configuration Parameters

The agent supports six communities and their associated trap recipients and trap recipient severity levels. The first three communities are for read-write (rw) access and the last three are for read-only (ro) access. The default value for the trap recipient of each community is 0.0.0.0. The length of the community string should be in the range of 2 to 16 characters. The default values for the community strings include the following:

- Community 1: Secret Code
- Community 2: OrigEquipMfr
- Community 3: private
- Community 4: public
- Community 5: common
- Community 6: FibreChannel

When an FCS policy is enabled, community strings can be changed on the primary FCS switch only, and only the primary FCS switch propagates changes across the fabric.

For an SNMP management station to receive a trap generated by the agent, the administrator must configure a trap recipient to correspond to the IP address of the management station. In addition, the trap recipient must be able to pass the access control list (ACL) check as described in the Access Control category.

Trap Recipient Severity Level

When an event occurs and its severity level is at or below the set value, the Event Trap traps (swEventTrap, connUnitEventTrap and swFabricWatchTrap), are sent to configured trap recipients. By default, this value is set at 0, implying that no Event Trap is sent. Possible values are

- 0 None
- 1 Critical
- 2 Error
- 3 Warning
- 4 Informational
- 5 Debug

SNMPv3 Configuration Parameters

Two user roles, snmpadmin and snmpuser are supported. The snmpadmin role provides read-write access and the snmpuser role provides read-only access. Entries are added to the USM table corresponding to each role. A total of three entries for snmpadmin and snmpuser respectively are supported. Separate default passwords are provided for creation of authKey and privKey for each entry. The default set of passwords is published and the default algorithm (MD5/SHA) is used to create the initial set of authentication keys. You can change these passwords using this option. You can select the authentication protocol MD5/SHA or no authentication for each entry.

The following combinations of protocols are supported:

- NoAuth/NoPriv
- Auth/NoPriv
- Auth/Priv

The user name must be between 2 and 32 characters long. The default user names are defined with the noAuth and noPriv protocol. The factory default SNMPv3 user names include the following:

- User 1: snmpadmin1
- User 2: snmpadmin2
- User 3: snmpadmin3
- User 4: snmpuser1
• User 5: snmpuser2
• User 6: snmpuser3

The `--default` option sets the user name and password to default.

If an FCS policy is enabled, the configuration must be updated on the primary switch and the nonprimary switches; unlike community strings, user names and passwords are not distributed for other switches in the fabric.

When new passwords are entered for any user entry, a new `authKey` and `privKey` are generated. The new passwords must be updated on the client (e.g., MIB browser) as well. `AuthKey` and `privKey` can also be updated with the delta key mechanism provided by the SNMPv3 protocol.

The system prompts for password confirmation if a protocol other than `NoAuth/NoPriv` is selected.

Protocol passwords must be between 1 and 20 characters.

In order for an SNMP management station to receive SNMPv3 traps generated by the agent, the administrator must configure a trap recipient value to correspond to the IP address of the management station. In addition, the trap recipient must pass the ACL check as described in the Access Control section. The trap recipient must be associated with one of the six users of SNMPv3 and trap severity level. The factory default value for the SNMPv3 trap recipient of each user is 0.0.0.0.

**Access Control Configuration Parameters**

The ACL check is as follows: there are six ACLs to restrict SNMP get, set, and trap operations to hosts under an host-subnet-area. The host-subnet-area is defined by comparing nonzero IP octets. For example, an ACL of 192.168.64.0 enables access by any hosts that start with the specified octets. The connecting host is enabled to set each host-subnet-area to be read-write or read-only. The closest match out of six entries is given access. The ACL check is turned off when all six entries contain 0.0.0.0. The default values of all six entries are 0.0.0.0. For IPv6 subnets, the format is specified by an IPv6 address followed by the number of fixed bits in the address.

**MIB Capability Configuration Parameters**

The `mibCapability` option turns certain MIBs and associated SNMP traps on or off. If a specific MIB is disabled, the corresponding traps also are disabled. If any trap group is disabled, the corresponding individual traps are also disabled.

In Fabric OS v6.4.0 and later, SNMP Traps are identified by their bit mask and can be read directly from the switch configuration. The MIB and trap status (enabled or disabled) status is recorded in a 64-bit counter. The last bit (bit 0) is reserved for the MIB and the remaining bits are reserved for the traps of that MIB. The trap's position is allocated based on the last ID of the trap OID. For example, the last ID of the `swEventTrap` is 5 so its position will be 5th from the right. The following is a listing of valid SNMP traps and their bit masks:

<table>
<thead>
<tr>
<th>MIB</th>
<th>Trap Name and position</th>
<th>Bit mask</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE-MIB</td>
<td></td>
<td>0x1</td>
<td>Enabled</td>
</tr>
<tr>
<td>swFault (1)</td>
<td></td>
<td>0x2</td>
<td>Enabled</td>
</tr>
<tr>
<td>swSensorScn (2)</td>
<td></td>
<td>0x4</td>
<td>Enabled</td>
</tr>
<tr>
<td>swFCPortScn (3)</td>
<td></td>
<td>0x8</td>
<td>Enabled</td>
</tr>
<tr>
<td>swEventTrap (4)</td>
<td></td>
<td>0x10</td>
<td>Enabled</td>
</tr>
<tr>
<td>swFabricWatchTrap (5)</td>
<td></td>
<td>0x20</td>
<td>Enabled</td>
</tr>
<tr>
<td>swTrackChangeTraps (6)</td>
<td></td>
<td>0x40</td>
<td>Enabled</td>
</tr>
<tr>
<td>swIPv6ChangeTrap (7)</td>
<td></td>
<td>0x80</td>
<td>Enabled</td>
</tr>
<tr>
<td>swPmgrEventTrap (8)</td>
<td></td>
<td>0x100</td>
<td>Enabled</td>
</tr>
<tr>
<td>swFabricSegmentTrap (9)</td>
<td></td>
<td>0x200</td>
<td>Disabled</td>
</tr>
<tr>
<td>swFabricReconfigTrap (10)</td>
<td></td>
<td>0x400</td>
<td>Disabled</td>
</tr>
<tr>
<td>swExtTrap (11)</td>
<td></td>
<td>0x800</td>
<td>Disabled</td>
</tr>
<tr>
<td>swStateChange (12)</td>
<td></td>
<td></td>
<td>Disabled</td>
</tr>
<tr>
<td>swMovePort (13)</td>
<td></td>
<td></td>
<td>Disabled</td>
</tr>
<tr>
<td>swBrcdGenericTrap (15)</td>
<td></td>
<td></td>
<td>Disabled</td>
</tr>
</tbody>
</table>
Use the `--show mibCapability` option to display the traps configurable under each MIB. For more information, refer to the *Fabric OS Administrator's Guide*.

The following MIB configuration options are supported:

---

**set mibCapability**

Configures MIBs interactively. When used without a MIB name, this command displays a menu with supported MIBs and associated traps, and for each MIB or trap, you are prompted to confirm or change the default by specifying yes or no. Specifying yes means you can access the MIB variables with an SNMP manager.

For two traps under the SW-TRAP category, the `swEventTrap` and the `swFabricWatchTrap`, this command provides the option to specify a severity levels to control the number of generated alerts. When a severity level is configured, traps below the specified severity level specified are not sent. Refer to the Examples section for an illustration. Specify one of the following values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>None (default)</td>
</tr>
<tr>
<td>1</td>
<td>Critical</td>
</tr>
<tr>
<td>2</td>
<td>Error</td>
</tr>
</tbody>
</table>
Warning

Informational

-mib_name mib_name
    Specifies the name of the MIB to be configured. This operand is required if you
    want to configure MIB traps noninteractively. Valid MIB names include the
    following.
    • FE-MIB
    • SW-MIB
    • FA-MIB
    • FICON-MIB
    • HA-MIB
    • FCIP-MIB
    • ISCSI-MIB
    • IF-MIB
    • BD-MIB

-bitmask bit_mask
    Specifies the bit mask for the MIB. Refer to the table above for valid values.

--enable mibCapability -mib_name mib_name
    Enables the specified MIB noninteractively.

--disable mibCapability -mib_name mib_name
    Disables the specified MIB noninteractively. When used with the trap name
    operand, only the specified trap is disabled.

-trap_name trap_name
    Specifies the name of the trap to be enabled or disable. This operand is optional.
    Use snmpConfig --show mibCapability for a listing of valid traps.

System Group Configuration Parameters

sysDescr
    The system description. The default value is Fibre Channel switch.

sysLocation
    The location of the system (switch). The default value is End User Premise. The
    string must be at least 4 characters in length; the maximum length is 255
    characters.

sysContact
    The contact information for this system (switch). The default value is Field
    Support. Refer to the definition of sysDescr, sysLocation and sysContact in the
    system group of MIB-II. The string must be at least 4 characters in length; the
    maximum length is 255 characters.

authTraps
    When enabled, the authentication trap (authenticationFailure) is transmitted to a
    configured trap recipient in the event that the agent receives a protocol message
    that is not properly authenticated. In the context of SNMPv1 and SNMPv2c, this
    means that a request contains a community string that is not known to the agent.
    The default value for this parameter is 0 (disabled).

Security Level Parameters

The --show option displays the current SNMP GET security and SNMP SET security levels. Use --set
secLevel to modify existing settings:
SNMP GET security level
Specifies security level for all SNMP GET requests.

SNMP SET security level
Specifies security level for SNMP SET requests only. Values include the following:

0
No security.

1
Authentication only.

2
Authentication and Privacy.

3
OFF

EXAMPLES
To display the SNMPv1 configuration:

```
switch:admin> snmpConfig --show snmpv1
SNMPv1 community and trap recipient configuration:
Community 1: Secret C0de (rw)
 Trap recipient: 10.32.147.113
 Trap recipient Severity Level: 0
Community 2: OrigEquipMfr (rw)
 Trap recipient: 1080::8:800:200C:1234
 Trap recipient Severity Level: 0
Community 3: private (rw)
 No trap recipient configured yet
Community 4: public (ro)
 No trap recipient configured yet
Community 5: common (ro)
 No trap recipient configured yet
Community 6: FibreChannel (ro)
 No trap recipient configured yet
```

To set the SNMPv1 configuration of a switch:

```
switch:admin> snmpConfig --set snmpv1
SNMP community and trap recipient configuration:
Community (rw): [Secret C0de]
 Trap Recipient's IP address: [0.0.0.0] \
 1080::8:800:200C:1234
Community (rw): [OrigEquipMfr]
 string size must be between 2 and 16 - please re-enter
Community (rw): [OrigEquipMfr]
 Trap Recipient's IP address: [1080::8:800:200C:1230] \
 10.32.147.113
Community (rw): [private]
 Trap Recipient's IP address: [0.0.0.0]
Community (ro): [public]
 Trap Recipient's IP address: [0.0.0.0]
Community (ro): [common]
 Trap Recipient's IP address: [0.0.0.0]
Community (ro): [FibreChannel]
 Trap Recipient's IP address: [0.0.0.0]
```
To set the access control configuration:

```
switch:admin> snmpconfig --set accessControl
SNMP access list configuration:
Access host subnet area in dot notation: [0.0.0.0] 192.168.0.0
Read/Write? (true, t, false, f): [true]
Access host subnet area in dot notation: [0.0.0.0] 2001:0db8:1234:1::1/128
Read/Write? (true, t, false, f): [true] f
Access host subnet area in dot notation: [0.0.0.0] 192.168.0.0
Read/Write? (true, t, false, f): [true]
Access host subnet area in dot notation: [0.0.0.0] 2001:0db8:1234:1::1/128
Read/Write? (true, t, false, f): [true] f
Access host subnet area in dot notation: [0.0.0.0] 192.168.0.0
Read/Write? (true, t, false, f): [true]
Access host subnet area in dot notation: [0.0.0.0] 2001:0db8:1234:1::1/128
Read/Write? (true, t, false, f): [true]
Committing configuration...done.
```

To display the access control configuration:

```
switch:admin> snmpconfig --show accessControl
SNMP access list configuration:
Entry 0: Access host subnet area 192.168.0.0 (rw)
Entry 1: Access host subnet area 2001:0db8:1234:1::1/128 (rw)
Entry 2: No access host configured yet
Entry 3: No access host configured yet
Entry 4: No access host configured yet
Entry 5: No access host configured yet
```

To set the severity level for switch events and Fabric Watch alerts:

```
switch:admin> snmpconfig --set mibCapability
The SNMP Mib/Trap Capability has been set to support
SW-TRAP (yes, y, no, n): [yes]
swFCPortScn (yes, y, no, n): [yes]
swEventTrap (yes, y, no, n): [yes]
Desired Serverity Level (1- critical 2- error 3 -warning 4- informational 0 -None): 4
swFabricWatchTrap (yes, y, no, n): [yes]
Desired Serverity Level (1- critical 2- error 3 -warning 4- informational 0 -None): 2
[...]
```

To enable the `swFabricWatchTrap` noninteractively:

```
switch:admin> snmpconfig --enable mibCapability
 -mib_name SW-MIB -trap_name swFabricWatchTrap
Operation succeeded
```

To enable the `swEventTrap` of the SW-MIB category only (this operation disables all other SNMP traps in this MIB category):

```
switch:admin> snmpconfig --set mibCapability
 -mib_name SW-MIB -bitmask 0x10
Operation succeeded
```

```
switch:admin> snmpconfig --show mibCapability
[...]
SW-TRAP: NO
swFabricWatchTrap: NO
swSensorScn: NO
```
To enable the SW-MIB MIB only without changing the current trap configuration:

```
switch:admin> snmpconfig --enable mibCapability

mib_name: SW-MIB

Operation succeeded
```

```
switch:admin> snmpconfig --show mibCapability

mib_name: SW-MIB

swFault: NO
swSensorScn: NO
swFCPortScn: NO
swEventTrap: YES
 DesiredSeverity: 4
swFabricWatchTrap: NO
 DesiredSeverity: 2
swTrackChangesTrap: NO
swIPv6ChangeTrap: NO
swPmgrEventTrap: NO
swFabricReconfigTrap: NO
swFabricSegmentTrap: NO
swExtTrap: NO

[...]
```

To re-enable all traps under the SW-MIB category:

```
switch:admin> snmpconfig --set mibCapability

mib_name: SW-MIB

-bitmask 0xFFF

Operation succeeded
```

```
switch:admin> snmpconfig --show mibCapability

mib_name: SW-MIB

swFault: YES
swSensorScn: YES
swFCPortScn: YES
swEventTrap: YES
 DesiredSeverity: None
swFabricWatchTrap: YES
 DesiredSeverity: None
swTrackChangesTrap: YES
swIPv6ChangeTrap: YES
swPmgrEventTrap: YES
swFabricReconfigTrap: YES

[...]
```
To display the configuration for all MIBs and associated traps:

```
switch:admin> snmpconfig --show mibCapability
FE-MIB: YES
SW-MIB: YES
FA-MIB: YES
FICON-MIB: YES
HA-MIB: YES
FCIP-MIB: YES
ISCSI-MIB: YES
IF-MIB: YES
BD-MIB: YES
SW-TRAP: NO
swFault: NO
swSensorScn: NO
swPCPortScn: NO
swEventTrap: NO
 DesiredSeverity:None
swFabricWatchTrap: NO
 DesiredSeverity:None
swTrackChangesTrap: NO
swIPv6ChangeTrap: NO
swPmgrEventTrap: NO
swFabricReconfigTrap: NO
swFabricSegmentTrap: NO
swExtTrap: NO
swStateChangeTrap: NO
swPortMoveTrap: NO
swBrcdGenericTrap: NO
FA-TRAP: NO
connUnitStatusChange: NO
connUnitDeletedTrap: NO
connUnitEventTrap: NO
connUnitSensorStatusChange: NO
connUnitPortStatusChange: NO
FICON-TRAP: NO
linkRNIDDeviceRegistration: NO
linkRNIDDeviceDeRegistration: NO
linkLIRRListenerAdded: NO
linkLIRRListenerRemoved: NO
linkRLIRFailureIncident: NO
HA-TRAP: NO
fruStatusChanged: NO
cpStatusChanged: NO
fruHistoryTrap: NO
ISCSI-TRAP: NO
iscsiTgtLoginFailure: NO
iscsiIntrLoginFailure: NO
iscsiInstSessionFailure: NO
IF-TRAP: NO
```
To restore the systemGroup configuration to default values:

```bash
switch:admin> snmpconfig --default systemGroup

This command will reset the agent's system group configuration back to factory default

 sysDescr = Fibre Channel Switch
 sysLocation = End User Premise
 sysContact = Field Support
 authTraps = 0 (OFF)

Are you sure? (yes, y, no, n): [no] y
```

To set the security level:

```bash
switch:admin> snmpconfig --set seclevel
Select SNMP Security Level
(0 = No security, 1 = Authentication only, 2 = Authentication and Privacy, 3 = No Access): (0..3) [0] 1
Select SNMP SET Security Level
(0 = No security, 1 = Authentication only, 2 = Authentication and Privacy, 3 = No Access): (1..3) [1]
```

To display the SNMP3 configuration with informs disabled (in the example, the Engine ID in the user1 entry corresponds to the engine ID of the trap manager in Trap Entry 2: 10.103.5.105):

```bash
switch:admin> snmpconfig --show snmpv3
SNMP Informs = 1 (ON)

SNMPv3 USM configuration:
User 1 (rw): snmpadmin1
 Auth Protocol: noAuth
 Priv Protocol: noPriv
 Engine ID: 00:00:00:00:00:00:00:00:00
User 2 (rw): snmpadmin2
 Auth Protocol: noAuth
 Priv Protocol: noPriv
 Engine ID: 80:00:05:23:01:0a:23:34:22
User 3 (rw): snmpadmin3
 Auth Protocol: noAuth
 Priv Protocol: noPriv
 Engine ID: 00:00:00:00:00:00:00:00:00
User 4 (ro): snmpuser1
 Auth Protocol: noAuth
 Priv Protocol: noPriv
 Engine ID: 00:00:00:00:00:00:00:00:00
User 5 (ro): snmpuser2
 Auth Protocol: noAuth
 Priv Protocol: noPriv
 Engine ID: 00:00:00:00:00:00:00:00:00
User 6 (ro): snmpuser3
```
Fabric OS Command Reference 1029

53-1002921-02

snmpConfig 2

Auth Protocol: noAuth
Priv Protocol: noPriv
Engine ID: 00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00

SNMPv3 Trap configuration:
Trap Entry 1: No trap recipient configured yet
Trap Entry 2: 10.35.52.34
  Trap Port: 162
  Trap User: snmpadmin2
  Trap recipient Severity level: 5
Trap Entry 3: No trap recipient configured yet
Trap Entry 4: No trap recipient configured yet
Trap Entry 5: No trap recipient configured yet
Trap Entry 6: No trap recipient configured yet

To enable inform requests to be sent instead of trap requests:

switch:admin> snmpconfig --set snmpv3

SNMP Informs Enabled (true, t, false, f): [false] t

SNMPv3 user configuration (snmp user not configured in FOS user database will have physical AD and admin role as the default):
User (rw): [snmpadmin1]
  Auth Protocol [MD5(1)/SHA(2)/noAuth(3)]: (1..3) [3]
  Priv Protocol [DES(1)/noPriv(2)/AES128(3)]: (2..2) [2]
  Engine ID: [0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0]
User (rw): [snmpadmin2]
  Auth Protocol [MD5(1)/SHA(2)/noAuth(3)]: (1..3) [3]
  Priv Protocol [DES(1)/noPriv(2)/AES128(3)]: (2..2) [2]
  Engine ID: [0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0]
User (rw): [snmpadmin3]
  Auth Protocol [MD5(1)/SHA(2)/noAuth(3)]: (1..3) [3]
  Priv Protocol [DES(1)/noPriv(2)/AES128(3)]: (2..2) [2]
  Engine ID: [0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0]
User (ro): [snmpuser1]
  Auth Protocol [MD5(1)/SHA(2)/noAuth(3)]: (1..3) [3]
  Priv Protocol [DES(1)/noPriv(2)/AES128(3)]: (2..2) [2]
  Engine ID: [0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0]
User (ro): [snmpuser2]
  Auth Protocol [MD5(1)/SHA(2)/noAuth(3)]: (1..3) [3]
  Priv Protocol [DES(1)/noPriv(2)/AES128(3)]: (2..2) [2]
  Engine ID: [0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0]
User (ro): [snmpuser3]
  Auth Protocol [MD5(1)/SHA(2)/noAuth(3)]: (1..3) [3]
  Priv Protocol [DES(1)/noPriv(2)/AES128(3)]: (2..2) [2]
  Engine ID: [0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0]

SNMPv3 trap recipient configuration:
  Trap Recipient's IP address : [0.0.0.0]
  Trap Recipient's IP address : [10.32.147.6]
  UserIndex: (1..6) [2]
  Trap recipient Severity level : (0..5) [5]
  Trap recipient Port : (0..65535) [162]
  Trap Recipient's IP address : [0.0.0.0]
  Trap Recipient's IP address : [0.0.0.0]
  Trap Recipient's IP address : [0.0.0.0]
  Trap Recipient's IP address : [0.0.0.0]
To block access to SNMPv1/2c

switch:admin> snmpconfig --disable snmpv1
switch:admin> snmpconfig --show
SNMPv1 community and trap recipient configuration:
  Community 1: ram (rw)
    Trap recipient: 172.26.4.84
    Trap port: 162
    Trap recipient Severity level: 5
  Community 2: OrigEquipMfr (rw)
    No trap recipient configured yet
  Community 3: private (rw)
    No trap recipient configured yet
  Community 4: public (ro)
    No trap recipient configured yet
SNMPv1: Disabled

REFERENCES
Refer to the following publications for further information on SNMP:

- SW_v5_x.mib, "Switch Management Information & Switch Enterprise Specific Trap"
- RFC1157, "A Simple Network Management Protocol (SNMPv1)"
- RFC1213, "Management information Base for Network Management of TCP/IP-based internets: MIB-II"
- RFC2574, "User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)"

SEE ALSO
None
**snmpTraps**

Sends or displays SNMP traps.

**SYNOPSIS**

```
snmptraps --send [-trap_name trap_name] [-ip_address ip_address]

snmptraps --show [port]

snmptraps --block -port [slot|port | ALL]

snmptraps --unblock -port [slot|port | ALL]

snmptraps --help
```

**DESCRIPTION**

Use this command to manage specific Simple Network Management Protocol (SNMP) traps.

Use the **--send** option to send a specific SNMP trap to a recipient indicated by its IP address. Or use the **--send** option without operands to send all supported traps to all configured SNMP trap recipients. When the command is issued to send all traps, the message returned indicates only the total number of traps sent and not the individual trap names.

In Fabric OS v7.0.0 and later you can block or unblock certain port traps on specified ports. This feature provides control over a subset of port traps including the following: SwFCPortScn, ConnUnitPortStatusChange, and SwFabricSegmentTrap.

Use the **--show** option with the **port** operand to display the status of blocked ports. When used without operands, the **--show** option displays all Management Information Base (MIB) objects and associated traps that are supported in Fabric OS.

**NOTES**

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

This command has the following operands:

**--send**

Sends one or all SNMP traps to all configured recipients or to a specified recipient. The following operands are optional:

```
-trap_name trap_name
```

Specifies the trap by name. Use **snmptraps --show** for a listing of valid traps.

```
-ip_address ip_address
```

Specifies the recipient by its IP address in IPv4 or IPv6 format. IPv6 addresses require Fabric OS v6.4.0 or later.

**--block [slot|port | ALL**

Blocks the following port traps on the specified port: SwFCPortScn, ConnUnitPortStatusChange, and SwFabricSegmentTrap. When used with the **ALL** this command blocks these traps on all ports.

**--unblock [slot|port | ALL**

Removes the trap blocking from the specified port or from all ports.

**--show [port**

Displays all configured SNMP traps and MIBs. When used with the optional **port** argument, this command displays the ports that are blocked from receiving certain software traps.
--help

Displays the command usage.

EXAMPLES

To send all traps to the configured recipients:

```bash
switch:admin> snmpTraps --send
Number of traps sent : 27
```

To send a bottleneck detection trap to recipient 172.16.0.12

```bash
switch:admin> snmpTraps --send -trap_name bd-trap_ip_address 172.16.0.12.
Number of traps sent : 1
```

To display the traps and MIBs supported in Fabric OS:

```bash
switch:admin> snmpTraps --show
```

<table>
<thead>
<tr>
<th>#</th>
<th>Mib Name</th>
<th>Supported Traps</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>SW-MIB</td>
<td>sw-track-changes-trap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sw-fabric-watch-trap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sw-fc-port-scn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ip-v6-change-trap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sw-pmgr-event-trap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sw-event-trap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sw-fabric-reconfig-trap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sw-fabric-segment-trap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sw-state-trap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sw-port-move-trap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sw-brcd-genric-trap</td>
</tr>
<tr>
<td>002</td>
<td>FICON-MIB</td>
<td>link-rnid-device-registration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>link-rnid-device-deregistration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>link-lirr-listener-added</td>
</tr>
<tr>
<td></td>
<td></td>
<td>link-lirr-listener-removed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>link-rllr-failure-incident</td>
</tr>
<tr>
<td>003</td>
<td>FA-MIB</td>
<td>conn-unit-status-change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>conn-unit-sensor-status-change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>conn-unit-port-status-change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>conn-unit-event-trap</td>
</tr>
<tr>
<td>004</td>
<td>RFC1157</td>
<td>cold-restart-trap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>warm-restart-trap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if-link-up-trap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if-link-down-trap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>snmp-authentication-trap</td>
</tr>
<tr>
<td>005</td>
<td>HA-MIB</td>
<td>fru-status-change-trap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fru-history-trap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cp-status-change-trap</td>
</tr>
<tr>
<td>006</td>
<td>BD-MIB</td>
<td>bd-trap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bd-clear-trap</td>
</tr>
</tbody>
</table>

To block a single port from receiving traps:

```bash
switch:admin> snmpTraps --block 17
```

To unblock a previously blocked port:

```bash
switch:admin> snmpTraps --unblock 17
```
To configure the switch so that only two ports receive the port traps, you block all traps and then unblock the ports you want to receive the traps:

```
switch:admin> snmpTraps --block ALL
switch:admin> snmpTraps --unblock 17
switch:admin> snmpTraps --unblock 18
```

To display the blocked port status:

```
switch:admin> snmpTraps --show port
 Port 0 1 2 3 4 5 6 7 8 9

 Blocked | | | | | | | | | |
 Port 10 11 12 13 14 15 16 17 18 19

 Blocked | | | | | | | Y | Y | |
 Port 20 21 22 23 24 25 26 27 28 29

 Blocked | | | | | | | | | |
 Port 30 31 32 33 34 35 36 37 38 39

 Blocked | | | | | | | | | |
```

SEE ALSO  

`snmpConfig`
spinFab

Runs functional test of interswitch link (ISL) cabling and trunk group operation.

SYNOPSIS

spinfab

[-nmegs count]
[-framesize bytes]
[-ports itemlist]
[-setfail mode]
[-fports flag]
[-nframes count]
[-pattern name]
[-timeout count]

DESCRIPTION

Use this command to verify the intended functional operation of interswitch links (ISLs) at the maximum speed by setting up the routing hardware so that test frames received by each E_Port are retransmitted on the same E_Port. Several frames are subsequently sent to the neighbor port attached to each active E_Port specified. Because the default action for such frames is to route them back to the sender, which never occurs during normal traffic, the frames circulate until the test terminates.

The frames are continuously transmitted and received in all ports in parallel. The port LEDs flicker green rapidly while the test is running.

M->N,M->M loopback ports are tested as well, using the same algorithm, if loopback cables or loopback plugs are present in the switch.

While the frames are circulating, the RX frame count and port CRC and encoder error statistics are monitored. If a port stops or a low-level error occurs, the test generates an error message. Every one million frames, the circulating frames are captured to verify that they are still circulating and in the appropriate order. In this manner, the test can verify the entire path to the remote switch as well as the proper in-order delivery operation of any trunk groups present.

The switch remains in normal operation while this test is running. However, some performance degradation may occur due to the ISLs being saturated with test frames. For this reason, use caution when running this test on live fabrics. Consider testing only one trunk group or ISL at a time, and do not run the tests for extended periods of time.

Combine this test with portLoopBackTest for ISL link failure isolation. If spinFab fails, replace the cable with a loopback plug and run portLoopBackTest to verify the local switch and media. If these pass, the fault lies in the cable, the remote switch, or media.

The frame size depends on the amount of buffer credit available on the port. There are eight possible frames that can be sent. Especially with trunking groups, all eight possible frames are used unless there is extensive traffic running on the link. The payload sizes of those eight frames are 1024, 12, 8,1024, 512, 1024, 12, and 1024.

NOTES

The following port types support the spinFab diagnostics.

- Loopback ports
- E_Ports
- Trunk master ports
- Ports with index numbers greater than 255
- Ports with swapped areas
- Ports in logical switches
- Ports in Base Switches
- Trunk Slave ports
The following ports do not support the spinFab test:

- F_Ports connected to an Access Gateway
- EX_Ports
- E_Ports connected to EX_Ports
- Interchassis link (ICL) E_Ports
- ICLs configured as D_Ports
- If Access Gateway mode is enabled, spinFab tests only the F_Ports connected to Brocade-branded HBAs and skips all other ports (F_Ports connected to non-Brocade branded HBAs and N_Ports).

When trunk groups are present, the entire trunk group must be included in the range of ports to test or false failure notifications may occur. If multiple ISL links are present between two switches that support trunking, then it is likely that trunk groups are present and all ports between the two switches should be tested at the same time.

You cannot interrupt the test by pressing the return key (<cr>).

This command supports a maximum of 16 E_Port ICL links configured to a single remote switch.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

This command has the following operands:

- **-nmegs count**
  Specifies the number of frames to send in millions. The test progresses until the specified number of frames has been transmitted on each port. The default value is 10 million frames. This command only approximately counts the frames and the actual number of frames sent will be slightly larger, particularly at link speeds of 4 Gbps or higher.

- **-framesize bytes**
  For internal use only. Not supported.

- **-ports itemlist**
  Specifies a list of user ports to test. By default, all of the ISL ports in the current switch are tested. Refer to **itemList** for further details.

- **-setfail mode**
  Instructs spinFab how to mark failed ports. Valid values include the following:

  0
  Does not mark failing ports as FAILED (default). This option minimizes the impact on live fabrics.

  1
  Marks the failing ports as FAILED. In test or qualification environments without live traffic, this may be useful with large values of **-nmegs count**. This mode is disabled by default.

- **-fports flag**
  Instructs spinFab to include or exclude F_Ports in the testing. This feature is disabled by default. If enabled, spinFab tests the F_Ports connected to Brocade-branded HBAs along with other valid ports (E-ports & Loopback ports). The HBA must be running firmware v2.1.1 or higher. Valid flag values include the following:

  0
  Does not include F_Ports in the port list for testing (default).
**spinFab**

1

- **-nframes count**: Includes F_Ports in the port list for testing. Determines how many frames will be sent by spinfab on the link to spin. Default is 2. The maximum number is 5. If you want to configure more than 5 use `-nframes 0`.

- **-pattern name**: Forces spinfab to use a particular data pattern for the frames it spins between ports. The pattern can be a user defined pattern or is selected from a set of twenty five predefined pattern types. Use the `datatypeshow` command to view the predefined patterns supported with spinfab. For each pattern, the `datatypeshow` command displays the name, the pattern type number, and an example. Specify the pattern by its name after the `-pattern` option. If pattern is not specified, it defaults to jCRPAT (type=17). To use a user defined pattern, follow the `-pattern` option with a 32 bit hexadecimal number.

- **-timeout count**: Defines a time limit (in seconds) for the running of spinfab. Spinfab will keep track of how long the test has run and stop testing once the timeout limit has been reached. The overall accuracy will be in the tens of seconds.

**DIAGNOSTICS**

When it detects failures, the test may report one or more of the following error messages. If errors persist, contact Technical Support.

```
DATA
ERR_STAT
ERR_STATS
ERR_STATS_2LONG
ERR_STATS_BADEOF
ERR_STATS_BADOS
ERR_STATS_C3DISC
ERR_STATS_CRC
ERR_STATS_ENCIN
ERR_STATS_ENCOUT
ERR_STATS_TRUNC
ERR_STAT_2LONG
ERR_STAT_BADEOF
ERR_STAT_BADOS
ERR_STAT_C3DISC
ERR_STAT_CRC
ERR_STAT_ENCIN
ERR_STAT_ENCOUT
ERR_STAT_TRUNC
FINISH_MSG_ERR
INIT
MBUF_STATE_ERR
NO_SEGMENT
PORT_ABSENT
PORT_DIED
PORT_ENABLE
PORT_M2M
PORT_STOPPED
PORT_WRONG
RXQ_RAM_PERR
STATS
```
STATS_C3PRX
STATS_FRX
STATS_FTX
TIMEOUT
XMIT

EXAMPLES
To test cascading ISLs:

switch:admin> spinfab -ports 1/0 - 1/2
spinfab running...
spinfab: Completed 11 megs, status: passed.
port 0 test status: 0x00000000 -- passed.
port 1 test status: 0x00000000 -- passed.
port 2 test status: 0x00000000 -- passed.
Test Complete: "spinfab" Pass 10 of 10
Duration 0 hr, 0 min & 41 sec (0:0:41:877).

SEE ALSO
itemList, portLoopbackTest, portPerfShow
ssUtil

Manages public key authentication.

SYNOPSIS

ssutil allowuser user name
ssutil showuser
ssutil importpubkey
ssutil showpubkeys
ssutil delpubkeys
ssutil genkey
ssutil exportpubkey
ssutil delprivkey
ssutil delknownhost
ssutil help

DESCRIPTION

Use this command to enable and manage SSH public key authentication on a switch. SSH public key authentication provides a mechanism for authenticating an authorized user without a password. SSH public key authentication is more secure than password authentication and can be used to securely access services that require automatic login.

SSH public key authentication works as follows: An authorized user generates a pair of encryption keys (public and private) on a local machine (a switch or a server). Messages encrypted with the private key can only be decrypted by the public key, and vice versa. The private key remains on the local machine; the public key is exported to a remote host. The remote host responds to login requests by sending a brief message encrypted with the public key. The private key on the local host decrypts the message, and the login succeeds.

Use the ssUtil command to do the following:

• Configure a user to perform public key authentication and to manage keys on a switch.
• Generate a private/public key pair on the local switch.
• Import a public key for a specified user from a remote host to the local switch.
• Export the public key from the local switch to a remote host.
• Delete the public keys associated with a specified user or all users on the local switch.
• Delete the private key on the local switch.
• Delete the known host name or IP address from the file .ssh/known_hosts.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

Outgoing public key authentication from the switch to a remote host is restricted to Fabric OS Commands which use secure copy (SCP), such as configDownload or configUpload.
This command supports generation of a public/private key pair on the switch to enable outgoing connections between a switch and a remote host. To set up incoming connections, you must first generate the public/private key pair on a remote host and then import the public key to the switch. Use the SSH utility `ssh-keygen -t dsa` to generate the keys on the remote host. Refer to your UNIX system documentation for details on this command.

**OPERANDS**

This command supports the following operands:

- **allowuser user name**
  
  Configures the specified user to perform public key authentication and all related management operations for outgoing public key authentication. This operation can only be performed by the default admin. The default admin is, by default, a configured user. Only one user can be configured at any given time.

  The following operand is required:

  **user name**

  Specifies login name for the configured user. The user must be in the switch user database and must have admin privileges on the switch.

- **showuser**

  Displays the currently configured user. This operation can only be performed by the default admin.

- **importpubkey**

  Imports a public key from a remote host to the local switch. The protocol used is SCP. This operation supports authentication for incoming connections. For this operation to succeed, a public/private key pair must be generated on the remote host prior to the import by issuing `ssh-genkey -t dsa` (a UNIX command). The command prompts for a user name for whom the public key is imported. Once the public key is imported successfully, the user for whom the key was imported can perform public key authentication with the switch from the remote host, on which the private key resides.

  **importpubkey** prompts for the following input parameters:

  **Username**
  
  Enter the user name for whom the key is imported.

  **IP Address**
  
  Enter the IP address for the remote host. IPv4 and IPv6 addresses are supported.

  **remote directory**
  
  Enter the path where the public key is stored on the remote host. The default directory where SSH stores public keys is `~username/.ssh`.

  **public key name**
  
  Enter the name of the file in which the public key is stored on the remote host. This is a user-generated file name that must have a .pub extension.

  **login name**
  
  Enter the user login name for the remote host.

  **password**
  
  Enter the password for the remote user.

- **showpubkeys**

  Displays all imported public keys associated with the specified user. Public keys generated on the switch are not shown. This command interactively prompts for a username.

  **username**
  
  Enter the username for whom you want to display the public keys.
delpubkey

Deletes all imported public keys associated with a specified user on the switch or with all users. This command prompts for the user name associated with the public keys. Enter "all" to delete the public keys of all users. Deletion of a configured user's public keys effectively blocks incoming connections from this user that rely on public key authentication with the switch.

genkey

Generates an RSA private/public key pair on the local switch. This option can be performed only by a configured user. This option enables authentication for outgoing connections from the switch to a remote host. You must export the public key to a remote host to complete the setup. For incoming connections, the private/public key must first be generated on the remote host by issuing `ssh-genkey -t dsa` (a UNIX command), and then importing the public key from the remote host to the switch using the `sshutil import` command.

genkey prompts for user input on the following parameters:

passphrase

Accepts a string of arbitrary length. This operand is optional, but creating a pass phrase is strongly recommended. A strong pass phrase is 10-30 characters long, fairly complex and difficult to guess, and contains a mix of upper and lowercase letters, numbers, and nonalphanumeric characters. There is no way to recover a lost pass phrase. If the pass phrase is lost, a new key must be generated and copied to the corresponding public key to other machines.

exportpubkey

Exports the public key from the switch to a specified remote host to support outgoing connections from the switch to a remote host. This option can only be performed by a configured user. The successfully exported public key must be appended to the authorized_keys file on the remote host. Use the `cat ~/.ssh/outgoing.pub >> ~/.ssh/authorized_keys` command to append the file.

exportpubkey prompts for IP Address, remote directory, login name and password. Refer to `importpubkey` for a description of these parameters.

delprivkey

Deletes the private key for outgoing connection from the switch. This option can only be performed by a configured user. Deletion of a configured user's private keys effectively blocks outgoing connections initiated by this user that rely on public key authentication with a remote host.

delknownhost

Deletes the known host name or IP address from the file .ssh/known_hosts. This option can only be performed by the authorized user. On deletion of a known host name or IP address from the .ssh/known_hosts file, the next SSH connection prompts the user to accept a new public key.

help

Displays the command usage.

EXAMPLES

To configure a user for public key authentication:

```
switch:admin> sshutil allowuser username
Allowed user has been successfully changed to username.
```

To display the configured user:

```
switch:admin> sshutil showuser
username
```
To set up SSH public key authentication on a switch for incoming connections:

1. Generate a private/public key pair on a remote host (accept default directory and file name):

   username@remotelhost> ssh-keygen -t dsa
   Generating public/private dsa key pair.
   Enter file in which to save the key \
   (/users/home/username/.ssh/id_dsa):
   Enter passphrase (empty for no passphrase): passphrase
   Enter same passphrase again: passphrase
   Your identification has been saved in \
   /users/home/username/.ssh/id_dsa.
   Your public key has been saved in \
   /users/home/username/.ssh/id_dsa.pub.
   The key fingerprint is:

2. Import the public key from the remote host to the local switch:

   switch:username> sshutil importpubkey
   Enter user name for whom key is imported: username
   Enter IP address: Remote host IP Address
   Enter remote directory: -username/.ssh
   Enter public key name (must have .pub suffix): id_dsa.pub
   Enter login name: username
   Password:******
   public key is imported successfully.

3. Connect to switch using remote ssh client with the -i private_key option:

   username@remotelhost> ssh username@IP Address -i id_dsa

To display the imported public keys on a switch:

   switch:username> sshutil showpubkeys
   Enter user name whose ssh public key is to be displayed: username
   user's public keys
   "username@host"

To delete all imported public keys for a single user:

   switch:username> sshutil delpubkeys
   Enter user name for whom ssh public key is to deleted \n   or all for all users:username
   WARNING: It deletes all the ssh public keys for user.
   Do you want to proceed (Yes or No, default is No)?
   ssh public keys associated to username are deleted.
To set up SSH public key authentication on a switch for outgoing connections:

1. Generate a private/public key pair on the local switch:

   ```
 switch:username> sshutil genkey
 Enter passphrase (empty for no passphrase): passphrase
 Enter same passphrase again: passphrase
 Key pair generated successfully.
   ```

2. Export the public key to a remote host:

   ```
 switch:username> sshutil exportpubkey
 Enter IP address: remote host IP Address
 Enter remote directory: ~username/.ssh
 Enter login name: username
 Password:******
 public key out_going.pub is exported successfully.
   ```

3. Append the public key to the authorized_keys file on the remote host:

   ```
 username@remotehost> cat ~/.ssh/outgoing.pub >> ~/.ssh/authorized_keys
   ```

To delete the private key on a switch:

```
switch:username> sshutil delprivkey
private key is deleted successfully.
```

To delete a known host or IP address from the file .ssh/known_hosts:

```
switch:username> sshutil delknownhost
IP Address/Hostname to be deleted:172.26.26.104
```
statsClear

Clears port and diagnostic statistics.

SYNOPSIS

statsclear
  [--slot slot]
  [-uports itemlist]
  [-bports itemlist]
  [-use_bports value]

DESCRIPTION

Use this command to clear the port and diagnostics statistics for the specified list of blade or user ports.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

The following are optional:

--slot slot

Specifies the slot on which to operate. If this option is not specified, the default slot is assumed. The default slot is 0 and designed to operate on fixed-port-count products, if -use_bports sets with nonzero value.

-uports itemlist

Specifies the list of user ports for which statistics are to be cleared.

-bports itemlist

Specifies the list of blade ports for which statistics are to be cleared.

-use_bports value

Specify a nonzero value to clear the diagnostics statistics for the blade ports specified in -bports clears. A value of zero (0) clears the user ports specified in -uports. The default value is 0.

EXAMPLES

To clear port and diagnostic statistics:

switch:admin> statsclear -bports 1/10-1/62 -use_bports 1

SEE ALSO

itemList
stopPortTest

Terminates the running portTest.

**SYNOPSIS**

```
stopporttest [-ports itemlist]
```

**DESCRIPTION**

Use this command to terminate the portTest command. Refer to the portTest help page for more information.

**NOTES**

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

This command has the following operand:

- **-ports itemlist**
  Terminates the test on the specified ports; this operand is optional; if omitted, the test is terminated on all ports. Refer to the itemList help page for more information.

**EXAMPLES**

To stop the portTest command:

```
switch:admin> stopporttest
```

**SEE ALSO**

portLoopbackTest, portTest, portTestShow, spinFab
**supportFfdc**

Modifies or displays the first-fault data capture (FFDC) daemon.

**SYNOPSIS**

```
supportFfdc [--disable | --enable | --show]
```

**DESCRIPTION**

Use this command to disable or enable the FFDC events, or to display the current configuration. If disabled, the daemon does not capture any data even when a message with FFDC attributes is logged. FFDC is enabled by default. When executed without operands, the command prints the usage.

**NOTES**

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

This command has the following operands:

--disable

Disables the FFDC.

--enable

Enables the FFDC.

--show

Displays the FFDC configuration parameters.

**EXAMPLES**

To display the FFDC configuration:

```
switch:admin> supportFfdc --show
First Failure Data Capture (FFDC) is disabled.
```

To enable the FFDC events:

```
switch:admin> supportFfdc --enable
First Failure Data Capture (FFDC) is enabled.
```

**SEE ALSO**

None
**supportFtp**

Sets, clears, or displays support FTP parameters and enables or disables auto file transfer.

**SYNOPSIS**

```
supportftp [-S]
supportftp -s [-h host][-u username][-p password]
 [-d remotedirectory] [-l protocol]
supportftp -t hours
supportftp -R
supportftp -e
supportftp -d
```

**DESCRIPTION**

Use this command to set, clear, or display `supportFtp` parameters. The parameters set by this command are used by the `supportSave` and `traceDump` commands.

**NOTES**

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

This command has the following operands:

- **-S**
  Displays the current `supportFtp` parameters.

- **-s**
  Sets the `supportFtp` parameters. The following operands are optional. If the `-s` option is specified without further operands, the command interactively prompts for these parameters.

- **-h host**
  Specifies the host. Provide an IP address or a server name. IPv4 and IPv6 addresses are supported. To specify the host by name, a DNS entry must exist for the server.

- **-u username**
  Specifies the user name. The user name must be less than 48 characters long.

- **-p password**
  Specifies the account password. The password must be less than 48 characters long. When using anonymous FTP, a password is not required.

- **-d remotedirectory**
  Specifies the remote directory where the trace dump files are stored. The directory name must be less than 48 characters long. Specifying the root directory `/` is not allowed.

- **-l protocol**
  Specifies the transfer protocol. Valid values are file transfer protocol (FTP), secure copy protocol (SCP), or secure FTP (SFTP).

- **-t hours**
  Specifies the time interval, in units of hours, at which the server connectivity is checked.
-R
Clears all supportFtp parameters.

-e
Enables auto file transfer. Trace dump files are automatically transferred to a designated FTP server. The server parameters must be set before you can enable auto file transfer.

-d
Disables auto file transfer.

**EXAMPLES**
To set the FTP parameters:
```
switch:admin> supportftp -s -h 1080::8:800:200C:417A \
 -u admin -p password -d support -l sftp
supportftp: ftp parameters changed.
```
To display the FTP parameters:
```
switch:admin> supportftp
Host IP Addr: 1080::8:800:200C:417A
User name: admin
Remote Dir: support
Auto Upload protocol: sftp
Auto-FTP: Off
```
To set FTP parameters interactively:
```
switch:admin> supportftp -s
Host IP Addr[1080::8:800:200C:417A]:192.168.67.126
User Name[admin]: admin
Password[*******]:password
Remote Dir[support]:
Auto upload protocol[ftp]:scp
Auto file transfer parameters changed
```
To set the time interval at which the FTP server connectivity is checked:
```
switch:admin> supportftp -t 24
supportftp: ftp check period changed.
```
To enable auto file transfer:
```
switch:admin> supportftp -e
support auto file transfer enabled.
```
To disable auto file transfer:
```
switch:admin> supportftp -d
support auto file transfer disabled.
```

**SEE ALSO** supportSave, supportShow, traceDump
supportSave

Saves RASLOG, TRACE, supportShow, core file, FFDC data, and other support information

SYNOPSIS

supportsave

supportsave [-n] [-c] [-k]

[-u user_name -p password -h host_ip

-d remote_dir -l protocol]

supportsave [-R]

supportsave [-U -d remote_dir]

supportsave [-t timeout_multiplier]

DESCRIPTION

Use this command to collect RASLOG, TRACE, supportShow, core file, FFDC data and other support information to a remote FTP location. On platforms that support USB, the information can also be stored on an attached USB device. On a dual-CP system, information is saved for the local and the remote CP. SupportShow information is available on Active and Standby CPs. To reduce the chance of missing the correct trace dump, supportSave retrieves old (the dump created prior to the current one) and new (the dump triggered by the command) trace dumps.

The files generated by this command are compressed before being sent off the switch. The core files and panic dumps remain on the switch after the command is run. The FFDC data are removed after the command has finished.

If there are blade processor (BP) blades installed on the switch, a support file (a.tar.gz file) is generated from each slot.

This command accepts IPv4 and IPv6 addresses. If the configured IP address is in IPv6 format, the RAS auto file transfer and event notification to syslog will not work in the case where the Fabric OS version is downgraded. You must reconfigure auto file transfer and syslog with IPv4 IP addresses.

In a Virtual Fabric environment, supportSave saves all chassis-based information and iterates through the defined switch-based information for all logical switches. Chassis permissions are required to execute this command.

Note that quotes should be used around path entries to ensure proper handling of special shell characters.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

If you use anonymous FTP to run supportSave on a chassis with multiple AP blades, configure the FTP Windows server to allow unlimited anonymous users.

OPERANDS

When invoked without operands, this command goes into interactive mode. The following operands are optional:

-n

Does not prompt for confirmation. This operand is optional; if omitted, you are prompted for confirmation.
-c

Uses the FTP, SCP, or SFTP parameters saved by the supportFtp command. This operand is optional; if omitted, specify the FTP, SCP, or SFTP parameters through command line options or interactively. To display the current supportFTP parameters, run supportFtp (on a dual-CP system, run supportFtp on the active CP).

The -c option is mutually exclusive with -u, -p, -h, and -d.

-k

Specifies that the supportFtp auto file transfer configuration transfer only core and FFDC files in noninteractive mode.

-u user_name

Specifies the user name for the FTP, SCP, or SFTP server. This operand is optional; if omitted, anonymous FTP is used.

-p password

Specifies the password for the FTP, SCP, or SFTP server. This operand is optional with FTP; if omitted, anonymous FTP is used.

-h host_ip

Specifies the IPv4 or IPv6 address for the remote server.

-d remote_dir

Specifies the remote directory to which the file is to be transferred. By default, the remote directory is created in the /support directory of the USB device.

-R

Removes all core files on the CP and BP. This option cannot be used with any other options.

-I protocol

Specifies the transfer protocol. Valid values are file transfer protocol (FTP), secure copy (SCP), or secure FTP (SFTP).

If you plan to use SCP to transfer files, it is important to test the supportSave command prior to its use with various SCP-mode services. Because the supportSave command makes several access requests to copy files, it is important that the SCP-mode service be configured so that passwords are not required for each attempted transfer by the supportSave command. Failure to configure the service correctly may result in significant delays in obtaining transferred output from the supportSave command.

When using secure copy (SCP), supportSave may create a directory specified by the -d option if it does not already exist and the parent directory has the appropriate permissions. Use of FTP requires the directory to exist on the remote server.

-U

Saves support data to an attached USB device. When using this option, a target directory must be specified with the -d option.

-t timeout_multiplier

Extends predefined SupportSave timeout values by the value of the timeout multiplier. Use this option to repeat the supportSave operation when supportSave completion indicates that one or more modules timed out during the process. For example, -t 2 doubles the timeout values for each of the SupportSave modules. Valid multiplier values are 2 to 5. The default is 1.
EXAMPLES

To save RASLOG, TRACE, supportShow, and other support information to an FTP server in interactive mode:

```
switch:admin> supportsave
This command collects RASLOG, TRACE, supportShow,
 core file, FFDC data
and then transfer them to a FTP/SCP/SFTP server
or a USB device.
This operation can take several minutes.
NOTE: supportSave will transfer existing trace dump
 file first, then
automatically generate and transfer latest one.
 There will be two trace dump
files transferred after this command.
OK to proceed? (yes, y, no, n): [no] y
```

Host IP or Host Name: 192.168.126.115
User Name: admin
Password:*******
Network Protocol(1-auto-select, 2-FTP, 3-SCP, 4-SFTP) [1]: 4
Remote Directory: /temp/support

```
Saving support information for chassis:HL51,module:RAS...
Saving support information for chassis:HL51,module:TRACE_OLD...
Saving support information for chassis:HL51,module:TRACE_NEW...
Saving support information for chassis:HL51,module:FABRIC...
Saving support information for chassis:HL51,module:CORE_FFDC...
Saving support information for chassis:HL51,module:DIAG...
Saving support information for chassis:HL51,module:RTE...
Saving support information for chassis:HL51,module:ISCSID_DBG...
Saving support information for chassis:HL51,module:AGDUMP...
Saving support information for chassis:HL51,module:SSHOW_PLOG...
Saving support information for chassis:HL51,module:SSHOW_OS...
Saving support information for chassis:HL51,module:SSHOW_EX...
Saving support information for chassis:HL51,module:SSHOW_FABRIC...
(output truncated)
```

To collect support information on a Brocade 5100 and save it to an attached USB device (timeout values are doubled):

```
switch:admin> supportsave -U -d mysupportsave -t 2
This command collects RASLOG, TRACE, supportShow,
 core file, FFDC data
and then transfer them to a FTP/SCP/SFTP server
or a USB device.
This operation can take several minutes.
NOTE: supportSave will transfer existing trace dump
 file first, then
automatically generate and transfer latest one.
 There will be two trace dump
files transferred after this command.
OK to proceed? (yes, y, no, n): [no] y
```

```
Saving support information for chassis:ras9,module:RAS...
Saving support information for chassis:ras9,module:TRACE_OLD...
Saving support information for chassis:ras9,module:TRACE_NEW...
Saving support information for chassis:ras9,module:FABRIC...
Saving support information for chassis:ras9,module:CORE_FFDC...
No core or FFDC data files found!
Saving support information for chassis:ras9,module:DIAG..
```

Saving support information for chassis:ras9,module:RTE...
Saving support information for chassis:ras9,module:ISCSID_DBG...
Saving support information for chassis:ras9,module:AGDUMP...
Saving support information for chassis:ras9,module:SSHOW_PLOG...
(output truncated)

To run supportSave without confirmation on a Brocade DCX with AP blades included using supportFTP parameters (only Active CP output is shown):

switch:admin> supportsave -n -c
Saving support information for chassis:ras2,module:RAS...
Saving support information for chassis:ras2,module:TRACE_OLD...
Saving support information for chassis:ras2,module:TRACE_NEW...
Saving support information for chassis:ras2,module:FABRIC...
Saving support information for chassis:ras2,module:CORE_FFDC...
Saving support information for chassis:ras2,slot:4...
slot 4 support file transfer done.
Saving support information for chassis:ras2,slot:12...
slot 12 support file transfer done.
Saving support information for chassis:ras2,module:DIAG...
Saving support information for chassis:ras2,module:RTE...
Saving support information for chassis:ras2,module:ISCSID_DBG...
Saving support information for chassis:ras2,module:AGDUMP...
Saving support information for chassis:ras2,module:SSHOW_PLOG...
(output truncated)

SEE ALSO supportShow, supportFtp
supportShow

Displays switch information for debugging purposes.

SYNOPSIS

supportshow

supportshow slot[/port1-port2] [lines]

DESCRIPTION

Use this command to display support information from groups of preselected Fabric OS and Linux commands and other support and debugging information. You can specify a port or a range of ports for which to display this information. These commands are organized by groups, but note that the order of the groups listed below is not the same as executed by the command.

The FCIP commands are supported only on the Brocade 7800 switch and the Brocade FX8-24 blade. On unsupported platforms, the command displays a "not applicable to this platform" message next to the FCIP command group.

SupportShow executes commands in the following command groups. Use supportShowCfgEnable or supportShowCfgDisable to modify the settings for each group.

- **os**
  - OS group commands, enabled by default.

- **exception**
  - Exception group commands, enabled by default.

- **port**
  - Port group commands, enabled by default.

- **fabric**
  - Fabric group commands, enabled by default.

- **services**
  - Service group commands, enabled by default.

- **security**
  - Security group commands, enabled by default.

- **network**
  - Network group commands, enabled by default.

- **portlog**
  - Portlog group commands, enabled by default.

- **system**
  - System group commands, enabled by default.

- **extend**
  - Extend group commands, disabled by default.

- **filter**
  - Filter group commands, disabled by default.

- **perfmon**
  - Performance Monitor group commands, disabled by default.

- **ficon**
  - FICON group commands, disabled by default.

- **iswitch**
  - FC Router group commands, disabled by default.

- **asic_db**
  - ASIC DB group commands, disabled by default.
fcip

FCIP group commands, disabled by default.

ag

Access Gateway group commands, disabled by default.

dce_hsl

DCE group commands, enabled by default.

crypto

Encryption group commands, disabled by default.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This is a diagnostic command and should only be run for diagnostic support.

Output generated by this command may vary by switch configuration and platform. Output may change without notice.

OPERANDS

This command has the following operands:

slot

On bladed systems only, specifies a slot number.

port1-port2

Specifies a port or a range of ports for which to display supportShow information. This operand is optional; if omitted, the command displays information for all ports. The following values are supported:

• A single port in port1-port2 format, for example, "5/8-8".
• A port range where the beginning and end port are separated by a dash, for example, "5/8-13".

lines

Specifies the number of lines for the portLogDump output. This parameter is valid only with the slot/port parameters.

EXAMPLES

To display debugging information for a single port on a Brocade 5300:

    switch:admin> supportshow 43
    VF
    =============
    Date:
    Sun Dec  6 05:10:13 PST 2009

    Time Zone:
    America/Los_Angeles

    Version:
    Kernel: 2.6.14.2
    Fabric OS: v6.4.0_main_bld09
    Made on: Tue Dec 1 20:04:36 2009
    Flash:  Wed Dec 2 11:54:49 2009
    BootProm: 1.0.15

    supportshow groups enabled:
    os enabled
    exception enabled
    port enabled
    fabric enabled
    services enabled
**supportShow**

```plaintext
security enabled
network enabled
portlog enabled
system enabled
extend disabled
filter disabled
perfmon disabled
ficon disabled
iswitch enabled
asic_db enabled
fcip disabled (not applicable to this platform)
ag enabled
dce_hsl enabled

**** Begin start_port_log_cmd group ****
Sun Dec 6 05:10:14 PST 2009
portlogdump:
CURRENT CONTEXT -- 0, 128
portlogdump :
time task event port cmd args

Sat Dec 5 23:54:37 2009
23:54:37.560 FCPH read 56 16 02fffc23,00fffc19, bb000000,00000000,04 3401bb
23:54:37.560 FCPH seq 56 10 20290000,043401bb, 00000722,0000001c,00 000000
23:54:37.560 msd0 ctin 56 fa 0001f007,00000000
23:54:37.561 msd0 ctout 56 fa 00018001,0009f300
(output truncated)
```

SEE ALSO: supportFtp, supportSave, supportShowCfgDisable, supportShowCfgEnable, supportShowCfgShow, traceDump
supportShowCfgDisable

Disables a group of commands under the supportShow command.

SYNOPSIS

```
supportshowcfgdisable os | exception | port | fabric
 | services | security | network | portlog | system | extend
 | filter | perfmon | ficon | iswitch | asic_db | ag
 | dce_hsl | crypto | fcip
```

DESCRIPTION

Use this command to disable a group of commands under the supportShow command. Use the supportShowCfgEnable command to enable groups of commands.

The FCIP commands are supported only on the Brocade 7800/FX8-24 platforms and cannot be configured to collect data on unsupported platforms.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

```
os
exception
port
fabric
services
security
network
portlog
system
extend
filter
perfmon
ficon
iswitch
```

Disables the OS group commands.

Disables the exception group commands.

Disables the port group commands.

Disables the fabric group commands.

Disables the service group commands.

Disables the security group commands.

Disables the network group commands.

Disables the portlog group commands.

Disables the system group commands.

Disables the extend group commands.

Disables the filter group commands.

Disables the Performance Monitor group commands

Disables the FICON group commands.

Disables the FC Router group commands.
supportShowCfgDisable

asic_db  Disables the ASIC DB group commands.
ag  Disables the Access Gateway group commands.
dce_hsl  Disables the DCE group commands.
crypto  Disables the encryption group commands.
fcip  Disables the FCIP group commands. Supported only on the Brocade 7800/FX8-24.

EXAMPLES  To disable the OS group of commands under the supportShow command:

switch:admin> supportshowcfgdisable os
Config update  Succeeded

SEE ALSO  supportShow, supportShowCfgEnable, supportShowCfgShow
supportShowCfgEnable

Enables a group of commands to be displayed under the supportShow command.

**SYNOPSIS**

supportshowcfgenable os | exception | port | fabric
| services | security | network | portlog | system
| extend | filter | perfmon | ficon | iswitch | asic_db
| ag | dce_hsl | crypto | fcip

**DESCRIPTION**

Use this command to enable a group of commands to be displayed under the supportShow command. Use the supportShowCfgDisable command to disable groups of commands. The FCIP commands are supported only on the Brocade 7800/FX8-24 platforms and cannot be configured to collect data on unsupported platforms.

**NOTES**

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

This command has the following operands:

- **os** Enables the OS group commands.
- **exception** Enables the exception group commands.
- **port** Enables the port group commands.
- **fabric** Enables the fabric group commands.
- **services** Enables the service group commands.
- **security** Enables the security group commands.
- **network** Enables the network group commands.
- **portlog** Enables the portlog group commands.
- **system** Enables the system group commands.
- **extend** Enables the extend group commands.
- **filter** Enables the filter group commands.
- **perfmon** Enables the Performance Monitor group commands.
- **ficon** Enables the FICON group commands.
- **iswitch** Enables the FC Router group commands.
supportShowCfgEnable

asic_db
Enables the ASIC DB group commands.

ag
Enables the Access Gateway group commands.

dce_hsl
Disables the DCE group commands

crypto
Enables the encryption group commands.

fcip
Enables the FCIP group commands. Supported only on the Brocade 7800/FX8-24 platforms.

EXAMPLES
To enable a group of commands under the supportShow command:

switch:admin> supportshowcfgenable os
Config update Succeeded

SEE ALSO
supportShow, supportShowCfgDisable, supportShowCfgShow
supportShowCfgShow

Displays the groups of commands enabled for display by the supportShow command.

SYNOPSIS

supportshowcfgshow

DESCRIPTION

Use this command to display the groups of commands enabled for display by the supportShow command. Use the supportShowCfgEnable and the supportShowCfgDisable commands to modify which groups are displayed.

The FCIP commands are supported only on the Brocade 7800/FX8-24 platforms and cannot be configured to collect or display data on unsupported platforms.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display command groups configured for data collection on the Brocade 6510:

switch:admin> supportshowcfgshow
  os enabled
  exception enabled
  port enabled
  fabric enabled
  services enabled
  security enabled
  network enabled
  portlog enabled
  system enabled
  extend disabled
  filter disabled
  perfmon disabled
  ficon disabled
  iswitch disabled
  asic_db enabled
  fcip disabled (not applicable to this platform)
  ag disabled

To display command groups configured for data collection on the Brocade 7800:

switch:admin> supportshowcfgshow
  os enabled
  exception enabled
  port enabled
  fabric enabled
  services enabled
  security enabled
  network enabled
  portlog enabled
  system enabled
  extend disabled
  filter disabled
  perfmon disabled
  ficon disabled
supportShowCfgShow

iswitch enabled
asic_db enabled
fcip enabled
ag enabled
dce_hsl enabled

SEE ALSO supportShow, supportShowCfgDisable, supportShowCfgEnable
**switchBeacon**

Sets switch beaconing mode on or off.

**SYNOPSIS**

```
switchbeacon [mode]
```

**DESCRIPTION**

Use this command to enable or disable switch beaconing mode. Switch beaconing can be used to locate a failing unit.

When beaconing mode is turned on, the port LEDs flash amber, left to right and right to left, from port 0 to the highest port number and back to port 0. The beaconing mode continues until you turn it off.

The beaconing LED pattern continues until you turn it off. Beaconing mode takes over the port LEDs. Other commands are still executable and functional. The normal flashing LED pattern (associated with an active, faulty or disabled port for example) is suppressed and only the beaconing pattern is shown. However, if diagnostic frame-based tests (such as `portLoopbackTest`) are executed, two patterns are interleaved. The diagnostic test flickers the LEDs green and the beaconing mode runs the LEDs amber at the same time.

The `switchBeacon` command is one of three commands that control beaconing. Each command has a clearly defined scope of action:

- The `portBeacon` command enables or disables beaconing on a specified port.
- The `switchBeacon` command enables or disables beaconing on all ports in the current logical switch.
- The `chassisBeacon` command to enables or disables beaconing on all ports in the chassis.

The actions of the beaconing commands are independent and mutually exclusive. For example, if you enabled beaconing on the logical switch (1) and you want to enable beaconing on the entire chassis, you must first disable switch beaconing with the `switchBeacon` command before you can use the `chassisBeacon` command to enable beaconing on the entire chassis. Likewise, existing `portBeacon` settings remain unaffected if you enable or disable beaconing on the switch or on the chassis. Failure to disable existing beaconing commands before using a different type of beaconing may cause the commands to interfere with each other in unexpected ways.

To determine whether or not beaconing is enabled or disabled on the switch or chassis, use the `switchBeacon` or `chassisBeacon` command without operands. A value of 0 indicates that the command is disabled, a value of 1 indicates that the command is enabled. Issue the `portBeacon --show` command to display beaconing for a specific port. The `switchShow` command displays the status of the `switchBeacon` command only.

**NOTES**

The `switchBeacon` command is not supported on the Brocade FCOE10-24 blade.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

This command has the following operand:

```
mode
```

Specify 1 to enable beaconing mode or 0 to disable beaconing mode. This operand is optional. If no operand is specified, the current value is displayed.

**EXAMPLES**

To turn beaconing mode on and to verify the configuration:

```
switch:admin> switchbeacon 1
switch:admin> switchbeacon
value = 1
```
To turn beaconing mode off to verify the configuration:

```
switch:admin> switchbeacon 0
switch:admin> switchbeacon
value = 0
```

SEE ALSO  
chassisBeacon, portBeacon, switchShow
**switchCfgPersistentDisable**

Disables a switch persistently.

**SYNOPSIS**

switchcfgpersistentdisable

switchcfgpersistentdisable --setdisablestate

switchcfgpersistentdisable --disable

switchcfgpersistentdisable --help

**DESCRIPTION**

Use this command to persistently disable the switch immediately or after reboot. All Fibre Channel ports are taken offline. If the switch was part of a fabric, the remaining switches reconfigure. The switch remains disabled even after a reboot.

As each port is disabled, the front panel LEDs change to a slow-flashing amber.

You can temporarily enable a persistently disabled switch with the `switchEnable` command. A temporarily enabled switch remains disabled after a reboot.

**NOTES**

Performance Monitoring cannot be added to any port on a persistently disabled switch.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**

This command has the following operands:

--setdisablestate

Sets the switch in disable state. The switch is disabled persistently after the next reboot.

--disable

Disables the switch persistently.

--help

Displays command usage.

**EXAMPLES**

To disable a switch persistently:

```
switch:admin> switchcfgpersistentdisable
Switch's persistent state set to 'disabled'
```

To set the state of a switch to disable so that the switch is disabled during next reboot:

```
switch:admin> switchcfgpersistentdisable --setdisablestate
Switch's persistent state set to 'disabled'
Switch persistent disable set
```

**SEE ALSO**

`switchDisable`, `switchEnable`, `switchCfgPersistentEnable`, `switchShow`
switchCfgPersistentEnable

Enables a switch persistently.

SYNOPSIS

switchcfgpersistentenable

DESCRIPTION

Use this command to persistently enable a persistently disabled switch. All Fibre Channel ports that passed the power-on self-test (POST) are enabled and come online if connected to a device, or remain offline if disconnected. The switch may need to be enabled if it was previously disabled to make configuration changes or to run diagnostics.

If the switch is connected to a fabric, it rejoins the fabric. If this switch remains the principal switch, it assigns itself a domain ID. If another switch assumes the principal role, then this switch becomes a subordinate switch, and accepts a domain ID from the principal. Refer to the FC-SW specification for a complete description of this process.

As each port is enabled, the front panel LEDs change from slow-flashing amber to green for online ports, or to nonflashing amber for ports that do not initialize. Disconnected ports remain unlit.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To persistently enable a previously persistently disabled switch:

switch:admin> switchcfgpersistentenable
Switch's persistent state set to 'enabled'

SEE ALSO

switchDisable, switchEnable, switchCfgPersistentDisable, switchShow
switchCfgSpeed

Configures the speed for all ports on a switch.

SYNOPSIS

switchcfgspeed speed

DESCRIPTION

Use this command to configure the port speed on a switch. This command sets the speed for all user ports. If any port on the switch is not capable of the specified speed setting, an error message is displayed for that port. The configuration is saved in nonvolatile memory and persists across switch reboots or power cycles.

On Condor 3-based platforms, the switchCfgSpeed command checks if the requested speed is allowed, based on the combination configured for the octet that contains the first eight physical ports of the switch or blade. If the requested speed is not supported by the current octet speed combination, this command logs a RASlog message and moves on to the next port. Use the portCfgOctetSpeedCombo command to set the suggested combination before re-executing the switchCfgSpeed command.

Use the portShow command to display actual port speed settings. Use the portCfgShow command to display user-configured speed settings.

NOTES

This configuration cannot be set on VE_Ports or VEX_Ports.

Speed configuration is not applicable to FCoE ports.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operand:

speed

Specifies the speed for all ports on a switch. This operand is required. Valid values are as follows:

0

Autosensing mode. The port automatically configures for the highest speed.

1

The port is set at a fixed speed of 1 Gbps (not supported on 10G and 16G platforms).

2

The port is set at a fixed speed of 2 Gbps.

4

The port is set at a fixed speed of 4 Gbps.

8

The port is set at a fixed speed of 8 Gbps.

16

The port is set at a fixed speed of 16 Gbps (not supported on 8G platforms).

EXAMPLES

To set the autosensing mode for all ports on a switch:

switch:admin> switchcfgspeed 0
Committing configuration...done.

SEE ALSO

portCfgOctetSpeedCombo, portCfgSpeed, portShow
switchCfgTrunk

Enables or disables trunking on all the ports of a switch.

SYNOPSIS

switchcfgtrunk mode

DESCRIPTION

Use this command to enable or disable trunking on all the ports of a switch. Use portCfgTrunkPort to enable or disable trunking on a single port.

When the command is executed to update the trunking configuration, the ports to which the configuration applies are disabled and subsequently re-enabled with the new trunking configuration. Traffic through these ports may be temporarily disrupted. The command issues a message that lists the VE/VEX_Ports to which the configuration does not apply.

Although trunking configuration changes are applied at the switch level, they are tracked as a per-port attribute and no switch-wide attribute is maintained to keep track of these changes. Whenever a new port comes online as part of the switch, you must reapply the trunking configuration. For example, if you remove a blade from a chassis while trunking is enabled for the ports on the blade, and you disable trunking on the switch after you removed the blade, the blade ports will come online with trunking enabled after you reinser the blade. To avoid potentially disruptive behavior, reapply the trunking configuration.

Trunking on Inter-Chassis Link (ICL) ports is always enabled and cannot be turned off by this command.

Disabling trunking fails if a Trunk Area (TA) is enabled on the port. Use the portTrunkArea command to disable the TA on all ports before disabling trunking.

NOTES

Enabling trunking requires an ISL Trunking license. You may disable trunking without a license.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

The following operand is required:

mode

Specify 1 to enable trunking on all ports. Specify 0 to disable trunking on all ports.

EXAMPLES

To enable trunking on all ports of a switch:

switch:admin> switchcfgtrunk 1
Configuration applied to all ports except the following \VE/VEX_Ports (ports 176 - 191).

To disable trunking on all ports of a switch:

switch:admin> switchcfgtrunk 0
Committing configuration...done.

SEE ALSO

portCfgShow, portCfgTrunkPort, portShow, portTrunkArea, switchShow
switchDisable

Disables all user ports on a switch.

SYNOPSIS

switchdisable

DESCRIPTION

Use this command to disable all user ports on a switch. All Fibre Channel ports are taken offline. If the switch was part of a fabric, the remaining switches reconfigure. As each port is disabled, the front panel LED changes to a slow-flashing amber.

The switch must be disabled before making configuration changes or before running offline diagnostic tests. Commands that require the switch to be disabled generate an error message if invoked while the switch is enabled. It is not necessary to disable the switch before rebooting or powering off.

When this command is executed on a logical switch, only the ports allocated to the logical are disabled. To disable the entire chassis, use the chassisDisable command.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To disable the switch:

```
switch:admin> switchdisable
```

SEE ALSO

bladeEnable, bladeDisable, chassisEnable, chassisDisable, switchCfgPersistentDisable, switchCfgPersistentEnable, switchEnable, switchShow
switchEnable

Enables all user ports on a switch.

SYNOPSIS  

switchenable

DESCRIPTION  

Use this command to enable all user ports on a switch. All Fibre Channel ports that passed the power-on self test (POST) are enabled. They can come online if connected to a device, or remain offline if disconnected. Use switchEnable to re-enable the switch after making configuration changes or running offline diagnostics.

If the switch is connected to a fabric, it rejoins the fabric. If the switch remains the principal switch, it assigns itself a domain ID. If another switch assumes the principal role, then the re-enabled switch becomes a subordinate switch and accepts a domain ID from the principal.

As each port is enabled, the front panel LED changes to green for online ports, or to amber for uninitialized ports. Disconnected ports remain unlit.

When this command is executed on a logical switch, only the ports allocated to the logical switch are enabled. To enable the entire chassis, use the chassisEnable command.

NOTES  

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS  

None

EXAMPLES  

To enable a switch:

switch:admin> switchenable

SEE ALSO  

bladeEnable, bladeDisable, chassisDisable, chassisEnable, switchCfgPersistentDisable, switchCfgPersistentEnable, switchDisable, switchShow
switchName

Displays or sets the switch name.

SYNOPSIS

switchname [name]

DESCRIPTION

Use this command to display or set the switch name. Once you set the switchname, you must re-login for the change to be in effect. All switches have a symbolic name that is primarily used for switch management. This name is shown in the Fabric OS CLI prompt, under each switch icon in Web Tools, and in the output of various Fabric OS Commands, such as fabricShow.

Use this command with the name operand to assign a new switch name. The switch name should be unique. Enter this command without an operand to display the current switch name.

Changing the switch name causes a domain address format registered state change notification (RSCN) to be issued. Refer to the FC-FLA specification for a description of RSCNs.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operand:

name

Specifies the name for the switch. A switch name can include up to 30 characters. The name must begin with a letter and can consist of letters, numbers, hyphens, and underscore characters. The switch name should be unique. Spaces are not allowed. This operand is optional; if omitted, this command displays the current switch name.

EXAMPLES

To change the switch name (note the change in the prompt text):

switch:admin> switchname brocade_demo_1298765_AY4TYI60
Committing configuration...
Done.
Switch name has been changed. Please re-login into the switch for the change to be applied.

SEE ALSO

chassisShow, switchShow
switchShow

Displays switch and port status.

SYNOPSIS

switchshow

switchshow [-slot slot] [-portname | -qsfp]

switchshow [-portcount]

DESCRIPTION

Use this command to display switch, blade, and port status information. Output may vary depending on the switch model.

When used without operands, switchShow displays the following information:

switchName

Switch name.

switchType

Switch model and revision numbers.

switchState

Switch state: Online, Offline, Testing, or Faulty. When you issue the switchcfgPersistentDisable command followed by the switchEnable command, the switch state changes to, "Online (Temporary)". The switch remains in this state until you issue the switchcfgPersistentEnable command.

switchMode

Switch operation mode: Access Gateway (if AG is enabled).

switchRole

Switch role: Principal, Subordinate, or Disabled.

switchDomain

Switch domain ID: 1 to 239.

switchId

Switch embedded port D_ID.

switchWwn

Switch world wide name (WWN).

switchBeacon

Switch beaconing state: On or Off.

zoning

The name of the active zone is displayed in parentheses. Active only when Access Gateway mode is disabled.

FC Router

FC Router state: On or Off.

FC Router BB Fabric ID

The backbone fabric ID for FC routing.

Fabric Name

The name assigned to the fabric. The fabric name is set with the fabricName command.

Allow XISL Use

Allows the switch to use interswitch links (XILS) in the base fabric to carry traffic to this logical switch. Values are ON or OFF.
### LS Attributes

On a switch in Virtual Fabric mode, this field displays logical switch attributes, including the fabric ID associated with the logical switch, the switch role (default switch or base switch), and the fabric Address Mode (0, 2 or 3). If Virtual Fabrics are disabled, only the Address Mode is displayed. The fabric Address Mode value is set by the configure command (Enable a 256 Area Limit).

The switch summary is followed by one-line description for non-EX_Ports and one or two lines for EX_Ports:

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Port index is a number between 0 and the maximum number of supported ports on the platform. The port index identifies the port number relative to the switch.</td>
</tr>
<tr>
<td>Slot</td>
<td>Slot number; 1-12.</td>
</tr>
<tr>
<td>Port</td>
<td>Port number; 0-15, 0-31, or 0-63.</td>
</tr>
<tr>
<td>Address</td>
<td>The 24-bit Address Identifier.</td>
</tr>
<tr>
<td>Media</td>
<td>Media types include the following:</td>
</tr>
<tr>
<td>--</td>
<td>No module present. Applicable to all port types.</td>
</tr>
<tr>
<td>cu</td>
<td>Displays when the copper (default) GbE port ge0 or ge1 is active (refer to <code>portCfgGeMediaType</code> for more information). If the optical GbE port is active and an SFP is installed (copper or optical), &quot;id&quot; is displayed. If nothing is installed on the optical port, the Media field shows &quot;--&quot;. The &quot;cu&quot; field also displays for interchassis links (ICLs).</td>
</tr>
<tr>
<td>id</td>
<td>Serial ID. Indicates that an SFP is installed. Use <code>sfpShow</code> to get more information about the SFP, including the serial number.</td>
</tr>
<tr>
<td>Speed</td>
<td>The speed of the port. Valid port speeds include the following:</td>
</tr>
<tr>
<td>1G</td>
<td>1 Gbps fixed transfer speed (not supported on 16 Gbps-capable ports)</td>
</tr>
<tr>
<td>N1</td>
<td>1 Gbps negotiated transfer speed (not supported on 16 Gbps-capable ports)</td>
</tr>
<tr>
<td>2G</td>
<td>2 Gbps fixed transfer speed (only supported with use of 8 Gbps SFPs)</td>
</tr>
<tr>
<td>N2</td>
<td>2 Gbps negotiated transfer speed (only supported with use of 8 Gbps SFPs)</td>
</tr>
<tr>
<td>4G</td>
<td>4 Gbps fixed transfer speed</td>
</tr>
<tr>
<td>N4</td>
<td>4 Gbps negotiated transfer speed</td>
</tr>
<tr>
<td>8G</td>
<td>8 Gbps fixed transfer speed</td>
</tr>
<tr>
<td>N8</td>
<td>8 Gbps negotiated transfer speed</td>
</tr>
<tr>
<td>Speed</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>10G</td>
<td>10 Gbps fixed transfer speed</td>
</tr>
<tr>
<td>N10</td>
<td>10 Gbps negotiated transfer speed</td>
</tr>
<tr>
<td>16G</td>
<td>16 Gbps fixed transfer speed</td>
</tr>
<tr>
<td>N16</td>
<td>10 Gbps negotiated transfer speed</td>
</tr>
<tr>
<td>AN</td>
<td>Autonegotiating</td>
</tr>
<tr>
<td>UN</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

**State**

Port state information. Valid states include the following:

- **No_Card**: No interface card present.
- **No_Module**: No module (GBIC or other) present.
- **Mod_Val**: Module validation in process.
- **Mod_Inv**: Module speed mismatch or incompatible SFP.
- **No_Light**: The module is not receiving light. This state is not applicable to Condor 3-based interchassis link (ICL) ports.
- **No_SigDet**: No signal is detected on the port. For Condor 3-based interchassis link (ICL) ports, this state replaces the No_Light indicator. It indicates that a quad small form-factor pluggable (QSFP) has been installed but is not connected with a cable.
- **No_Sync**: The module is receiving light but is out of sync.
- **In_Sync**: The module is receiving light and in sync.
- **Laser_Flt**: The module is signaling a laser fault.
- **Port_Flt**: The port is marked faulty.
- **Diag_Flt**: The port failed diagnostics.
- **Lock_Ref**: The port is locking to the reference signal.
- **Testing**: The port is running diagnostics.
- **Offline**: A port connection is not established (for virtual ports only).
Online
The port is up and running.

Proto
Protocol support by GbE port. Valid protocols include the following:

ISCSI
The port supports ISCSI (deprecated).

FCIP
The port supports FCIP.

FCoE
The port supports Fibre Channel over Ethernet.

comment
Optionally displays one of the following:

Copper or Optical
Displays which GbE port is currently active: Copper indicates that the RJ45 GbE port is currently active. Only copper connections are accepted (default). Optical indicates that the currently active GbE port accepts both copper and optical connections (SFPs). This parameter is set by the portCfgGeMediaType command, and applies only to the ge0 and ge1 ports on the Brocade 7800.

Disabled
The port is disabled. Port disable reasons may be stated in parenthesis:

Disabled (FMS Mode)
The port is disabled and in Ficon Server Management mode.

Disabled (No area available for PID assignment)
The port is disabled because a PID could not be assigned for the stated reason.

Disabled (persistent) disable reason
This port has been disabled with the portCfgPersistentDisable command.

Disabled (Persistently disabled port) disable reason
This port has been disabled for unspecified reasons.

Disabled (Fabric Vision License required)
This D_Port has been disabled because the Fabric Vision license is not installed on the switch.

Bypassed
The port is bypassed (loop only).

Loopback
The port is in loopback mode.

D_Port
Diagnostic port; D_Port feature can be configured on both E_Port and F_Port. D_Port on E_Port displays the world wide node name (WWNN) of the remote switch and D_Port on F_Port displays the world wide port name (WWPN) of remote port.

E_Port
Fabric port; displays the world wide name (WWN) and name of the attached switch. If the port is configured as an EX_Port, the WWN of the attached switch is the same as the router.

F_Port
Point-to-point port; displays the WWN of the attached N_Port. If that specific F_Port receives 1 FDISK frame, switchShow displays the total number of NPIV Public ports as 1, for example: F_Port 1 NPort + 1 NPIV devices.
G_Port
Point-to-point port, but not yet E_Port or F_Port.

L_Port
Loop port; displays the number of NL_Ports.

EX_Port
Router port; displays the WWN of the attached edge switch.

VF_Port
FCoE Virtual F_Port. For these ports, the number of NPIV or external device logins is displayed ("n VN-Port(s)"), instead of the WWN of the internal port.

VF_Port Disabled
FCoE Virtual F_Port is disabled.

D-Port Dynamic
The port is in Dynamic D_Port mode.

D-Port F-Port WWN Dynamic
The port is connected to a device port in the D_Port mode.

SIM-Port
The port is a simulated (SIM) port.

Mirror Port
The port is a mirror port.

(Trunk master)
The port is the master port in a group of trunking ports.

(Trunk port, master is port #x)
The port is configured as a trunking port; the master port is port #x.

(upstream)
The E_Port is an upstream path toward the principal switch of the fabric.

(downstream)
The E_Port is a downstream path away from the principal switch of the fabric.

FICON Persistent DID
This port has been disabled, because the switch could not obtain its configuration domain ID during the fabric reconfiguration when fmsmode was enabled. See the ficonCupSet help page for more information.

Fabric ID conflict
Two different fabrics have been assigned the same fabric ID. Applicable only to EX_Ports and Logical Fabric environments.

Fabric ID oversubscribed
One fabric has been assigned two different fabric IDs (EX_Ports only).

AoQ
Application-oriented QoS; indicates that an F_Port or N_Port has negotiated a link that is capable of quality of service (QoS). Both sides of the link have QoS capability and agreed on the protocol. The link could be between an HBA and an Access Gateway, between an Access Gateway and an edge switch, or between an HBA and an edge switch.

LB mode
If the Access Gateway cannot negotiate QoS capabilities with the edge switch, an HBA connected to the Access Gateway will not be able to negotiate a QoS link with the Access Gateway.
(logical) Indicates a logical port. The `switchShow` output shows all logical ports currently present in the logical switch. The command displays -1 for the slot for logical ports and the user port number for slot port. The logical port numbers are not persistent and may change when the logical interswitch links (LISLs) are deleted and recreated. A logical port is shown to be in one of the following states: E_Ports (if the port is online), offline, or disabled. When the port is disabled, a reason is provided.

**segmented** Indicates a segmented or disabled port along with one of the following segmentation reasons:

- **Encrypt incompatible**
  Port segmentation or port disable due to mismatched configurations.

- **Compress incompatible**
  Port segmentation or port disable due to mismatched configurations.

- **Encrypt limitation**
  Port segmentation or port disable due to reaching encryption limitations.

- **Compress limitation**
  Port segmentation or port disable due to reaching compression limitations.

- **Authentication failure**
  Port segmentation or port disable due to authentication failure.

- **Type mismatch**
  D_Ports configuration mismatch between local and remote switch.

When used with the `-slot` option, the command displays the following blade-specific information:

**slot**

- Slot number.

**Blade Type**

- Type of blade, for example, Core blade or AP blade. Refer to the `slotShow` command for a listing of supported blade types.

**ID**

- A numeric blade ID that specifies the blade type. Refer to the `slotShow` command for a listing of supported blade IDs.

**Status**

- Enabled or disabled.

**NOTES**

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

On the Brocade FCoE10-24 blade, the Proto column identifies the FCoE ports of the switch. For all FCoE ports, the speed is 10 Gbps. The default configuration of an FCoE port is an F_Port configuration. After a successful reboot `switchShow` displays all FCoE ports as online. For each FCoE port, the FCoE controller WWN is shown. FCoE ports are not configurable with the Fabric OS port commands. Use the FCoE commands instead.

If a port is configured as a long distance port, the long distance level is displayed in the format of L_x, where x represents the long distance level number. See `portCfgLongDistance` for the level description.

When a port is configured as an N_Port and is online, `switchShow` displays its type as an N_Port. Also, `switchShow` displays the WWN of the border switch attached to this N_Port as a 24-bit Port Identifier assigned to this port by the enterprise fabric.

In an AD context, if one of the L_Ports or NPIV Ports is a part of the current AD, the complete device information attached to the port is displayed.
OPERANDS

This command has the following operands:

-\texttt{-slot} \textit{slot} Displays blade information. You can specify this operand with \texttt{-portname} or \texttt{-qsfp}.

-\texttt{-portname} Displays the name for each port on the switch. The port name is set by the \texttt{portName} command.

-\texttt{-qsfp} Displays the output of the \texttt{switchShow} command with a QSFP column added. If a QSFP is installed on the port, the QSFP number is displayed for the port. This number corresponds to the physical QSFP number that can be found on the front of each Core Blade. A double dash (--) indicates that QSFP is not supported on that blade.

-\texttt{-portcount} Displays the number of ports on the switch. This operand is exclusive.

EXAMPLES

To display the port count:

\begin{verbatim}
switch:admin> switchshow -portcount
FC ports = 198, GE ports = 12
\end{verbatim}

To display a QoS-capable Core Access Gateway with online AoQ F_Ports and N_Ports:

\begin{verbatim}
switch:admin> switchshow
switchName:     Spirit_125
switchType:     66.1
switchState:    Online
switchMode:     Access Gateway Mode
switchWwn:      10:00:00:05:1e:85:95:d0
switchBeacon:   OFF
FC Router:      OFF
FC Router BB Fabric ID: 1

<table>
<thead>
<tr>
<th>Area</th>
<th>Port</th>
<th>Media</th>
<th>Speed</th>
<th>State</th>
<th>Proto</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>N8</td>
<td>No_Module</td>
<td>FC</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>N8</td>
<td>No_Module</td>
<td>FC</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>N8</td>
<td>No_Module</td>
<td>FC</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>N8</td>
<td>No_Module</td>
<td>FC</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>N8</td>
<td>No_Module</td>
<td>FC</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>N8</td>
<td>No_Module</td>
<td>FC</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>N8</td>
<td>No_Module</td>
<td>FC</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>N8</td>
<td>No_Module</td>
<td>FC</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>N8</td>
<td>No_Module</td>
<td>FC</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>N8</td>
<td>Online</td>
<td>FC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F-Port</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10:00:00:05:1e:53:2c:54</td>
<td>0x690105</td>
<td>AoQ</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>N8</td>
<td>Online</td>
<td>FC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F-Port</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10:00:00:05:1e:56:5f:a9</td>
<td>0x690107</td>
<td>AoQ</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>N4</td>
<td>Online</td>
<td>FC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F-Port</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10:00:00:05:1e:56:5f:a8</td>
<td>0x690106</td>
<td>AoQ</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>N8</td>
<td>No_Module</td>
<td>FC</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>N8</td>
<td>No_Module</td>
<td>FC</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>N8</td>
<td>No_Module</td>
<td>FC</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>N8</td>
<td>No_Module</td>
<td>FC</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>N8</td>
<td>No_Light</td>
<td>FC</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>N8</td>
<td>Online</td>
<td>FC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F-Port</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 N Port</td>
<td>3 NPIV public</td>
<td>AoQ</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>N8</td>
<td>No_Module</td>
<td>FC</td>
<td></td>
</tr>
</tbody>
</table>
\end{verbatim}
To display switch information on a Virtual Fabrics-enabled switch with an assigned fabric name:

```
switch:admin> switchshow
```

```
Index Slot Port Address Media Speed State Proto
===
377 12 41 32f180 -- N8 No_Module FC
378 12 42 32f280 -- N8 No_Module FC
379 12 43 32f380 -- N8 No_Module FC
380 12 44 32f480 -- N8 No_Module FC
381 12 45 32f580 -- N8 No_Module FC
382 12 46 32f680 -- N8 No_Module FC
383 12 47 32f780 -- N8 No_Module FC
769 -1 769 -- -- -- Online E-Port \
 10:00:00:05:1e:43:e8:02 0x690100 (Trunk master) (AoQ)
770 -1 770 -- -- -- Offline (logical)
785 -1 785 -- -- -- Offline \
 Disabled (logical, reason why port was disabled)
```

(output truncated)
To display switch configuration information on the Brocade FCoE10-24:

```
switch:admin> switchshow -slot 8
switchName: switch
switchType: 77.3
switchState: Online
switchMode: Native
switchRole: Subordinate
switchDomain: 2
switchId: fffc02
switchWwn: 10:00:00:05:1e:75:af:00
zoning: ON (longevity_cfg)
switchBeacon: OFF
FC Router: OFF
Fabric Name: f1_2010_11_16_21_29_26__
Allow XISL Use: OFF
LS Attributes: [FID: 128, Base Switch: \No, Default Switch: Yes, Address Mode 0]
```

```
Slot Blade Type ID Model Name Status
--
8 AP BLADE 74 FCOE10-24 ENABLED
```

```
Index Slot Port Address Media Speed State Proto
==
192 8 0 02c000 -- 10G Online FCoE VF-Port 0 VN-Port(s)
193 8 1 02c100 -- 10G Online FCoE VF-Port 0 VN-Port(s)
194 8 2 02c200 -- 10G Online FCoE VF-Port 0 VN-Port(s)
195 8 3 02c300 -- 10G Online FCoE VF-Port 0 VN-Port(s)
196 8 4 02c400 -- 10G Online FCoE VF-Port 0 VN-Port(s)
197 8 5 02c500 -- 10G Online FCoE VF-Port 0 VN-Port(s)
198 8 6 02c600 -- 10G Online FCoE VF-Port 0 VN-Port(s)
199 8 7 02c700 -- 10G Online FCoE VF-Port 0 VN-Port(s)
200 8 8 02c800 -- 10G Online FCoE VF-Port 0 VN-Port(s)
201 8 9 02c900 -- 10G Online FCoE VF-Port 0 VN-Port(s)
202 8 10 02ca00 -- 10G Online FCoE VF-Port 0 VN-Port(s)
203 8 11 02cb00 -- 10G Online FCoE VF-Port 0 VN-Port(s)
204 8 12 02cc00 -- 10G Online FCoE VF-Port 0 VN-Port(s)
205 8 13 02cd00 -- 10G Online FCoE VF-Port 0 VN-Port(s)
206 8 14 02ce00 -- 10G Online FCoE VF-Port 0 VN-Port(s)
207 8 15 02cf00 -- 10G Online FCoE VF-Port 0 VN-Port(s)
208 8 16 02d000 -- 10G Online FCoE VF-Port 0 VN-Port(s)
209 8 17 02d100 -- 10G Online FCoE VF-Port 0 VN-Port(s)
210 8 18 02d200 -- 10G Online FCoE VF-Port 0 VN-Port(s)
211 8 19 02d300 -- 10G Online FCoE VF-Port 0 VN-Port(s)
212 8 20 02d400 -- 10G Online FCoE VF-Port 0 VN-Port(s)
213 8 21 02d500 -- 10G Online FCoE VF-Port 0 VN-Port(s)
214 8 22 02d600 -- 10G Online FCoE VF-Port 0 VN-Port(s)
215 8 23 02d700 -- 10G Online FCoE VF-Port 0 VN-Port(s)
```

To display blade information and port names:

```
switch:admin> switchshow -slot 5 -portname
```

```
FC Router: OFF
Allow XISL Use: OFF
LS Attributes: [FID: 128, Base Switch: No, Default Switch:\Yes, Address Mode 0]
```
To display QSFP information on a Brocade DCX 8510-4:

- Ports 3/60-63 indicate no QSFP is present.
- Slot 5 and 8 have QSFPs installed and the number is the group ID.
- Port 5/6 is an example of non-contiguous ports crossing QSFP group boundaries.

```
switch:admin> switchshow -qsfp
switchType: 120.1
switchState: Online
switchMode: Native
switchRole: Subordinate
switchDomain: 60
switchId: fffc3c
switchWwn: 10:00:00:05:1e:40:68:78
zoning: ON (WB_DEFAULT_CFG_LSAN)
switchBeacon: OFF
FC Router: OFF
Allow XISL Use: OFF
LS Attributes: [FID: 128, Base Switch: No,
 Default Switch: Yes, Address Mode 0]

Index Slot Port QSFP Address Media Speed State Proto
==
812 3 60 -- 3c2cc0 -- N8 No_Module FC
813 3 61 -- 3c2dc0 -- N8 No_Module FC
814 3 62 -- 3c2ec0 -- N8 No_Module FC
815 3 63 -- 3c2fc0 -- N8 No_Module FC
384 5 0 15 ------ id 16G No_SigDet FC
385 5 1 15 ------ id 16G No_SigDet FC
386 5 2 7 ------ id 16G No_SigDet FC
387 5 3 7 ------ id 16G No_SigDet FC
388 5 4 7 ------ id 16G No_SigDet FC
389 5 5 7 ------ id 16G No_SigDet FC
390 5 6 15 ------ id 16G No_SigDet FC
391 5 7 15 ------ id 16G No_SigDet FC
392 5 8 14 ------ id 16G No_SigDet FC
393 5 9 14 ------ id 16G No_SigDet FC
394 5 10 6 ------ id 16G No_SigDet FC
395 5 11 6 ------ id 16G No_SigDet FC
396 5 12 6 ------ id 16G No_SigDet FC
397 5 13 6 ------ id 16G No_SigDet FC
398 5 14 14 ------ id 16G No_SigDet FC
399 5 15 14 ------ id 16G No_SigDet FC
400 5 16 13 ------ id 16G No_SigDet FC
401 5 17 13 ------ id 16G No_SigDet FC
402 5 18 5 ------ id 16G No_SigDet FC
403 5 19 5 ------ id 16G No_SigDet FC
404 5 20 5 ------ id 16G No_SigDet FC
405 5 21 5 ------ id 16G No_SigDet FC
```
<table>
<thead>
<tr>
<th>Switch</th>
<th>Fabric OS Version</th>
<th>State</th>
<th>Port</th>
<th>Speed</th>
<th>Link</th>
<th>Module</th>
<th>Trunk Status</th>
<th>E-Port</th>
<th>Port</th>
<th>Port Name</th>
<th>Partner Node</th>
<th>Partner Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>406</td>
<td>5 22 13</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>407</td>
<td>5 23 13</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>408</td>
<td>5 24 12</td>
<td>id</td>
<td>16G</td>
<td>No_SigDet</td>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>409</td>
<td>5 25 12</td>
<td>id</td>
<td>16G</td>
<td>No_SigDet</td>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>410</td>
<td>5 26 4</td>
<td>id</td>
<td>16G</td>
<td>Online</td>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-Port</td>
<td>10:00:00:05:1e:39:0:ca</td>
<td>ras040</td>
<td>Trunk master</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>411</td>
<td>5 27 4</td>
<td>id</td>
<td>16G</td>
<td>Online</td>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-Port</td>
<td>10:00:00:05:1e:39:0:ca</td>
<td>ras040</td>
<td>Trunk master</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>412</td>
<td>5 28 4</td>
<td>id</td>
<td>16G</td>
<td>Online</td>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-Port</td>
<td>10:00:00:05:1e:39:0:ca</td>
<td>ras040</td>
<td>Trunk master</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>413</td>
<td>5 29 4</td>
<td>id</td>
<td>16G</td>
<td>Online</td>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-Port</td>
<td>10:00:00:05:1e:39:0:ca</td>
<td>ras040</td>
<td>Trunk master</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>414</td>
<td>5 30 12</td>
<td>id</td>
<td>16G</td>
<td>No_SigDet</td>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>415</td>
<td>5 31 12</td>
<td>id</td>
<td>16G</td>
<td>No_SigDet</td>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>416</td>
<td>8 0 15</td>
<td>id</td>
<td>16G</td>
<td>No_SigDet</td>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>417</td>
<td>8 1 15</td>
<td>id</td>
<td>16G</td>
<td>No_SigDet</td>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>418</td>
<td>8 2 7</td>
<td>id</td>
<td>16G</td>
<td>No_SigDet</td>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>419</td>
<td>8 3 7</td>
<td>id</td>
<td>16G</td>
<td>No_SigDet</td>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>420</td>
<td>8 4 7</td>
<td>id</td>
<td>16G</td>
<td>No_SigDet</td>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>421</td>
<td>8 5 7</td>
<td>id</td>
<td>16G</td>
<td>No_SigDet</td>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>422</td>
<td>8 6 15</td>
<td>id</td>
<td>16G</td>
<td>No_SigDet</td>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>423</td>
<td>8 7 15</td>
<td>id</td>
<td>16G</td>
<td>No_SigDet</td>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>424</td>
<td>8 8 14</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>425</td>
<td>8 9 14</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>426</td>
<td>8 10 6</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>427</td>
<td>8 11 6</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>428</td>
<td>8 12 6</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>429</td>
<td>8 13 6</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>430</td>
<td>8 14 14</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1080 Fabric OS Command Reference 53-1002921-02
<table>
<thead>
<tr>
<th>Slot</th>
<th>Port</th>
<th>Ctrl</th>
<th>Ctrl</th>
<th>Ctrl</th>
<th>Ctrl</th>
<th>Ctrl</th>
<th>Ctrl</th>
</tr>
</thead>
<tbody>
<tr>
<td>431</td>
<td>8 15</td>
<td>14</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>432</td>
<td>8 16</td>
<td>13</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>433</td>
<td>8 17</td>
<td>13</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>434</td>
<td>8 18</td>
<td>5</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>435</td>
<td>8 19</td>
<td>5</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>436</td>
<td>8 20</td>
<td>5</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>437</td>
<td>8 21</td>
<td>5</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>438</td>
<td>8 22</td>
<td>13</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>439</td>
<td>8 23</td>
<td>13</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>440</td>
<td>8 24</td>
<td>12</td>
<td>-----</td>
<td>id</td>
<td>16G</td>
<td>No_SigDet</td>
<td>FC</td>
</tr>
<tr>
<td>441</td>
<td>8 25</td>
<td>12</td>
<td>-----</td>
<td>id</td>
<td>16G</td>
<td>No_SigDet</td>
<td>FC</td>
</tr>
<tr>
<td>442</td>
<td>8 26</td>
<td>4</td>
<td>-----</td>
<td>id</td>
<td>16G</td>
<td>Online</td>
<td>FC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-Port</td>
<td>10:00:00:05:1e:39:f0:ca</td>
<td>ras040</td>
<td>(Trunk master)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>443</td>
<td>8 27</td>
<td>4</td>
<td>-----</td>
<td>id</td>
<td>16G</td>
<td>Online</td>
<td>FC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-Port</td>
<td>10:00:00:05:1e:39:f0:ca</td>
<td>ras040</td>
<td>(upstream) (Trunk master)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>444</td>
<td>8 28</td>
<td>4</td>
<td>-----</td>
<td>id</td>
<td>16G</td>
<td>Online</td>
<td>FC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-Port</td>
<td>10:00:00:05:1e:39:f0:ca</td>
<td>ras040</td>
<td>(Trunk master)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>445</td>
<td>8 29</td>
<td>4</td>
<td>-----</td>
<td>id</td>
<td>16G</td>
<td>Online</td>
<td>FC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-Port</td>
<td>10:00:00:05:1e:39:f0:ca</td>
<td>ras040</td>
<td>(Trunk master)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>446</td>
<td>8 30</td>
<td>12</td>
<td>-----</td>
<td>id</td>
<td>16G</td>
<td>No_SigDet</td>
<td>FC</td>
</tr>
<tr>
<td>447</td>
<td>8 31</td>
<td>12</td>
<td>-----</td>
<td>id</td>
<td>16G</td>
<td>No_SigDet</td>
<td>FC</td>
</tr>
<tr>
<td>1184</td>
<td>8 32</td>
<td>11</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>1185</td>
<td>8 33</td>
<td>11</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>1186</td>
<td>8 34</td>
<td>3</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>1187</td>
<td>8 35</td>
<td>3</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>1188</td>
<td>8 36</td>
<td>3</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>1189</td>
<td>8 37</td>
<td>3</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>1190</td>
<td>8 38</td>
<td>11</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>1191</td>
<td>8 39</td>
<td>11</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>1192</td>
<td>8 40</td>
<td>10</td>
<td>-----</td>
<td>id</td>
<td>16G</td>
<td>No_SigDet</td>
<td>FC</td>
</tr>
<tr>
<td>1193</td>
<td>8 41</td>
<td>10</td>
<td>-----</td>
<td>id</td>
<td>16G</td>
<td>No_SigDet</td>
<td>FC</td>
</tr>
<tr>
<td>1194</td>
<td>8 42</td>
<td>2</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>1195</td>
<td>8 43</td>
<td>2</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>1196</td>
<td>8 44</td>
<td>2</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>1197</td>
<td>8 45</td>
<td>2</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>1198</td>
<td>8 46</td>
<td>10</td>
<td>-----</td>
<td>id</td>
<td>16G</td>
<td>No_SigDet</td>
<td>FC</td>
</tr>
<tr>
<td>1199</td>
<td>8 47</td>
<td>10</td>
<td>-----</td>
<td>id</td>
<td>16G</td>
<td>No_SigDet</td>
<td>FC</td>
</tr>
<tr>
<td>1200</td>
<td>8 48</td>
<td>9</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>1201</td>
<td>8 49</td>
<td>9</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>1202</td>
<td>8 50</td>
<td>1</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>1203</td>
<td>8 51</td>
<td>1</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>1204</td>
<td>8 52</td>
<td>1</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>1205</td>
<td>8 53</td>
<td>1</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>1206</td>
<td>8 54</td>
<td>9</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>1207</td>
<td>8 55</td>
<td>9</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>1208</td>
<td>8 56</td>
<td>8</td>
<td>-----</td>
<td>id</td>
<td>16G</td>
<td>No_SigDet</td>
<td>FC</td>
</tr>
<tr>
<td>1209</td>
<td>8 57</td>
<td>8</td>
<td>-----</td>
<td>id</td>
<td>16G</td>
<td>No_SigDet</td>
<td>FC</td>
</tr>
<tr>
<td>1210</td>
<td>8 58</td>
<td>0</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>1211</td>
<td>8 59</td>
<td>0</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>1212</td>
<td>8 60</td>
<td>0</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>1213</td>
<td>8 61</td>
<td>0</td>
<td>-----</td>
<td>--</td>
<td>16G</td>
<td>No_Module</td>
<td>FC</td>
</tr>
<tr>
<td>1214</td>
<td>8 62</td>
<td>8</td>
<td>-----</td>
<td>id</td>
<td>16G</td>
<td>No_SigDet</td>
<td>FC</td>
</tr>
<tr>
<td>1215</td>
<td>8 63</td>
<td>8</td>
<td>-----</td>
<td>id</td>
<td>16G</td>
<td>No_SigDet</td>
<td>FC</td>
</tr>
</tbody>
</table>
To display media type information (relevant output excerpts only):

- The following example shows `switchshow` output for the ge0 and ge1 ports on a Brocade 7800. The ge0 port is a copper port (default). The ge1 has an SFP installed (copper or optical):

  ```
 ge0 cu 1G No.Sync FCIP Copper
 ge1 id 1G No.Light FCIP
 ge2 -- 1G No_Module FCIP
 ge3 -- 1G No_Module FCIP
 ge4 id 1G Online FCIP
 ge5 -- 1G No_Module FCIP
  ```

- This example shows `switchshow` output for a Brocade 5100. Port 31 has an SFP installed. Nothing is installed on Port 32.

  ```
 31 31 421f00 id N4 In.Sync FC Disabled
 32 32 422000 -- N8 No_Module FC Disabled
  ```

- The `sfpShow` output for the same switch displays the serial number for the SFP.

  ```
 Port 31: id (sw) Vendor: BROCADE Serial No: UAF1081800000MK
 Speed: 200,400,800 MB/s
 Port 32: --
  ```

To display output when an authentication fails for a reason and the port gets disabled:

```
15 15 id N2 No.Light Disabled (Authentication Required)
```

To display the neighbor switch WWN for the segmented ISLs during ELP and post ELP:

```
switch:admin> switchshow
switchName: swd77
switchType: 71.2
switchState: Online
switchMode: Native
switchRole: Principal
switchDomain: 1
switchId: fffc01
switchWwn: 10:00:00:05:1e:a2:ec:9c
zoning: OFF
switchBeacon: OFF
```

<table>
<thead>
<tr>
<th>Index</th>
<th>Port</th>
<th>Address</th>
<th>Media</th>
<th>Speed</th>
<th>State</th>
<th>Proto</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>010000</td>
<td>id</td>
<td>N8</td>
<td>No.Light FC</td>
<td>Disabled (Persistent)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>010100</td>
<td>id</td>
<td>N8</td>
<td>No.Light FC</td>
<td>Disabled (Persistent)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>010200</td>
<td>id</td>
<td>N4</td>
<td>No.Light FC</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>010300</td>
<td>id</td>
<td>N4</td>
<td>No.Light FC</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>010400</td>
<td>id</td>
<td>N8</td>
<td>No.Light FC</td>
<td>Disabled (Persistent)</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>010500</td>
<td>id</td>
<td>N8</td>
<td>No.Light FC</td>
<td>Disabled (Persistent)</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>010600</td>
<td>id</td>
<td>N8</td>
<td>No.Light FC</td>
<td>Disabled (Persistent)</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>010700</td>
<td>id</td>
<td>N8</td>
<td>No.Light FC</td>
<td>Disabled (Persistent)</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>010800</td>
<td>--</td>
<td>N8</td>
<td>No_Module FC</td>
<td>Disabled (Persistent)</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>010900</td>
<td>id</td>
<td>N4</td>
<td>Online FC</td>
<td>E-Port \ 10:00:00:05:1e:a3:00:59 segmented,(RA TOV incomp)</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>010a00</td>
<td>id</td>
<td>N8</td>
<td>No.Light FC</td>
<td>Disabled (Persistent)</td>
</tr>
</tbody>
</table>
To display the output when any of the ICL links get disabled with no Enterprise ICL (EICL) license installed:

- If no EICL license is installed and the number of ICL-connected chassis in the fabric is more than 4, the port disable reason code displayed is, "No EICL License".
- If EICL license is installed and the number of ICL-connected chassis in the fabric exceeds 10, the port disable reason code displayed is, "EICL License Limited".

```
switch:admin> switchshow
switchName: DCX_150
switchType: 120.3
switchState: Online
switchMode: Native
switchRole: Principal
switchDomain: 6
switchId: fffc06
switchWwn: 10:00:00:05:1e:93:ff:00
zoning: OFF
switchBeacon: OFF
FC Router: OFF
Fabric Name: fabric
Allow XISL Use: OFF
LS Attributes: [FID: 128, Base Switch: No, Default Switch: Yes, Address Mode 0]

Index Slot Port Address Media Speed State Proto
===
 0 1 0 050000 -- N8 No_Module FC
 1 1 1 050100 -- N8 No_Module FC
 2 1 2 050200 -- N8 No_Module FC
......
398 5 14 ------ cu 8G No_Sync FC
399 5 15 ------ cu 8G No_Sync FC
400 5 16 ------ cu 8G In_Sync FC Disabled (No EICL License)
401 5 17 ------ cu 8G In_Sync FC Disabled (No EICL License)
402 5 18 ------ cu 8G In_Sync FC Disabled (No EICL License)
403 5 19 ------ cu 8G In_Sync FC Disabled (No EICL License)
404 5 20 ------ cu 8G In_Sync FC Disabled (No EICL License)
405 5 21 ------ cu 8G In_Sync FC Disabled (No EICL License)
406 5 22 ------ cu 8G In_Sync FC Disabled (No EICL License)
407 5 23 ------ cu 8G In_Sync FC Disabled (No EICL License)
......
416 8 0 ------ cu 8G In_Sync FC E-Port
10:00:00:05:1e:4a:cb:00 "sw0" (upstream) \ (Trunk master)
417 8 1 ------ cu 8G In_Sync FC E-Port (Trunk port, master
is Slot 8 Port 0)
418 8 2 ------ cu 8G In_Sync FC E-Port (Trunk port, master
is Slot 8 Port 0)
419 8 3 ------ cu 8G In_Sync FC E-Port (Trunk port, master
is Slot 8 Port 0)
420 8 4 ------ cu 8G In_Sync FC E-Port (Trunk port, master
is Slot 8 Port 0)
```

To display the port status information on Condor3 Inter-Chassis Links (ICLs):

```
switch:admin> switchshow
switchName: ICL_DCX
switchType: 120.3
switchState: Online
switchMode: Native
```
switchShow

switchRole: Principal
switchDomain: 1
switchId: fffc01
switchWwn: 10:00:00:05:1e:48:f8:02
zoning: ON (bb_zone)
switchBeacon: OFF
FC Router: ON
Fabric Name: BBTI
LS Attributes: [FID: 10, Base Switch: Yes,
  Default Switch: No, Address Mode 0]

Index Slot Port Address Media  Speed       State    Proto
============================================================================
 396  5   12   018040   id    16G    Online      FC  EX-Port \                          10:00:00:05:33:b3:39:00 "Pluto2" (fabric id = 11 ) (Trunk master)
 397  5   13   018080   id    16G    Online      FC  EX-Port \                          10:00:00:05:33:b3:39:00 "Pluto2" (fabric id = 11 ) (Trunk master)
 398  5   14   0180c0   id    16G    Online      FC  EX-Port \                          10:00:00:05:33:b3:39:00 "Pluto2" (fabric id = 11 ) (Trunk master)
 399  5   15   018100   id    16G    Online      FC  EX-Port \                          10:00:00:05:33:b3:39:00 "Pluto2" (fabric id = 11 ) (Trunk master)
 412  5   28   ------   id    16G    Online      FC  E-Port \                                10:00:00:05:1e:75:4c:00 "FCR-DCX128" (upstream) (Trunk master)
 413  5   29   ------   id    16G    Online      FC  E-Port \                                10:00:00:05:1e:75:4c:00 "FCR-DCX128" (Trunk master)
 414  5   30   ------   id    16G    Online      FC  E-Port \                                10:00:00:05:1e:75:4c:00 "FCR-DCX128" (Trunk master)
 415  5   31   ------   id    16G    Online      FC  E-Port \                                10:00:00:05:1e:75:4c:00 "FCR-DCX128" (Trunk master)

To display the output when the location ID is configured:

switch:admin> switchshow
switchName: switch
switchType: 66.1
switchState: Online
switchMode: Native
switchRole: Subordinate
switchDomain: 106
switchId: fffc6a
switchWwn: 10:00:00:05:1e:57:df:49
zoning: ON (cfg_qos)
switchBeacon: OFF
FC Router: ON
FC Router BB Fabric ID: 128
Address Mode: 0
Fabric Name: base
Location ID: 1

Index Port Address Media Speed State Proto
==============================================

SEE ALSO  fabricName, portCfgLongDistance, switchDisable, switchEnable, switchName
switchStatusPolicySet

Sets the policy parameters that determine the overall switch status.

SYNOPSIS

switchstatuspolicyset

DESCRIPTION

Use this command to set policy parameters for calculating the overall status of the switch. The policy parameter values determine how many failed or faulty units of each contributor are allowed before triggering a status change in the switch from HEALTHY to MARGINAL or DOWN.

For some components, a single contributor can force the overall status of the switch to MARGINAL or DOWN. For example, assuming that the switch contributor values are set to the default values, the presence of one faulty fan in a Brocade 6510 would set the overall switch status to MARGINAL. Two faulty fans would set the overall switch status to DOWN.

This command runs interactively and prompts you to accept or change the default value for each supported contributor. The unit for thresholds (both default and user-defined) of MarginalPorts, FaultyPorts, ErrorPorts, and MissingSFPs are calculated as a percentage of the current number of physical ports present in the switch at any given moment. For example, the input value of 25.00 indicates 25% of all physical ports. VE_Ports and FCoE Ports are excluded from the calculation. The percentage supports decimal values of up to two decimal points.

The following component thresholds are configurable. Components and value ranges are platform-dependent:

**PowerSupplies**

Absent or failed power supplies, and power supplies that are not in the correct slot for redundancy.

**Temperatures**

Number of units with out-of-range temperature settings or faulty temperature sensors.

**Fans**

Number of faulty fans.

**WWN**

Number of faulty WWN cards.

**CP**

Number of Control Processors down.

**Blade**

Number of faulty Blades.

**CoreBlade**

Number of faulty core blades.

**Flash**

Out of range flash memory.

**MarginalPorts**

Percentage of ports exceeding configured Fabric Watch thresholds.

**FaultyPorts**

Percentage of ports with hardware-related port faults.

**MissingSFPs**

Percentage of ports with missing SFPs (small form-factor pluggables) or SFPs installed but not cabled.
**switchStatusPolicySet**

**ErrorPorts**

Percentage of ports segmented and disabled due to security violations or Fabric Watch port fencing.

To determine the current status of the switch for each component monitored issue the `switchStatusShow` command.

**NOTES**
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

**OPERANDS**
None

**EXAMPLES**
To change the switch policy parameters on a Brocade 6510:

```bash
switch:admin> switchstatuspolicyset
To change the overall switch status policy parameters
The current overall switch status policy parameters:

<table>
<thead>
<tr>
<th></th>
<th>Down</th>
<th>Marginal</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerSupplies</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Temperatures</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Fans</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Flash</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MarginalPorts</td>
<td>25.00%[12]</td>
<td>10.00%[5]</td>
</tr>
<tr>
<td>FaultyPorts</td>
<td>25.00%[12]</td>
<td>10.00%[5]</td>
</tr>
<tr>
<td>MissingSFPs</td>
<td>0.00%[0]</td>
<td>0.00%[0]</td>
</tr>
<tr>
<td>ErrorPorts</td>
<td>0.00%[0]</td>
<td>0.00%[0]</td>
</tr>
</tbody>
</table>

Number of ports: 48

Note that the value, 0, for a parameter, means that it is
NOT used in the calculation.
** In addition, if the range of settable values in the prompt is (0..0),
** the policy parameter is NOT applicable to the switch.
** Simply hit the Return key.

The minimum number of
Bad PowerSupplies contributing to DOWN status: (0..2) [2]
Bad PowerSupplies contributing to MARGINAL status: (0..2) [1]
Bad Temperatures contributing to DOWN status: (0..4) [2] 1
Bad Temperatures contributing to MARGINAL status: (0..4) [1] 2
Bad Fans contributing to DOWN status: (0..2) [2]
Bad Fans contributing to MARGINAL status: (0..2) [1]
Out of range Flash contributing to DOWN status: (0..1) [0]
Out of range Flash contributing to MARGINAL status: (0..1) [1]
MarginalPorts contributing to DOWN status: (0..100) [25.00]
MarginalPorts contributing to MARGINAL status: (0..100) [10.00]
FaultyPorts contributing to DOWN status: (0..100) [25.00]
FaultyPorts contributing to MARGINAL status: (0..100) [10.00]
MissingSFPs contributing to DOWN status: (0..100) [0.00]
MissingSFPs contributing to MARGINAL status: (0..100) [0.00]
ErrorPorts contributing to DOWN status: (0..100) [0.00]
ErrorPorts contributing to MARGINAL status: (0..100) [0.00]

Policy parameter set has been changed
To change the switch policy parameters on a Brocade DCX 8510-8:

```
switch:admin> switchstatuspolicyset
```

To change the overall switch status policy parameters

The current overall switch status policy parameters:

<table>
<thead>
<tr>
<th>Down</th>
<th>Marginal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
PowerSupplies 0 0
Temperatures 0 0
Fans 1 0
WWN 0 0
CP 0 0
Blade 0 0
CoreBlade 0 0
Flash 0 0
MarginalPorts 0.00%[0] 0.00%[0]
FaultyPorts 0.00%[0] 0.00%[0]
MissingSFPs 0.00%[0] 0.00%[0]
ErrorPorts 0.00%[0] 0.00%[0]
```

Number of ports: 4

Note that the value, 0, for a parameter, means that it is NOT used in the calculation.
** In addition, if the range of settable values in the prompt is (0..0), ** the policy parameter is NOT applicable to the switch.
** Simply hit the Return key.

The minimum number of
- Bad PowerSupplies contributing to DOWN status: (0..4) [0]
- Bad PowerSupplies contributing to MARGINAL status: (0..4) [0]
- Bad Temperatures contributing to DOWN status: (0..32) [0]
- Bad Temperatures contributing to MARGINAL status: (0..32) [0]
- Bad Fans contributing to DOWN status: (0..3) [1]
- Bad Fans contributing to MARGINAL status: (0..3) [0]
- Down WWN contributing to DOWN status: (0..2) [0]
- Down WWN contributing to MARGINAL status: (0..2) [0]
- Down CP contributing to DOWN status: (0..2) [0]
- Down CP contributing to MARGINAL status: (0..2) [0]
- Down Blade contributing to DOWN status: (0..8) [0]
- Down Blade contributing to MARGINAL status: (0..8) [0]
- Down CoreBlade contributing to DOWN status: (0..2) [0]
- Down CoreBlade contributing to MARGINAL status: (0..2) [0]
- Out of range Flash contributing to DOWN status: (0..1) [0]
- Out of range Flash contributing to MARGINAL status: (0..1) [0]
- MarginalPorts contributing to DOWN status: (0..100) [0.00]
- MarginalPorts contributing to MARGINAL status: (0..100) [0.00]
- FaultyPorts contributing to DOWN status: (0..100) [0.00]
- FaultyPorts contributing to MARGINAL status: (0..100) [0.00]
- MissingSFPs contributing to DOWN status: (0..100) [0.00] 20.00
- MissingSFPs contributing to MARGINAL status: (0..100) [0.00] 10.00
- ErrorPorts contributing to DOWN status: (0..100) [0.00]
- ErrorPorts contributing to MARGINAL status: (0..100) [0.00]

Policy parameter set has been changed

SEE ALSO fanShow, psShow, switchStatusPolicyShow, switchStatusShow, tempShow
switchStatusPolicyShow

Displays the policy parameters that determine the overall switch status.

SYNOPSIS

 switchstatuspolicyshow

DESCRIPTION

Use this command to view the current policy parameters set for the switch. These policy parameters determine the number of failed or nonoperational units allowed for each contributor before triggering a status change in the switch. For port-related contributors, the numbers are expressed as a percentage of physical ports present in the switch at any given time.

The command displays the current parameters in a three-column format. Refer to the Examples section for an illustration. The first column indicates the contributor, the second column indicates the minimum number that contributes to the DOWN status, and the third column indicates the minimum number that contributes to the MARGINAL status. The policy parameters are set by the switchStatusPolicySet command. Not all policies are supported on all platforms. Refer to the switchStatusPolicySet help page for more information.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display the switch policy parameters Brocade DCX 8510-8:

 switch:admin> switchstatuspolicyshow
 The current overall switch status policy parameters:
 Down Marginal

 PowerSupplies 0 0
 Temperatures 0 0
 Fans 1 0
 WWN 0 0
 CP 0 0
 Blade 0 0
 CoreBlade 0 0
 Flash 0 0
 MarginalPorts 0.00%[0] 0.00%[0]
 FaultyPorts 0.00%[0] 0.00%[0]
 MissingSFPs 0.00%[0] 0.00%[0]
 ErrorPorts 0.00%[0] 0.00%[0]
 Number of ports: 4

SEE ALSO

 fanShow, psShow, switchStatusPolicySet, switchStatusShow, tempShow
switchStatusShow

Displays overall switch status.

SYNOPSIS

switchstatusshow

DESCRIPTION

Use this command to display the overall status for a switch. In addition, users with a Fabric Watch license are able to view a listing of unhealthy ports that includes the port index number, the port name, and the port status.

This command displays the following information: the overall switch status, and the status of the following contributors:

- Report Time
- Switch Name
- IP address
- Switch State: HEALTHY, MARGINAL, or DOWN
- Duration: hours and minutes (HH:MM) the switch has been in the current state
- Power supplies
- Temperatures
- Fans
- WWN servers (dual-CP systems only)
- Standby CP (dual-CP systems only with HA enabled)
- Blades (bladed systems only)
- Flash
- Marginal ports
- Faulty ports
- Error Ports

Status values are HEALTHY, MARGINAL, or DOWN, depending on whether thresholds established by switchStatusPolicySet have been exceeded. The overall status is based on the most severe status of all contributors.

Refer to switchStatusPolicySet for details on the calculation of contributors and overall switch status.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

If Monitoring and Alerting Policy Suite (MAPS) is enabled, this command will be disabled. Use the mapsDb command to display the switch status.

OPERANDS

None

EXAMPLES

To display a switch health report on a Brocade 6510 with one faulty port:

```
switch:user> switchstatusshow
Switch Health Report       Report time: 03/12/2011 08:48:00 PM
Switch Name:    ras220
IP address:     10.20.10.220
SwitchState:    MARGINAL
Duration:       47:42

Power supplies monitor HEALTHY
Temperatures monitor HEALTHY
```
Fans monitor: HEALTHY
Flash monitor: MARGINAL
Marginal ports monitor: HEALTHY
Faulty ports monitor: HEALTHY
Missing SFPs monitor: HEALTHY
Error ports monitor: HEALTHY

Port 032 port32 is FAULTY

To display a switch health report on Brocade DCX 8510-8:

```
switch:user> switchstatusshow
Switch Health Report  Report time: 03/12/2011 12:57:01 PM
Switch Name: VF128_CDCX16_114057
IP address: 10.20.114.57
SwitchState: HEALTHY
Duration: 44:16

Power supplies monitor: HEALTHY
Temperatures monitor: HEALTHY
Fans monitor: HEALTHY
WWN servers monitor: HEALTHY
CP monitor: HEALTHY
Blades monitor: HEALTHY
Core Blades monitor: HEALTHY
Flash monitor: HEALTHY
Marginal ports monitor: HEALTHY
Faulty ports monitor: HEALTHY
Missing SFPs monitor: HEALTHY
Error ports monitor: HEALTHY

All ports are healthy
```

SEE ALSO fanShow, psShow, switchStatusPolicySet, switchStatusPolicyShow, tempShow
switchUptime

Displays the amount of time the switch has been operating.

SYNOPSIS

switchUptime

DESCRIPTION

Use this command to display the current time and the amount of time that the switch has been operational.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To view the uptime for the switch:

switch:user> switchUptime
9:50pm up for 20 mins

SEE ALSO

None
switchViolation

Dumps the DCC violations for a switch.

SYNOPSIS

 switchViolation --dump -dcc

DESCRIPTION

Use this command to display all Device Connection Control (DCC) violations that have occurred on a
switch. Internally the command searches "errdumpall" for the DCC violations. For each DCC violation,
the command displays the device WWN and the port where the violation occurred.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

This command can be executed on both active and standby CPs. This command does not support High
Availability (HA).

OPERANDS

This command has the following operands. If executed without operands, the command prints the usage.

 --dump
 Displays specified policy violation.

 -dcc
 Specifies the violation type as DCC.

EXAMPLES

To display DCC violations for a switch:

 switch:admin> switchViolation --dump -dcc
 Device WWN Port

 22:00:00:04:cf:75:59:87 10

SEE ALSO

None
syslogdfacility

Sets or displays the syslog facility.

SYNOPSIS

```
syslogdfacility [-l level]
```

DESCRIPTION

Use this command to set the syslog facility to a specified log file, or use this command without operands to display the current syslog facility. The syslog daemon (syslogd) reads and forwards system messages to the log file specified by this command. You must configure the servers to receive system messages by adding them with the `syslogdlpAdd` command.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

- `-l level`

 Specifies the syslog facility. Valid levels are 0 through 7. The default is 7. This operand is optional; if omitted, the current facility is displayed.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>LOG_LOCAL0</td>
</tr>
<tr>
<td>1</td>
<td>LOG_LOCAL1</td>
</tr>
<tr>
<td>2</td>
<td>LOG_LOCAL2</td>
</tr>
<tr>
<td>3</td>
<td>LOG_LOCAL3</td>
</tr>
<tr>
<td>4</td>
<td>LOG_LOCAL4</td>
</tr>
<tr>
<td>5</td>
<td>LOG_LOCAL5</td>
</tr>
<tr>
<td>6</td>
<td>LOG_LOCAL6</td>
</tr>
<tr>
<td>7</td>
<td>LOG_LOCAL7 (default)</td>
</tr>
</tbody>
</table>

EXAMPLES

To set the syslog facility to LOG_LOCAL1:

```
switch:admin> syslogdfacility -l 1
Syslog facility changed to LOG_LOCAL1
```

To display the current setting:

```
switch:admin> syslogdfacility
LOG_LOCAL1
```

SEE ALSO

`syslogdlpAdd`, `syslogdlpRemove`, `syslogdlpShow`
syslogdIpAdd

Configures a switch to forward system messages to specified servers.

SYNOPSIS

syslogdipadd ip_address

DESCRIPTION

Use this command to configure a switch to forward all error log entries to the syslog daemon (syslogd) of one or more specified servers. The syslog daemon is a process available on most UNIX systems that reads and forwards system messages to the appropriate log files or users, depending on the system configuration. Up to six servers are supported.

Only one syslogd server can be specified at any given time. To configure more than one server, the command must be executed for each server.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

ip_address

Specifies the IP address of the server running syslogd in IPv4 or IPv6 format.

EXAMPLES

To add an IP address to the list of machines to which system messages are sent:

switch:admin> syslogdipadd 1080::8:800:200C:417A

switch:admin> syslogdipshow
syslog.1 1080::8:800:200C:417A

To add a second IP address to the existing syslogd server configuration:

switch:admin> syslogdipadd 192.168.163.234

switch:admin> syslogdipshow
syslog.1 1080::8:800:200C:417A
syslog.2 192.168.163.234

SEE ALSO

errShow, syslogdFacility, syslogdIpRemove, syslogdIpShow
syslogdIpRemove

Removes a server that is running the syslog daemon.

SYNOPSIS
syslogdipremove ip_address

DESCRIPTION
Use this command to remove a server that is running the syslogd process and to which system messages are sent from the syslog server configuration on the switch. IPv6 and IPv4 syslogd addresses are supported. Use syslogdIPShow to view the current syslog server configuration.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
This command has the following operand:

ip_address
Specifies the IP address of the server running syslogd.

EXAMPLES
To remove the IP address 1080::8:800:200C:417A from the list of machines to which system messages are sent:

switch:admin> syslogdipshow
syslog.1 1080::8:800:200C:417A

switch:admin> syslogdipremove 1080::8:800:200C:417A

SEE ALSO
errShow, syslogdFacility, syslogdIpAdd, syslogdIpShow
syslogdIpShow

Displays all syslog daemon IP addresses.

SYNOPSIS
syslogdipshow

DESCRIPTION
Displays the list of servers that are running the syslogd daemon and to which system messages are sent. Servers are specified in the configuration database by IP address. IPv4 and IPv6 addresses are supported.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
None

EXAMPLES
To display all syslog daemon IP addresses configured on a switch:

switch:admin> syslogdipshow
syslog.1 1080::8:800:200C:417A

SEE ALSO
errShow, syslogdFacility, syslogdIpAdd, syslogdIpRemove
sysMonitor

Configures Fabric Watch thresholds for environment and system resources.

SYNOPSIS

sysmonitor --config class -area area
[-highthreshold -value value]
[-trigger above | below -action actions]
[-lowthreshold -value value]
[-trigger above | below -action actions]
[-buffer value] [-nosave]

sysmonitor --apply class -area area
[-action_level def | cust] [-thresh_level def | cust]

sysmonitor --cancel class -area area
[-action_level def | cust] [-thresh_level def | cust]

sysmonitor --pause | --continue class
-are area[area,...] | all
-index index | all

sysmonitor --show [-class class][-area area]
[[-current]] [[[-action_level def | cust]
[-thresh_level def | cust]]]

sysmonitor --config mem | cpu
[-poll polling_interval] [-retry number_of_retries]
[-limit high_usage_limit][[-action action]
[-high_limit high_limit] [-low_limit low_limit]

sysmonitor --show mem | cpu

sysmonitor --help

DESCRIPTION

Use this command to configure thresholds for Fabric Watch event monitoring for temperature and system resources on the switch. The following operations are supported by this command:

- Configure thresholds for Fabric Watch event monitoring and reporting for the environment and resource classes. Environment thresholds enable temperature monitoring, and resource thresholds enable monitoring of flash memory. This command follows a transaction model. Configuration changes are saved persistently to nonvolatile storage, but the changes do not take effect until you execute --apply. The --apply option allows you to toggle between default settings and your own saved custom configuration and to apply actions and thresholds separately. You may choose to use default thresholds together with a customized subset of available actions, or you may modify some of the thresholds and use the default actions. Use the -nosave option to save the configuration nonpersistently, and use --cancel to remove a nonpersistent configuration.

- Configure memory or CPU usage parameters on the switch or display memory or CPU usage. Configuration options include setting usage thresholds which, if exceeded, trigger a set of specified Fabric Watch alerts. You can set up the system monitor to poll at certain intervals and specify the number of retries required before Fabric Watch takes action. Configuring thresholds for CPU and memory does not follow the transaction model of the typical Fabric Watch command. The --apply and --cancel option are not valid in this context.
If any configured area exceeds the currently effective threshold settings, the Fabric Watch daemon can take one or more of the following actions:

- Send an SNMP message.
- Log a RAS log message.
- Send an E-mail alert (valid only for the environment and resource class).

Fabric Watch thresholds vary depending on the class and platform. Refer to the Fabric Watch Administrator's Guide for defaults and configuration guidelines.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command requires a Fabric Watch license.

OPERANDS

This command has the following operands:

- `class`
 - Specifies a Fabric Watch class to be monitored. This operand is optional with the `--show` option; it is required with all configuration options. Valid classes include the following:
 - `env`
 - Monitors the environment class.
 - `resource`
 - Monitors the resource class.

- `-area area`
 - Specifies the area that can be configured for this class. This operand is optional with the `--show` option; it is required with all configuration options. Valid areas include the following:
 - `temp`
 - Specifies the temperature area for the environment class. This area is valid only with the environment class.
 - `flash`
 - Specifies the flash memory area for the resource class. This area is valid only with the resource class.

- `--config class -area area`
 - Configures Fabric Watch thresholds for monitoring a specified class and area. When configuring Fabric Watch thresholds, you must specify a class and an area.
 - The following operands are optional; if omitted, Fabric Watch uses default thresholds.
 - `-highthreshold -value value`
 - Specifies the high threshold for triggering a specified alert action. To change the default value, provide an integer value.
 - `-lowthreshold -value value`
 - Specifies the low threshold for triggering a specified alert action. To change the default value, provide an integer value.
 - `-trigger above | below`
 - Specifies the actions for in-range behavior. In range is defined as the space above the low threshold and below the high threshold for a given class and area.
-action actions
Specifies the actions triggered by a configured event condition. Valid values include one or more of the following actions. If more than one action is specified, the actions must be separated by commas. To change the existing configuration of actions, you must first issue the command with the none option to reset the existing configuration, and then reissue the command with the new configuration of actions.

snmp
Event triggers an SNMP trap.

raslog
Event triggers a RASlog message.

email
Event triggers an e-mail.

none
Event triggers no action.

-buffer value
Specifies the buffer value for in-range behavior. A buffer defines a zone within which event criteria are met, rather than a single threshold value. This operand is optional with the -trigger options and valid only with these options.

-nosave
Prevents the configuration changes from being saved persistently. This option allows you to make and view changes without overwriting the saved configuration. When you use --config with the -nosave option and the switch reboots your changes will be lost.

--apply
Applies the custom or default configuration for thresholds, actions, or both. This command allows you to choose between custom and default settings. The specified configuration takes effect upon execution of this command. When you select custom, the saved configuration becomes effective.

--cancel
Cancels a nonpersistent configurations. This command effectively undoes the -nosave operation without reboot.

You must always specify a class and area when you apply or cancel a configuration. Thresholds and alarm levels are optional; if omitted, all nonpersistent configurations for the specified class and area are used.

--pause | --continue arguments
Pauses or resumes monitoring. The following arguments are required:

class
Specifies the class.

-area area[,area]... | all
Specifies the area. You can either specify one or more areas separated by a comma, or you can specify all to indicate all areas.

-index index | all
Specifies the index number for the element to be monitored, or specify -index all to indicate all elements. An element is a subcomponent of an area, for example, a temperature sensor on the switch.

--show
Displays the Fabric Watch configuration for the specified class. When used without operands, this command displays the current Fabric Watch configuration for all classes and areas. When used with optional arguments, the output displays partial views or status information.
-current
Displays current values for a specified class or area. This operand is optional and valid only with the -show option. The output includes the class, area, port number, circuit ID (for the Brocade 7800 and FS8-24 only), Value, State, and Monitoring Status (pause or continue). The State field reports whether the current value is above, in range, or below (info) the configured threshold. If no class or area is specified, this command displays current values for all Fabric Watch classes and areas (not only those configured with this command).

The following operands are optional with the --apply, --cancel, and --show options; if omitted, default thresholds are used.

-action_level def | cust
Configures or displays default or custom action settings.

-thresh_level def | cust
Configures or displays default or custom thresholds.

--config mem | cpu
Configures the parameters for monitoring system CPU or memory usage. The following parameters are configurable with this command.

-poll
Specifies the polling interval in seconds. Valid values are 10 to 3600 seconds. The default value is 120 seconds. This operand is optional.

-retry
Specifies the number of retries before Fabric Watch takes action. The default value is 3.

-limit
Specifies a usage limit as percentage of available resources.
When used to configure CPU monitoring, specify a value in the 1 to 100 range. When CPU usage exceeds the limit a Fabric Watch alert is triggered. The default CPU limit 75%.
When used to configure memory monitoring the limit value must be greater than the low limit and smaller than the high limit. When the limit is exceeded, Fabric Watch sends out a RASlog WARNING message. When usage returns below the limit, Fabric Watch sends a RASlog INFO message. Valid values are in the range between the low limit and 90%. The default value is 60%.

The following operands are valid only with --config mem. They provide two additional limits above and below the middle usage limit.

-high_limit high_limit
Specifies an upper usage limit for memory as percentage of available memory. This value must be greater than the value set by the -limit parameter. The maximum is 90%. When memory usage exceeds this limit, Fabric Watch generates a CRITICAL RASlog message. The default is 80%.

-low_limit low_limit
Specifies a lower usage limit for memory as percentage of available memory. This value must be smaller than the value set by the -limit parameter. When memory usage exceeds or falls below this limit, Fabric Watch generates an INFO RASlog message. The default for all platforms is 50%.

-action actions
Specifies the actions to be taken if system resources exceed the specified high threshold or fall outside the boundaries defined by the high and low thresholds. Valid values are snmp, raslog, both, or none. The default is none. If more than one action is specified, actions must be separated by commas.
sysMonitor

--show cpu | mem
Displays system memory or CPU usage.

--help
Displays the command usage.

EXAMPLES

To configure Fabric Watch custom thresholds for temperature:

switch:admin> sysmonitor --config env -area temp
 -highthreshold -value 99 -trigger above -action raslog

To apply the custom thresholds for temperature:

switch:admin> sysMonitor --apply env -area temp
 -action_level cust -thresh_level cust

To configure Fabric Watch custom thresholds for temperature using high and low thresholds and save
the configuration nonpersistently:

switch:admin> sysmonitor --config env -area temp
 -highthreshold -value 99 -trigger above -action email
 -lowthreshold -value 32 -trigger below -action email

To apply the custom thresholds for temperature:

switch:admin> sysmonitor --apply env -area temp
 -action_level cust -thresh_level cust

To cancel the previously configured thresholds for temperature:

switch:admin> sysmonitor --cancel env -area temp
 -action_level cust -thresh_level cust

To display the Fabric Watch configuration for temperature:

switch:admin> sysmonitor --show env -area temp

Class: ENV
Area : TEMP
ThLevel : Def
ActLevel: Def
High :
 Custom:
 TimeBase: None
 Value : 65
 Trigger : Above Action: Raslog,SNMP
 Trigger : Below Action: Raslog,SNMP

Default:
 TimeBase: None
 Value : 65
 Trigger : Above Action: Raslog,SNMP
 Trigger : Below Action: Raslog,SNMP

Low:
 Custom:
 TimeBase: None
 Value : 0
 Trigger : Above Action: None
 Trigger : Below Action: Raslog,SNMP

Default:
 TimeBase: None
 Value : 0
 Trigger : Above Action: None
 Trigger : Below Action: Raslog,SNMP
To display current temperature values:

```
switch:admin> sysmonitor --show env -area temp -c
```

```
Class | Area  | Index | Value  | State   | Monitoring
------|------|------|------|------------------
ENV   | TEMP | 000001| 39    |InRange|Continue
ENV   | TEMP | 000002| 35    |InRange|Continue
ENV   | TEMP | 000003| 42    |InRange|Continue
ENV   | TEMP | 000004| 44    |InRange|Pause
```

To configure Fabric Watch custom thresholds for flash memory:

```
switch:admin> sysmonitor --config resource -area flash \ -highthreshold -value 100
```

To apply the custom thresholds for flash memory:

```
switch:admin> sysmonitor --apply resource -area \ flash -thresh_level cust
```

To display the Fabric Watch configuration for flash memory:

```
switch:admin> sysmonitor --show resource
```

Class: RESOURCE

```
Area : FLASH
ThLevel : Cust
ActLevel: Cust
High :
  Custom:
    TimeBase: None
    Value : 100
    Trigger : Above Action: Raslog,SNMP
    Trigger : Below Action: Raslog
  Default:
    TimeBase: None
    Value : 90
    Trigger : Above Action: Raslog,SNMP
    Trigger : Below Action: Raslog
Low:
  Custom:
    TimeBase: None
    Value : 0
    Trigger : Above Action: None
    Trigger : Below Action: Raslog,SNMP
  Default:
    TimeBase: None
    Value : 0
    Trigger : Above Action: None
    Trigger : Below Action: Raslog,SNMP
Buffer:
  Custom:
    Value : 0
  Default:
    Value : 0
```
To pause monitoring of the resources class for a single element:

```
switch:admin> sysmonitor --pause resource -area all -index 0
switch:admin>
```

To continue monitoring of the resources class:

```
switch:admin> sysmonitor --continue resource -area all -index 0
switch:admin>
```

To configure the thresholds for memory usage monitoring:

```
switch:admin> sysmonitor --config mem -poll 10 -retry 3 -limit 60 -action snmp,raslog -high_limit 70 -low_limit -40
```

To display the current memory usage and configuration:

```
switch:admin> sysmonitor --show mem
Showing Memory Usage:
  Used Memory        : 192020k 25%
  Total Memory          : 768080k
  Free Memory           : 576060k
  Used Memory Limit     : 60%
  Low Used Memory Limit : 40%
  High Used Memory Limit: 70%
  Polling Interval      : 60 seconds
  No Of Retries         : 3
  Actions               : none
```

To configure the threshold for monitoring system CPU usage:

```
switch:admin> sysmonitor --config cpu -poll 20 -retry 4 -limit 70 -action snmp
```

To display the current memory usage threshold:

```
switch:admin> sysmonitor --show cpu
Showing Cpu Usage:
  Cpu Usage            : 21.9%
  Cpu Usage limit      : 75%
  Number of Retries    : 4
  Polling Interval     : 120 seconds
  Actions              : none
```

SEE ALSO
fwHelp, portFencing, portThConfig, thConfig
sysShutDown

Provides a graceful shutdown to protect the switch file systems.

SYNOPSIS

sysshutdown

DESCRIPTION

On standalone platforms, use this command to shut down the switch operating system.

On enterprise-class platforms, when sysShutDown is called on the active control processor (CP), the command shuts down the active CP, standby CP, and any AP blades.

Some platforms will only shut down the operating systems; others will shut down the operating system as well as shut off the power, that is, the LEDs will turn black.

After executing this command, manually power off the system. To reboot the system, manually turn the power switch on.

NOTES

This command is not supported on the standby CP.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To perform a system shutdown on a standalone platform:

switch:admin> sysshutdown
This command will shutdown the operating systems on your switch. You are required to power-cycle the switch in order to restore operation.
Are you sure you want to shutdown the switch [y/n]? y
Broadcast message from root (ttyS0) Mon Sep 12 17:52:12 2005...

The system is going down for system halt NOW !!
INIT: Switching to runlevel:
INIT: Sending processes the TERM signal
ess095:root> Unmounting all filesystems.
The system is halted
flushing ide devices: hda
Power down.

To perform a system shutdown on a Brocade DCX-4S:

switch:admin> sysshutdown
This command will shutdown the operating systems on your switch. You are required to power-cycle the switch in order to restore operation.
Are you sure you want to shutdown the switch [y/n]?y
HA is disabled
Shutting down blade in slot:1, IP addr:127.1.14.2
Shutting down blade in slot:8, IP addr:127.1.14.9
Shutting down OCP at:0.0.0.0

Broadcast message from root (pts/0) Wed Nov 5 19:03:06 2008...
The system is going down for system halt NOW !!
To attempt a system shutdown from the standby CP (not supported):

```bash
switch:admin> sysshutdown
Shut down the whole system is not support from the standby CP
For shut down the whole system
please run the sysshutdown from the active CP
```

SEE ALSO haDisable
tempShow

Displays temperature readings.

SYNOPSIS

tempshow

DESCRIPTION

Use this command to display the current temperature readings of all temperature sensors in a switch. For each sensor, this command displays the sensor ID (an index number), the slot number (if applicable), the sensor state (OK or absent), and the temperature. The temperature readings are given in both Centigrade and Fahrenheit.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

Refer to the hardware reference manual for your switch to determine the normal temperature range.

OPERANDS

None

EXAMPLES

To display temperature and status sensors:

```
switch:user> tempshow
Sensor  Slot  State  Centigrade  Fahrenheit
 ID
============================================
  1   1    ok      38           100
  2   1    ok      28            82
  3   1    ok      40           104
  4   1    ok      31            87
  5   1    ok      43           109
  6   2    ok      39           102
  7   2    ok      28            82
  8   2    ok      40           104
  9   2    ok      30            86
 10   2    ok      43           109
```

SEE ALSO

fanShow, psShow, sensorShow, slotShow
thConfig

Configures Fabric Watch thresholds for the SFP, fabric, filter, security and EE monitor classes.

SYNOPSIS

thconfig --set class -area area
 [-timebase time_base]
 [-sftype sfp_type]
 [-highth -value value]
 [-trigger above | below -action actions]
 [-lowth -value value]
 [-trigger below -action actions]
 [-buffer value][-nosave]

thconfig --apply class -area area
 [-sftype sfp_type]
 [-thresh_level def | cust][-action_level def | cust]

thconfig --cancel class -area area
 [-sftype sfp_type]
 [-thresh_level def | cust][-action_level def | cust]

thconfig --show [class] [-area area]
 [-sftype sfp_type] [[-current] | [-thresh_level def | cust] [-action_level def | cust]]

thconfig --show [class] [-only_area]

thconfig --pause | --continue class
 [-area area[,area,...] | all]
 [-port port_list | all] [-index index | all]

thconfig --help

DESCRIPTION

Use this command to configure thresholds for Fabric Watch event monitoring for the SFP (small form-factor pluggable), fabric, filter, end-to-end performance monitor, and security classes or to display the configuration. If configured areas exceed the currently effective threshold settings, the Fabric Watch daemon can take one or more of the following actions:

• Send an SNMP message.
• Log a RASlog message.
• Send an E-mail alert.
• Locks the port log (only applicable to SFP state change area and FABRIC class).

The thConfig command follows a transaction model. When you configure thresholds and actions with the --set option, the changes are saved persistently to nonvolatile storage, but the changes do not become effective until you apply the configuration. The --apply option allows you to toggle between default settings and your own saved custom configuration and to apply actions and thresholds separately. You may choose to use default thresholds together with a customized subset of available actions, or you may modify some of the thresholds and use the default actions. Use the -nosave option to save the configuration nonpersistently, and use --cancel to remove a nonpersistent configuration.

For more information on Fabric Watch threshold configuration procedures, including default values for specific area high/low thresholds, refer to the Fabric Watch Administrator's Guide.
NOTES
Monitoring of Condor 3-based 10G SFPs, 16G SFPs, and 16G QSFPs (quad small form-factor pluggables) is by default disabled. Use the thMonitor command to enable monitoring of these advanced SFPs.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

The Fabric and Security classes are not supported in Access Gateway mode.

OPERANDS
This command has the following operands:

class
Specifies a Fabric Watch class to be monitored. This operand is optional with the --show option and required with all configuration options.

-area area
Specifies the area that can be configured for a specified class. This operand is optional with the --show option and required with all configuration options. Areas are specific to each class. The following classes and associated areas are configurable with the thConfig command. Classes and areas are not case sensitive.

SFP
Monitors the SFP class. When used with the -sfptype option on Condor 3-based platforms, thresholds configured for the SFP class apply to 16G SFPs, 10G SFPs, and 16G QSFPs. Valid areas for the SFP class include the following:

TEMP
Monitors the physical temperature of the SFP in degrees Celsius. For 16G QSFPs, Fabric Watch monitors temperature only on the first QSFP port that is available on the (logical) switch.

RXP
Measures Receive Power for the SPF in Watts.

TXP
Measures Transmit Power for the SPF in Watts (not supported on 16G QSFPs).

CURRENT
Measures the amount of current supplied to the SFP transceiver.

VOLTAGE
Measures the amount of voltage supplied to the SFP. For 16G QSFPs, Fabric Watch monitors voltage only on the first QSFP port that is available on the (logical) switch.

ST
Measures the number of SFP state changes. This area is deprecated as of Fabric OS v7.0. To configure SFP State Changes, use the fwFruCfg command.

PWRONHRS
Measures the number of operational hours (power-on hours) for the SFP. This class is supported only for 16G SFPs and QSFPs (Condor 3 ASIC), and the only valid time base for this class is none. You can display the power-on hours with the sfpShow command.

FABRIC
Monitors the Fabric class. Valid areas for the Fabric class include the following:

ED
Tracks the number of times an E_Port or VE_Port goes down.
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC</td>
<td>Tracks the number of times the fabric reconfigures.</td>
</tr>
<tr>
<td>DC</td>
<td>Tracks the number of Domain ID changes.</td>
</tr>
<tr>
<td>SC</td>
<td>Tracks the number of segmentation changes.</td>
</tr>
<tr>
<td>ZC</td>
<td>Tracks the number of zoning conflicts.</td>
</tr>
<tr>
<td>FL</td>
<td>Tracks the number of fabric logins.</td>
</tr>
</tbody>
</table>

SECURITY

Monitors the Security class. Valid areas for the security class include the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TV</td>
<td>Tracks the number of Telnet violations.</td>
</tr>
<tr>
<td>HV</td>
<td>Tracks the number of HTTP violations.</td>
</tr>
<tr>
<td>SV</td>
<td>Tracks the number of switch connection control (SCC) policy violations.</td>
</tr>
<tr>
<td>DV</td>
<td>Tracks the number of device connection control (DCC) policy violations.</td>
</tr>
<tr>
<td>LV</td>
<td>Tracks the number of login violations.</td>
</tr>
<tr>
<td>IC</td>
<td>Tracks the number of invalid certificates.</td>
</tr>
<tr>
<td>TS</td>
<td>Tracks the number of times the time server is out of sync.</td>
</tr>
<tr>
<td>FF</td>
<td>Tracks the number of Fibre Channel link access protocol (FLAP) violations.</td>
</tr>
<tr>
<td>NF</td>
<td>Tracks the number of times the switch has lost contact with the primary FCS.</td>
</tr>
<tr>
<td>ISB</td>
<td>Tracks the number of times the switch encounters an incompatible security database</td>
</tr>
<tr>
<td>IV</td>
<td>Tracks the number of times a command permitted only on the primary Fibre Channel Switch (FCS) is executed on another switch.</td>
</tr>
</tbody>
</table>

FILTER

Monitors the Filter Performance Monitor class. Valid areas for the filter class include the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERFPT</td>
<td>Customer defined performance areas. You can specify any filter monitor to be tracked by Fabric Watch. Refer to the <code>fmMonitor</code> command for more information.</td>
</tr>
</tbody>
</table>
EE

Monitors the End-to-End Performance Monitor class. Valid areas for the EE class include the following:

RXP

Monitors receive performance as the percentage of word frames traveling from the configured SID to the DID.

TXP

Monitors transmit performance as the percentage of word frames traveling from the configured DID to the SID.

--set class -area area

Configures Fabric Watch thresholds for monitoring a specified class and area. When configuring Fabric Watch thresholds, you must specify a class and an area. The following operands are optional and valid only with the --set option; if omitted, the default Fabric Watch configuration is used. Default parameters vary depending on the area and platform. Refer to the Fabric Watch Administrator's Guide for specific details.

-timebase time_base

Specifies the time interval between two samples to be compared. Valid intervals include the following:

day

Samples are compared once a day.

hour

Samples are compared once every hour.

minute

Samples are compared once every minute.

none

Samples are not compared.

-sfptype sfp_type

Configures and manages thresholds and alerts for 10G SFPs, 16G SFPs and 16G QSFPs. Fabric Watch applies thresholds based on the serial numbers of the SFP types. If the SFP serial number cannot be determined, Fabric Watch applies pre-Fabric OS v7.0.0 thresholds. This operand is optional and supported only on Condor 3-based platforms; if omitted, legacy thresholds and actions apply to 8G SFPs. Valid SFP types include the following:

16GSWL

Brocade-branded 16G SFP with serial number HA.

16GLWL

Brocade-branded 16G SFP with serial number HD.

QSFP

Brocade-branded 16G QSFP.

10GSWL

Brocade-branded 10G SFP with serial number KA.

10GLWL

Brocade-branded 10G SFP with serial number KD.

-highth -value value

Specifies the high threshold value for triggering a specified alert action. To change the default value, provide an integer value.
-lowth -value value
 Specifies the low threshold for triggering a specified alert action. To change the
default value, provide an integer value.

-trigger above | below
 Specifies the actions for in range behavior. In range is defined as the space
 above the low threshold and below the high threshold.

-action actions
 Specifies the actions triggered by a configured event condition. Valid values
 include one or more of the following actions. If more than one action is specified,
 the actions must be separated by commas. To change the existing configuration
 of actions, you must first issue the command with the none option to reset the
 existing configuration, and then reissue the command with the new configuration
 of actions.

 raslog
 Event triggers a RASlog message.

 snmp
 Event triggers an SNMP trap.

 email
 Event triggers an e-mail.

 portlog
 Locks the port log (only applicable to SFP state change area and FABRIC
 class). Following an event, the port log locks to retain information about an
 event, preventing the information from being overwritten as the log becomes
 full.

 none
 Event triggers no action.

-buffer value
 Specifies the buffer value for in range behavior. A buffer defines a zone within
 which event criteria are met, rather than a single threshold value. This operand is
 valid only with the -trigger options.

-nosave
 Prevents the configuration changes from being saved persistently. This option
 allows you to make and view changes without overwriting the saved configuration.
 When you use --set with the nosave option and the switch reboots your changes
 will be lost.

--apply
 Applies the custom or default configuration for thresholds, actions, or both. This
 command allows you to toggle between custom and default settings. The
 specified configuration takes effect upon execution of this command. When you
 select custom, the saved configuration becomes effective. You must specify a
 class and an area when applying a configuration.

--cancel
 Cancels a nonpersistent custom configuration. This command effectively undoes
 the nosave operation without reboot. You must specify a class and an area with
 this command. Thresholds and alarm levels are optional; if omitted, all
 nonpersistent configurations for the specified class and area are canceled.
--show

Displays the threshold configuration or run-time status for all configured classes and areas. You can optionally specify a class to display the threshold for all areas in that class. Or you can specify a class and an area to display the area-specific configuration only. When issued without operands, this command displays all configured thresholds for all Fabric Watch classes. When issued with the -sfptype option on Condor 3-based platforms, this command displays an additional column with SFP type.

The following operands are optional and valid only with the --show option.

-current

Displays current values for a specified class and area, as registered by Fabric Watch, or for all port types and areas. The output includes the class, area, port number, circuit number if applicable, current value, Fabric Watch State, and Monitoring State (pause or continue). The SFP type is displayed for the SFP class. The State field reports whether the current value is above, in range, or below (info) the configured threshold.

-only_area

Displays a comprehensive listing of the specified Fabric Watch class (applicable only to the FILTER class) and associated areas. If a class is provided, this command displays the areas of the specified class.

The following operands are optional with the --apply, --cancel, and --show options; if omitted, defaults are used.

-thresh_level def | cust

Configures or displays default or custom threshold configuration settings.

-action_level def | cust

Configures or displays default or custom configuration settings.

--pause | --continue arguments

Pauses or resumes monitoring. The following arguments are required:

class

Specifies the class.

-area area[,area]... | all

Specifies the area. You can either specify one or more areas separated by a comma, or you can specify all to indicate all areas.

-port port_list | all

Specifies one or more ports or all ports. The port_list operand supports one of the following values:

- A single port number preceded by the slot number on bladed systems.
- A set of comma-separated port numbers, preceded by the slot number on bladed systems, for example, 3,8,15, or 1/1,1/9,2/27.
- A port range, for example 3-24 or 1/1-1/9. A port range cannot span slots. port ranges are supported only with the SFP, FILTER, and EE classes.

-index index | all

Specifies the index number for areas in the FABRIC and SECURITY classes (supported only with the FABRIC and SECURITY classes).

--help

Displays the command usage.
EXAMPLES

To set custom thresholds for the SFP class and temperature area for a 16G QSFP on a DCX 8510-8:

```bash
switch:admin> thconfig --set sfp -area temp -sfptype qsfp \
   -highth -value 32 -trigger above -action email
switch:admin> thconfig --set sfp -area temp -sfptype qsfp\ 
   lowth -value 0 -trigger above -action raslog
```

To apply the new custom settings so they become effective:

```bash
switch:admin> thconfig --apply sfp -area temp -sfptype qsfp \ 
   -action cust -thresh_level cust
```

To set high thresholds for the security class and login violation area with SNMP alerts and save the thresholds nonpersistently:

```bash
switch:admin> thconfig --set security -area lv \ 
   -highth -value 0 -trigger above \ 
   -action snmp -nosave
switch:admin> thconfig --set security -area lv \ 
   -highth -value 0 -trigger below \ 
   -action none -nosave
```

To cancel the custom settings that have previously been saved nonpersistently:

```bash
switch:admin> thconfig --cancel security -area lv \ 
   -action cust -thresh_level cust
```

To display the Fabric Watch configuration for the QSFP temperature on a DCX 8510-8:

```bash
switch:admin> thconfig --show sfp -area temp -sfptype qsfp
```

Class: SFP

SFP TYPE: QSFP

<table>
<thead>
<tr>
<th>Area</th>
<th>TEMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ThLevel</td>
<td>Def</td>
</tr>
<tr>
<td>ActLevel</td>
<td>Def</td>
</tr>
<tr>
<td>High</td>
<td></td>
</tr>
</tbody>
</table>

Custom:

- TimeBase: None
- Value: 85
- Trigger: Above
- Action: Raslog
- Trigger: Below
- Action: Raslog

Default:

- TimeBase: None
- Value: 85
- Trigger: Above
- Action: Raslog
- Trigger: Below
- Action: Raslog

Low:

Custom:

- TimeBase: None
- Value: -5
- Trigger: Above
- Action: Raslog

Default:

- TimeBase: None
- Value: -5
- Trigger: Below
- Action: Raslog
To display only the custom thresholds for the QSFP temperature:

```bash
switch:admin> thconfig --show sfp -area temp -sfptype qsfp -thresh_level cust
```

```
Class: SFP
SFP TYPE: QSFP
    Area  : TEMP
    ThLevel : Def
    ActLevel: Def
    High    :
        Custom:
            TimeBase: None
            Value   : 85
            Trigger : Above Action: Raslog
            Trigger : Below Action: Raslog
    Low:
        Custom:
            TimeBase: None
            Value   : -5
            Trigger : Below Action: Raslog
    Buffer:
        Custom:
            Value   : 0
```

To pause and then resume monitoring of the SFP area:

```bash
switch:admin> thconfig --pause SFP -area all -port all
switch:admin> thconfig --continue SFP -area all -port all
```

To display the monitoring status for the QSFPs:

```bash
switch:admin> thconfig --show sfp -sfptype qsfp -c
```

```
Class | Area  | Index | Value | State  | Monitoring | SfpType
----- |-------|------ |-------|------- |-----------|-------
SFP   | TEMP  | 000385| 0     | Info   | Continue  | QSFP
SFP   | TEMP  | 000388| 0     | Info   | Continue  | QSFP
SFP   | TEMP  | 000392| 0     | Info   | Continue  | QSFP
SFP   | TEMP  | 000397| 0     | Info   | Continue  | QSFP
SFP   | TEMP  | 000400| 0     | Info   | Continue  | QSFP
SFP   | TEMP  | 000407| 0     | Info   | Continue  | QSFP
SFP   | TEMP  | 000408| 0     | Info   | Continue  | QSFP
SFP   | TEMP  | 000412| 0     | Info   | Continue  | QSFP
SFP   | TEMP  | 000419| 0     | Info   | Continue  | QSFP
SFP   | TEMP  | 000420| 0     | Info   | Continue  | QSFP
SFP   | TEMP  | 000425| 0     | Info   | Continue  | QSFP
SFP   | TEMP  | 000431| 0     | Info   | Continue  | QSFP
SFP   | TEMP  | 000435| 0     | Info   | Continue  | QSFP
SFP   | TEMP  | 000439| 0     | Info   | Continue  | QSFP
SFP   | TEMP  | 000443| 0     | Info   | Continue  | QSFP
SFP   | TEMP  | 000445| 0     | Info   | Continue  | QSFP
```
thConfig

SFP | TEMP | 001152 | 0 | Info | Continue | QSFP
SFP | TEMP | 001157 | 0 | Info | Continue | QSFP
SFP | TEMP | 001161 | 0 | Info | Continue | QSFP
SFP | TEMP | 001164 | 0 | Info | Continue | QSFP
SFP | TEMP | 001168 | 0 | Info | Continue | QSFP

SEE ALSO fwHelp, portFencing, portThConfig, sfpShow, sysMonitor, thMonitor
thMonitor

Enables monitoring of small form-factor pluggables (SFPs).

SYNOPSIS

thmonitor --enable brcdsfp
thmonitor --disable brcdsfp
thmonitor --show

DESCRIPTION

Use this command to enable Fabric Watch threshold monitoring for 10G and 16G SFPs and for 16G QSFPs. Fabric Watch does not monitor 10G and 16G SFPs or 16G QSFPs unless monitoring is explicitly enabled with this command.

NOTES

This command requires a Fabric Watch license.
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:
--enable brcdsfp

Enables Fabric Watch threshold monitoring for 10G and 16G SFPs and for 16G QSFPs. The feature is by default disabled.

--disable brcdsfp

Disables Fabric Watch threshold monitoring for 10G and 16G SFPs and for 16G QSFPs.

--show

Displays the current configuration.

--help

Displays the command usage.

EXAMPLES

To enable Fabric Watch threshold monitoring for 10G and 16G SFPs and for 16G QSFPs.

switch:admin> thmonitor --enable brcdsfp
Brcd SFP Threshold Monitoring is enabled

To display the configuration:

switch:admin> thmonitor --show
Brcd SFP Threshold Monitoring is enabled

To disable Fabric Watch threshold monitoring for 10G and 16G FPs and for 16G QSFPs.

switch:admin> thmonitor --disable brcdsfp
Brcd SFP Threshold Monitoring is disabled

SEE ALSO

thConfig, sfpShow
timeOut

Sets or displays the idle timeout value for a login session.

SYNOPSIS

```
timeout [timeval]
```

DESCRIPTION

Use this command without an operand to display the current timeout value (in minutes) after which idle logins are automatically terminated.

Use this command with the `timeval` operand to set the login timeout value to the specified interval. A value of 0 disables timeout of login sessions.

The new timeout value takes effect with the next logins.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operand:

- `timeval`

 Specify the number of minutes for the Telnet timeout value. Valid values are 1 to 99,999, or 0 to disable login timeouts. This operand is optional; if omitted, the command displays the current timeout value.

EXAMPLES

To set the idle timeout to 10 minutes:

```
switch:admin> timeout 10
IDLE Timeout Changed to 10 minutes
The modified IDLE Timeout will be in effect after NEXT login
```

SEE ALSO

None
topologyShow Displays the unicast fabric topology.

SYNOPSIS

```
topologyshow [domain]
```

DESCRIPTION

Use this command to display the fabric topology as it appears to the local switch. The display varies depending on the hardware configuration. The following rules apply:

- On all switches, the command displays the number of domains in the fabric and the local Domain IDs. If translate domains are configured, existing translate domains and associated ports are displayed.
- On an edge fabric, the command displays the following additional details for all domains in the fabric (including local translate domains):
 - All possible paths from the local switch to each of the remote domains.
 - For each path, the cost, the associated output port on the local switch, the path cost, and the number of hops from the local switch to the destination switch.
 - A summary of all ports that are routed through that path.
- On a backbone fabric, the command displays details for remote domains only. Details for local translate domains are not displayed.
- If there are two switches in the Backbone and the edge fabric is directly connected to both of those switches, `topologyshow` does not display the description of the translate domain associated with that edge fabric. In this case the translate domain is considered local to both of the switches in the backbone.
- If there is only one switch in the backbone, no domain details are displayed (all domains are local).

Depending on the fabric, the display may contain the following fields:

- **Local Domain ID**
 - The domain number of local switch.
- **Local Translate Domain x owned by port**
 - The port number associated with the local translate domain x.
- **Domain**
 - The domain number of destination switch.
- **Metric**
 - The cost of reaching destination domain.
- **Name**
 - The name of the destination switch.
- **Path Count**
 - The number of currently active paths to the destination domain. The maximum number of paths supported is 16. If there are more than 16 paths, the path count displays as `16 of number of paths available`, for example, "16 of 20".
- **Hops**
 - The maximum number of hops to reach destination domain.
- **Out Port**
 - The port to which incoming frames are forwarded to reach the destination domain.
- **In Ports**
 - The input ports that use the corresponding out port to reach the destination domain. This is the same information provided by `portRouteShow` and `uRouteShow` but in a different format.
TopoShow

Total Bandwidth
The maximum bandwidth of the out port. A bandwidth that is less than 0.512 Gbps is adjusted to the nearest power of 2 value. A bandwidth in the range of 0.512 Gbps (included) to 1 Gbps (not included) is adjusted to the 0.512 Gbps value. No adjustment takes place if the bandwidth is greater or equal to 1 Gbps.

Bandwidth Demand
The maximum bandwidth demand by the in ports.

Flags
Always D, indicating a dynamic path. A dynamic path is discovered automatically by the FSPF path selection protocol.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
The following operand is optional:

`domain`
Specify the destination domain for which to display the topology information.

EXAMPLES
To display the topology on a single switch: domain is local, details are not displayed.

```
switch:user> topologyshow
```

1 domains in the fabric; Local Domain ID: 97

When executed from an edge fabric, `topologyshow` displays details for all domains, including local domains and local translate domains:

```
switch:user> topologyshow
```

6 domains in the fabric; Local Domain ID: 7

```
Domain:         1
Metric:         10500
Name:           fcr_xd_1_1
Path Count:     1

Hops:                   2
Out Port:               11
In Ports:               0 1 2 3 4 5 6 7 8 9 15
Total Bandwidth:        8.000 Gbps
Bandwidth Demand:       1275 %
Flags:                  D

Domain:         2
Metric:         1000
Name:           fcr_fd_2
Path Count:     1

Hops:                   2
Out Port:               15
In Ports:               0 1 2 3 4 5 6 7 8 9 11
Total Bandwidth:        2.000 Gbps
Bandwidth Demand:       4000 %
Flags:                  D
```

Domain: 3
Metric: 10500
The command is executed from the backbone in a fabric with five switches. The fabric has five domains, but details are only shown for the three remote domains, not for the two local translate domains.

```
switch:user> topologyshow

5 domains in the fabric; Local Domain ID: 2
Local Translate Domain 4 owned by port: 24
Local Translate Domain 5 owned by port: 23 33

Domain:         1
Metric:         500
Name:           pengsaturn104
Path Count:     1

    Hops:       1
    Out Port:   0
    In Ports:   23 24 33 38 39
    Total Bandwidth: 8.000 Gbps
    Bandwidth Demand: 350 %
    Flags:       D

Domain:         3
Metric:         10500
Name:           fcr_xd_3_6
Path Count:     1

    Hops:       2
    Out Port:   0
    In Ports:   23 24 33 38 39
    Total Bandwidth: 8.000 Gbps
    Bandwidth Demand: 350 %
    Flags:       D
```

SEE ALSO
`fcrXlateConfig`, `portRouteShow`, `uRouteShow`
traceDump

Initiates, or removes a trace dump or displays the trace dump status.

SYNOPSIS

traceDump [-S]
traceDump -n [-s slot]
traceDump -r [-s slot] | -R
traceDump -c [-s slot]

DESCRIPTION

Use this command to initiate a background trace dump, to remove the content of a trace dump, or to display the dump status on the switch.

When executed without operands, this command defaults to traceDump -S.

Execution of traceDump -n generates a local trace dump locally. Use supportSave to transfer the local trace dump to a remote host. When supportSave is used, the default remote file name format for the trace dump file is as follows:

chassisname-S#xxs-YYYYMMDDHHMSS.type_[NEW | OLD].dmp.gz

When the traceDump -n -s command is used with an AP blade, the trace dump is generated with the following file name format:

chassisname-S#xxs-YYYYMMDDHHMSS_dump.tar.gz

S# Indicates the slot number (0 on standalone platforms)
xxs Indicates the processor. Values are cp0, cp1, bp0, bp1, dp0, or dp1.
YYYYMMDDHHMSS Indicates the trace dump time stamp (year-month-day-hour-minute-second).
type Indicates the tracedump type. Valid types include TRACE, BTRACE, DTRACE, and CTRACE.
NEW | OLD Indicates a new or an old trace dump file.
dmp.gz The compressed trace dump archive file extension.

For example, the filename for a a new BFOS tracedump received from slot 10 on chassisABC would be chassisABC-S10bp-201103031111.BTRACE_NEW.dmp.gz.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following mutually exclusive operands:

-S Displays the trace dump status This operand is optional. If omitted, the same status information is displayed.

-n Initiates a background trace dump.
traceDump

-\(r \)\n
Clears the status of a particular trace dump on a specified slot.

-\(R \)\n
Clears the status of a particular trace dump on all slots.

-\(c \)\n
Clears all trace dump buffers. This operation resets the trace buffer contents.

-\(s \) slot\n
Specifies the slot number from which a trace dump is generated. If a slot is not supplied, the trace dump is generated from the local slot. This operand is optional.

EXAMPLES

To initiate a background trace dump from slot 5:

```
switch:admin> tracedump -n -s 5
```

To clear the status of a trace dump:

```
switch:admin> tracedump -R
trace dump removed
```

To clear the content of the trace dump buffer:

```
switch:admin> tracedump -c
Cleared Trace Buffer contents
```

SEE ALSO supportFtp, supportSave, supportShow
trunkDebug

Deubs a trunk link failure.

SYNOPSIS trunkdebug port1 port2

DESCRIPTION Use this command to debug a trunk link failure. This command reports one of the following messages, based on the trunking properties of the two specified ports:

- Switch does not support trunking
- Trunking license required
- port port_id is not E_Port
- port port_id trunking disabled
- port port_id speed is not 2G, 4G or 8G
- port port_id and port port_id are not in same port group
- port port_id and port port_id connect to different switches
- port port_id and port port_id connect to the switch WWN
- port port_id is not a trunking port due to: E_Port being disabled, or trunking might be disabled at remote port
- port port_id and port port_id cannot trunk, please check link length to make sure difference is less than 400 m

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS This command has the following operands:

- port1
 Specify the port index number of port 1. Use the switchShow command to view the index numbers for a port. This operand is required.

- port2
 Specify the port index number of port 2. Use the switchShow command to view the index numbers for a port. This operand is required.

EXAMPLES To debug a trunk connection:

- switch:admin> trunkdebug 43 44
 Switch does not support trunking

- switch:admin> trunkdebug 62 63
 port 62 and 63 are trunked together

SEE ALSO portCfgTrunkPort, switchCfgTrunk, trunkShow
trunkShow

Displays trunking information.

SYNOPSIS

trunkshow [-perf]

DESCRIPTION

Use this command to display trunking information of both E_Ports and EX_Ports. The command displays the following fields:

Trunking Group Number
Displays each trunking group on a switch. All ports that are part of this trunking group are displayed.

Port to port connections
Displays the port-to-port trunking connections.

WWN
Displays the world wide name of the connected port.

Domain
Displays the domain IDs of the switches directly connected to the physical ports. In case of an FC Router backbone fabric interlinking several edge fabrics, the domain ID displayed for an E_Port trunk refers to a domain of a switch within the backbone fabric, whereas the domain ID displayed for an EX_Port trunk refers to the domain ID of a switch in the edge fabric. Because they are independent fabrics, it is possible that both the backbone and the edge fabric may have the same domain ID assigned to switches. If this is the case, run switchShow to obtain information on the port types of the local switch and the WWNs of the remote switches. Refer to the Example section for an illustration.

deskew
The difference between the time it takes for traffic to travel over each ISL compared to the time it takes through the shortest ISL in the group plus the minimum deskew value. The value is expressed in nanoseconds divided by 10. The firmware automatically sets the minimum deskew value for the shortest ISL, which is 15.

Master
Displays whether this trunking port connection is the master port connection for the trunking group.

When used with the -perf option, the command output displays the following additional information:

bandwidth
The bandwidth (Rx, Tx, and the combined total for Tx+Rx) of the trunk group. Values are displayed as either bits per second (Bps), kilobits per second (Kbps), megabits per second (Mbps), or gigabits per second (Gbps), rounded down to the next integer.

throughput
Displays the throughput (Rx, Tx, and the combined total for Tx+Rx) of the trunk group. Results are displayed for the previous second. Values are displayed as either bits per second (Bps), kilobits per second (Kbps), megabits per second (Mbps), or gigabits per second (Gbps), rounded down to the next integer.

% Displays the percentage of link utilization (Rx, Tx, and the combined total for Tx+Rx). Even when the link utilization is 100%, the throughput value will be lesser than the bandwidth value, due to the 8b/10b encoding and the control words transmitted. For example, the throughput for an 8Gbps link at 100% utilization would be approximately 6.8Gbps.
NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
This command has the following operand:
- perf
Displays the total bandwidth, throughput, and percentage of link utilization information for the trunk group (Rx, Tx, and combined total for Tx+Rx). This operand is optional.

EXAMPLES
To display trunking information for a switch:

switch:admin> trunkshow
1: 43-> 0 10:00:00:05:1e:53:e3:8a 92 deskew 15 MASTER

2: 58-> 66 10:00:00:05:1e:4f:eb:00 65 deskew 16 MASTER
 61-> 9 10:00:00:05:1e:4f:eb:00 65 deskew 16
 57-> 5 10:00:00:05:1e:4f:eb:00 65 deskew 16
 60-> 8 10:00:00:05:1e:4f:eb:00 65 deskew 15
 56-> 4 10:00:00:05:1e:4f:eb:00 65 deskew 16
 63-> 1 10:00:00:05:1e:4f:eb:00 65 deskew 16
 62-> 0 10:00:00:05:1e:4f:eb:00 65 deskew 16

3: 59-> 67 10:00:00:05:1e:4f:eb:00 65 deskew 15 MASTER

To display trunking information for a switch that is part of an FC Router backbone fabric interlinking several edge fabrics (see the EX_Port with WWN "10:00:00:05:1e:35:b3:03" and the E_Port with WWN "10:00:00:05:1e:37:12:13" in the output below):

switch:admin> trunkshow
4: 49-> 0 10:00:00:05:1e:35:b3:03 4 deskew 16 MASTER
 54-> 2 10:00:00:05:1e:35:b3:03 4 deskew 16
 53-> 5 10:00:00:05:1e:35:b3:03 4 deskew 16
 50-> 6 10:00:00:05:1e:35:b3:03 4 deskew 15
 51-> 4 10:00:00:05:1e:35:b3:03 4 deskew 16
 52-> 7 10:00:00:05:1e:35:b3:03 4 deskew 67
 55-> 3 10:00:00:05:1e:35:b3:03 4 deskew 16
 48-> 1 10:00:00:05:1e:35:b3:03 4 deskew 15

5: 71-> 22 10:00:00:05:1e:37:12:13 4 deskew 17 MASTER
 67-> 17 10:00:00:05:1e:37:12:13 4 deskew 16
 70-> 20 10:00:00:05:1e:37:12:13 4 deskew 16
 69-> 21 10:00:00:05:1e:37:12:13 4 deskew 16
 66-> 18 10:00:00:05:1e:37:12:13 4 deskew 17
 68-> 23 10:00:00:05:1e:37:12:13 4 deskew 17
 64-> 16 10:00:00:05:1e:37:12:13 4 deskew 15
 65-> 19 10:00:00:05:1e:37:12:13 4 deskew 16

switch:admin> switchshow
 48 4 0 103000 id N4 Online EX-Port \n (Trunk port, master is Slot 4 Port 1)
 49 4 1 013100 id N4 Online EX-Port \n 10:00:00:05:1e:35:b3:03 "SW4100_33" (fabric id = 100)\n (Trunk master) E-Port \n 50:00:51:e3:70:bb:af:c1 "fcr_xd_9_100" \n 50 4 2 013200 id N4 Online EX-Port \n (Trunk port, master is Slot 4 Port 1)
 51 4 3 013300 id N4 Online EX-Port \n (Trunk port, master is Slot 4 Port 1)
To display trunking information along with bandwidth throughput information:

```
switch:admin> trunkshow -perf
1: 43->  0 10:00:00:05:1e:53:e3:8a  92 deskew 15 MASTER
   Tx: Bandwidth 4.00Gbps, Throughput 288.00bps (0.00%)
   Rx: Bandwidth 4.00Gbps, Throughput 320.00bps (0.00%)
   Tx+Rx: Bandwidth 8.00Gbps, Throughput 608.00bps (0.00%)

2: 58->  66 10:00:00:05:1e:4f:eb:00  65 deskew 16 MASTER
   61->  69 10:00:00:05:1e:4f:eb:00  65 deskew 16
   57->  65 10:00:00:05:1e:4f:eb:00  65 deskew 16
   60->  68 10:00:00:05:1e:4f:eb:00  65 deskew 15
   56->  64 10:00:00:05:1e:4f:eb:00  65 deskew 16
   63->  71 10:00:00:05:1e:4f:eb:00  65 deskew 16
   62->  70 10:00:00:05:1e:4f:eb:00  65 deskew 16
   Tx: Bandwidth 28.00Gbps, Throughput 320.00bps (0.00%)
   Rx: Bandwidth 28.00Gbps, Throughput 1.73Kbps (0.00%)
   Tx+Rx: Bandwidth 56.00Gbps, Throughput 2.05Kbps (0.00%)

3: 59->  67 10:00:00:05:1e:4f:eb:00  65 deskew 15 MASTER
   Tx: Bandwidth 8.00Gbps, Throughput 0.00bps (0.00%)
   Rx: Bandwidth 8.00Gbps, Throughput 0.00bps (0.00%)
   Tx+Rx: Bandwidth 16.00Gbps, Throughput 0.00bps (0.00%)
```

SEE ALSO
portCfgTrunkPort, switchCfgTrunk
tsClockServer

Displays or sets the Network Time Protocol (NTP) Server addresses.

SYNOPSIS
tsclockserver [ipaddr; ipaddr ...]

DESCRIPTION
Use this command to synchronize the local time of the Principal or Primary FCS switch to one or more external NTP servers.

This command accepts a list of NTP server addresses. The NTP server addresses can be passed in either IPV4 or IPV6 address format or as a DNS server name. When multiple NTP server addresses are specified, tsClockServer sets the first reachable address for the active NTP server. The remaining addresses are stored as backup servers, which can take over if the active NTP server fails.

The time server daemon synchronizes fabric time by sending updates of the Principal or Primary FCS local switch time periodically to every switch in the fabric. The time server daemon runs on all switches in the fabric, but only the Principal switch (when an FCS policy is not enabled) or the Primary FCS switch (when an FCS policy is enabled) connect to the NTP server (if specified) and broadcasts time service updates.

All switches in the fabric maintain the current clock server IP address in nonvolatile memory. By default, this value is LOCL, that is, the local clock of the Principal or the Primary FCS switch is the default clock server. Changes to the clock server IP addresses on the Principal or Primary FCS switch are propagated to all switches in the fabric.

Use this command without parameters to display the active NTP server and the configured NTP server list. Specify the ipaddr operands to set the clock server IP addresses and enable fabric-wide clock synchronization with the specified clock server. A value of LOCL may be specified as operand to set the clock server back to default.

Each ipaddr specified should be the IP address of an NTP server and should be accessible from the switch. The NTP server must support a full NTP client. When a clock server IP address other than LOCL is specified but is not used by the fabric, a warning is displayed and logged. When a clock server IP address other than LOCL is specified, the date command is restricted to display only. Refer to the date command help for details.

NOTES
When an FCS policy is enabled, this command can be run on all switches to view the clock server value. However, you can only modify the clock server value from the Primary FCS switch.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS
This command has the following operand:

ipaddr

Specify the IP address of the NTP server or LOCL to use the local clock of the Principal or Primary FCS switch as the clock server. If more than one IP address is specified, separate the IP addresses by semicolons and enclose the list in double quotation marks. This operand is optional; if omitted, the current NTP server configuration is displayed. The default NTP server is LOCL.

EXAMPLES
To display the default clock server:

switch:admin> tsclockserver
LOCL
To set the NTP server to a specified IP address:

```
switch:admin> tsclockserver 123.123.123.123
Updating Clock Server configuration...done.
```

```
switch:admin> tsclockserver
123.123.123.123
```

To configure multiple NTP servers:

```
switch:admin> tsclockserver "12.134.125.24; 12.234.87.01"
Updating Clock Server configuration...done.
```

SEE ALSO date
tsTimeZone

Displays or sets the system time zone.

SYNOPSIS
tstimezone --interactive
tstimezone timezonename

tstimezone --old hourOffset[,minuteOffset]

DESCRIPTION
Use this command to display or set the system time zone.

All switches maintain the current time zone setup in nonvolatile memory. Changing the time zone on a switch updates the local time zone setup and is reflected in local time calculations.

All switches are by default in the 0,0 time zone, which is GMT. If all switches in a fabric are located in the same time zone, you may leave the default time zone setup.

Time zone is used in computing local time for error reporting and logging. An incorrect time zone setup does not affect the switch operation in any way.

System services started during the switch boot reflect a time zone change only at the next reboot.

The time zone can be specified in the following two ways, by name or in an hours and minutes offset format:

- The offset format is specified with the --old option, followed by an hour offset value and optionally a minute offset value.
- The time zone name format uses the timezone database, which automatically adjusts for Daylight Saving Time.

By default, the switch is in offset mode (--old), with zero offsets, that is, time is displayed in GMT. Use tsTimeZone timezone to change the offset format to the timezone name format.

When executed without parameters, this command displays the current time zone configuration in the format in which it was set.

- Negative hour offset values mean that the local time is behind GMT; for example, -8,0 is GMT-08:00.
- Positive hour offset values mean the that local time is ahead of GMT; for example, 3,0 is GMT+03:00.

When Virtual Fabrics are enabled, the hardware clock is updated by the default switch in the chassis, and the time zone set on any logical switch applies to all logical switches on the chassis. The tsTimeZone command requires chassis permissions.

Because there is only one clock on the chassis, for the time server to function correctly, ensure that all logical switches in the fabric have the same NTP Clock Server configured. This includes any Pre-v6.2.0 switches in the fabric.

NOTES
The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

The option 11 (none) in interactive command mode to specify the time zone using the POSIX TZ format is not supported.

OPERANDS
This command has the following operands:

--old

Specifies the time zone in the offset format.
hourOffset

Specifies the number of hours relative to GMT. This operand must be specified as an integer. Valid values are -12 to 12. This operand is required with the --old option.

minuteOffset

Specifies the number of minutes relative to hour offset. This operand must be specified as an integer and is valid only with the --old option. Valid values are -30, 0, or 30. This operand is optional; if not specified, the value defaults to 0.

timezonename

Specifies the name of a time zone from the time zone database. Use tsTimeZone --interactive for a listing of valid time zone name.

--interactive

Interactively sets the timezone in name format.

EXAMPLES

To display the current time zone setup and then change it to GMT-3:30:

switch:admin> tsTimeZone
Time Zone Hour Offset: 0
Time Zone Minute Offset: 0

switch:admin> tsTimeZone -3, -30
Updating Time Zone configuration...done.
System Time Zone change will take effect at next reboot.

switch:admin> tsTimeZone
Time Zone Hour Offset: -3
Time Zone Minute Offset: -30

To set the current timezone to the zone to Pacific Time using the interactive command mode:

switch:admin> tsTimeZone --interactive
Please identify a location so that time zone rules can be set correctly.
Please select a continent or ocean.
1) Africa
2) Americas
3) Antarctica
4) Arctic Ocean
5) Asia
6) Atlantic Ocean
7) Australia
8) Europe
9) Indian Ocean
10) Pacific Ocean
11) none - I want to specify the time zone using the POSIX TZ format.
Enter number or control-D to quit ?2
Please select a country.
1) Anguilla 28) Haiti
2) Antigua & Barbuda 29) Honduras
3) Argentina 30) Jamaica
4) Aruba 31) Martinique
5) Bahamas 32) Mexico
6) Barbados 33) Montserrat
7) Belize 34) Nicaragua
8) Bolivia 35) Panama
9) Bonaire Sint Eustatius & Saba 36) Paraguay
10) Brazil 37) Peru
11) Canada 38) Puerto Rico
12) Cayman Islands 39) Sint Maarten
Please select one of the following time zone regions.

1) Eastern Time
2) Eastern Time - Michigan - most locations
3) Eastern Time - Kentucky - Louisville area
4) Eastern Time - Kentucky - Wayne County
5) Eastern Time - Indiana - most locations
6) Eastern Time - Indiana - Daviess, Dubois, Knox & Martin Counties
7) Eastern Time - Indiana - Pulaski County
8) Eastern Time - Indiana - Crawford County
9) Eastern Time - Indiana - Pike County
10) Eastern Time - Indiana - Switzerland County
11) Central Time
12) Central Time - Indiana - Perry County
13) Central Time - Indiana - Starke County
14) Central Time - Michigan - Dickinson, Gogebic, Iron & Menominee Counties
15) Central Time - North Dakota - Oliver County
16) Central Time - North Dakota - Morton County (except Mandan area)
17) Central Time - North Dakota - Mercer County
18) Mountain Time
19) Mountain Time - south Idaho & east Oregon
20) Mountain Time - Navajo
21) Mountain Standard Time - Arizona
22) Pacific Time
23) Alaska Time
24) Alaska Time - Alaska panhandle
25) Alaska Time - southeast Alaska panhandle
26) Alaska Time - Alaska panhandle neck
27) Alaska Time - west Alaska
28) Aleutian Islands
29) Metlakatla Time - Annette Island
30) Hawaii

Enter number or control-D to quit?

The following information has been given:
United States
Mountain Time

Therefore TZ='America/Denver' will be used.

Local time is now: Tue Nov 6 02:43:16 MST 2012.
Universal Time is now: Tue Nov 6 09:43:16 UTC 2012.
Is the above information OK?
1) Yes
2) No
Enter number or control-D to quit
System Time Zone change will take effect at next reboot

To revert back to the offset format and verify the configuration:

```
switch admin> tstimezone --old 2
```

```
switch admin> tstimezone
Time Zone Hour Offset: 2
Time Zone Minute Offset: 0
```

SEE ALSO date
turboRamTest

Performs a turbo SRAM test of ASIC chips.

SYNOPSIS

\[\text{turboramtest} \]
\[\text{--slot slot} \]
\[\text{-passcnt count} \]

\[\text{ceeturboramtest} \]
\[\text{--slot slot} \]
\[\text{-passcnt count} \]

DESCRIPTION

Use this command to verify the chip SRAM located in the ASIC using the turbo-RAM BIST circuitry. The BIST controller is able to perform the SRAM write and read operation at a much faster rate than the PCI operation.

The turboRamTest and ceeTurboRamTest commands are platform-specific versions of the same test. The turboRamTest command is supported on all Goldeneye2 and Condor-based platforms. Use ceeTurboRamTest on FCoE platforms only. On all other supported platforms, use turboramtest. Refer to the Fabric OS Troubleshooting and Diagnostics Guide, Appendix A, for a table that correlates ASIC type with switch models.

NOTES

Do not abort this test prematurely, using CTRL-C or q to quit. Doing so may cause the test to report unexpected errors. Errors may vary depending on the hardware platform.

You cannot interrupt the test by pressing the return key (\<cr\>).

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This diagnostic cannot be run on an operational switch. You must disable the switch using the chassisDisable command before you can run this test. After the test completes, re-enable the switch using the chassisEnable command.

OPERANDS

This command has the following optional operands:

\[\text{--slot slot} \]

Specifies the slot number on which the diagnostic operates. All eligible blade ports in the specified slot are tested. This operand is optional. The default value is 0 and operates on fixed port count products.

\[\text{-passcnt count} \]

Specifies the number of times to perform this test. This operand is optional. The default value is 1.

EXAMPLES

To run the SRAM test with two passes:

\[\text{switch:admin> turboramtest -passcnt 2} \]

Running turboramtest

PASSED.
turboRamTest

To run the SRAM test on a Brocade FCoE10-24 blade in default mode:

```
switch:admin> ceeturboramtest

Running turboramtest .............

PASSED.
```

SEE ALSO None
upTime

Displays length of time the system has been operational.

SYNOPSIS

upTime

DESCRIPTION

This command displays the current time, how long the system has been running, how many users are currently logged on, and the system load averages for the past 1, 5, and 15 minutes.

If the uptime is less than 60 seconds, the time is displayed in seconds. For times greater than or equal to 60 seconds, the time is displayed in minutes. The output format adjusts accordingly.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

None

EXAMPLES

To display the length of time the system has been operational:

switch:admin> uptime
12:03am up 4:56, 3 users, load average: 1.17, 1.08, 1.08

SEE ALSO
date, fastBoot, reBoot

uRouteShow

Displays unicast routing information.

SYNOPSIS

u routeshow [slot[/]port] [domain]

DESCRIPTION

Use this command to display the unicast routing information for a port, as it is known by the FSPF path selection and routing task. The routing information describes how a frame that is received from a port on the local switch is to be routed to reach a destination switch.

The following information displays:

Local Domain ID

Domain number of local switch.

In Port

Port from which a frame is received. Except for the cases in which you perform a port swap or enable extended-edge PID (PID Format 2) on a switch, the value is equal to the port index field displayed by the switchShow command. Refer to Fabric OS Administrator's Guide for more information regarding the extended edge PID format.

Domain

Destination domain of incoming frame.

Out Port

Port to which the incoming frame is to be forwarded. Except for the cases in which you perform a port swap or enable extended edge PID (PID Format 2) on a switch, the value is equal to the port index field displayed by the switchShow command. For port swap operations, the value is equal to the switch port field displayed by the portSwapShow command. Refer to Fabric OS Administrator's Guide for more information regarding the extended-edge PID format.

Metric

Cost of reaching the destination domain.

Hops

Maximum number of hops required to reach the destination domain. If the number of hops are different for some multiple equal cost paths (to reach the same domain), then it displays the maximum number.

Flags

Indicates rout type as either dynamic (D) or static (S). A dynamic route is discovered automatically by the FSPF path selection protocol. A static route is assigned using the command uRouteConfig.

Next (Dom, Port)

Domain and port number of the next hop. These are the domain number and the port number of the switch to which Out Port is connected.

The information provided by this command should match what is provided by portRouteShow and topologyShow.
NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

- **slot**
 For bladed systems only, specify the slot number of the input port whose routes are displayed, followed by a slash (/).

- **port**
 Specify the number of the input port whose routes are to be displayed, relative to its slot for bladed systems. Use `switchShow` to display a list of valid ports. This operand is optional; if omitted, the command displays routing information for all input ports in the switch.

- **domain**
 Specify a remote domain in the fabric for which routing information is to be displayed. This operand is optional; if omitted, the routing information for all domains in the fabric is displayed.

EXAMPLES

To display the routing information of all the active ports:

```
switch:admin> urouteshow
Local Domain ID: 3
In Port Domain Out Port Metric Hops Flags Next (Dom, Port)
----------------------------------------------------------
 0       1      11     1000    1    D            1,0
Type <CR> to continue, Q<CR> to stop:
 11       2       0     1500    2    D            4,0
Type <CR> to continue, Q<CR> to stop:
 4       0      500    1    D            4,0
 16       1      27    1000    1       D         1,1
Type <CR> to continue, Q<CR> to stop:
 27       2      16    1500    2       D         4,16
```

To display the routing information of port 11 to domain 4 only:

```
switch:admin> urouteshow 1/11, 4
Local Domain ID: 3
In Port Domain Out Port Metric Hops Flags Next (Dom, Port)
-----------------------------------------------
 11       4      16     500    1    D            4,16
```

SEE ALSO

`portRouteShow`, `topologyShow`
usbStorage

Manages data files on an attached USB storage device.

SYNOPSIS

usbstorage [-e | --enable]
usbstorage [-d | --disable]
usbstorage [-l | --list]
usbstorage [-r | --remove area target]
usbstorage [-h | --help]

DESCRIPTION

Use this command to control a USB device attached to the Active CP. When the USB device is enabled, other applications, such as supportSave, firmwareDownload, or configDownload/cfgUpload can conveniently store and retrieve data from the attached storage device. Refer to the help pages for these commands for specific information on how the USB device is accessed by each application.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

This command is available only on the Active CP.

OPERANDS

This command has the following operands:

-e | --enable

Enables the USB device. The USB device must be enabled before the list and remove functions are available.

-d | --disable

Disables an enabled USB device. This command prevents access to the device until it is enabled again.

-r | --remove area target

Removes a target in a specified application storage area. Valid areas are: firmware, support, config, or firmwarekey. A specified area must be followed by a target. Any existing file in a given application directory can be specified as a target. This command removes all data associated with the specified target.

-l | --list

Lists the content of the USB device up to two levels down from the root directory.

-h | --help

Displays the command usage.

EXAMPLES

To enable an attached USB device:

```
switch:admin> usbstorage -e
USB storage enabled
```
To list the contents of the attached USB device:

```
switch:admin> usbstorage -l
```

```
firmwarekey\ 0B  2010 Aug 15 15:13
support\ 106MB  2010 Aug 24 05:36
  support1034\ 105MB  2010 Aug 23 06:11
config\ 0B  2010 Aug 15 15:13
firmware\ 380MB  2010 Aug 15 15:13
  FW_v6.4.0\ 380MB  2010 Aug 15 15:13
```

Available space on usbstorage 74%

To remove a firmware target from the firmware application area:

```
switch:admin> usbstorage -r firmware FW_v6.0.0
```

To disable an attached USB device:

```
switch:admin> usbstorage -d
```

USB storage disable

SEE ALSO supportSave, firmwareDownload, configUpload, configDownload
userConfig

Manages user accounts.

SYNOPSIS

userconfig

userconfig --show [username | -a | -r rolename]

userconfig --show ad -a AD_ID

userconfig --showlf -l LF_ID | -c

userconfig --add username -r role [-h AD_ID] [-a AD_ID_list] [-d description] [-p password] [-x]

userconfig --add username -r role -l LF_ID_list [-h LF_ID] [-c chassis_role] [-d description] [-p password] [-x]

userconfig --change username [-r role] [-h AD_ID] [-a AD_ID_list] [-d description] [-x] [-e yes | no] [-u]

userconfig --addad username [-h AD_ID][-a AD_ID_list]

userconfig --deletead username [-h AD_ID][-a AD_ID_list]

userconfig --addlf username [-h AD_ID][-l LF_ID_list] [-r role] [-c chassis_role]

userconfig --deletelf username [-h LF_ID][-l LF_ID_list] [-c]

userconfig --delete username

userconfig --help

DESCRIPTION

Use this command to manage user accounts on a switch. The command options and behavior depend on your environment.

- In an Admin Domain-enabled environment, you can configure the account's username, its role, and the Admin Domains that the account may access. An account is assigned a single role. An account can access multiple Admin Domains, but only one Admin Domain at a time. New accounts created take on the role specified during account creation.

- In a Virtual Fabric-enabled environment, you can configure the account's username, its role, and the logical fabrics that the account may access. An account can have different roles for different Logical Fabrics. An account can access multiple Logical Fabrics, but only one Logical Fabric at a time.

When executed without operands, this command displays the usage. The logical fabric command options are displayed only if Logical Fabrics are enabled on the switch.

You can execute the userConfig command on any switch. When the command completes, account information is saved persistently. On platforms supporting multiple switch domains, account information is saved only to the switch domain, in which the command was executed.
Use the `distribute` command to distribute the account database manually to other switches in the fabric. Target switches must be configured to accept the database. Accounts that are not consistent with the distributed database are overwritten. Account recovery from backup or access to backup data is not supported.

This command supports all user-defined roles in addition to the default roles provided with Fabric OS. To display the user-defined roles with their associated access permissions, use the `roleConfig --show -all` command. To display all roles, including the default roles, use the `roleConfig --show -all -default` command.

In a Logical Fabric environment, you can additionally define access to chassis-level commands. An account can have one role in the Logical Fabric, and another role regarding chassis commands.

NOTES

The `userConfig` command operates on the switch-local user database only, regardless of whether the switch is configured to use RADIUS or LDAP authentication.

The account database supports a maximum of 256 customer created accounts.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

This command has the following operands:

- `--show`
 Displays user account information. Only accounts with access permissions compatible with the SecurityAdmin and Admin roles can show information about accounts other than the current login account. The following operands are optional:

 - `username`
 Specifies the account login name. When no operand is specified, the command displays the current account information.

 - `-a`
 Displays information about all accounts.

 - `-r rolename`
 Displays information about all accounts with the specified role.

- `--showad`
 Displays Admin Domain permissions in an Admin Domain-enabled environment. The following operand is required:

 - `-a AD_ID_list`
 For each Admin Domain defined in the `AD_ID_list` operand, this option displays a list of users that include that Admin Domain in their Admin Domain permissions. Specify a range (1-5) or a list of Admin Domain IDs separated by a comma (1,2,3), or a combination of both (1-5,7). Only users with access permissions compatible with the SecurityAdmin or Admin role may execute this command.

- `--showlf`
 Displays Logical Fabric permissions in a Logical Fabrics-enabled environment. Only users with access permissions compatible with the SecurityAdmin or Admin role may execute this command. An operand is required with this command. The following operands are mutually exclusive:

 - `-l LF_ID_list`
 For each Logical Fabric in the `LF_ID_list`, this option displays a list of users that include that Logical Fabric in their Logical Fabrics permissions. Specify a range (1-5), or a list of Logical Fabric IDs separated by a comma (1,2,3), or a combination of both (1-5,7). Only users with access permissions compatible with the SecurityAdmin or Admin role may execute this command.
-c

Displays a list of users who have permission to execute chassis commands.

--add | --change

Creates a new user account or modifies an existing user account. The following restrictions apply when you create or modify a user account:

- You cannot change the role, the Admin Domain or Logical Fabric permissions, the home Admin Domain or the home Logical Fabric of any default account.
- You cannot change the role, the Admin Domain or Logical Fabric permissions, or the description of accounts at the same or a higher authorization level.
- You cannot change the role, the Admin Domain or Logical Fabric permissions, or the home Admin Domain or home Logical Fabric of your own account.
- No account can disable itself.
- Admin Domain or Logical Fabric permissions must be a subset of the respective Admin Domain or Logical Fabric permissions of the account that creates or modifies a user account.
- In an Logical Fabric-enabled environment, you can change the role associated with existing Logical Fabrics but you cannot add new Logical Fabrics or delete any existing Logical Fabrics.
- The account name cannot be the same as an existing user account, a default role, a user-defined role, or a system role. System roles are used by internal switch processes and include the following: bin, daemon, sys, adm, tty, disk, lp, mem, kmem, wheel, mail, news, uucp, man, dip, ftp, nobody, users, floppy, console, utmp, and slocate. If the specified username already exists, this command fails with an appropriate message. Choose a different username and reissue the command.

The following operands are supported with the --add and --change option

username

Specifies the login name of the account to be created or modified. Enter a valid login name to modify an existing account. For new accounts, the name must be unique and must begin with an alphabetic character. User names are case-sensitive and can contain up to 40 alphanumeric characters, including periods (.) and underscore (_) characters.

-r role

In an Admin Domain-enabled environment, this operand specifies the role for the account. In an Logical Fabric-enabled environment, this operand specifies the account's role for all Logical Fabrics provided with the Logical Fabric list. When you create a user account in an Logical Fabric-enabled environment, you can specify only one role for the user. This role is associated with each of the Logical Fabric IDs in the specified LF_ID_list. Once the account is created, you can use the --addlf option to create another list of Logical Fabric IDs with its own set of associated roles.

You can assign any role to the account, user-defined or default. Use the roleconfig --show command for a listing of valid roles. This operand is required with the --add option; it is optional with the --change option.

-h AD_ID | LF_ID

Specifies the home Administrative Domain or the home Logical Fabric depending on the environment. This operand is optional. If no Admin Domain or Logical Fabric is specified with the --add option, the system assigns the lowest numbered Admin Domain or Logical Fabric the user is authorized to access.
-a AD_ID_list
Specifies the Administrative Domains the user is authorized to access. The Admin Domains defined in the AD_ID_list operand and the existing Admin Domain permissions for the user name must be a subset of the Admin Domain permissions of the account that executes this command. This operand is optional. If no Admin Domain list is specified with the --add option, AD0 is assigned by default. Use comma-separated lists, ranges, or both, for example -a 0,9,10-15,244.

-l LF_ID_list
Specifies the Virtual Fabrics the user is authorized to access. The Logical Fabrics in LF_ID_list and the existing Logical Fabric permissions for username must be a subset of the Logical Fabric permissions of the account that executes this command. This operand is required with the --add option. It is optional with the --change option.

-c chassis_role
Specifies the account's access permissions at the chassis level. The chassis role allows the user to execute chassis-related commands in an Logical Fabric-enabled environment. To assign the chassis role to an account, the executing account must have chassis-level permissions. Valid chassis roles include the default roles and any of the user-defined roles. Use the roleconfig --show command for a listing of valid roles.

-d description
Provides a description for the new account. This operand is optional. The maximum length is 40 printable ASCII characters. Some characters that are interpreted by the shell (",’, ! etc.) require a preceding escape character (\). To include spaces, place the description in double quotation marks. Colons are not permitted.

-x
Optionally specifies an expired password that must be changed the first time the user logs into a new or modified account. This command also prompts for the existing password.

The following optional operand is available only with the --add option:

-p password
Specifies a password for the account. This operand is optional; if omitted, the command prompts for an initial password for the account. The password must satisfy all currently enforced password rules. By default the password is created with the configured expiration period.

The following optional operands are available only with the --change option:

-e yes | no
Enables or disables an account. Specify "yes" to enable or "no" to disable an account. Once an account is disabled, the CLI sessions associated with the account are terminated.

-u
Unlocks the specified user account. User accounts can get locked after several attempts to log in with an invalid password. Refer to the passwdCfg help page for more information.

--addad | --deletead
Adds one or more Admin Domains to a user account or deletes Admin Domains from a user account. The following operands are supported:

username
Specifies the account login name.
-h AD_ID

Specifies the account's home Admin Domain. This operand is optional.

- If a home Admin Domain is specified with the --addad option, it must be one of the Admin Domains defined in the AD_ID_list operand. If a home Admin Domain is not specified and username did not previously have a home Admin Domain, the home Admin Domain is set to the lowest numbered Admin Domain in the user's Admin Domain permissions.

- If a home Admin Domain is specified with the --deletead option, it must be one of the Admin Domains in the Admin Domain permissions remaining after the Admin Domains specified in the AD_ID_list operand have been removed. If a home Admin Domain is not specified, the current home Admin Domain remains unchanged, if it is still in the user's Admin Domain permissions. If a home Admin Domain is not specified and the user's current home Admin Domain is deleted, the new home Admin Domain is set to the lowest numbered Admin Domain in the user's Admin Domain permissions.

The existing Admin Domain permission for username, and the Admin Domains defined in the AD_ID_list operand must be a subset of the Admin Domain permissions of the account executing this command.

-a AD_ID_list

Specifies the Admin Domain IDs to be added or deleted. Specify a range (1-5) or a list of Admin Domain IDs separated by comma (1,2,3), or a combination of both (1-5,7).

--addlf | --deletelf

Adds Logical Fabric or chassis permissions to a user account or deletes Logical Fabric or chassis permission from a user account. The following operands are supported:

username

Specifies the account login name.

-h LF_ID

Specifies the account's home Logical Fabric. This operand is optional.

- If a home Logical Fabric is specified with the --addlf option, the home Logical Fabric must be one of the Logical Fabrics in LF_ID_list. If a home Logical Fabric is not specified and the account did not previously have a home Logical Fabric, the home Logical Fabric is set to the lowest numbered Logical Fabric in the user's Logical Fabric permissions.

- If a home Logical Fabric is specified with the --deletelf option, the home Logical Fabric must be one of the Logical Fabrics in the Logical Fabric permissions remaining after the Logical Fabrics specified in LF_ID_list have been removed. If a home Logical Fabric is not specified, the current home Logical Fabric remains unchanged, if it is still in the user's Logical Fabric permissions. If a home Logical Fabric is not specified and the current home Logical Fabric is deleted, the new home Logical Fabric is set to the lowest numbered Logical Fabric in the user's Logical Fabric permissions.

The account's existing Logical Fabric permission and the LF_ID_list must be a subset of the Logical Fabric permissions of the account executing this command.

-l LF_ID_list

Specifies the logical fabric IDs to be added or deleted. Specify a range (1-5) or a list of Admin Domain IDs separated by comma (1,2,3), or a combination of both (1-5,7).

-r role

Specifies the role associated with the Logical Fabric ID list given in this command. This operand is required when you specify an LF_ID_list operand.
-c [chassis_role]
 Specifies the account's access permissions regarding chassis-level commands. To remove an account's chassis permissions, specify -c only. To add chassis permissions, specify a chassis role with the --c option.

--delete username
 Deletes the specified account from the switch. This command prompts for confirmation. Once an account is deleted, the CLI sessions associated with the account are terminated.

 The following restrictions apply when you delete an account:
 • You cannot delete a default account.
 • You cannot delete your own account.

 AD_ID_list or LF_ID list and associated Admin Domain or Logical Fabric permissions for username must be a subset of the Admin Domain or Logical Fabric permissions of the account that executes the userConfig --delete command.

--help
 Displays the command usage. In a Logical Fabric-enabled environment, options specific to Logical Fabrics are displayed. In an Admin Domain-enabled environment, options specific to Admin Domains are displayed.

EXAMPLES
 A. The following examples illustrate how to create and manage user accounts in an Admin Domain-enabled environment.

 To add a new account:
 switch:admin> userConfig --add joe -r admin -d "Joe Smith"
 Setting initial password for joe
 Enter new password:
 Re-type new password:
 Account joe has been successfully added.

 To add a new account noninteractively:
 switch:admin> userConfig --add joe -r admin -d "Joe Smith" -p welCome2brcd
 Account joe has been successfully added.

 To display current account information:
 switch:admin> userConfig --show joe
 Account name: joe
 Role: admin
 Description: Joe Smith
 Enabled: Yes
 Password Last Change Date: Unknown
 Password Expiration Date: Not Applicable
 Locked: No
 AD membership: 0
 Home AD: 0

 To disable the account "joe":
 switch:admin> userConfig --change joe -e no
 Broadcast message from root Sat Apr 2 03:03:32 2005...
 Security Policy, Password or Account Attribute \
 Change: joe will be logged out
 Attribute for account joe has been successfully changed.
To add an account named bob with role ZoneAdmin and Admin Domain member list 1,4,10,11,12,13,14 and Home Admin Domain 4:

```
switch:admin> userConfig --add bob -r ZoneAdmin \ 
        -a 1,4,10-14 -h 4
```

To change account bob’s Admin Domain member list to 128 and 129, Home Admin Domain to 128:

```
switch:admin> userConfig --change bob -a 128,129
```

To add Admin Domain 0 and 255 to bob’s Admin Domain member list. The home Admin Domain remains unchanged:

```
switch:admin> userConfig --addad bob -a 0,AD255
```

To delete Admin Domain 128 from bob’s Admin Domain member list. The new home Admin Domain is set to 0:

```
switch:admin> userConfig --deletead bob -a 128 -h 0
```

B. The following examples illustrate how to create and manage user accounts in an Logical Fabric-enabled environment.

To create a new account named “test” with admin role and admin chassis permissions in the Logical Fabric member list 1-10:

```
switch:admin> userConfig --add test -l 1-10 \ 
        -r admin -c admin
Setting initial password for test
Enter new password:
Re-type new password:
Account test has been successfully added.
```

To display current account information:

```
switch:admin> userConfig --show test
Account name: test
Role: admin
Description:
Enabled: Yes
Password Last Change Date: Sat Jun 14 2008
Password Expiration Date: Not Applicable
Locked: No
RoleLFMaps: admin: 1-10 chassis
Chassis Role: admin
Home Context: 1
```

To grant user access permissions to the test account for the Virtual Fabrics 11-15:

```
switch:admin> userConfig --addlf test -r user -l 11-15
New LFs/Chassis role for account test has been successfully added.
```

To change the test account’s access permissions for the Logical Fabrics 5 and 6 to ZoneAdmin and the chassis permission to user:

```
switch:admin> userConfig --change test -r zoneadmin \ 
        -l 1-5 -c user -h 4
Broadcast message from root (ttyS0) Sat Jun 14 01:05:28 2008...
Security Policy, Password or Account Attribute Change: \ 
test will be logged out
```
To display the test account information:

```
switch:admin> userconfig --show test
Account name: test
Role: zoneadmin
Description:
Enabled: Yes
Password Last Change Date: Sat Jun 14 2008
Password Expiration Date: Not Applicable
Locked: No
RoleLFMaps: zoneadmin: 1-5 admin: 6-10 user: 11-15 chassis
Chassis Role: user
Home Context: 4
```

To remove chassis permissions from the test account for the Logical Fabrics 1-3.

```
switch:admin> userconfig --deletelf test -l 1-3 -c
Broadcast message from root (ttyS0) Sat 
Jun 14 01:10:02 2008...

Security Policy, Password or Account Attribute Change: \n test will be logged out
LFs/chassis role for account test has been successfully\n deleted.
```

To display information for all accounts with admin privileges:

```
switch:admin> userconfig --show -r admin
Account name: admin
Description: Administrator
Enabled: Yes
Password Last Change Date: Unknown
Password Expiration Date: Not Applicable
Locked: No
Home LF Role: admin
Role-LF List: admin: 1-128
Chassis Role: admin
Home LF: 128

Account name: testls1
Description:
Enabled: Yes
Password Last Change Date: Sun Oct 5 2025
Password Expiration Date: Not Applicable
Locked: No
Home LF Role: admin
Role-LF List: admin: 1
No chassis permission
Home LF: 1
```

SEE ALSO roleConfig
version

Displays firmware version information.

SYNOPSIS

version

DESCRIPTION

Use this command to display firmware version information and build dates.

The command output includes the following:

- **Kernel**: The version of switch kernel operating system.
- **Fabric OS**: The version of switch Fabric OS.
- **Made on**: The build date of firmware running in switch.
- **Flash**: The build date of firmware stored in flash proms.
- **BootProm**: The version of the firmware stored in the boot PROM

Usually the Made on and Flash dates are the same, because the switch starts running flash firmware at power-on. However, in the time period between firmwareDownload and the next reboot, the dates can differ.

OPERANDS

None

EXAMPLES

To display the firmware version information in a switch:

```
switch:admin> version
Kernel:  2.6.14.2
Fabric OS:  v7.2.0
Flash:   Fri Apr 26 06:58:33 2013
BootProm:  1.0.15
```

SEE ALSO

firmwareDownload, reboot
wwn

Displays the world wide name (WWN) and factory serial number of the switch or chassis.

SYNOPSIS wwn [-sn]

DESCRIPTION Use this command to display the WWN associated with a switch or chassis and to display the factory
serial number. The WWN is a 64-bit number that has eight colon-separated fields each consisting of one
or two hexadecimal digits between 0 and ff. The WWN is a factory-set parameter that cannot be changed
by the end user. The WWN is used as the license ID in many cases, but the only official string to be used
for requesting licenses is the licenseidShow output. Alternately, use switchShow to display the WWN.

In addition to the WWN, all switches have a unique 24-bit Fibre Channel address that is used for
communicating with the switch. Use fabricShow to display the FC address in addition to the WWN.

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS This command has the following operands:

-sn On enterprise-class platforms, this operand displays the chassis factory serial
number following the WWN. On standalone platforms, it displays the factory serial
number. This operand is optional; if omitted, this command displays only the
WWN for the switch or chassis.

EXAMPLES To display the WWN on a Brocade DCX-4S:

switch:admin> wwn
10:00:00:05:1e:7a:7a:00

To display the WWN and chassis factory serial number:

switch:admin> wwn -sn
WWN: 10:00:00:05:1e:7a:7a:00
SN: ANP0645D05B

switch:admin> chassishow | grep ANP0645D05B
Chassis Factory Serial Num: ANP0645D05B

switch:admin>

To display the license ID:

switch:admin> licenseidshow
10:00:00:05:1e:7a:7a:00

To display the WWN and the Fibre Channel address:

switch:admin> fabricshow
Switch ID Worldwide Name Enet IP Addr FC IP Addr Name

1:fffc01 10:00:00:05:1e:7a:7a:00 10.32.39.25 0.0.0.0 "sw03"
2:fffc02 10:00:00:05:1e:b3:00:9e 10.32.39.34 0.0.0.0 "ras39"
3:fffc03 10:00:00:05:1e:93:cd:00 10.32.39.20 0.0.0.0 "sw5"
4:fffc04 10:00:00:05:1e:55:5c:69 10.32.39.59 0.0.0.0 >"sp39"
To display the WWN on a Brocade 5100:

 switch:admin> wnn
 10:00:00:05:1e:7a:7a:00

To display the WWN and factory serial number:

 switch:admin> wnn -sn

 WWN: 10:00:00:05:1e:82:3c:2a
 SN: ALM0602E003

 switch:admin> chassisshow | grep ALM0602E003
 Factory Serial Num: ALM0602E003

SEE ALSO chassisShow, fabricShow, licenseldShow, switchShow
wwnAddress

Binds an FC Port ID to a device WWN.

SYNOPSIS

wwnaddress --bind [WWN] [PID]
wwnaddress --unbind [WWN]
wwnaddress --show
wwnaddress --findPID [WWN]
wwnaddress --help

DESCRIPTION

Use this command to manage address assignments for a given device world wide name. The allocation
of a PID to a specified device WWN supports the persistence of the PID based on the WWN of the device
to which the PID is bound. If the PID is not bound to a device WWN, the device can get the same or a
different PID irrespective of which port it logs in to a given switch partition.

This command fails under any of the following conditions:
• The PID is currently bound to another port through port address binding. Use portaddress --unbind
to free up the PID.
• The WWN is already bound with a different PID, or the PID is bound to another WWN. Use
wwnaddress --unbind to remove the PID-WWN binding.
• There is no space left in the WWN-PID table for an additional entry. Use wwnaddress --unbind to
free up space in the table.

The command provides a --show option that displays the currently bound address for all WWNs.
Alternately, you can use the --findPID option to display the PID currently bound to a specified WWN.

NOTES

Dynamic Area Mode and WWN-Based persistent PID must be enabled on the switch before you can
assign an address with this command. Refer to configure for more information.

This command is supported only on the Brocade DCX and on the DCX-4S.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS

This command has the following operands:

--bind

Assigns the lower two bytes of the Fibre Channel address to the specified WWN.

WWW

Specifies the WWN for the device to which the PID should be assigned.

PID

Specifies the PID (the lower 16 bits of the address excluding the domain part) in
hexadecimal format to be bound to the device WWN. Note that only the upper 10
bits of the PID can be used for a unique route. Therefore, not all addresses in the
16-bit range are available.

--unbind

Removes the WWN-PID binding corresponding to the specified device WWN.

WWW

Specifies the WWN for the device from which to remove the PID binding.
wwnAddress

--show
Displays all WWN-PID entries currently present in the partition.

--findPID
Displays the PID currently bound to the specified device WWN.

WWN
Specifies the device WWN.

--help
Displays the command usage.

EXAMPLES
To bind a 16-bit address to a device WWN:

switch:admin> wwnaddress --bind
10:00:00:06:2b:0f:76:5f 0x9000

To unbind a given address from a WWN:

switch:admin> wwnaddress --unbind
10:00:00:06:2b:0f:76:5f

To display all WWN address bindings on the current partition:

switch:admin> wwnaddress --show

WWN Area Age Flag
===
1) 10:00:00:06:2b:0f:71:0c 0x405 53 0x12
2) 10:00:00:05:1e:5e:2c:11 0x9900 101 0x21
3) 10:00:00:06:2b:0f:71:0d 0x503 37 0x12
4) 10:00:00:06:2b:0f:71:0e 0x304 43 0x12
5) 10:00:00:06:2b:0f:71:0f 0x303 38 0x12
6) 10:00:00:06:2b:0f:70:14 0x401 29 0x12
7) 10:00:00:06:2b:0f:70:15 0x505 46 0x12
8) 10:00:00:06:2b:0f:70:16 0x402 33 0x12
9) 10:00:00:06:2b:0f:70:17 0x406 47 0x12
10) 10:00:00:06:2b:0f:72:20 0x403 30 0x12
11) 10:00:00:06:2b:0f:72:21 0x501 36 0x12
12) 10:00:00:06:2b:0f:72:23 0x502 34 0x12
13) 10:00:00:06:2b:0f:6e:30 0x301 35 0x12
14) 10:00:00:06:2b:0f:6e:31 0x302 39 0x12
15) 10:00:00:06:2b:0f:6e:32 0x303 39 0x12
16) 10:00:00:06:2b:0f:6e:33 0x504 45 0x12
17) 10:00:00:06:2b:0f:7e:5e 0x404 101 0x12
18) 10:00:00:06:2b:0f:7e:5f 0x101 41 0x12
19) 20:20:00:05:1e:0b:61:cc 0x400 28 0x22
20) 20:21:00:05:1e:0b:61:cc 0x500 31 0x22
21) 20:22:00:05:1e:0b:61:cc 0x300 32 0x22
22) 20:23:00:05:1e:0b:61:cc 0x100 40 0x22
23) 10:00:00:06:2b:0f:6d:ee 0x305 50 0x12
24) 10:00:00:06:2b:0f:6d:ef 0x103 49 0x12

To display the WWW address binding for device 20:22:00:05:1e:0b:61:cc:

switch:admin> wwnaddress --findPID 20:22:00:05:1e:0b:61:cc

WWN PID
=============================
20:22:00:05:1e:0b:61:cc 0x300

SEE ALSO portAddress
The zone command supports three types of operations: specific zone operations, management of Traffic Isolation (TI) Zones, and management of Frame Redirect (RD) Zones.

1. Manage Zoning Operations

 Use the --copy, --expunge, and --validate options to perform specific zoning operations. These commands follow a batched-transaction model.

2. Manage Traffic Isolation (TI) Zones

 Use the --create, --add, --remove, --delete, --activate, --deactivate, and --show options to manage Traffic Isolation Zones.

 TI zones control the flow of interswitch traffic by provisioning certain E_Ports to carry only traffic flowing from a specific set of source ports. The provision (a.k.a TI Zone) is part of the defined zone configuration and does not appear in the effective zone configuration. A Maximum of 255 TI Zones can be created in one fabric.

 TI zones over FCR provide the ability to lock down a request and corresponding response to the same VE_Port tunnel for a given pair of devices in two separate fabrics. TI over FCR has two working parts:
- TI within edge fabric routes traffic between a real device and a Proxy device to a specified EX_Port.
- TI within backbone fabric locks down the route within the backbone fabric based on EX_Ports and devices involved.

Use the `--showTerrors` option to generate a report of potential routing problems in the local Domain. If the command detects errors, it outputs the ID of the current domain, and for each record, it displays the following information:

Error Type
Error or Warning.

Affected Remote Domain
Domain where the traffic drop is likely to be happening.

Affected Local Port
Device port shared by the TI zones.

Affected TI Zones
Lists the names of the TI zones implicated in the problem.

Affected Remote Ports
Remote ports that are affected by the problem in the TI Zones.

Using TI zones in logical fabrics has several restrictions. TI zones created in logical fabrics cannot include logical interswitch links (LISLs); only physical port numbers can be included. TI zones cannot use the failover disabled option in Logical fabrics that have LISLs, and TI zones cannot use the failover disabled option in Base Fabrics. For more information, refer to the *Fabric OS Administrator's Guide*.

3. Manage Frame Redirect (RD) Zones

Use the `--rdcreate` and `--rddelete` options to manage Frame Redirect Zones. RD zones allow frames to be redirected to devices that can perform additional processing on these frames (for example, encryption). The feature uses a combination of RD zones and Name Server changes to map real device world wide names (WWNs) to virtual port IDs (PIDs). This allows redirecting a flow between a host and target to a device that can perform its functionality without reconfiguring the host and target.

The RD Zone is part of the defined zone configuration and does not appear in the effective zone configuration. Use `cfgSave` to save the RD zone changes to the defined configuration. Use `cfgShow` to display the RD zones.

When you create the first RD zone, two additional zone objects are created automatically: A base zone "red_______base" and a zone configuration "r_e_d_i_r_c_f_g". These additional zone objects are required by the implementation. These zone objects must remain on the switch as long as other redirect zones are defined. Do not remove these objects, unless redirection is no longer required and no other redirect zones exist.

Use `zone --rddelete` to remove the base RD zone, "red_______base", if it is the last remaining RD zone in the RD zone configuration, "r_e_d_i_r_c_f_g." When the base zone is removed, the RD zone configuration is removed as well.

NOTES
Device ports are allowed to be part of several TI zones to support enhanced TI zone deployment in FICON environments.

You cannot swap E_Ports that are configured as part of a TI zone. The TI zone information is lost when you use `portSwap` to swap the E_Ports. To work around this issue, reconfigure your TI zones rather than swapping the E_Ports.

The current zone commands, `zoneCreate`, `aliCreate`, `cfgCreate`, etc., cannot be used to manage special zones, such as TI zones or RD zones.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.
This command takes as an operand an action and its associated arguments. When executed without operands, the command displays the usage.

--help
Displays the command usage.

1. Commands for performing specific zone operations

--copy
Copies a specified zone object or all zone objects from the source_AD into the current AD. The current AD transaction buffer is used for this operation. The following operands are optional:

source_AD
Specifies the source Admin Domain of the zone objects. If unspecified, objects are copied within the current AD.

source_zone_object
Specifies the zone object under the source_AD. The zone object can be a zone configuration, a zone alias, or several zones. If a source zone object is not specified, all zone configurations are copied over to the current Admin Domain.

dest_zone_object
Identifies the destination zone object within the current Admin Domain. If dest_zone_object is not specified, source_zone_object is copied over with the same name. If the destination zone object is not already present in the Admin Domain, one is created (with type as source_zone_object).

-f
Overwrites existing zone object without confirmation.

--expunge
Removes all references to the specified zone object and then deletes the zone object. The command displays the list of zone objects to be deleted and prompts for confirmation before deleting the zone objects. The removal of zone object references can trigger the removal of zones not specified in the command. For example, removing the last zone member from a zone deletes the zone, and may trigger a recursive deletion of other zones. The following operand is required:

"zone_object"
Specifies a zone object. A zone object can be a zone member, zone alias, or a zone. The zone object must be enclosed in double quotation marks.

--validate
Lists all zone members that are not part of the current zone enforcement table.

If a zone member is specified by Domain and Port (D,P) in the Admin Domain membership list, all zone elements specified with WWNs associated with that D,P are considered for zone enforcement. If a device WWN is specified in the Admin Domain member list, the corresponding D,P (the device the specified WWN is associated with) is not considered for zone enforcement.

The following operands are optional:

-f
Specifies that zone members that are not enforceable should be expunged in the transaction buffer. This pruning operation affects both the transaction buffer and the defined buffer. You cannot specify a mode or a zone object together with the -f option.
mode

Specifies the zone database location. This operand is optional. If no mode option is specified, the validated output of all the three buffers is displayed. Supported mode flag values include the following:

0

Uses the zone database from the current transaction buffer.

1

Uses the zone database stored in persistent storage.

2

Uses the currently enforced zone database.

"zone_object"

Specifies a zone object. A zone object can be a zone member, a zone alias, or a zone.

-i

Lists all zone members for a given pattern without case distinction.

pattern

A POSIX-style regular expression used to match zone members. This operand is optional. Patterns can contain:

- A question mark (?) to match any single character.
- An asterisk (*) to match any string of characters.
- A range of characters to match any character within the range: for example, [0-9] or [a-f].

2. Creating and managing TI Zones

Use these commands to create and manage TI Zones.

--create

Creates a TI Zone with specified options and port list.

--add

Adds port list members and the failover option to existing TI zones.

--remove

Removes port list members from existing zones. Removal of the last member from an active TI zone generates a warning. If the last member of a TI zone is removed, the TI zone name is removed from the defined TI zone list.

The following operands are supported:

-t objecttype

Specifies the zone object type. This operand is supported only with the --create option. To create a TI zone, the value is ti.

-o optlist

Specifies list of options to control activation, deactivation, and failover mode. If this option is not specified the zone is created, by default, with failover enabled, and the zone will be activated. This operand is supported only with the --create and --add options.

Valid values for optlist include the following:

a

Activates the specified zone.

d

Deactivates the specified zone.
n
Disables failover mode. In non-failover mode, when the last interswitch link (ISL) of a TI Zone goes offline and there is an alternative ISL, the alternative ISL is not used and the switch generates a state change notification (SCN) or a registered state change notification (RSCN) to indicate that no ISL is available. When the ISL of the TI Zone comes online again, the route is set up again and the switch generates another SCN or RSCN. TI zones with no-failover option are not supported in logical fabrics. TI zones defined in the Base Fabric for logical fabric traffic need to allow failover.

f
Enables failover mode. In failover mode, when the last ISL of a TI Zone goes offline and there is an alternative ISL, the alternative ISL is used and the switch does not generate any SCN or RSCN messages. If the ISL of that TI Zone comes online again, traffic is rerouted immediately to the original ISL.

name
Specifies the name of the zone to be created, added or deleted

-p portlist
Specifies the lists of ports to be included, added or removed from a TI zone. The syntax for portlist is "D,I" (Domain, Index). The port list must be enclosed in double quotation marks. List members must be separated by semicolons, followed by a space. When you create TI zones over FCR, for a TI within an Edge fabric use ".1" in "I" (of "D,I") to denote Front and Translate phantom in the E_Port list. When creating a TI zone within the Backbone fabric specify "Port WWN" in portlist to indicate devices talking across fabrics.

--activate name
Activates the specified TI zones. If more than one zone is specified, the list of zone names must be enclosed in double quotation marks; zone names must be separated by semicolons.

--deactivate name
Deactivates the specified TI zones. If more than one zone is specified, the list of zone names must be enclosed in double quotation marks; zone names must be separated by semicolons.

--delete name
Deletes TI zones from the defined TI zone lists. This command prompts for confirmation.

--show [name]
Displays zone name, port lists, failover option, configured status and, the active status for the specified zones. The configured status reflects the latest change that may or may not have been activated. The active status reflects the state that is activated by cfgEnable. Without any specified name, this command displays all TI zones in the defined configuration. The following operands are optional:

-ic
Displays all TI zone configurations for a given zone name without case distinction.

-ascending
Displays the TI zone members in ascending order.

--showTIerrors
Analyzes real and potential routing problems with the activated TI zoning set and prints a report. This command must be executed in the local domain and analyzes only that domain.

--showTItrunkerrors
Displays details of the trunk members present in the TI zone and those not present in the TI zone.
3. Creating and managing RD Zones

--rdcreate

Creates a RD Zone for the specified members. The following operands are required:

host_wwn
Specifies the port world wide name of the host.

target_wwn
Specifies the port world wide name of the target.

vi_wwn
Specifies the port world wide name of the virtual initiator (VI).

vt_wwn
Specifies the port world wide name of the virtual target (VT).

policy restartable | nonrestartable
Specifies the policy as either restartable or nonrestartable. A restartable policy causes traffic flow to revert to the physical host and target configuration in the event the virtual device should fail. When the policy is specified as nonrestricted and one of the virtual devices goes offline, the physical devices are considered offline and no traffic is allowed between the original host and target.

FCR | noFCR
Indicates whether or not this RD zone should function across a Fibre Channel router (FCR). Specify FCR to support FCR. Specify noFCR if you do not wish to support FCR.

--rddelete name

Deletes the RD Zone specified by name. RD Zones are unique in that the zone name is not user-defined. It is derived based on members and the specified configuration. Use cfgShow to display currently implemented RD zone by name.

EXAMPLES

1. Specific zone operation commands

The following example shows a scenario of an invalid configuration. If you attempt to create a zone z10 with an alias a10, then create a zone with name a10, z10 expects a10 to be an alias and results in an invalid configuration.

To validate all zones in the currently enforced zone database:

 switch:admin> zonecreate z10,a10
 switch:admin> zonecreate a10, 1,2
 switch:admin> zone --validate

Defined configuration:
zone: a10 1,2`
zone: z10 a10~

Effective configuration:
No Effective configuration: (No Access)

~ - Invalid configuration
* - Member does not exist
- Invalid usage of broadcast zone
The reason for not being in the current enforcement table could be one of the following:

- The device is not online.
- The device is online but is not Admin Domain-aware.
- The device is online but it is not part of the current Admin Domain.

To copy the `cur_cfg1` zone configuration from the root zone database (AD0) to the current Admin Domain:

```
switch:admin> zone --copy AD0.cur_cfg1
```

To copy the `backup_zn` zone from the root zone database (AD0) to the current Admin Domain:

```
switch:admin> zone --copy AD0.backup_zn
```

To copy the `backup_zn` zone from the root zone database (AD0) to the current Admin Domain, with Admin Domain member list filtering:

```
switch:admin> zone --copy -f AD0.backup_zn
```

To delete all references associated with zone member 100,5:

```
switch:admin> zone --expunge "100,5"
```

You are about to expunge one configuration or member. This action could result in removing many zoning configurations recursively.

[Removing the last member of a configuration removes the configuration.]

Do you want to expunge the member?

(Yes, y, no, n): [no] yes

To validate all zones in the zone database in the current transaction buffer:

```
switch:admin> zone --validate -m 0
```

Defined configuration:

```
cfg: t_r_a_f_f_i_c_i_s_o_c__fg
    bluezone; greenzone

cfg: ticonfig
    regzone

zone: bluezone
    1,1*; 1,2*
zone: greenzone
    1,1*; 20:01:00:05:1e:01:23:e0*
zone: regzone
    1,4*; 1,5*
```

```
------------------------------------
~ - Invalid configuration
* - Member does not exist
# - Invalid usage of broadcast zone
```

To validate all zones in the zone database in the persistent storage (defined configuration):

```
switch:admin> zone --validate -m 1
```

Defined configuration:

```
cfg: t_r_a_f_f_i_c_i_s_o_c__fg
    bluezone; greenzone

cfg: ticonfig
    regzone

zone: bluezone
    1,1*; 1,2*
zone: greenzone
    1,1*; 20:01:00:05:1e:01:23:e0*
zone: regzone
    1,4*; 1,5*
```

```
```
zone: t_r_a_f_f_i_c_i_s_o_prop__zn
 1,3*; 2,3*

~ - Invalid configuration
* - Member does not exist
- Invalid usage of broadcast zone

To validate all zones in the zone database in the effective configuration:

```
switch:admin> zone --validate -m 2
Effective configuration:
  cfg: ticonfig
  zone: regzone 1,4*
       1,5*
------------------------------------
~ - Invalid configuration
* - Member does not exist
# - Invalid usage of broadcast zone
```

To prune all the zone members that are not enforceable:

```
switch:admin> zone --validate -f
You are about to prune the zone configurations, based on zone --validate output.
Do you want to prune the zone configurations (yes, y, no, n): [no] y
```

To validate the zone members beginning with "gre", regardless of the case:

```
switch:admin> zone --validate -i gre*
Defined configuration:
  zone: GREEN  44,4; 21:00:00:20:37:0c:71:02; 8,9
  zone: green  2,2*; 2,3*; 21:00:00:20:37:0c:76:8c*
Effective configuration:
  zone: green  2,2*
       2,3*
       21:00:00:20:37:0c:76:8c*
------------------------------------
~ - Invalid configuration
* - Member does not exist
# - Invalid usage of broadcast zone
```

2. Traffic isolation zone commands

To create an activated traffic isolation zone with failover enabled (default).

```
switch:admin> zone --create -t ti purplezone
   -p "1,1; 2,4; 1,8; 2,6"
```

To create a deactivated traffic isolation zone with failover disabled:

```
switch:admin> zone --create -t ti -o dn purplezone
   -p "1,1; 2,4; 1,8; 2,6"
```

To add an E_Port and N_Port member as a portlist to an existing TI zone:

```
switch:admin> zone --add purplezone
   -p "3,4; 3,6"
```
To add the option to disable failover for a TI zone:
```
switch:admin> zone --add -o n purplezone
```

To add the option to enable failover for a TI zone:
```
switch:admin> zone --add -o f greenzone -p "3,4"
```

To remove portlist members from an existing TI zone.
```
switch:admin> zone --remove bluezone -p "3,4; 3,6"
```

To activate the TI zone "bluezone”:
```
switch:admin> zone --activate bluezone
```

To deactivate the TI zone "purplezone”:
```
switch:admin> zone --deactivate purplezone
```

To delete the TI zone "bluezone”:
```
switch:admin> zone --delete bluezone
```

To display all TI zones in the defined configuration:
```
switch:admin> zone --show
Defined TI zone configuration:

TI Zone Name:    ti_blue
Port List: 4,55; 10:00:00:00:00:01:00:01; 10:00:00:00:00:01:00:04; 3,9
Configured Status: Activated / Failover-Disabled
Enabled Status: Deactivated

TI Zone Name:   ti_red
Port List:      4,4; 5,5; 3,3
Configured Status: Activated / Failover-Enabled
Enabled Status: Activated / Failover-Enabled
```

To display all TI zones in the defined configuration in ascending order:
```
switch:admin> zone --show -ascending
Defined TI zone configuration:

TI Zone Name:    ti_blue
Port List:      10:00:00:00:00:01:00:01; 10:00:00:00:00:01:00:04; 3,9; 4,55
Configured Status: Activated / Failover-Disabled
Enabled Status: Deactivated

TI Zone Name:   ti_red
Port List:      3,3; 4,4; 5,5
Configured Status: Activated / Failover-Enabled
Enabled Status: Activated / Failover-Enabled
```
To display a specified zone in the defined configuration:

```
switch:admin> zone --show ti_red
Defined TI zone configuration:

TI Zone Name:   ti_red
Port List: 4,4; 5,5; 3,3

Configured Status: Activated / Failover-Disabled
Enabled Status: Deactivated
```

To display members for the zone "ti_red" in ascending order:

```
switch:admin> zone --show ti_red -ascending
Defined TI zone configuration:

TI Zone Name:   ti_red
Port List: 3,3; 4,4; 5,5

Configured Status: Activated / Failover-Disabled
Enabled Status: Deactivated
```

To display members for the zone "TI_zone", regardless of the case:

```
switch:admin> zone --show -ic TI_zone*
Defined TI zone configuration:

TI Zone Name:   TI_zone
Port List: 7,8

Configured Status: Activated / Failover-Enabled
Enabled Status: Deactivated

TI Zone Name:   ti_zone
Port List: 3,3

Configured Status: Activated / Failover-Enabled
Enabled Status: Deactivated
```

To create an FCR TI zone within an Edge fabric where a host should talk to target1 and target4 through port number 2 on an Edge fabric switch with a domain ID of 3. (in the example, "3,1" is the host, and the remaining members are E_Ports):

```
switch:admin> zone --create -t ti fcr_edge_ti_zone \
-p "3,1; 3,2; 4,-1; 5, -1"
```

To create an FCR TI zone within a Backbone where a host, target1, and target4 communicate over VE_Ports consisting of FCR1 port number 4 and FCR2 port number 7:

```
switch:admin> zone --create -t ti fcr_ti_zone \
-p "1,1; 2,1;host_PWWN; target1_PWWN; \
    target4_PWWN; 1,4; 2,7"
```
To troubleshoot TI zone problems:

```bash
switch:admin> zone --showTIerrors
My Domain: 1

Error type:             ERROR
Affected Remote Domain:      2
Affected Local Port:  3
Affected TI Zones:    ti1, ti2
Affected Remote Ports: 6, 7, 8, 9
```

To display details of the trunk members present in the TI zone and those not present in the TI zone:

```bash
switch:admin> zone --showTItrunkerrors
TI Zone Name: brackets

E-Port Trunks
Trunk members in TI zone: 16 18
Trunk members not in TI zone: 17

F-Port Trunks
Trunk members in TI zone: 4 5
Trunk members not in TI zone: 6

TI Zone Name: loop

E-Port Trunks
Trunk members in TI zone: 0
Trunk members not in TI zone: 1

TI Zone Name: operand

E-Port Trunks
Trunk members in TI zone: 8
Trunk members not in TI zone: 9 10

E-Port Trunks
Trunk members in TI zone: 16
Trunk members not in TI zone: 17 18
```

3. Frame redirect zone commands


```bash
```

This command creates the following zone objects:

- RD zone "red_0917_10_10_10_10_10_10_10_10_20_20_20_20_20_20_20_20_20_20", with a restricted policy and no FCR support.
- The base zone object, "red________base".
- The RD zone configuration, "r_e_d_i_r_c__fg".
To display the newly created zone objects:

```
switch:admin> cfgshow
Defined configuration:
cfg:   myHTcfg myHostTarget
cfg:   r_e_d_i_r_c__fg
   red_______base;
   red_0917_00_3f_3f_23_24_25_26_3f_3f_3f_30_32_00_00_00
zone:   myHostTarget
   00:3f:3f:3f:23:24:25:26; 3f:3f:3f:30:32:00:00:00
zone:red_0917_00_3f_3f_23_24_25_26_3f_3f_3f_30_32_00_00_00
   00:3f:3f:23:24:25:26; 3f:3f:3f:30:32:00:00:00;
   3f:3f:3f:30:30:00:00:00;
zone:   red_______base
   00:00:00:00:00:00:00:00; 00:00:00:00:00:00:00:00;
   00:00:00:00:00:00:00:00; 00:00:00:00:00:00:00:00;
Effective configuration:
cfg:   myHTcfg
zone:   myHostTarget
   00:3f:3f:3f:23:24:25:26
   3f:3f:3f:30:32:00:00:00
```

To delete an RD Zone named "red_0917_10_10_10_10_10_10_10_10_20_20_20_20_20_20_20_20":

```
switch:admin> zone --rddelete \    red_0917_10_10_10_10_10_10_10_10_20_20_20_20_20_20_20_20
```

SEE ALSO ad, zoneHelp
zoneAdd

Adds a member to the zone.

SYNOPSIS zoneadd "zoneName", "member[;member...]"

DESCRIPTION Use this command to add one or more members to an existing zone.

This command changes the defined configuration. For the change to be preserved across switch
reboots, save the configuration to nonvolatile memory with the cfgSave command. For the change to
become effective, enable the configuration with the cfgEnable command.

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

When an FCS policy is enabled, this command can be issued only from the primary FCS switch.

OPERANDS The following operands are required:
"zoneName" Specify the name of an existing zone. Double quotation marks are optional.
"member" Specify a member or list of members to be added. The list must be enclosed in
double quotation marks. Members must be separated by semicolons. Members
can be specified in one or more of the following ways:
• A switch domain and port index number pair; for example, "2, 20". Use
switchShow for a listing of valid port index numbers.
• Node or port WWN.
• Zone alias name.
• Zone alias pattern. Use a pattern preceded by the wildcard symbol asterisk
(*) to include members in the zone that matches the pattern.

EXAMPLES To add aliases for three disk arrays to "Blue_zone":

switch:admin> zoneadd "Blue_Zone", "array3; array4; array5"

To add aliases for all the arrays that matches a pattern:

switch:admin> zoneadd matt, "ze*; bond*; j*"
switch:admin> cfgshow

Defined configuration:
zone: matt 30:06:00:07:1e:a2:10:20; 3,2; zeus; \
 bond; jake; jeff; jones
zone: sloth bawn; bolt; bond; brain; brit; bru; \
 10:00:00:00:01:1e:20:20
alias: bawn 3,5; 4,8
alias: bolt 10:00:00:02:1f:02:00:01
alias: bond 10:00:05:1e:a9:20:00:01; 3,5
alias: brain 11,4; 22,1; 33,6
alias: brit 12,1
alias: bru 5,3; 12,4
alias: geek 2,7; 4,11; 20:10:00:05:1e:a9:20:87
alias: jake 4,7; 8,9; 14,11
alias: jeff 30:00:00:05:1e:a1:cd:02; \
 40:00:00:05:1e:a1:cd:04
zoneAdd

 alias: jones 7,3; 4,5
 alias: zeus 4,7; 6,8; 9,2

 Effective configuration:
 No Effective configuration: (No Access)

SEE ALSO zoneCreate, zoneDelete, zoneRemove, zoneShow
zoneCreate

Creates a zone.

SYNOPSIS

zonecreate "zonename", "member[;member...]"

DESCRIPTION

Use this command to create a new zone, or to create a "broadcast" zone.

A broadcast zone is a special zone that specifies the nodes that can receive broadcast traffic. This zone must be named "broadcast". Only one "broadcast" zone can exist within a fabric. This type of zone is enforced by the hardware; the switch controls the data transfer to a port.

This command changes the defined configuration. For the change to be preserved across switch reboots, save it to nonvolatile memory with the cfgSave command. For the change to become effective, enable the zone configuration with the cfgEnable command.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

When an FCS policy is enabled, this command can be issued only from the primary FCS switch.

OPERANDS

The following operands are required:

"zonename"

Specify a unique name for the zone to be created. Double quotation marks are optional. A zone name must begin with a letter and followed by any number of letters, numbers, or underscore characters. Names are case-sensitive. For example, "Zone_1" and "zone_1" indicate different zones. Zone names are limited to 64 characters. Spaces are ignored.

"member"

Specify a member or a list of members to be included in the zone. The list must be enclosed in double quotation marks. Members must be separated by semicolons. The list must have at least one member; empty lists are not allowed.

A member can be specified in one or more of the following ways:

- **Domain and port index pair**: Specify a port by domain and port index, for example, "2, 20" specifies port index 20 on switch domain 2. When a zone member is specified by port index, all devices connected to that port are in the zone. If this port is an arbitrated loop, then all devices on the loop are in the zone. Use switchShow for a list of valid port index numbers.
- **World wide name**: Specify a world wide name as eight hex numbers separated by colons, for example "10:00:00:60:69:00:00:8a". Zoning compares the WWN with the node and port names presented by a device in a login frame (FLOGI or PLOGI). When a zone member is specified by node name, then all ports on that device are in the zone. When a zone member is specified by port name, then only that single device port is in the zone.
- **Zone alias name**: Specify a zone alias name using the same format as a zone name. Refer to aliCreate command help for zone alias naming requirements.
- **Zone alias pattern**: Use a pattern preceded by the wildcard symbol asterisk (*) to include members in the zone that matches the pattern.
When creating a zone, you can combine different ways of specifying zone members. For example, a zone defined with the following members: "2,12; 2,14; 10:00:00:60:69:00:00:8a" contains all devices connected to switch 2, ports 12 and 14, and to the device with the world wide name "10:00:00:60:69:00:00:8a" (either node name or port name), at the port in the fabric to which it is connected.

EXAMPLES

To create three zones using a combination of port numbers and zone aliases:

```bash
switch:admin> zonecreate "Purple_zone", "1,0"
switch:admin> zonecreate "Blue_zone", "1,1; array1; 1,2; array2"
switch:admin> zonecreate "Green_zone", "1,0; 1,2; array2"
```

To create zone with the specified zone alias and to include the members that matches a pattern:

```bash
switch:admin> zonecreate sloth, "b*; 10:00:00:00:01:1e:20:20"
switch:admin> cfgshow
Defined configuration:
zone: matt 30:06:00:07:1e:a2:10:20; 3,2
zone: sloth bawn; bolt; bond; brain; brit; \
   bru; 10:00:00:00:01:1e:20:20
alias: bawn 3,5; 4,8
alias: bolt 10:00:00:00:02:1f:02:00:01
alias: bond 10:00:05:1e:a9:20:00:01; 3,5
alias: brain 11,4; 22,1; 33,6
alias: brit 12,1
alias: bru 5,3; 12,4
alias: geek 2,7; 4,11; 20:10:00:05:1e:a9:20:87
alias: jake 4,7; 8,9; 14,11
alias: jeff 30:00:00:05:1e:a1:cd:02; \
   40:00:00:05:1e:a1:cd:04
alias: jones 7,3; 4,5
alias: zeus 4,7; 6,8; 9,2
```

SEE ALSO
zoneAdd, zoneDelete, zoneRemove, zoneShow
zoneDelete

Deletes a zone.

SYNOPSIS

zonedelete "zonename"

DESCRIPTION

Use this command to delete a zone.

This command changes the defined configuration. For the change to be preserved across switch reboots, save the configuration to nonvolatile memory using the cfgSave command. For the change to become effective, enable the configuration with the cfgEnable command.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

When an FCS policy is enabled, this command can be issued only from the primary FCS switch.

OPERANDS

The following operand is required:

"zonename"

Specify the name of the zone to be deleted. Quotation marks are optional.

EXAMPLES

To delete the zone "Blue_zone":

switch:admin> zonedelete "Blue_zone"

SEE ALSO

zoneAdd, zoneCreate, zoneRemove, zoneShow
zoneHelp

Displays a description of zoning commands.

SYNOPSIS zonehelp

DESCRIPTION Use this command to display short descriptions of zoning commands.

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS None

EXAMPLES To display zone command help information:

 switch:admin> zonehelp
 aliadd Add a member to a zone alias
 allicreate Create a zone alias
 alldel Delete a zone alias
 allrm Remove a member from a zone alias
 allsh Print zone alias information
 bootluncfg Configure boot LUN for an HBA
 cfgeas Display Effective zone configuration
 cfghs Print zone alias information
 cfgadd Add a member to a configuration
 cfgcle Clear all zone configurations
 cfgcre Create a zone configuration
 cfgd Delete a zone configuration
 cfgdis Disable a zone configuration
 cfgen Enable a zone configuration
 cfgre Remove a member from a configuration
 cfgs Save zone configurations in flash
 cfgsh Print zone configuration information
 cfgsiz Print size details of zone database
 cfgtransa Abort zone configuration transaction
 cfgtranssh Print zone configurations in transaction buffer
 defzone Activates or deactivates a default zone configuration.
 msfr Create a MSFR Zone (internal use only)
 nsmem Display the information of all the online devices
 defzone which are zoned with the given device.
 openfr Create a MSFR Zone (internal use only)
 zone Copies/Removes/Validates zone objects
 zonea Add a member to a zone
 zonecre Create a zone
 zonedel Delete a zone
 zoneh Print zoning help info
 zoneoc Copies a zone object
 zoneox Expunge a zone object
 zoneon Rename a zoning Object
 zonerem Remove a member from a zone
 zonesh Print zone information

SEE ALSO None
zoneObjectCopy

Copies a zone object.

SYNOPSIS
zoneObjectCopy "objectName", "newName"

DESCRIPTION Use this command to make a copy of an existing zone object and give it a new name. The resulting object is of the same type as the original object. You can use this command for all zone object types, including cfg, zone, and alias.

This command changes the defined configuration. For the change to be preserved across switch reboots, save the configuration to nonvolatile memory with the cfgSave command. For the change to become effective, enable the configuration with the cfgEnable command.

NOTES When FCS policy is enabled, this command can be issued only from the primary FCS switch.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS The following operands are required:
"objectName" The name of the object that you want to copy. Quotation marks are optional.
"newName" The name of the object that you want created. Quotation marks are optional.

A zone configuration name must begin with a letter followed by any number of letters, numbers, and underscores. Names are case-sensitive. For example, "Cfg_1" and "cfg_1" are different zone configurations. Blank spaces are ignored.

Refer to the zoneCreate command for more information on name and member specifications.

EXAMPLES To create a configuration containing three zones:

```
switch:admin> cfgshow **
  cfg: USA_cfg Red_zone; White_zone; Blue_zone

switch:admin> zoneObjectCopy "USA_cfg", "UK_cfg"

switch:admin> cfgshow **
  cfg: UK_cfg Red_zone; White_zone; Blue_zone
  cfg: USA_cfg Red_zone; White_zone; Blue_zone
```

SEE ALSO cfgAdd, cfgClear, cfgDelete, cfgDisable, cfgEnable, cfgRemove, cfgSave, cfgShow, zoneObjectRename
zoneObjectExpunge

Expunges a zone object.

SYNOPSIS
zoneObjectExpunge "objectName"

DESCRIPTION
Use this command to expunge a zone object. In addition to deleting the object, this command also
removes the object from the member lists of all other objects. After successful execution of this
command, the specified object no longer exists the database. You can use this command for all zone
object types, including cfg, zone, and alias.

This command changes the defined configuration. For the change to be preserved across switch
reboots, save the configuration to nonvolatile memory with the cfgSave command. For the change to
become effective, enable the configuration with the cfgEnable command.

NOTES
When FCS policy is enabled, this command can be issued only from the primary FCS switch.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

OPERANDS
This command has the following operand:
"objectName"

The name of the object that you want to expunge. Quotation marks are optional.
This operand is required.

EXAMPLES
To create a configuration containing three zones:

switch:admin> cfgshow
Defined configuration:
 cfg: USA_cfg Red_zone; White_zone; Blue_zone
 zone: Blue_zone
 1,1; array1; 1,2; array2
 zone: Red_zone
 1,0; loop1
 zone: White_zone
 1,3; 1,4
 alias: array1 21:00:00:20:37:0c:76:8c; \
 21:00:00:20:37:0c:71:02
 alias: array2 21:00:00:20:37:0c:76:22; \
 21:00:00:20:37:0c:76:28
 alias: loop1 21:00:00:20:37:0c:76:85; \
 21:00:00:20:37:0c:71:df

switch:admin> zoneobjectexpunge "White_zone"

switch:admin> cfgshow
Defined configuration:
 cfg: USA_cfg Red_zone; Blue_zone
 zone: Blue_zone
 1,1; array1; 1,2; array2
 zone: Red_zone
 1,0; loop1
 alias: array1 21:00:00:20:37:0c:76:8c; \

zoneObjectExpunge

21:00:00:20:37:0c:71:02
alias: array2 21:00:00:20:37:0c:76:22; \
21:00:00:20:37:0c:76:28
alias: loop1 21:00:00:20:37:0c:76:85; \
21:00:00:20:37:0c:71:df

SEE ALSO cfgAdd, cfgClear, cfgDelete, cfgDisable, cfgEnable, cfgRemove, cfgSave, cfgShow, zoneObjectCopy, zoneObjectRename
zoneObjectRename

 Renames a zone object.

SYNOPSIS

zoneObjectRename "objectName", "newName"

DESCRIPTION

Use this command to rename a zone object. You can use this command for all zone object types, including cfg, zone, and alias.

This command changes the defined configuration. For the change to be preserved across switch reboots, save the configuration to nonvolatile memory with the `cfgSave` command. For the change to become effective, enable the configuration must be enabled with the `cfgEnable` command.

NOTES

When an FCS policy is enabled, this command can be issued only from the primary FCS switch.

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

OPERANDS

The following operands are required:

"objectName"

The name of the object you want to rename.

"newName"

The new name of the object.

A zone configuration name must begin with a letter that can be followed by any number of letters, numbers, and underscores. Names are case-sensitive. For example, "Cfg_1" and "cfg_1" are different zone configurations. Quotation marks are optional. Spaces are ignored.

Refer to the `zoneCreate` command for more information on name and member specifications.

EXAMPLES

To create a configuration containing three zones:

```
switch:admin> cfgshow ***
    cfg: USA_cfg Red_zone; White_zone; Blue_zone
```

```
switch:admin> zoneObjectrename "USA_cfg", "UK_cfg"
```

```
switch:admin> cfgshow ***
    cfg: UK_cfg Red_zone; White_zone; Blue_zone
```

SEE ALSO
`cfgAdd`, `cfgClear`, `cfgDelete`, `cfgDisable`, `cfgEnable`, `cfgRemove`, `cfgSave`, `cfgShow`, `zoneObjectCopy`
zoneObjectReplace

Replaces zone members.

SYNOPSIS zoneObjectReplace oldmember newmember
 zoneObjectReplace --help

DESCRIPTION Use this command to replace the existing member of a zone with a new member. This command can be
used to replace members of an alias, but an alias itself cannot be replaced. This command is not
applicable for Traffic Isolation (TI) Zones, and Frame Redirect (RD) Zones.

For the change to become effective, enable the configuration with the cfgEnable command.

NOTES The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in
place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for
details.

When an FCS policy is enabled, this command can be issued only from the primary FCS switch.

OPERANDS The following operands are required:

oldmember Specifies the the zone member that has to be replaced. You can specify WWN or
Domain,Index (D,I).

newmember Specifies the new zone member with which to replace the old zone member. You
can specify WWN or D,I.

--help Displays the command usage.

EXAMPLES To replace zone member:
switch:admin> zoneobjectreplace 20:00:00:05:1e:a1:af:b2 10:00:00:05:1e:a1:10:c1
switch:admin> cfgshow

Defined configuration:
 cfg: cfg lSAN_m
 cfg: cfg1 zone2; zone3
zone: lSAN_m 20:15:00:05:1e:a2:f9:b1; 20:13:00:05:1e:a2:f9:b1
zone: zone1 2,3; 20:00:00:05:1e:a1:af:b1; zali_1
zone: zone2 5,7; 2,9
zone: zone3 10:00:00:05:1e:a1:10:c1; 20:10:00:05:1e:a9:20:12
alias: zali_1 10:00:00:05:1e:ef:b9; 2,3; 1,11

Effective configuration:
 cfg: cfg
zone: lSAN_m 20:15:00:05:1e:a2:f9:b1 20:13:00:05:1e:a2:f9:b1

SEE ALSO zoneAdd, zoneCreate, zoneDelete, zoneRemove, zoneShow
zoneRemove

Removes a member from a zone.

SYNOPSIS

zoneremove "zonename", "zoneMemberList"

DESCRIPTION

Use this command to remove one or more members from an existing zone.

If all members are removed, the zone is deleted.

This command changes the defined configuration. For the change to be preserved across switch reboots, save the configuration to nonvolatile memory with the cfgSave command. For the change to become effective, enable the configuration with the cfgEnable command.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

When an FCS policy is enabled, this command can be issued only from the primary FCS switch.

OPERANDS

The following operands are required:

"zonename" Specify the name of the zone from which to remove a member. Double quotation marks are optional.

"zoneMemberList" Specify a member or a list of members to be removed from the specified zone. The list must be enclosed in double quotation marks. Members must be separated by semicolons. A member can be one or more of the following:

• A switch domain and port index pair: for example, "2,20". Use switchShow for a list of valid port index numbers.
• A world wide name
• A zone alias name
• Zone alias pattern. Use a pattern preceded by the wildcard symbol asterisk (*) to include members in the zone that matches the pattern.

EXAMPLES

To remove "array2" from "Blue_zone":

switch:admin> zoneremove "Blue_zone", "array2"

To remove all the members and aliases matching a pattern:

switch:admin> zoneremove matt,"30:06:00:07:1e:a2:10:20; ja*; 3,2"
switch:admin> cfgshow

Defined configuration:
zone: matt zeus; bond; jeff; jones
zone: sloth bawn; bolt; bond; brain; brit;
 bru; 10:00:00:01:1e:20:20
alias: bawn 3,5; 4,8
alias: bolt 10:00:00:02:1f:02:00:01
alias: bond 10:00:05:1e:a9:20:00:01; 3,5
alias: brain 11,4; 22,1; 33,6
alias: brit 12,1
alias: bru 5,3; 12,4
alias: geek 2,7; 4,11; 20:10:00:05:1e:a9:20:87
alias: jake 4,7; 8,9; 14,11
alias: jeff 30:00:00:05:1e:a1:cd:02; \

zoneRemove

40:00:00:05:1e:a1:cd:04
alias: jones 7,3; 4,5
alias: zeus 4,7; 6,8; 9,2

Effective configuration:
No Effective configuration: (No Access)

SEE ALSO zoneAdd, zoneCreate, zoneDelete, zoneShow
zoneShow

Displays zone information.

SYNOPSIS

zoneshow [--sort] [pattern][, mode]
zoneshow [--ic] [pattern][, mode]
zoneshow [--transdiffs]
zoneshow [--transdiffsonly]
zoneshow --help

DESCRIPTION

Use this command to display zone configuration information. This command includes sorting and search options to customize the output. If a pattern is specified, the command displays only matching match zone configuration names in the defined configuration. When used without operands, the command displays all zone configuration information for the Defined and the Effective configuration.

Use the --transdiffs and --transdiffsonly options to view changes in the current transaction.

The command output displays the changes in the current transaction by the following notations:

- An asterisk(*) before any tag indicates a change in that zone, zone configuration, alias or any other entity in the zone configuration.
- A plus(+) before any entity indicates that it is a newly added entity.
- A minus(-) before any entity indicates that it is a deleted entity.

Refer to cfgShow for a description of this display.

NOTES

The execution of this command is subject to Virtual Fabric or Admin Domain restrictions that may be in place. Refer to Chapter 1, "Using Fabric OS Commands" and Appendix A, "Command Availability" for details.

When FCS policy is enabled, this command can be issued on any FCS switch in the fabric.

OPERANDS

This command has the following operands:

--sort

Displays D,I zone members in ascending order.

--ic

Displays all zone configuration names for a given pattern without case distinction.

pattern

A POSIX-style regular expression used to match zone configuration names. This operand is optional. Patterns can contain:

- A question mark (?) to match any single character.
- An asterisk (*) to match any string of characters.
- A range of characters to match any character within the range: for example, [0-9] or [a-f].

mode

Specify 0 to display the contents of the transaction buffer (the contents of the current transaction), or specify 1 to display the contents of the nonvolatile memory. The default value is 0. This operand is optional.

--transdiffs

Displays the changes in the current transaction.
--transdiffsonly
Displays only the changes in the current transaction.

--help
Displays the command usage.

EXAKE
To display all zones:
switch:admin> zoneshow
Defined configuration:
cfg: cfg1 red
 zone: blue 44,5; 10:00:00:00:01:00:00: 3,4
 zone: red 3,4; 1,2; 4,5; 2,3

Effective configuration:
cfg: cfg1
 zone: red 3,4
 1,2
 4,5
 2,3

To sort the zones in ascending order:
switch:admin> zoneShow --sort
Defined configuration:
cfg: cfg1 red
 zone: blue 10:00:00:00:01:00:00; 3,4; 44,5
 zone: red 1,2; 2,3; 3,4; 4,5

Effective configuration:
cfg: cfg1
 zone: red 1,2
 2,3
 3,4
 4,5

To display the red zone only using pattern search:
switch:admin> zoneshow red
zone: red 3,4; 1,2; 4,5; 2,3

To combine a pattern search with the sorting option:
switch:admin> zoneshow --sort red
zone: red 1,2; 2,3; 3,4; 4,5

To display the filtered content of the transaction buffer:
switch:admin> zoneshow red, 1
zone: red 3,4; 1,2; 4,5; 2,3

To display the filtered and sorted content of the transaction buffer:
switch:admin> zoneshow --sort red, 1
zone: red 1,2; 2,3; 3,4; 4,5

To display all green zones using pattern search, regardless of the case:
switch:admin> zoneshow --ic GREEN*
zone: GREEN 44,4; 21:00:00:20:37:0c:71:02; 8,9
zone: green 2,2; 2,3; 21:00:00:20:37:0c:76:8c
To display the changes in the current transaction:

```
switch:admin> zoneshow --transdiffs
Defined configuration:
  cfg: fabric_cfg
    green_zone
  zone: blue_zone
    21:00:00:20:37:0c:76:8c
  *zone: green_zone
    21:00:00:20:37:0c:76:01; -1,4
  *zone: red_zone
    3,3; 3,4; +5,5; +5,6

Effective configuration:
  cfg: fabric_cfg
  zone: green_zone
    21:00:00:20:37:0c:76:01
    1,4
```

To display only the changes in the current transaction:

```
switch:admin> zoneshow --transdiffsonly
*zone: green_zone
  21:00:00:20:37:0c:76:01; -1,4
*zone: red_zone
  3,3; 3,4; +5,5; +5,6
```

SEE ALSO zoneAdd, zoneCreate, zoneDelete, zoneRemove
Primary FCS Commands

In this chapter

• Primary FCS commands .. 1181

Primary FCS commands

Table 6 summarizes the commands that are available only on the primary Fabric Configuration Server (FCS) when FCS policy is enabled.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aliAdd</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>aliCreate</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>aliDelete</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>aliRemove</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>aliShow</td>
<td>Can be run on all FCS switches.</td>
</tr>
<tr>
<td>cfgAdd</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>cfgClear</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>cfgCreate</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>cfgDelete</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>cfgDisable</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>cfgEnable</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>cfgRemove</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>cfgSave</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>cfgShow</td>
<td>Can be run on all FCS switches.</td>
</tr>
<tr>
<td>cfgSize</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>cfgTransAbort</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>cfgTransShow</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>date</td>
<td>This command can be run on all switches to view the current date. You can only modify the date from the primary FCS switch.</td>
</tr>
<tr>
<td>defZone</td>
<td>defzone --show can be run on all switches. All other options must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>msPIClearDB</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>msPImgmtActivate</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
</tbody>
</table>
TABLE 6 Primary FCS commands (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>msPlMgmtDeactivate</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>msTdDisable</td>
<td>msTdDisable "ALL" must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>msTdEnable</td>
<td>msTdEnable "ALL" must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>secPolicyAbort</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>secPolicyActivate</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>secPolicyAdd</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>secPolicyCreate</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>secPolicyDelete</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>secPolicyDump</td>
<td>Can be run on all FCS switches.</td>
</tr>
<tr>
<td>secPolicyFCSMove</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>secPolicyRemove</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>secPolicySave</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>secPolicyShow</td>
<td>Can be run on all FCS switches.</td>
</tr>
<tr>
<td>snmpConfig</td>
<td>Can be run on all FCS switches.</td>
</tr>
<tr>
<td>tsClockServer</td>
<td>Can be run on all switches to view the NTP server’s IP address. You can only modify the NTP server’s IP address on the primary FCS switch.</td>
</tr>
<tr>
<td>zoneAdd</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>zoneCreate</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>zoneDelete</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>zoneObjectCopy</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>zoneObjectExpung</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>zoneObjectRename</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>zoneRemove</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
</tbody>
</table>
Command Availability

In this appendix

- Command validation checks .. 1183
- Command Admin Domain and Virtual Fabrics restrictions......... 1184

Command validation checks

Before a command is executed, it is validated against the following checks.

1. **Active or Standby availability**: On enterprise-class platforms systems, checks that the command is available on the Control Processor (CP).

2. **Role-Based Access Control (RBAC) availability**: Checks that the invoking user’s role is permitted to invoke the command. If the command modifies system state, the user’s role must have modify permission for the command. If the command only displays system state, the user’s role must have observe permission for the command. Some commands both observe and modify system state and thus require observe-modify permission. The following RBAC permissions are supported:
 - O = Observe
 - OM = Observe-modify,
 - N = None or not available

3. **Admin Domain availability**: If Admin Domains are enabled, the system checks that the command is allowed in the currently selected Admin Domain. For information on Admin Domain concepts and restrictions, refer to the Fabric OS Administrator’s Guide.

Admin Domain types are one or more of the following. If more than one AD type is listed for a command, the AD type is option-specific. Display options may be allowed, but set options may be subject to Admin Domain restrictions.

- **SwitchMember** = Allowed to execute only if the local switch is part of the current AD.
- **Allowed** = Allowed to execute in all ADs.
- **PhysFabricOnly** = Allowed to execute only in AD255 context (and the user should own access to AD0-AD255 and have admin RBAC privilege).
- **Disallow** = Allowed to execute only in AD0 or AD255 context; not allowed in AD1-AD254 context.
- **PortMember** = All control operations allowed only if the port or the local switch is part of the current AD. View access allowed if the device attached to the port is part of the current AD.
- **AD0Disallowed** = Allowed to execute only in AD255 and AD0 (if no ADs are configured).
- **AD0Only** = Allowed to execute only in AD0 when ADs are not configured.
4. Virtual Fabric availability: If Virtual Fabrics are enabled, commands are checked for context and switch type as follows:

- Virtual Fabric context (VF) = Command applies to the current logical switch only, or to a specified logical switch.

Virtual Fabric commands are further constrained by one of the following switch types:
- All Switches (All) = Command can be run in any switch context.
- Base Switch (BS) = Command can be run only on the base switch.
- Default Switch (DS) = Command can be run only on the default switch.
- N/A = Switch type is not applicable to the command.
- Chassis context (CH) = Command applies to the chassis on which it is executed.
- Switch and Chassis context (VF/CH) = Command applies to the switch and the chassis.
- Disallowed = Command cannot be executed when Virtual Fabrics are enabled.

5. Command-specific: Checks whether the command is supported on the platform for which it is targeted.

NOTE
To determine RBAC permissions for a specified command and associated major options, use the `classConfig --showcli` command. Refer to Chapter 1, “Using Fabric OS Commands” for more information.

Command Admin Domain and Virtual Fabrics restrictions

TABLE 1 Admin Domain and Virtual Fabric restrictions for Fabric OS commands.

<table>
<thead>
<tr>
<th>Command name</th>
<th>Admin Domain</th>
<th>Context</th>
<th>Switch type</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaaConfig</td>
<td>SwitchMember/ Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>ad</td>
<td>Allowed/ Phys Fabric only</td>
<td>Disallowed</td>
<td>N/A</td>
</tr>
<tr>
<td>ag</td>
<td>N/A/ Allowed/ SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>agAutoMapBalance</td>
<td>N/A</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>agShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>aliAdd</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>aliCreate</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>aliDelete</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>aliRemove</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>aliShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>appLoginHistory</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>aptPolicy</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>auditCfg</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>auditDump</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>authUtil</td>
<td>Allowed/ SwitchMember/ PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>bannerSet</td>
<td>SwitchMember</td>
<td>VF</td>
<td>N/A</td>
</tr>
<tr>
<td>Command name</td>
<td>Admin Domain</td>
<td>Context</td>
<td>Switch type</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>bannerShow</td>
<td>Allowed</td>
<td>VF</td>
<td>N/A</td>
</tr>
<tr>
<td>bcastShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>bladeCfgGemode</td>
<td>PortMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>bladeDisable</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>bladeEnable</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>bladeSwap</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>bootLunCfg</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>bottleneckMon</td>
<td>SwitchMember</td>
<td>VF/ CH</td>
<td>All/ N/A</td>
</tr>
<tr>
<td>bpPortLoopbackTest</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>bpTurboRamTest</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>bufOpMode</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>ceePortLedTest</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>ceePortLoopbackTest</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>ceeTurboramTest</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>cfgActvShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>cfgAdd</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>cfgClear</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>cfgCreate</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>cfgDelete</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>cfgDisable</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>cfgEnable</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>cfgRemove</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>cfgSave</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>cfgShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>cfgSize</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>cfgTransAbort</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>cfgTransShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>chassisBeacon</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>chassisCfgPerrThreshold</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>chassisDisable</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>chassisDistribute</td>
<td>ADO/Disallowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>chassisEnable</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>chassisName</td>
<td>Allowed/ SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>chassisShow</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>classConfig</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>cliHistory</td>
<td>Allowed</td>
<td>CH/ VF</td>
<td>All</td>
</tr>
<tr>
<td>Command name</td>
<td>Admin Domain</td>
<td>Context</td>
<td>Switch type</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>cmsh</td>
<td>SwitchMember</td>
<td>VF</td>
<td>DS</td>
</tr>
<tr>
<td>configDefault</td>
<td>Allowed/ SwitchMember</td>
<td>VF/CH</td>
<td>N/A</td>
</tr>
<tr>
<td>configDownload</td>
<td>Allowed</td>
<td>VF/CH</td>
<td>N/A</td>
</tr>
<tr>
<td>configList</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>configRemove</td>
<td>Allowed</td>
<td>VF</td>
<td>N/A</td>
</tr>
<tr>
<td>configShow</td>
<td>SwitchMember</td>
<td>VF/CH</td>
<td>N/A</td>
</tr>
<tr>
<td>configUpload</td>
<td>Allowed</td>
<td>VF/CH</td>
<td>N/A</td>
</tr>
<tr>
<td>configure</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>configureChassis</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>creditRecovMode</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>cryptoCfg</td>
<td>Disallowed</td>
<td>VF</td>
<td>DS</td>
</tr>
<tr>
<td>dataTypeShow</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>date</td>
<td>Allowed/ SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>dbgShow</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>defZone</td>
<td>ADO/Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>diagClearError</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>diagDisablePost</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>diagEnablePost</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>diagHelp</td>
<td>Allowed</td>
<td>Disallowed</td>
<td>N/A</td>
</tr>
<tr>
<td>diagPost</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>diagRetry</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>diagShow</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>distribute</td>
<td>Allowed/ ADO/Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>disReset</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>disSet</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>disShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>dnsConfig</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>enclosureShow</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>errClear</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>errDelimiterSet</td>
<td>Allowed/ SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>errDump</td>
<td>Allowed</td>
<td>VF/CH</td>
<td>N/A</td>
</tr>
<tr>
<td>errFilterSet</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>errModuleShow</td>
<td>Allowed</td>
<td>VF</td>
<td>N/A</td>
</tr>
<tr>
<td>errShow</td>
<td>Allowed</td>
<td>VF/CH</td>
<td>N/A</td>
</tr>
<tr>
<td>exit</td>
<td>Allowed</td>
<td>Disallowed</td>
<td>N/A</td>
</tr>
<tr>
<td>fabRetryShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
</tbody>
</table>
TABLE 1 Admin Domain and Virtual Fabric restrictions for Fabric OS commands. (Continued)

<table>
<thead>
<tr>
<th>Command name</th>
<th>Admin Domain</th>
<th>Context</th>
<th>Switch type</th>
</tr>
</thead>
<tbody>
<tr>
<td>fabRetryStats</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fabricLog</td>
<td>SwitchMember/ Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fabricName</td>
<td>Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fabricPrincipal</td>
<td>Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fabricShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fabStatsShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fanDisable</td>
<td>Disallowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>fanEnable</td>
<td>Disallowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>fanShow</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>faPwn</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fastBoot</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>fcipHelp</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>fcipLedTest</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>fcipPathTest</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>fcoe</td>
<td>Allowed</td>
<td>VF</td>
<td>DS</td>
</tr>
<tr>
<td>fcoeLoginCfg</td>
<td>Allowed</td>
<td>VF</td>
<td>DS</td>
</tr>
<tr>
<td>fcoeLoginGroup</td>
<td>Allowed</td>
<td>VF</td>
<td>DS</td>
</tr>
<tr>
<td>fcPing</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fcLogClear</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fcLogDisable</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fcLogEnable</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fcLogShow</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fcpProbeShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fcpRlsProbe</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fcpRlsShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fcrBcastConfig</td>
<td>SwitchMember</td>
<td>VF</td>
<td>BS</td>
</tr>
<tr>
<td>fcrConfigure</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fcrEdgeShow</td>
<td>Allowed</td>
<td>VF</td>
<td>BS</td>
</tr>
<tr>
<td>fcrFabricShow</td>
<td>Allowed</td>
<td>VF</td>
<td>BS</td>
</tr>
<tr>
<td>fcrIclPathBWMonitor</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fcrLsan</td>
<td>SwitchMember</td>
<td>VF</td>
<td>BS</td>
</tr>
<tr>
<td>fcrLsanCount</td>
<td>SwitchMember</td>
<td>VF</td>
<td>BS</td>
</tr>
<tr>
<td>fcrLsanMatrix</td>
<td>SwitchMember</td>
<td>VF</td>
<td>BS</td>
</tr>
<tr>
<td>fcrPhydevShow</td>
<td>Allowed</td>
<td>VF</td>
<td>BS</td>
</tr>
<tr>
<td>fcrProxyConfig</td>
<td>SwitchMember/ Allowed</td>
<td>VF</td>
<td>BS</td>
</tr>
<tr>
<td>fcrProxyDevShow</td>
<td>Allowed</td>
<td>VF</td>
<td>BS</td>
</tr>
<tr>
<td>Command name</td>
<td>Admin Domain</td>
<td>Context</td>
<td>Switch type</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>fcrResourceShow</td>
<td>Allowed</td>
<td>VF</td>
<td>BS</td>
</tr>
<tr>
<td>fcrRouterPortCost</td>
<td>Allowed/SwitchMember</td>
<td>VF</td>
<td>BS</td>
</tr>
<tr>
<td>fcrRouteShow</td>
<td>Allowed</td>
<td>VF</td>
<td>BS</td>
</tr>
<tr>
<td>fcrXlateConfig</td>
<td>Allowed/SwitchMember</td>
<td>VF</td>
<td>BS</td>
</tr>
<tr>
<td>fddCfg</td>
<td>ADO/Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fdmiCacheShow</td>
<td>Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fdmiShow</td>
<td>Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>ficonCfg</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>ficonClear</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>ficonCupSet</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>ficonCupShow</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>ficonHelp</td>
<td>Allowed</td>
<td>Disallowed</td>
<td>N/A</td>
</tr>
<tr>
<td>ficonShow</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fipsCfg</td>
<td>ADO/Disallowed</td>
<td>CH</td>
<td>NA/ALL</td>
</tr>
<tr>
<td>firmwareCommit</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>firmwareDownload</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>firmwareDownloadStatus</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>firmwareKeyShow</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>firmwareRestore</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>firmwareShow</td>
<td>Allowed</td>
<td>VF</td>
<td>N/A</td>
</tr>
<tr>
<td>flow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fmMonitor</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fosConfig</td>
<td>Allowed/SwitchMember/Disallowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>fosExec</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>frameLog</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fpsfShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fwAlarmsFilterSet</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fwAlarmsFilterShow</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fwClassInit</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fwConfigReload</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fwFruCfg</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fwHelp</td>
<td>Allowed</td>
<td>Disallowed</td>
<td>N/A</td>
</tr>
<tr>
<td>fwMailCfg</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fwPortDetailShow</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fwSamShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fwSet</td>
<td>Switch Member</td>
<td>VF</td>
<td>All</td>
</tr>
</tbody>
</table>
TABLE 1 Admin Domain and Virtual Fabric restrictions for Fabric OS commands. (Continued)

<table>
<thead>
<tr>
<th>Command name</th>
<th>Admin Domain</th>
<th>Context</th>
<th>Switch type</th>
</tr>
</thead>
<tbody>
<tr>
<td>fwSetToCustom</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>fwSetToDefault</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>gePortErrShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>h</td>
<td>Allowed</td>
<td>Disallowed</td>
<td>N/A</td>
</tr>
<tr>
<td>haDisable</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>haDump</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>haEnable</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>haFailover</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>haShow</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>haSyncStart</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>haSyncStop</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>help</td>
<td>Allowed</td>
<td>Disallowed</td>
<td>N/A</td>
</tr>
<tr>
<td>historyLastShow</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>historyMode</td>
<td>Allowed/SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>historyShow</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>i</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>iclCfg</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>iflShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>ifModeSet</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>ifModeShow</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>interfaceShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>iodReset</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>iodSet</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>iodShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>ipAddrSet</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>ipAddrShow</td>
<td>Allowed</td>
<td>VF, CH/</td>
<td>CH N/A</td>
</tr>
<tr>
<td>ipFilter</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>ipSecConfig</td>
<td>PortMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>isisShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>killTelnet</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>ldapCfg</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>ifCfg</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>licenseAdd</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>licenseslShow</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>licensePort</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>licenseRemove</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>Command name</td>
<td>Admin Domain</td>
<td>Context</td>
<td>Switch type</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>licenseShow</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>licenseSlotCfg</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>linkCost</td>
<td>Allowed/SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>logicalGroup</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>login</td>
<td>Allowed</td>
<td>N/A</td>
<td>Disallowed</td>
</tr>
<tr>
<td>logOut</td>
<td>Allowed</td>
<td>N/A</td>
<td>Disallowed</td>
</tr>
<tr>
<td>lsanZoneShow</td>
<td>Allowed</td>
<td>VF</td>
<td>BS</td>
</tr>
<tr>
<td>lsCfg</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>lsDbShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>mapsConfig</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>mapsDb</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>mapshelp</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>mapsPolicy</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>mapsRule</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>mapsSam</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>memShow</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>motd</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>msCapabilityShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>msConfigure</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>msPlatShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>msPlatShowDBCB</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>msPlClearDB</td>
<td>Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>msPlMgmtActivate</td>
<td>Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>msPlMgmtDeactivate</td>
<td>Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>msTdDisable</td>
<td>Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>msTdEnable</td>
<td>Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>msTdReadConfig</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>myid</td>
<td>Allowed</td>
<td>VF</td>
<td>N/A</td>
</tr>
<tr>
<td>nbrStateShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>nbrStatsClear</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>nodeFind</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>nsAliasShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>nsAllShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>nsAllShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>nsCamShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>nsDevLog</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>nsShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>Command name</td>
<td>Admin Domain</td>
<td>Context</td>
<td>Switch type</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>nsZoneMember</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>nsZoneShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>passwd</td>
<td>Allowed</td>
<td>VF/CH</td>
<td>N/A</td>
</tr>
<tr>
<td>passwdCfg</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>pathinfo</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>pdShow</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>perfAddEEMonitor</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>perfCfgClear</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>perfCfgRestore</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>perfCfgSave</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>perfClearAlpaCrc</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>perfDelEEMonitor</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>perfHelp</td>
<td>Allowed</td>
<td>Disallowed</td>
<td>N/A</td>
</tr>
<tr>
<td>perfMonitorClear</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>perfMonitorShow</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>perfResourceShow</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>perfSetPortEEMask</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>perfShowAlpaCrc</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>perfShowPortEEMask</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>perfTITmon</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portAddress</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portAlpaShow</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portBeacon</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portBufferCalc</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portBufferShow</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCamShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfg</td>
<td>SwitchMember/PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgAlpa</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgAutoDisable</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgCompress</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgCreditRecovery</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgDefault</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgDPort</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgEncrypt</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgEport</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgEportCredits</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>Command name</td>
<td>Admin Domain</td>
<td>Context</td>
<td>Switch type</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>portcfgEXPort</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgFaultDelay</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgFec</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgFillword</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgFportBuffers</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgGeMediaType</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgGport</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgISLMode</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgLongDistance</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgLossTov</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgNPort</td>
<td>Allowed/PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgNPIVPort</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgOctetSpeedCombo</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>portCfgPersistentDisable</td>
<td>Allowed/PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgPersistentEnable</td>
<td>Allowed/PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgQos</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgShow</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgSpeed</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgTrunkPort</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCfgVEXPort</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portCmd</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portDebug</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>portDecom</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portDisable</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portDPortTest</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portEnable</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portEncCompShow</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portErrShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portFencing</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portFlagsShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portLedTest</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>portLogClear</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portLogConfigShow</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portLogDisable</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portLogDump</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
</tbody>
</table>
TABLE 1 Admin Domain and Virtual Fabric restrictions for Fabric OS commands. (Continued)

<table>
<thead>
<tr>
<th>Command name</th>
<th>Admin Domain</th>
<th>Context</th>
<th>Switch type</th>
</tr>
</thead>
<tbody>
<tr>
<td>portLogDumpPort</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portLogEnable</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portLogEventShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portLoginShow</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portLogPdisc</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portLogReset</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portLogResize</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portLogShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portLogShowPort</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portLogTypeDisable</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portLogTypeEnable</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portLoopbackTest</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>portMirror</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portName</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portPerfShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portRouteShow</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portShow</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portStats64Show</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portStatsClear</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portStatsShow</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portSwap</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portSwapDisable</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portSwapEnable</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portSwapShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portTest</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portTestShow</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portThConfig</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portTrunkArea</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>portZoneShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>powerOffListSet</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>powerOffListShow</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>psShow</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>rasAdmin</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>rasMan</td>
<td>Allowed</td>
<td>Disallowed</td>
<td>N/A</td>
</tr>
<tr>
<td>reBoot</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>roleConfig</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Admin Domain and Virtual Fabric restrictions for Fabric OS commands. (Continued)

<table>
<thead>
<tr>
<th>Command name</th>
<th>Admin Domain</th>
<th>Context</th>
<th>Switch type</th>
</tr>
</thead>
<tbody>
<tr>
<td>routeHelp</td>
<td>Allowed</td>
<td>Disallowed</td>
<td>N/A</td>
</tr>
<tr>
<td>rLLogTrace</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>secActiveSize</td>
<td>ADO/Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>secAuthSecret</td>
<td>ADO/Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>secCertUtil</td>
<td>ADO/Disallowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>secDefineSize</td>
<td>ADO/Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>secGlobalShow</td>
<td>ADO/Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>secHelp</td>
<td>Allowed</td>
<td>Disallowed</td>
<td>N/A</td>
</tr>
<tr>
<td>secPolicyAbort</td>
<td>ADO/Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>secPolicyActivate</td>
<td>ADO/Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>secPolicyAdd</td>
<td>ADO/Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>secPolicyCreate</td>
<td>ADO/Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>secPolicyDelete</td>
<td>ADO/Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>secPolicyDump</td>
<td>ADO/Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>secPolicyFCSMove</td>
<td>ADO/Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>secPolicyRemove</td>
<td>ADO/Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>secPolicySave</td>
<td>ADO/Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>secPolicyShow</td>
<td>Allowed/ADO/Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>secStatsReset</td>
<td>ADO/Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>secStatsShow</td>
<td>ADO/Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>sensorShow</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>serDesTuneMode</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>setContext</td>
<td>Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>setDbg</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>setVerbose</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>sfpShow</td>
<td>PortMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>shellFlowControlDisable</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>shellFlowControlEnable</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>slotPowerOff</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>slotPowerOn</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>slotShow</td>
<td>Allowed</td>
<td>VF, CH</td>
<td>N/A</td>
</tr>
<tr>
<td>snmpConfig</td>
<td>Allowed/SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>snmpTraps</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>spinFab</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>sshUtil</td>
<td>ADO/Disallowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>Command name</td>
<td>Admin Domain</td>
<td>Context</td>
<td>Switch type</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>statsClear</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>stopPortTest</td>
<td>SwitchMember</td>
<td>VF</td>
<td>DS</td>
</tr>
<tr>
<td>supportFfdc</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>supportFtp</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>supportSave</td>
<td>Disallowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>supportShow</td>
<td>Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>supportShowCfgDisable</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>supportShowCfgEnable</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>supportShowCfgShow</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>switchBeacon</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>switchCfgPersistentDisable</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>switchCfgPersistentEnable</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>switchCfgSpeed</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>switchCfgTrunk</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>switchDisable</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>switchEnable</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>switchName</td>
<td>Allowed/SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>switchShow</td>
<td>Allowed/Disallowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>switchStatusPolicySet</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>switchStatusPolicyShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>switchStatusShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>switchUptime</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>switchViolation</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>syslogdFacility</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>syslogdlpAdd</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>syslogdlpRemove</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>syslogdlpShow</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>sysMonitor</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>sysShutdown</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>tempShow</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>thConfig</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>thMonitor</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>timeOut</td>
<td>Allowed/SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>topologyShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>traceDump</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>trunkDebug</td>
<td>SwitchMember</td>
<td>VF</td>
<td>All</td>
</tr>
</tbody>
</table>
TABLE 1
Admin Domain and Virtual Fabric restrictions for Fabric OS commands. (Continued)

<table>
<thead>
<tr>
<th>Command name</th>
<th>Admin Domain</th>
<th>Context</th>
<th>Switch type</th>
</tr>
</thead>
<tbody>
<tr>
<td>trunkShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>tsClockServer</td>
<td>SwitchMember/Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>tsTimeZone</td>
<td>SwitchMember/Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>turboRamTest</td>
<td>SwitchMember</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>upTime</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>uRouteShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>usbStorage</td>
<td>Allowed</td>
<td>CH</td>
<td>N/A</td>
</tr>
<tr>
<td>userConfig</td>
<td>Allowed</td>
<td>CH/VF</td>
<td>All/NA</td>
</tr>
<tr>
<td>version</td>
<td>Allowed</td>
<td>VF</td>
<td>N/A</td>
</tr>
<tr>
<td>wwn</td>
<td>Allowed/SwitchMember</td>
<td>VF/CH/VF</td>
<td>All</td>
</tr>
<tr>
<td>wwnAddress</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>zone</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>zoneAdd</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>zoneCreate</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>zoneDelete</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>zoneHelp</td>
<td>Allowed</td>
<td>Disallowed</td>
<td>N/A</td>
</tr>
<tr>
<td>zoneObjectCopy</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>zoneObjectExpunge</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>zoneObjectRename</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>zoneObjectReplace</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>zoneRemove</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
<tr>
<td>zoneShow</td>
<td>Allowed</td>
<td>VF</td>
<td>All</td>
</tr>
</tbody>
</table>