PERC Self-Encrypting Drive (SED) Support and FAQs

Before jumping into the topic, level-setting on some acronyms can be helpful:

<table>
<thead>
<tr>
<th>TERM</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERC</td>
<td>PowerEdge RAID Controller</td>
</tr>
<tr>
<td>VD</td>
<td>PERC Virtual Disk</td>
</tr>
<tr>
<td>eHBA mode</td>
<td>Enhanced HBA mode (PERC 10.2)</td>
</tr>
<tr>
<td>LKMs</td>
<td>PERC Local Key Management</td>
</tr>
<tr>
<td>SED</td>
<td>Self-Encrypting Drive</td>
</tr>
<tr>
<td>TCG</td>
<td>Trusted Computing Group</td>
</tr>
<tr>
<td>AK or KEK</td>
<td>Authentication Key or Key Encryption Key</td>
</tr>
<tr>
<td>DEK or MEK</td>
<td>Data Encryption Key or Media Encryption Key</td>
</tr>
<tr>
<td>FIPS</td>
<td>Federal Information Processing Standardization</td>
</tr>
<tr>
<td>ISE</td>
<td>Instant Scramble Erase</td>
</tr>
</tbody>
</table>

Self-Encrypting Drives
Self-Encrypting Disks (SED) provide protection of data against physical loss or theft of disks only. Protection is achieved by requiring a key to unlock the drives before any data can be retrieved. The data on disks that support the SED feature is always encrypted and protection from theft is only available if the disks are secured.

NOTE: ISE capable drives have the same underlying encryption hardware that SED drives do, but they do not allow the drives to be secured.

Threat Models Covered by SED Drives
Secured SED protect against theft of the drives only and the drives are only locked after power is lost.

Support for SED drives on PERC (Local Key Management - LKM)
PERC controllers support the use of SED drives in all RAID levels. Virtual Disks can be secured when they are created or after a VD is already in use. All disks in the array must support SED to be secured. To enable the securing of Virtual Disks, security must also be enabled on the controller, as shown in Figure 1 below. See the PERC User Guide for detailed instructions for enabling security. A secured VD cannot be unsecured without erasing all data on the drive.

The user will be prompted to input and then confirm a passphrase, as shown in Figure 2 below. The user-provided passphrase is hashed and stored locally on the PERC controller. The key sent to the drive is derived from this hashed value.

If a secured disk is detected during boot or discovery of a new drive, the PERC controller will use the stored key to unlock the drive to allow data access. In the case of foreign configurations or drive migration where the drive requires a different passphrase than the one stored locally, the user will be required to enter the passphrase for that drive, after which the drive will be re-keyed with the local key.
PERC Security Management Applications
The PERC controller passphrase can be managed from:
- HII
- PERCcli
- Open Manage
- IDRAC

Threat Models Covered by PERC LKM
PERC LKM protects against theft of drives. If an entire system is stolen, the key that is used to unlock the drive is still stored on the PERC controller allowing the drives to be unlocked at next boot.

Supported Security Protocol
PERC supports TCG Enterprise SSC for enabling secured encryption on SED Drives. See trustedcomputinggroup.org for more information. DELL’s Enterprise drives that support SED follow this standard.

PERC 10.2 eHBA SED Support
PERC 10.2 FW adds support for eHBA mode allowing RAID and Non-RAID disks in the system. Under eHBA mode, both VDs and Non-RAID disks can be secured. See the PERC 10.2 User Guide for more information about eHBA mode and securing Non-RAID disks.

Passphrase Management in HII

![Image of HII screen](image)

Figure 1: Selecting Local Key Management to enable security on the PERC.
Figure 2: Creating a passphrase when enabling security on the PERC.

Figure 3: Changing security settings
Frequently Asked Questions:

Where does the encryption happen?
Encryption occurs on the drive whether the drive is secured or not. Any IO to the drive is encrypted/decrypted by hardware on the drive.

Where is the key stored, Drive or RAID controller?

<table>
<thead>
<tr>
<th>KEK</th>
<th>Key Encryption Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEK</td>
<td>Data Encryption Key</td>
</tr>
</tbody>
</table>

There are multiple keys that are used between the drive and PERC. The DEK is what is used to encrypt the data on the drive, and it is stored on the drive itself. The KEK is used to unlock the drive so the drive can use the DEK. The hashed KEK is stored on the PERC controller.

The DEK is never revealed outside of the drive and the KEK is never revealed outside of the PERC controller.

Is the data encrypted by default?
The data is always encrypted but the drive needs to be secured to protect data from theft.

How to move disks between controllers, preserving the data?
Moving disks between different controllers is allowed and the passphrase that was originally used is needed to unlock the SEDs when importing them on the new controller. See Importing secure virtual disk section in the User Guide.

How to recover/access data in case of PERC card failure.
After replacing the failed controller with a working one and enabling security, the secured VDs can be imported using the original passphrase, allowing access to the data on the disks.

Can the passphrase be changed multiple times?
Yes, you can change the passphrase if you know the existing passphrase. This rekeys the KEK but does not change the DEK. See Changing Security Key section in the User Guide. The data will not be erased/lost when the new passphrase is established. The only thing that is changing is the passphrase that is used to unlock the drive.

If we lost a drive (and someone finds it) is the data accessible by default? What are the minimum steps required to ensure the data is protected?
If your drives are non-SED, then the data is accessible.
If your drives are SED and you did not secure them, then the data is accessible.
If your drives are SED and you secured them, then the data can only be accessed using the passphrase you have set.

By default, the data is not protected from theft. The minimum steps needed to secure a drive is to enable the controller security and securing the Virtual Disk. Please see Local Key Management section in the User Guide for more information.

What are performance implications of a SED. Would they perform faster/slower depending on if they are secured?
Data encryption occurs whether the drive is secured or not so there is no impact on performance.
FAQ’s, continued:

Can we mix RAID sets with some having normal drives and other RAID sets having SEDs?
Yes, you can mix SEDs and non-SEDS but you will not be able to secure those Virtual Disks. Securing a Virtual Disk requires all disks in the array to support SED.

<table>
<thead>
<tr>
<th>Virtual Disk Drive Type</th>
<th>Controller Security Enabled</th>
<th>Controller Security Disabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEDs and Non-SEDS</td>
<td>Secured VD not allowed</td>
<td>Secured VD not allowed</td>
</tr>
<tr>
<td>SEDs</td>
<td>Secured VD allowed</td>
<td>Secured VD not allowed</td>
</tr>
</tbody>
</table>

What is Secure Erase or Cryptographic Erase?
Secure erase or Cryptographic erase allows you to scramble that data stored on the disk by changing the DEK. Preforming this erase operation will render that data on the device indecipherable and the data on the drive will not be able to be recovered. Secure erase or Cryptographic erase can only be done on a drive that is not configured in a Virtual Disk.

What is FIPS-140-2 level 2 compliance and does DELL EMC have supported drives?
FIPS stands for Federal Information Processing Standards and it is the mandatory standard required to protect sensitive or valuable data within Federal systems. Dell EMC offers SED drives with and without FIPS-140-2 level 2 certification, but it is not required for PERC secured VDs.

Additional Information
- https://en.wikipedia.org/wiki/Hardware-based_full_disk_encryption
- https://www.seagate.com/solutions/security/