Intel 320 Series SSD
User's Information for Dell PowerEdge C Products
Contents

1 Intel 320 Series SSD User's Information for Dell PowerEdge C Products5
 About This Document ..5
 Supported Hardware ..5
 PowerEdge C Servers ...5
 Controllers ..5
 SSD Hard Drive Indicator Patterns ..6
 Drive Activity Indicator ...6
 Drive Status Indicator ..6
 Wear Usage Monitoring ..7
 The Smartmon Tool ..7
 Obtaining the Smartmon Tool ..7
 SMART Attributes ...7
 Smartmon Tool and smartctl Resources ..7
 Monitoring Drive Wear Example Using the Smartmon Tool — Linux RAID Environments ...8
 Monitoring Drive Wear Example Using the Smartmon Tool — Non-RAID Environments ...8
 Using the Smartmon Tool to Estimate Wear Usage — Windows RAID Environments ONLY ..8
 Calculating Estimated Drive Wear ..10
 Firmware Upgrades for Intel SSDs ..11
 Adjusting SSD Usable Capacity to Improve Drive Performance11
 Intel 320 SSD ATA Instant Secure Erase Functionality ..11

2 Getting Help ..13
 Contacting Dell ..13
Intel 320 Series SSD User's Information for Dell PowerEdge C Products

About This Document

This document describes features and behaviors of the Intel 320 Series SSDs that you may encounter when using these drives in a Dell PowerEdge C server.

Supported Hardware

PowerEdge C Servers

The following Dell PowerEdge C servers are currently qualified as compatible with Intel 320 Series SDDs:

- PowerEdge C6220

NOTE: Additional servers may be qualified in the future as compatible with Intel 320 Series SDDs. Contact your Dell sales representative for the latest information.

Controllers

The following controllers currently support Intel 320 Series SDDs:

- LSI 9265-8i
- LSI 9285-8e
- LSI 9202-16e
- LSI 9210-8i
- Intel C600
- LSI2008 mezzanine card

NOTE: Additional controllers may be qualified in the future as compatible with Intel 320 Series SDDs. Contact your Dell sales representative for the latest information.
SSD Hard Drive Indicator Patterns

![Image of SSD hard drive indicators]

Figure 1. Hard-Drive Indicators

1. hard-drive activity indicator (green)
2. hard-drive status indicator (green and amber)

Drive Activity Indicator

- **NOTE:** The drive activity indicator behavior on an SSD is noticeably different than that of a hard disk drive. When SSD I/O activity is occurring, the indicator will switch on and remain on without blinking. This is normal behavior.

<table>
<thead>
<tr>
<th>SSD Drive Activity Indicator Pattern</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>No drive activity</td>
</tr>
<tr>
<td>Steady green</td>
<td>Drive I/O activity occurring</td>
</tr>
</tbody>
</table>

Drive Status Indicator

The hard-drive status indicator functions the same as that of a hard disk drive.

<table>
<thead>
<tr>
<th>SSD Drive Status Indicator Pattern (RAID Only)</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinks green two times per second</td>
<td>Identifying drive or preparing for removal</td>
</tr>
<tr>
<td>Off</td>
<td>Drive ready for insertion or removal</td>
</tr>
<tr>
<td>NOTE: The drive status indicator remains off until all hard drives are initialized after the system is turned on. Drives are not ready for insertion or removal during this time.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinks green and off</td>
</tr>
<tr>
<td>Blinks green slowly</td>
</tr>
</tbody>
</table>
SSD Drive Status Indicator Pattern
(raid only)
Steady green
Drive online
Blinks green three seconds and off six seconds
Rebuild aborted

Wear Usage Monitoring

The Smartmon Tool

You can use a software tool — Smartmon — that monitors three Self-Monitoring, Analysis, and Reporting Technology (SMART) attributes for SSDs. Smartmon includes a command line utility, smartctl, used to check these attributes.

Obtaining the Smartmon Tool

The Smartmon tool is available from the following sources:

- From Intel as part of the “Intel Solid-State Drive Toolbox” at http://downloadcenter.intel.com.

NOTE: Use the latest version of the Smartmon tool with the Intel 320 Series SSDs.

SMART Attributes

The three primary attributes measured by the Smartmon tool are:

- Workload Timer ID E4h — Time elapsed during the current workload.
- Timed Workload Host Reads Percentage ID E3h — Percentage of I/O operations that are read operations during the last workload timer loop.
- Timed Workload Media Wear Indicator ID E2h — Drive wear during the last wear timer loop, as a percentage of the maximum rated cycles.

NOTE: You must run the workload to be evaluated for at least 60 minutes for these SMART drive attributes to register.

Smartmon Tool and smartctl Resources

For details of the Smartmon tool, the smartctl utility, and SMART attributes, refer to:

Monitoring Drive Wear Example Using the Smartmon Tool — Linux RAID Environments

Note that the specific options in this example may not apply to your system. For details of the `smartctl` commands and options, see the resources in “Smartmon Tool and smartctl Resources.”

1. Find the OS name for the storage device or RAID array.
2. Find device ID’s for the device or array in step 1 using MegaCli using the following command:

 `MegaCli64 -pdlist -aAll`

3. For each device ID use the following command:

 `smartctl -a -d sat+megaraid,N /dev/sdX`

 - `N` represents the device ID identified in step 2.
 - `X` represents the storage device or RAID array identified in step 1.

4. In the `smartctl` output, Attribute ID# 233, Media Wearout Indicator, will indicate the remaining drive life as a percentage under the VALUE column. For example, a value of 85 means 85% of the drive’s life remains.

Monitoring Drive Wear Example Using the Smartmon Tool — Non-RAID Environments

Note that the specific options in this example may not apply to your system. For details of the `smartctl` commands and options, see the resources in “Smartmon Tool and smartctl Resources.”

1. Find the OS name for the storage device.
2. For each device ID use the following command:

 `smartctl -a -d sat/dev/sdX`

 - `X` represents the storage device or RAID array identified in step 1.

3. In the `smartctl` output, Attribute ID# 233, Media Wearout Indicator, will indicate the remaining drive life as a percentage under the VALUE column. For example, a value of 85 means 85% of the drive’s life remains.

Using the Smartmon Tool to Estimate Wear Usage — Windows RAID Environments ONLY

NOTE: In a Windows RAID environment, an individual SSD device cannot be directly accessed behind the LUN (Logical Unit or RAID configured set) so it must be temporarily moved to a NON-Windows (Linux) SMART-capable system during portions of the procedure as noted below, in order to issue SMART commands to the drive.

You can use the following procedure to estimate wear in a Windows RAID production or application environment. This procedure applies to Linux and Windows operating systems, and RAID or non-RAID environments.

The high-level steps of the procedure are as follows:

- Obtain a baseline wear indicator
- Run the intended application for an extended time period
- Re-check the wear indicator
- Calculate wear over time

1. Make sure DIPM is disabled to ensure that the data collected is accurate.
2. Temporarily move the drive to a NON-Windows (Linux) SMART-capable system.
3. Issue the SMART EXECUTE OFF-LINE IMMEDIATE (D4h) sub-command 40h to reset the E4h (workload timer) attribute.
For example, utilizing smartctl version 5.43 in a Linux OS where the drive under test is /dev/sda you can enter the following command line:

```
smartctl -t vendor,0x40 /dev/sda
```

Figure 2. Resetting the SMART workload timer attribute

4. Return the drive to the Windows system where the workload will be measured.
5. Run the workload to be evaluated for at least 60 minutes (otherwise the drive wear attributes will not be available).
 - For this example, the workload was run for about 22 hours.
 - Iometer was used with a transfer size of 1MB with 100% random writes.
6. Do a clean system power down. Use either the ATA STANDBY IMMEDIATE command or leave the drive in the system for 10 minutes prior to shutting down the system. This ensures that the drive will store all the drive wear SMART attributes to persistent memory within the drive.
7. Return the drive to a non-Windows (Linux) SMART-capable system (the same system environment of step 2).
8. Read the drive wear attributes with the SMART READ DATA (D0h) command within 60 minutes after power-up.
 - For example, a drive in a system with smartctl version 5.43 captures the SMART Read Data by running the following command line:
     ```
     smartctl -A /dev/sda
     ```
 - Note that the attribute ID# are listed in decimal and not in Hex with the Attribute_NAME associated with Hard Drives.
The table below translates the data from `smartctl` to the Intel-supported SMART Attributes.

Table 1. Converting SMART attribute values

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Decimal ID</th>
<th>Hex ID</th>
<th>Raw Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Writes Count</td>
<td>225</td>
<td>E1h</td>
<td>477242</td>
</tr>
<tr>
<td>Timed Workload Media Wear Indicator</td>
<td>226</td>
<td>E2h</td>
<td>635</td>
</tr>
<tr>
<td>Timed Workload Host Read/Write Ratio</td>
<td>227</td>
<td>E3h</td>
<td>0</td>
</tr>
<tr>
<td>Workload Timer</td>
<td>228</td>
<td>E4h</td>
<td>1367</td>
</tr>
</tbody>
</table>

Calculating Estimated Drive Wear

From the data collected using `smartctl`, and the translated values, you can then calculate the drive wear rate based on the given workload. Using this example:

- Timed Workload Media Wear (E2h) has a raw value of 635. Therefore, the percentage wear rate = 635/1024 = 0.620%
- Timed Workload Host Read/Write Ratio (E3h) has a normalized value of 0, indicating that 0% of the operations were reads. This corresponds with the 100% random write workload set in `Iometer`.
- Workload Timer (E4h) has a raw value of 1367. Therefore the workload ran for 1367 minutes or 22.783 hours.

Given these values, the media wear percentage rate for this workload can then be calculated:

- Timed Workload Media Wear rate of 0.620% for every 1367 minutes:
Workload Media Wear Rate 0.027% per hour
Workload Media Wear Rate 0.653% per day

Using the drive in this 100% workload example, the drive wears at 0.653% per day.

• \[
\frac{100}{0.653} = 153
\]
• In this exaggerated case, the drive will use 100% of wear in 153 days

NOTE: This sample usage case is an exaggerated workload of 100% writes. The wear rate and related values for this device’s intended use in read-intensive environments will be notably different, with the wear rates markedly lower. The above workload was used in this case to demonstrate the procedure and calculations.

Firmware Upgrades for Intel SSDs

A firmware download tool is not currently available for Intel SSDs used in PowerEdge C servers. A tool will be made available from Dell if a demonstrated need arises.

Adjusting SSD Usable Capacity to Improve Drive Performance

NOTE: If you wish to implement this feature, you must do so before the drive is initialized or written to in any way. After the drive contents are altered, secure erasure of the drive to change its usable capacity is not supported.

Intel 320 SSD ATA Instant Secure Erase Functionality

Intel 320 SSDs support cryptography-based Instant ATA secure erase functionality. The Intel 320 SSD Instant ATA secure erase feature is non-TCG (Trusted Computing Group) based. It supports two modes of crypto secure erase:

• Normal secure erase—Clears the encryption keys and erases NAND
• Enhanced secure erase—Generates new keys and clears NAND.

The PERC solution only supports the “crypto erase” function on TCG-compliant Enterprise SED (Self Encrypting Drive) drives.

When an Intel 320 drive is connected to a PERC, there is an incompatibility between PERC TCG method of crypto erase and Intel 320 supported non-TCG based ATA instant secure erase. As a result, the instant secure erase functionality can’t be used with PERC based solution.

The only way to run instant ATA secure erase and use Intel 320 drive secure wiping feature is to connect the drives directly into the motherboard chipset’s ATA port and issue secure erase command. Intel provides a free utility (Intel SSD Toolbox) to instant secure erase the drive, which you can download from www.intel.com/go/ssdtoolbox.
Getting Help

Contacting Dell

NOTE: If you do not have an active Internet connection, you can find contact information on your purchase invoice, packing slip, bill, or Dell product catalog.

Dell provides several online and telephone-based support and service options. Availability varies by country and product, and some services may not be available in your area. To contact Dell for sales, technical support, or customer service issues:

1. Visit dell.com/support
2. Select your support category.
3. Verify your country or region in the Choose a Country/Region drop-down menu at the top of page.
4. Select the appropriate service or support link based on your need.