Notes, Cautions, and Warnings

NOTE: A NOTE indicates important information that helps you make better use of your computer.

CAUTION: A CAUTION indicates potential damage to hardware or loss of data if instructions are not followed.

WARNING: A WARNING indicates a potential for property damage, personal injury, or death.

Information in this publication is subject to change without notice.
© 2012-2013 Dell Inc. All rights reserved.

Reproduction of these materials in any manner whatsoever without the written permission of Dell Inc. is strictly forbidden.

Trademarks used in this text: Dell™, the DELL logo, Dell Precision™, OptiPlex™, Latitude™, PowerEdge™, PowerVault™, PowerConnect™, OpenManage™, EqualLogic™, KACE™, FlexAddress™ and Vostro™ are trademarks of Dell Inc. Intel®, Pentium®, Xeon®, Core™ and Celeron® are registered trademarks of Intel Corporation in the U.S. and other countries. AMD® is a registered trademark and AMD Opteron™, AMD Phenom™, and AMD Sempron™ are trademarks of Advanced Micro Devices, Inc. Microsoft®, Windows®, Windows Server®, MS-DOS® and Windows Vista® are either trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries. Red Hat Enterprise Linux® and Enterprise Linux® are registered trademarks of Red Hat, Inc. in the United States and/or other countries. Novell® is a registered trademark and SUSE™ is a trademark of Novell Inc. in the United States and other countries. Oracle® is a registered trademark of Oracle Corporation and/or its affiliates. Citrix®, Xen®, XenServer® and XenMotion® are either registered trademarks or trademarks of Citrix Systems, Inc. in the United States and/or other countries. VMware®, Virtual SMP®, vMotion®, vCenter®, and vSphere® are registered trademarks of VMware, Inc. in the United States or other countries.

Other trademarks and trade names may be used in this publication to refer to either the entities claiming the marks and names or their products. Dell Inc. disclaims any proprietary interest in trademarks and trade names other than its own.

Regulatory Models: PC5524, PC5524P, PC5548 and PC5548P

October 2013 Rev. A08
Contents

1 Preface .. 33

2 User Interface Commands 41
 enable ... 41
 disable ... 42
 login ... 42
 configure ... 43
 exit (Configuration) .. 43
 exit (EXEC) .. 44
 end ... 45
 help .. 45
 history .. 46
 history size .. 47
 terminal history .. 48
 terminal history size 49
 terminal datadump .. 50
 debug-mode .. 50
 show history .. 51
 show privilege ... 52
 do .. 52
 banner exec .. 53
 banner login .. 55
 banner motd .. 57
3 Macro Commands

exec-ban 59
ner-login-ban 60
ner-motd-ban 61
ner-show banner 61
ner-show parser macro 70
ner-macro name 63
ner-macro apply 65
ner-macro description 67
ner-macro global 68
ner-macro global description 69
ner-show parser macro 70

4 System Management Commands

ner-ping 71
ner-traceroute 74
ner-telnet 77
ner-resume 81
ner-hostname 82
ner-reload 83
ner-stack master 83
ner-system light 84
ner-switch renumber 84
ner-show switch 85
ner-service cpu-utilization 86
ner-show cpu utilization 87
clear cpu counters .. 87
service cpu-counters 88
show cpu counters 88
show users .. 89
show sessions .. 90
show system .. 91
show version .. 94
system resources routing 94
show system resources routings 95
show system tcam utilization 96
show system defaults 97
show tech-support 101
system fans always-on 102
show system fans .. 103
asset-tag .. 103
show system id .. 104

5 Clock Commands 107

clock set ... 107
clock source 108
clock timezone 108
clock summer-time 109
sntp authentication-key 111
sntp authenticate 112
sntp trusted-key 113
sntp client poll timer 114
sntp broadcast client enable 114
sntp anycast client enable 115
sntp client enable 116
sntp client enable (Interface) 117
sntp unicast client enable 118
sntp unicast client poll 119
sntp server .. 119
sntp port .. 121
show clock .. 122
show sntp configuration 124
show sntp status 124

6 Configuration/Image File Commands 127

 copy ... 127
 write memory 132
 delete .. 132
 pwd ... 133
 dir ... 134
 more ... 135
 cd ... 136
 rename .. 137
 boot system 138
 show running-config 139
 show startup-config 140
 show bootvar 140
7 Auto-Update and Auto-Configuration . . 143

boot host auto-config .. 143
boot host auto-update ... 143
boot host dhcp .. 144
boot host auto-save ... 145
show boot ... 145
ip dhcp tftp-server ip addr. 148
ip dhcp tftp-server file 149
show ip dhcp tftp-server 149

8 Management ACL Commands 151

management access-list 151
permit (Management) .. 152
deny (Management) .. 153
management access-class 154
show management access-list 155
show management access-class 156

9 SNMP Commands 157

snmp-server ... 157
snmp-server community 157
snmp-server view .. 160
snmp-server group .. 161
snmp-server user ... 163
snmp-server filter 165
snmp-server host ... 166
snmp-server engineID local 168
snmp-server engineID remote 170
snmp-server enable traps 171
snmp-server trap authentication 171
snmp-server contact ... 172
snmp-server location .. 173
snmp-server set .. 173
show snmp ... 174
show snmp engineID .. 176
show snmp views .. 177
show snmp groups .. 177
show snmp filters .. 178
show snmp users .. 179

10 RSA and Certificate Commands 181
crypto key generate dsa 181
crypto key generate rsa 182
show crypto key mypubkey 182
crypto certificate generate 183
crypto certificate request 185
crypto certificate import 186
crypto certificate export pkcs12 188
crypto certificate import pkcs12 189
show crypto certificate mycertificate 191
11 Web Server Commands 193

- ip http server 193
- ip http port .. 194
- ip http timeout-policy 194
- ip http secure-server 195
- ip http secure-port 196
- ip https certificate 197
- show ip http ... 198
- show ip https .. 198
- ssl version .. 199
- show ssl version 200

12 Telnet, SSH and Slogin Commands 201

- ip telnet server 201
- ip ssh port .. 202
- ip ssh server 202
- ip ssh pubkey-auth 203
- crypto key pubkey-chain ssh 204
- user-key .. 205
- key-string .. 206
- show ip ssh .. 208
- show crypto key pubkey-chain ssh 209

13 Line Commands 211

- line ... 211
10 CLI Commands

speed ... 212
autobaud ... 212
exec-timeout ... 213
show line .. 214

14 AAA Commands 217

aaa authentication login 217
aaa authentication enable 219
login authentication 221
enable authentication 221
ip http authentication 222
show authentication methods 223
password ... 224
service password-recovery 225
enable password ... 226
username ... 227
show user accounts ... 228
aaa accounting login 229
aaa accounting dot1x 231
show accounting .. 233
passwords min-length 233
passwords strength-check enable 234
passwords strength minimum character-classes 235
passwords strength max-limit repeated-characters ... 236
passwords aging .. 237
passwords history .. 238
passwords history hold-time .. 239
passwords lockout ... 240
aaa login-history file ... 241
set username active ... 241
set line active .. 242
set enable-password active .. 243
show passwords configuration .. 244
show users login-history ... 245

15 RADIUS Commands .. 247
radius-server host ... 247
radius-server key .. 249
radius-server retransmit .. 250
radius-server source-ip ... 251
radius-server source-ipv6 ... 252
radius-server timeout ... 253
radius-server deadtime ... 253
show radius-servers ... 254

16 TACACS+ Commands .. 257
tacacs-server host ... 257
tacacs-server key .. 258
tacacs-server timeout .. 259
tacacs-server source-ip ... 260
show tacacs ... 261
17 Syslog Commands ... 263
 logging on ... 263
 Logging host .. 264
 logging console .. 265
 logging buffered .. 266
 clear logging .. 267
 logging file .. 268
 clear logging file ... 268
 aaa logging ... 269
 file-system logging .. 270
 management logging .. 271
 show logging ... 271
 show logging file .. 272
 show syslog-servers .. 274

18 RMON Commands 275
 show rmon statistics ... 275
 rmon collection stats ... 277
 show rmon collection stats 278
 show rmon history .. 279
 rmon alarm ... 282
 show rmon alarm-table .. 284
 show rmon alarm ... 285
 rmon event ... 287
 show rmon events ... 288
 show rmon log .. 289
19 802.1x Commands ... 293

aaa authentication dot1x 293

dot1x system-auth-control 294

dot1x port-control .. 294

dot1x re-authentication 296

dot1x timeout reauth-period 296

dot1x re-authenticate 297

dot1x timeout quiet-period 298

dot1x timeout tx-period 299

dot1x max-req ... 300

dot1x timeout supp-timeout 301

dot1x timeout server-timeout 302

show dot1x .. 303

show dot1x users ... 306

show dot1x statistics 308

clear dot1x statistics 309

dot1x auth-not-req 310

dot1x host-mode .. 311

dot1x violation-mode 312

dot1x guest-vlan .. 313

dot1x guest-vlan timeout 314

dot1x guest-vlan enable 315

dot1x mac-authentication 316

dot1x traps mac-authentication success 317
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dot1x traps mac-authentication failure</code></td>
<td>317</td>
</tr>
<tr>
<td><code>dot1x radius-attributes vlan</code></td>
<td>318</td>
</tr>
<tr>
<td><code>dot1x radius-attributes filter-id</code></td>
<td>319</td>
</tr>
<tr>
<td><code>dot1x radius-attributes errors</code></td>
<td>320</td>
</tr>
<tr>
<td><code>dot1x legacy-supp-mode</code></td>
<td>320</td>
</tr>
<tr>
<td><code>show dot1x advanced</code></td>
<td>321</td>
</tr>
<tr>
<td><code>dot1x system-auth-control monitor</code></td>
<td>322</td>
</tr>
<tr>
<td><code>show dot1x monitoring result</code></td>
<td>323</td>
</tr>
</tbody>
</table>

20 Ethernet Configuration Commands... 327

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface</code></td>
<td>327</td>
</tr>
<tr>
<td><code>interface range</code></td>
<td>327</td>
</tr>
<tr>
<td><code>description</code></td>
<td>328</td>
</tr>
<tr>
<td><code>speed</code></td>
<td>328</td>
</tr>
<tr>
<td><code>duplex</code></td>
<td>329</td>
</tr>
<tr>
<td><code>negotiation</code></td>
<td>330</td>
</tr>
<tr>
<td><code>flowcontrol</code></td>
<td>331</td>
</tr>
<tr>
<td><code>mdix</code></td>
<td>332</td>
</tr>
<tr>
<td><code>back-pressure</code></td>
<td>333</td>
</tr>
<tr>
<td><code>port jumbo-frame</code></td>
<td>334</td>
</tr>
<tr>
<td><code>clear counters</code></td>
<td>334</td>
</tr>
<tr>
<td><code>set interface active</code></td>
<td>335</td>
</tr>
<tr>
<td><code>show interfaces configuration</code></td>
<td>336</td>
</tr>
<tr>
<td><code>show interfaces status</code></td>
<td>337</td>
</tr>
<tr>
<td><code>show interfaces advertise</code></td>
<td>338</td>
</tr>
<tr>
<td><code>show interfaces description</code></td>
<td>339</td>
</tr>
</tbody>
</table>
show interfaces counters ... 340
show port jumbo-frame ... 343
show errdisable interfaces. 343
storm-control broadcast enable 344
storm-control broadcast level kbps 345
storm-control include-multicast 346
show storm-control ... 347

21 PHY Diagnostics Commands 349
test cable-diagnostics tdr 349
show cable-diagnostics tdr 350
show cable-diagnostics cable-length 351
show fiber-ports optical-transceiver 352

22 Power over Ethernet (PoE) Commands . 355
power inline ... 355
power inline limit-mode 356
power inline powered-device 356
power inline priority .. 357
power inline usage-threshold 358
power inline traps enable 359
power inline limit .. 359
show power inline .. 360
show power inline consumption 364
show power inline version 365
23 EEE Commands 367

 eee enable (global) 367
 eee enable (interface) 367
 eee lldp enable 368
 show eee .. 368

24 Green Ethernet 375

 show green-ethernet 375
 green-ethernet short-reach (global) 377
 green-ethernet short-reach (interface) 377
 green-ethernet short-reach force 378
 green-ethernet short-reach threshold 379
 green-ethernet power-meter reset 380

25 Port Channel Commands 381

 channel-group 381
 port-channel load-balance 382
 show interfaces port-channel 383

26 Address Table Commands 385

 bridge multicast filtering 385
 bridge multicast address 386
 bridge multicast forbidden address 387
 bridge multicast unregistered 388
 bridge multicast forward-all 389
bridge multicast forbidden forward-all 390
mac address-table static .. 391
clear mac address-table .. 392
mac address-table aging-time 393
port security ... 394
port security mode ... 395
port security max .. 395
port security routed secure-address 396
show mac address-table .. 397
show mac address-table count 399
show bridge multicast address-table 399
show bridge multicast address-table static 403
show bridge multicast filtering 406
show bridge multicast unregistered 407
show ports security ... 408
show ports security addresses 409

27 Port Monitor Commands 411

port monitor ... 411
show ports monitor .. 413

28 sFlow Commands 415

sflow receiver .. 415
sflow flow-sampling 416
sflow counters-sampling 417
clear sflow statistics 417
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show sflow configuration</td>
<td>418</td>
</tr>
<tr>
<td>show sflow statistics</td>
<td>419</td>
</tr>
<tr>
<td>29 LLDP Commands</td>
<td>421</td>
</tr>
<tr>
<td>lldp run</td>
<td>421</td>
</tr>
<tr>
<td>lldp transmit</td>
<td>421</td>
</tr>
<tr>
<td>lldp receive</td>
<td>422</td>
</tr>
<tr>
<td>lldp timer</td>
<td>423</td>
</tr>
<tr>
<td>lldp hold-multiplier</td>
<td>424</td>
</tr>
<tr>
<td>lldp reinit</td>
<td>425</td>
</tr>
<tr>
<td>lldp tx-delay</td>
<td>426</td>
</tr>
<tr>
<td>lldp optional-tlv</td>
<td>426</td>
</tr>
<tr>
<td>lldp management-address</td>
<td>427</td>
</tr>
<tr>
<td>lldp notifications</td>
<td>428</td>
</tr>
<tr>
<td>lldp notifications interval</td>
<td>429</td>
</tr>
<tr>
<td>lldp optional-tlv 802.1</td>
<td>430</td>
</tr>
<tr>
<td>lldp med enable</td>
<td>431</td>
</tr>
<tr>
<td>lldp med notifications topology-change</td>
<td>432</td>
</tr>
<tr>
<td>lldp med fast-start repeat-count</td>
<td>433</td>
</tr>
<tr>
<td>lldp med network-policy (global)</td>
<td>433</td>
</tr>
<tr>
<td>lldp med network-policy (interface)</td>
<td>434</td>
</tr>
<tr>
<td>clear lldp table</td>
<td>435</td>
</tr>
<tr>
<td>lldp med location</td>
<td>436</td>
</tr>
<tr>
<td>show lldp configuration</td>
<td>437</td>
</tr>
<tr>
<td>show lldp med configuration</td>
<td>439</td>
</tr>
<tr>
<td>show lldp local tlvs-overloading</td>
<td>441</td>
</tr>
</tbody>
</table>
show lldp local .. 442
show lldp neighbors 444
show lldp statistics 449

30 Spanning-Tree Commands 451

spanning-tree .. 451
spanning-tree mode 451
spanning-tree forward-time 452
spanning-tree hello-time 453
spanning-tree max-age 454
spanning-tree priority 455
spanning-tree disable 456
spanning-tree cost .. 457
spanning-tree port-priority 458
spanning-tree portfast 458
spanning-tree link-type 459
spanning-tree pathcost method 460
spanning-tree bpdu (Global) 461
spanning-tree bpdu (Interface) 462
spanning-tree guard root 463
spanning-tree bpduguard 464
clear spanning-tree detected-protocols 465
spanning-tree mst priority 465
spanning-tree mst max-hops 466
spanning-tree mst port-priority 467
spanning-tree mst cost 468
spanning-tree mst configuration................................. 469
instance (MST) ... 470
name (MST)... 471
revision (MST) ... 471
show (MST) ... 472
exit (MST) ... 473
abort (MST) ... 474
show spanning-tree .. 474
show spanning-tree bpdu .. 489

31 VLAN Commands.. 491

vlan database .. 491
vlan ... 491
interface vlan ... 492
interface range vlan .. 493
name .. 494
switchport protected-port 495
switchport community ... 496
show interfaces protected-ports 496
switchport ... 497
switchport mode ... 498
switchport access vlan 499
switchport access multicast-tv vlan 500
switchport trunk allowed vlan 501
switchport trunk native vlan 502
switchport general allowed vlan 503
switchport general pvid 504
switchport general ingress-filtering disable 505
switchport general acceptable-frame-type 506
switchport customer vlan 507
switchport general forbidden vlan 507
map protocol protocols-group 508
switchport general map protocols-group vlan 509
private-vlan ... 510
private-vlan association 511
switchport private-vlan mapping 512
switchport private-vlan host-association 513
show vlan private-vlan 514
ip internal-usage-vlan 514
show vlan ... 516
show vlan multicast-tv 517
show vlan protocols-groups 517
show vlan internal usage 518
show interfaces switchport 519

32 IGMP Snooping Commands 521

ip igmp snooping (Global) 521
ip igmp snooping vlan 521
ip igmp snooping mrouter 522
ip igmp snooping mrouter interface 523
ip igmp snooping forbidden mrouter interface 524
ip igmp snooping static 525
ip igmp snooping multicast-tv................................. 526
ip igmp snooping querier 527
ip igmp snooping querier address 528
ip igmp robustness.. 529
ip igmp query-interval 529
ip igmp query-max-response-time 530
ip igmp last-member-query-count 531
ip igmp last-member-query-interval 532
ip igmp snooping vlan immediate-leave 532
show ip igmp snooping mrouter 533
show ip igmp snooping interface 534
show ip igmp snooping groups 535
show ip igmp snooping multicast-tv 536

33 LACP Commands ... 539
lacp system-priority .. 539
lacp port-priority ... 540
lacp timeout ... 540
show lacp .. 541
show lacp port-channel 544

34 GVRP Commands ... 545
gvrp enable (Global) 545
gvrp enable (Interface) 545
garp timer .. 546
gvrp vlan-creation-forbid 548
gvrp registration-forbid .. 548
clear gvrp statistics ... 549
show gvrp configuration 550
show gvrp statistics ... 550
show gvrp error-statistics 552

35 Voice VLAN Commands 553
voice vlan id .. 553
voice vlan oui-table ... 554
voice vlan cos mode ... 555
voice vlan cos .. 556
voice vlan aging-timeout 557
voice vlan enable ... 557
voice vlan secure ... 558
show voice vlan ... 559

36 DHCP Snooping and ARP Inspection Commands 563
ip dhcp snooping ... 563
ip dhcp snooping vlan 564
ip dhcp snooping trust 564
ip dhcp snooping information option allowed-untrusted 565
ip dhcp snooping verify 566
ip dhcp snooping database 567
ip dhcp snooping database update-freq 568
ip dhcp snooping binding 568
clear ip dhcp snooping database ... 570
show ip dhcp snooping ... 570
show ip dhcp snooping binding .. 571
ip arp inspection .. 572
ip arp inspection vlan .. 573
ip arp inspection trust ... 574
ip arp inspection validate ... 575
ip arp inspection list create .. 576
ip mac ... 576
ip arp inspection list assign .. 577
ip arp inspection logging interval ... 578
show ip arp inspection ... 579
show ip arp inspection list .. 580
show ip arp inspection statistics .. 580
clear ip arp inspection statistics ... 581
ip dhcp information option .. 582
show ip dhcp information option .. 582

37 iSCSI Commands ... 585
iscsi enable ... 585
iscsi target port ... 586
iscsi cos ... 587
iscsi aging-time .. 589
iscsi max-tcp-connections .. 590
show iscsi ... 591
show iscsi sessions .. 592
38 IP Addressing Commands

address ... 595
ip address dhcp 597
renew dhcp 598
ip default-gateway 599
show ip interface 599
arp .. 600
arp timeout (Global) 601
arp timeout .. 602
ip arp proxy disable 603
ip proxy-arp 603
clear arp-cache 604
show arp ... 604
show arp configuration 605
interface ip 606
directed-broadcast 607
broadcast-address 608
ip helper-address 608
show ip helper-address 610
source-precedence 611
ip domain lookup 612
ip domain name 612
ip name-server 613
ip host ... 615
clear host ... 616
clear host dhcp 616
show hosts ... 617

39 IPv6 Addressing Commands 619

ipv6 enable ... 619
ipv6 address autoconfig 620
ipv6 icmp error-interval 621
show ipv6 icmp error-interval 622
ipv6 address ... 623
ipv6 address link-local 624
ipv6 unreachables 625
ipv6 default-gateway 626
show ipv6 interface 627
show IPv6 route 629
ipv6 nd dad attempts 630
ipv6 host ... 631
ipv6 neighbor .. 632
ipv6 set mtu .. 633
ipv6 mld version 634
ipv6 mld join-group 635
show ipv6 neighbors 636
clear ipv6 neighbors 637

40 Tunnel Commands 639

interface tunnel 639
tunnel mode ipv6ip 639
tunnel isatap router 640
tunnel source ... 641

tunnel isatap query-interval 642

tunnel isatap solicitation-interval 643

tunnel isatap robustness 644

show ipv6 tunnel 645

41 DHCP Relay Commands 647

ip dhcp relay enable (Global) 647

ip dhcp relay enable (Interface) 647

ip dhcp relay address (Global) 648

ip dhcp relay address (Interface) 649

show ip dhcp relay 650

ip dhcp information option 651

show ip dhcp information option 652

42 DHCP Server Commands 653

ip dhcp server .. 653

ip dhcp pool host 653

ip dhcp pool network 654

address (DHCP Host) 655

address (DHCP Network) 656

lease .. 657

client-name .. 659

default-router .. 659

dns-server ... 660

domain-name ... 661

netbios-name-server .. 662
netbios-node-type .. 663
next-server ... 663
next-server-name ... 664
bootfile .. 665
time-server .. 666
option ... 667
ip dhcp excluded-address 668
ip dhcp ping enable 669
ping enable .. 670
ip dhcp ping count 671
ip dhcp ping timeout 672
clear ip dhcp binding 673
show ip dhcp ... 673
show ip dhcp excluded-addresses 674
show ip dhcp pool host 674
show ip dhcp pool network 676
show ip dhcp binding 677
show ip dhcp server statistics 679
show ip dhcp allocated 680
show ip dhcp declined 682
show ip dhcp expired 683
show ip dhcp pre-allocated 684

43 IP Routing Protocol-Independent Commands 687

ip route .. 687
ip routing ... 688
show ip route ... 688

44 ACL Commands .. 691

ip access-list ... 691
permit (IP) ... 692
deny (IP) .. 695
ipv6 access-list ... 698
permit (IPv6) ... 699
deny (IPv6) .. 701
mac access-list ... 704
permit (MAC) ... 705
service-acl input ... 706
service-acl output .. 707
service-acl input block .. 708
time-range ... 710
absolute ... 711
periodic ... 712
show time-range ... 713
show access-lists ... 714
show interfaces access-lists 715
clear access-lists counters 716
show interfaces access-lists counters 716

45 Quality of Service (QoS) Commands . . . 719

qos ... 719
show qos ... 720
class-map ... 721
show class-map ... 722
match .. 723
policy-map .. 723
class .. 725
show policy-map ... 726
trust ... 727
set .. 728
police .. 729
service-policy .. 731
qos aggregate-policer 731
show qos aggregate-policer 733
police aggregate .. 733
wrr-queue cos-map .. 734
wrr-queue bandwidth 736
priority-queue out num-of-queues 737
traffic-shape .. 738
traffic-shape queue ... 739
rate-limit (Ethernet) ... 740
qos wrr-queue wrtd ... 740
show qos wrr-queue wrtd 741
show qos interface ... 742
qos wrr-queue threshold 745
qos map policed-dscp 746
qos map dscp-queue 747
qos map dscp-dp .. 748
qos trust (Global) .. 749
qos trust (Interface) ... 750
qos cos ... 751
qos dscp-mutation ... 752
qos map dscp-mutation 753
show qos map .. 754
clear qos statistics ... 756
qos statistics policer .. 756
qos statistics aggregate-policer 757
qos statistics queues ... 757
show qos statistics ... 758

46 Revision History .. 761
Preface

About this Document

This CLI Reference Guide describes how to use the CLI and a list of the CLI commands and their arguments.

The CLI commands described in this document are organized according to feature groups in separate sections.

This section describes how to use the CLI. It contains the following topics:

- CLI Command Modes
- Starting the CLI
- CLI Command Conventions
- Entering Commands

CLI Command Modes

To configure devices, the CLI is divided into various command modes. Each command mode has its own set of specific commands. Entering a question mark "?" at the console prompt displays a list of commands available for that particular command mode.

A specific command, which varies from mode to mode, is used to navigate from one mode to another. The standard order to access the modes is as follows: User EXEC mode, Privileged EXEC mode, Global Configuration mode, and Interface Configuration modes.

When starting a session, the initial mode for non-privileged users is the User EXEC mode. Only a limited subset of commands is available in the User EXEC mode. This level is reserved for tasks that do not change the configuration.
Privileged users enter the Privileged EXEC mode directly using a password. This mode provides access to the device Configuration modes. The modes are described below.

User EXEC Mode

After logging into the device, the user is automatically in *User EXEC* command mode unless the user is defined as a privileged user. In general, the *User EXEC* commands enable the user to perform basic tests, and display system information.

The user-level prompt consists of the device "host name" followed by the angle bracket (>).

```
console>
```

The default host name is "console" unless it has been changed using the `hostname` command in the *Global Configuration* mode.

Privileged EXEC Mode

Privileged access is password-protected to prevent unauthorized use, because many of the privileged commands set operating system parameters: The password is not displayed on the screen and is case sensitive.

Privileged users enter directly into the *Privileged EXEC* mode. Use `disable` to return to the *User EXEC* mode.

Global Configuration Mode

`Global Configuration` mode commands apply to features that affect the system as a whole, rather than just a specific interface.

To enter the *Global Configuration* mode, enter `configure` in the Privileged EXEC mode, and press <Enter>.

The *Global Configuration* mode prompt is displayed.

```
console(config)#
```

Use `exit`, `end` or `ctrl/z` to return to the Privileged EXEC mode.

Interface Configuration Modes

Commands in the following modes perform specific interface operations:
• **Line Interface**—Contains commands to configure the management connections. These include commands such as line speed, timeout settings, etc. The *Global Configuration* mode command `line` is used to enter the *Line Configuration command* mode.

• **VLAN Database**—Contains commands to create a VLAN as a whole. The Global Configuration mode command `vlan database` is used to enter the *VLAN Database Interface Configuration* mode.

• **Management Access List**—Contains commands to define management access-lists. The *Global Configuration* mode command `management access-list` is used to enter the *Management Access List Configuration* mode.

• **Port Channel**—Contains commands to configure port-channels, for example, assigning ports to a VLAN or port-channel. The *Global Configuration* mode command `interface port-channel` is used to enter the *Port Channel Interface Configuration* mode.

• **SSH Public Key-Chain**—Contains commands to manually specify other device SSH public keys. The *Global Configuration* mode command `crypto key pubkey-chain ssh` is used to enter the *SSH Public Key-chain Configuration* mode.

• **Interface**—Contains commands that configure the interface. The *Global Configuration* mode command `interface` is used to enter the *Interface Configuration* mode.

Starting the CLI

The switch can be managed over a direct connection to the switch console port, or via a Telnet connection. The switch is managed by entering command keywords and parameters at the prompt. Using the switch CLI commands is similar to entering commands on a UNIX system.

If access is via a Telnet connection, ensure the device has an IP address defined, corresponding management access is granted, and the workstation used to access the device is connected to the device prior to using CLI commands.

Accessing the CLI from the Console Line

1. Start the device and wait until the startup procedure is complete. The User Exec mode is entered, and the prompt "console>" is displayed.
2. Configure the device and enter the necessary commands to complete the required tasks.
3. When finished, exit the session with the **quit** or **exit** command.

Accessing the CLI from Telnet
1. Enter **telnet** and the IP address of the device. A User Name prompt is displayed.
2. Enter the User Name and Password. You are in the Privileged Exec mode.
3. Configure the device and enter the necessary commands to complete the required tasks.
4. When finished, exit the session with the **quit** or **exit** command.

When another user is required to log onto the system, the **login** command is entered in the Privileged EXEC command mode. This effectively logs off the current user and logs on the new user.

CLI Command Conventions

The following table describes the command syntax conventions.

<table>
<thead>
<tr>
<th>Conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>In a command line, square brackets indicates an optional entry.</td>
</tr>
<tr>
<td>{ }</td>
<td>In a command line, curly brackets indicate a selection of compulsory parameters separated by the</td>
</tr>
<tr>
<td>Italic font</td>
<td>Indicates a parameter.</td>
</tr>
<tr>
<td><Enter></td>
<td>Any individual key on the keyboard. For example click <Enter>.</td>
</tr>
<tr>
<td>Ctrl+F4</td>
<td>Any combination keys pressed simultaneously on the keyboard.</td>
</tr>
</tbody>
</table>
Entering Commands

A CLI command is a series of keywords and arguments. Keywords identify a command, and arguments specify configuration parameters. For example, in the command "show interfaces status gi1/0/5" show, interfaces and status are keywords, gi is an argument that specifies the interface type, and 1/0/5 is an argument that specifies the port.

To enter commands that require parameters, enter the required parameters after the command keyword. For example, to set a password for the administrator, enter:

```
console(config)# username admin password smith
```

Help information can be displayed in the following ways:

- **Keyword Lookup**—The character ? is entered in place of a command. A list of all valid commands and corresponding help messages are displayed.
- **Partial Keyword Lookup**—A command is incomplete and the character ? is entered in place of a parameter. The matched parameters for this command are displayed.

The following describes features that assist in using the CLI:

Terminal Command Buffer

Every time a command is entered in the CLI, it is recorded on an internally managed Command History buffer. Commands stored in the buffer are maintained on a First In First Out (FIFO) basis. These commands can be
recalled, reviewed, modified, and reissued. This buffer is not preserved across device resets. The keys that can be used to access the history buffer are described in Table 1.

By default, the history buffer system is enabled, but it can be disabled at any time. For information about the command syntax to enable or disable the history buffer, see the `history` command.

There is a standard default number of commands that are stored in the buffer. The standard number of 10 commands can be increased to 256. By configuring 0, the effect is the same as disabling the history buffer system. For information about the command syntax for configuring the command history buffer, see the `history size` command.

To display the history buffer, see `show history` command.

Negating the Effect of Commands

For many configuration commands, the prefix keyword "no" can be entered to cancel the effect of a command or reset the configuration to the default value. This guide describes the negation effect for all applicable commands.

Command Completion

If the command entered is incomplete, invalid, or has missing or invalid parameters, an appropriate error message is displayed.

To complete an incomplete command, press the `<Tab>` button. If the characters already entered are not enough for the system to identify a single matching command, press "?" to display the available commands matching the characters already entered.

Incorrect or incomplete commands are automatically re-entered next to the cursor. If a parameter must be added, the parameter can be added to the basic command already displayed next to the cursor. The following example indicates that the command interface requires a missing parameter.

```
(config)#interface
%missing mandatory parameter
(config)#interface
```
Keyboard Shortcuts

The CLI has a range of keyboard shortcuts to assist in entering the CLI commands.

The following table describes these shortcuts:

Table 1: Keyboard Keys

<table>
<thead>
<tr>
<th>Keyboard Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up-arrow key</td>
<td>Recalls commands from the history buffer, beginning with the most recent command. Repeat the key sequence to recall successively older commands.</td>
</tr>
<tr>
<td>Down-arrow key</td>
<td>Returns the most recent commands from the history buffer after recalling commands with the up arrow key. Repeating the key sequence will recall successively more recent commands.</td>
</tr>
<tr>
<td>Ctrl+A</td>
<td>Moves the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td>Ctrl+E</td>
<td>Moves the cursor to the end of the command line.</td>
</tr>
<tr>
<td>Ctrl+Z / End</td>
<td>Returns back to the Privileged EXEC mode from any mode.</td>
</tr>
<tr>
<td>Backspace key</td>
<td>Moves the cursor back one space.</td>
</tr>
<tr>
<td>Up-arrow key</td>
<td>Recalls commands from the history buffer, beginning with the most recent command. Repeat the key sequence to recall successively older commands.</td>
</tr>
</tbody>
</table>
User Interface Commands

enable
The enable EXEC mode command enters the Privileged EXEC mode.

Syntax
enable [privilege-level]

Parameters
privilege-level—Specifies the privilege level at which to enter the system.
(Range: 1–15)

Default Configuration
The default privilege level is 15.

Command Mode
EXEC mode

Example
The following example enters the Privileged EXEC mode.

Console> enable
enter password:
Console#
disable

The `disable` Privileged EXEC mode command leaves the Privileged EXEC mode and returns to the User EXEC mode.

Syntax

```
disable [privilege-level]
```

Parameters

`privilege-level`—Specifies the privilege level at which to enter the system. (Range: 1–15)

Default Configuration

The default privilege level is 1.

Command Mode

Privileged EXEC mode

Example

The following example returns to the User EXEC mode.

```
Console# disable
Console>
```

login

The `login` EXEC mode command changes a user’s login.

Syntax

```
login
```

Command Mode

EXEC mode
Example
The following example enters Privileged EXEC mode and logs in with username ‘admin’.

```
Console> login
User Name: admin
Password: *****
Console#
```

configure
The `configure` Privileged EXEC mode command enters the Global Configuration mode.

Syntax
```
configure [terminal]
```

Parameters
- `terminal`—Enter the Global Configuration mode with or without the keyword `terminal`.

Command Mode
Privileged EXEC mode

Example
The following example enters Global Configuration mode.

```
Console# configure
Console(config)#
```

exit (Configuration)
The `exit` command exits any configuration mode to the next highest mode in the CLI mode hierarchy.
Syntax
exit

Command Mode
All commands in configuration modes.

Examples
The following examples change the configuration mode from Interface Configuration mode to Privileged EXEC mode.

```
Console(config-if)# exit
Console(config)# exit
Console#

Router(config-if)# exit
Router(config)# exit
Router#
```

exit (EXEC)
The `exit` EXEC mode command closes an active terminal session by logging off the device.

Syntax
exit

Command Mode
EXEC mode

Example
The following examples close an active terminal session.

```
Console> exit

Router> exit
```
end
The `end` command ends the current configuration session and returns to the Privileged EXEC mode.

Syntax
`end`

Command Mode
All configuration modes

Example
The following examples end the Global Configuration mode session and return to the Privileged EXEC mode.

```
Console(config)# end
Console#

Router(config-if)# end
Router#
```

help
The `help` command displays a brief description of the Help system.

Syntax
`help`

Command Mode
All command modes

Example
The following example describes the Help system.

```
Console# help
```
Help may be requested at any point in a command by entering a question mark '?'. If nothing matches the currently entered incomplete command, the help list is empty. This indicates that there is no command matching the input as it currently appears. If the request is within a command, press the Backspace key and erase the entered characters to a point where the request results in a match.

Help is provided when:

1. There is a valid command and a help request is made for entering a parameter or argument (e.g. 'show ?'). All possible parameters or arguments for the entered command are then displayed.

2. An abbreviated argument is entered and a help request is made for arguments matching the input (e.g. 'show pr?').

history

The `history` Line Configuration mode command enables the command history function. Use the `no` form of this command to disable the command history function.

Syntax

```
history
```

```
no history
```

Default Configuration

The `history` command is enabled.

Command Mode

Line Configuration mode

User Guidelines

This command enables the command history function for a specified line. Use the `terminal history` EXEC mode command to enable or disable the command history function for the current terminal session.
Example
The following example enables the command history function for Telnet.

Console(config)# line telnet
Console(config-line)# history

history size
The history size Line Configuration mode command changes the command history buffer size for a particular line. Use the no form of this command to reset the command history buffer size to the default value.

Syntax
history size number-of-commands
no history size

Parameters
number-of-commands—Specifies the number of commands the system records in its history buffer. (Range: 0–256)

Default Configuration
The default command history buffer size is 10 commands.

Command Mode
Line Configuration mode

User Guidelines
This command configures the command history buffer size for a particular line. Use the terminal history size EXEC mode command to configure the command history buffer size for the current terminal session.

The allocated command history buffer is per terminal user, and is taken from a shared buffer. If there is not enough space available in the shared buffer, the command history buffer size () cannot be increased above the default size.
Example
The following example changes the command history buffer size to 100 entries for a particular line

```
Console(config)# line telnet
Console(config-line)# history size 100
```

terminal history
The `terminal history` EXEC mode command enables the command history function for the current terminal session. Use the `no` form of this command to disable the command history function.

Syntax
```
terminal history
terminal no history
```

Default Configuration
The default configuration for all terminal sessions is defined by the `history` Line Configuration mode command.

Command Mode
EXEC mode

User Guidelines
The command enables the command history for the current session. The default is determined by the `history` Line Configuration mode command.

Example
The following example disables the command history function for the current terminal session.

```
Console> terminal no history
```
terminal history size

The `terminal history size` EXEC mode command changes the command history buffer size for the current terminal session. Use the `no` form of this command to reset the command history buffer size to the default value.

Syntax

```
terminal history size number-of-commands

terminal no history size
```

Parameters

- `number-of-commands`—Specifies the number of commands the system maintains in its history buffer. (Range: 10–256)

Default Configuration

The default configuration for all terminal sessions is defined by the `history size` Line Configuration mode command.

Command Mode

EXEC mode

User Guidelines

The `terminal history size` EXEC command changes the command history buffer size for the current terminal session. Use the `history` Line Configuration mode command to change the default command history buffer size.

The maximum number of commands in all buffers is 256.

Example

The following example sets the command history buffer size to 20 commands for the current terminal session.

```
Console> terminal history size 20
```
terminal datadump

The `terminal datadump` EXEC mode command enables dumping all the output of a show command without prompting. Use the `no` form of this command to disable dumping.

Syntax

```
terminal datadump

terminal no datadump
```

Default Configuration

Dumping is disabled.

Command Mode

EXEC mode

User Guidelines

By default, a More prompt is displayed when the output contains more lines than can be displayed on the screen. Pressing the Enter key displays the next line; pressing the Spacebar displays the next screen of output. The `terminal datadump` command enables dumping all output immediately after entering the show command.

This command is relevant only for the current session.

Example

The following example dumps all output immediately after entering a show command.

```
Console> terminal datadump
```

debug-mode

The `debug-mode` Privileged EXEC mode command mode switches to debug mode.
Syntax

```
debug-mode
```

Command Mode

Privileged EXEC mode

Example

The following example enters Debug mode.

```
Console# debug-mode
```

show history

The `show history` EXEC mode command lists commands entered in the current session.

Syntax

```
show history
```

Command Mode

EXEC mode

User Guidelines

The buffer includes executed and unexecuted commands.

Commands are listed from the first to the most recent command.

The buffer remains unchanged when entering into and returning from configuration modes.

Example

The following example displays all the commands entered while in the current Privileged EXEC mode.

```
Console# show version
SW version 3.131 (date 23-Jul-2005 time 17:34:19)
HW version 1.0.0
Console# show clock
```
show privilege

The show privilege EXEC mode command displays the current privilege level.

Syntax

show privilege

Command Mode

EXEC mode

Example

The following example displays the current privilege level for the Privileged EXEC mode.

```
Console# show privilege
Current privilege level is 15
```

do

The do command executes an EXEC-level command from Global Configuration mode or any configuration submode.

Syntax

do command

Parameters

- command—Specifies the EXEC-level command to execute.
Command Mode
All configuration modes

Example
The following example executes the `show vlan` Privileged EXEC mode command from Global Configuration mode.

```bash
Console (Config)# do show vlan
```

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Name</th>
<th>Ports</th>
<th>Type</th>
<th>Authorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>gi1/0/1-39,Po1,Po2, Po3,Po4,Po5,Po6,Po7,Po8</td>
<td>other</td>
<td>Required</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>gi1/0/1</td>
<td>dynamicGvrp</td>
<td>Required</td>
</tr>
<tr>
<td>10</td>
<td>v0010</td>
<td>gi1/0/1</td>
<td>permanent</td>
<td>Not Required</td>
</tr>
<tr>
<td>11</td>
<td>v0011</td>
<td>gi1/0/1,gi1/0/13</td>
<td>permanent</td>
<td>Required</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>gi1/0/1</td>
<td>permanent</td>
<td>Required</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>gi1/0/1,gi1/0/13</td>
<td>permanent</td>
<td>Required</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>gi1/0/1</td>
<td>permanent</td>
<td>Required</td>
</tr>
<tr>
<td>91</td>
<td>91</td>
<td>gi1/0/1,gi1/0/40</td>
<td>permanent</td>
<td>Required</td>
</tr>
<tr>
<td>4093</td>
<td>guest-vlan</td>
<td>gi1/0/1,gi1/0/13</td>
<td>permanent</td>
<td>Guest</td>
</tr>
</tbody>
</table>

```bash
console(config)#s
```

banner exec
Use the `banner exec` command to specify and enable a message to be displayed when an EXEC process is created (The user has successfully logged in), use the `banner exec` command in Global Configuration mode. Use the `no` form of this command to delete the existing EXEC banner.

Syntax
`banner exec d message-text d`
`no banner exec`
Parameters

- **d**—Delimiting character of your choice—a pound sign (#), for example. You cannot use the delimiting character in the banner message.
- **message-text**—The message must start in a new line. You can enter multi-line messages. You can include tokens in the form of $(token)$ in the message text. Tokens are replaced with the corresponding configuration variable. Tokens are described in the User Guidelines. The message can contain up to 2000 characters (after every 510 characters, you must press <Enter> to continue).

Default Configuration

Disabled (no EXEC banner is displayed).

Command Mode

Global Configuration mode

User Guidelines

Follow this command with one or more blank spaces and a delimiting character of your choice. Then enter one or more lines of text, terminating the message with the second occurrence of the delimiting character.

When a user connects to a device, the message-of-the-day (MOTD) banner appears first, followed by the login banner and prompts. After the user logs in to the device, the EXEC banner is displayed.

Use tokens in the form of $(token)$ in the message text to customize the banner. The tokens are described in the table below:

<table>
<thead>
<tr>
<th>Token</th>
<th>Information displayed in the banner</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(hostname)</td>
<td>Displays the host name for the device.</td>
</tr>
<tr>
<td>$(domain)</td>
<td>Displays the domain name for the device.</td>
</tr>
<tr>
<td>$(bold)</td>
<td>Indicates that the next text is a bold text. Using this token again indicates the end of the bold text.</td>
</tr>
<tr>
<td>$(inverse)</td>
<td>Indicates that the next text is an inverse text. Using this token again indicates the end of the inverse text.</td>
</tr>
<tr>
<td>$(contact)</td>
<td>Displays the system contact string.</td>
</tr>
</tbody>
</table>
Use the no exec-banner line configuration command to disable the EXEC banner on a particular line or lines.

Example
The following example sets an EXEC banner that uses tokens. The percent sign (%) is used as a delimiting character. Note that the $(token) syntax is replaced by the corresponding configuration variable.

```
Device(config)# banner exec %
Enter TEXT message. End with the character '%'.
$(bold)Session activated.$(bold) Enter commands at the prompt.
%
```

When a user logs on to the system, the following output is displayed:
```
Session activated. Enter commands at the prompt.
```

banner login

Use the **banner login** command in Global Configuration mode to specify and enable a message to be displayed before the username and password login prompts. Use the **no** form of this command to delete the existing Login banner.

Syntax
```
banner login  d message-text d
```
```
no banner login
```

Parameters
- Delimiting character of your choice—A pound sign (#), for example. You cannot use the delimiting character in the banner message.
• message-text—Message text. The message must start on a new line. You can enter multi-line messages. You can include tokens in the form of $(token)$ in the message text. Tokens are replaced with the corresponding configuration variable. Tokens are described in the User Guidelines. The message can contain up to 2000 characters (after every 510 characters, you must press <Enter> to continue).

Default Configuration

Disabled (no Login banner is displayed).

Command Mode

Global Configuration mode

User Guidelines

Follow this command with one or more blank spaces and a delimiting character of your choice. Then enter one or more lines of text, terminating the message with the second occurrence of the delimiting character.

When a user connects to a device, the message-of-the-day (MOTD) banner appears first, followed by the login banner and prompts. After the user logs in to the device, the EXEC banner is displayed.

Use tokens in the form of $(token)$ in the message text to customize the banner. The tokens are described in the table below:

<table>
<thead>
<tr>
<th>Token</th>
<th>Information displayed in the banner</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(hostname)</td>
<td>Displays the host name for the device.</td>
</tr>
<tr>
<td>$(domain)</td>
<td>Displays the domain name for the device.</td>
</tr>
<tr>
<td>$(bold)</td>
<td>Indicates that the next text is a bold text. Using this token again indicates the end of the bold text.</td>
</tr>
<tr>
<td>$(inverse)</td>
<td>Indicates that the next text is an inverse text. Using this token again indicates the end of the inverse text.</td>
</tr>
<tr>
<td>$(contact)</td>
<td>Displays the system contact string.</td>
</tr>
<tr>
<td>$(location)</td>
<td>Displays the system location string.</td>
</tr>
<tr>
<td>$(mac-address)</td>
<td>Displays the base MAC address of the device.</td>
</tr>
</tbody>
</table>
Use the **no login-banner** line configuration command to disable the Login banner on a particular line or lines.

Example
The following example sets a Login banner that uses tokens. The percent sign (%) is used as a delimiting character. Note that the $(token)$ syntax is replaced by the corresponding configuration variable.

```
Device(config)# banner login %
Enter TEXT message. End with the character '%'.
You have entered $(hostname).$(domain)
%
```

When the login banner is executed, the user will see the following banner:

You have entered host123.ourdomain.com

banner motd

Use the **banner motd** command in Global Configuration mode to specify and enable a message-of-the-day banner. Use the **no** form of this command to delete the existing MOTD banner.

Syntax

```
banner motd  d message-text  d
```

```
no banner motd
```

Parameters

- **d**—Delimiting character of your choice—a pound sign (#), for example. You cannot use the delimiting character in the banner message.
- **message-text**—The message must start on a new line. You can enter multi-line messages. You can include tokens in the form of $(token)$ in the message text. Tokens are replaced with the corresponding configuration variable. Tokens are described in the User Guidelines. The message can contain up to 2000 characters (after every 510 characters, you must press <Enter> to continue).
Default Configuration
Disabled (no MOTD banner is displayed).

Command Mode
Global Configuration mode

User Guidelines
Follow this command with one or more blank spaces and a delimiting character of your choice. Then enter one or more lines of text, terminating the message with the second occurrence of the delimiting character.

When a user connects to a device, the message-of-the-day (MOTD) banner appears first, followed by the login banner and prompts. After the user logs in to the device, the EXEC banner is displayed.

Use tokens in the form of \$(token) in the message text to customize the banner. The tokens are described in the table below:

<table>
<thead>
<tr>
<th>Token</th>
<th>Information displayed in the banner</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(hostname)</td>
<td>Displays the host name for the device.</td>
</tr>
<tr>
<td>$(domain)</td>
<td>Displays the domain name for the device.</td>
</tr>
<tr>
<td>$(bold)</td>
<td>Indicates that the next text is a bold text. Using this token again to indicates the end of the bold text.</td>
</tr>
<tr>
<td>$(inverse)</td>
<td>Indicates that the next text is an inverse text. Using this token again indicates the end of the inverse text.</td>
</tr>
<tr>
<td>$(contact)</td>
<td>Displays the system contact string.</td>
</tr>
<tr>
<td>$(location)</td>
<td>Displays the system location string.</td>
</tr>
<tr>
<td>$(mac-address)</td>
<td>Displays the base MAC address of the device.</td>
</tr>
</tbody>
</table>

Use the no motd-banner line configuration command to disable the MOTD banner on a particular line or lines.

Example
The following example sets an MOTD banner that uses tokens. The percent sign (%) is used as a delimiting character. Note that the \$(token) syntax is replaced by the corresponding configuration variable.
Device(config)# banner motd %
Enter TEXT message. End with the character '%'.

$(bold)Upgrade$(bold) to all devices begins at March 12 %

When the login banner is executed, the user will see the following banner:
Upgrade to all devices begins at March 12

exec-banner

Use the exec-banner command in Line Configuration mode to enable the display of exec banners. Use the no form of this command to disable the display of exec banners.

Syntax
exec-banner
no exec-banner

Parameters
This command has no arguments or keywords.

Default Configuration
Disabled

Command Mode
Line Configuration mode

Example

cd s
console# configure
console(config)# line console
console(config-line)# exec-banner
console(config-line)# exit
console(config)# line telnet
console(config-line)# exec-banner
console(config-line)# exit
console(config)# line ssh
login-banner

Use the login-banner command in Line Configuration mode to enable the display of login banners. Use the no form of this command to disable the display of login banners.

Syntax
login-banner

no login-banner

Parameters
This command has no arguments or keywords.

Default Configuration
Enabled

Command Mode
Line Configuration mode

Example

```bash
console# configure
console(config)# line console
console(config-line)# login-banner
console(config-line)# exit
console(config)# line telnet
console(config-line)# login-banner
console(config-line)# exit
console(config)# line ssh
console(config-line)# login-banner
```
motd-banner
Use the motd-banner command in Line Configuration mode to enable the display of message-of-the-day banners. Use the no form of this command to disable the display of MOTD banners.

Syntax
motd-banner
no motd-banner

Parameters
This command has no arguments or keywords.

Default Configuration
Enabled

Command Mode
Line Configuration mode

Example

```
console# configure
console(config)# line console
console(config-line)# motd-banner
console(config-line)# exit
console(config)# line telnet
console(config-line)# motd-banner
console(config-line)# exit
console(config)# line ssh
console(config-line)# motd-banner
```

show banner
Use the show banner command in EXEC mode to display the configuration of banners.
Syntax

show banner motd

show banner login

show banner exec

Parameters

This command has no arguments or keywords.

Command Mode

EXEC mode

Examples

Device> **show banner motd**

Banner: MOTD
Line SSH: Enabled
Line Telnet: Enabled
Line Console: Enabled
10000 giga ports switch
console#
console# show banner login

Banner: Login
Line SSH: Enabled
Line Telnet: Enabled
Line Console: Enabled
console#
console# show banner exec

Banner: EXEC
Line SSH: Enabled
Line Telnet: Enabled
Line Console: Enabled
console#
Macro Commands

macro name

Use the *Macro Name* Global Configuration mode command to create a user defined macro.

Use the *no* form of this command to delete the macro definition.

Syntax

`macro name [macro-name]`

`no macro name [macro-name]`

Parameters

macro-name—Name of the macro. Macro names are case sensitive.

Default Configuration

The command has no default setting.

Command Mode

Global Configuration mode

User Guidelines

A macro can contain up to 3000 characters and up to 200 lines. Enter one macro command per line. Use the `@` character to end the macro. Use the `#` character at the beginning of a line to enter comment text within the macro.

You can define mandatory keywords within a macro by using a help string to specify the keywords. Enter `#macro keywords word` to define the keywords that are available for use with the macro. The keyword name is case sensitive. You can enter up to three keywords separated by a space. Only the first three
keywords are visible if you enter more than three macro keywords. The command can be anywhere within the macro.

When creating a macro, do not use the `exit` or `end` commands or change the command mode using interface interface-id. Doing so might cause commands that follow `exit`, `end` or interface interface-id to be executed in a different command mode.

You can modify a macro by creating a new macro with the same name as the existing macro. The newer macro overwrites the existing macro.

Examples
The following example shows how to create a macro that defines the duplex mode and speed:

```
Switch(config) #  macro name dup
Enter macro commands one per line. End with the character '@'.
macro description dup
duplex full
speed auto
```

The following example shows how to create a macro with `#macro` keywords:

```
Switch(config) #  macro name duplex
Enter macro commands one per line. End with the character '@'.
macro description duplex
duplex $DUPLEX
speed $SPEED
#macro keywords $ DUPLEX $ SPEED
@
```

The following example shows how to apply the macros to an interface:

```
Switch(config-if) #  macro apply duplex $DUPLEX full $SPEED auto
```

```
Switch(config-if) #  macro apply duplex ?
    WORDkeyword to replace with value e.g. $DUPLEX, $SPEED
    <cr>
```
Switch(config-if) # macro apply duplex $DUPLEX ?

WORD Value of the first keyword to replace
<cr>
Switch(config-if) # macro apply duplex $DUPLEX full $SPEED ?

WORD Value of the second keyword to replace

macro apply

Use the `macro apply` interface configuration command to apply a macro to an interface or to apply and trace a macro configuration on an interface.

Syntax

```
macro {apply | trace} macro-name [parameter {value}] [parameter {value}] [parameter {value}]
```

Parameters

- **apply**—Apply a macro to the specific interface.
- **trace**—Apply and trace a macro to the specific interface.
- **macro-name**—Specify the name of the macro.
- **parameter**—(Optional) Specify unique parameter values that are specific to the interface. You can enter up to three keyword-value pairs. Parameter keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value.

Default Configuration

The command has no default setting.

Command Mode

Interface Configuration mode

User Guidelines

You can use the `macro trace macro-name` Interface Configuration command to apply and show the macros running on an interface or to debug the macro to find any syntax or configuration errors.

If a command fails because of a syntax error or a configuration error the macro continues to apply to the interface. Use the parameter value
keywords to designate values specific to the interface when creating a macro that requires the assignment of a unique value.

Keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value. Any full match of a keyword, even if it is part of a large string, is considered a match and replaced by the corresponding value.

Some macros might contain keywords that require a parameter value. You can use the **macro apply macro-name** command to display a list of any required values in the macro. If you apply a macro without entering the keyword values, the commands are invalid and are therefore not applied.

When you apply a macro to an interface, the macro name is automatically added to the interface. You can display the applied commands and macro names by using the **show running-configuration interface interface-id user EXEC** mode command.

A macro applied to an interface range behaves the same way as a macro applied to a single interface. When a macro is applied to an interface range, it is applied sequentially to each interface within the range. If a macro command fails on one interface, it is nonetheless applied to the remaining interfaces.

Example

Switch(config) # interface gi1/0/2
Switch(config-if) # macro trace dup
 Applying command... ‘duplex full’
 Applying command... ‘speed auto’

Switch(config) # interface gi1/0/2
Switch(config-if) # macro apply duplex $DUPLEX full $SPEED auto
Switch(config-if) # exit
Switch(config) # interface gi1/0/3
Switch(config-if) # macro apply dup
Switch(config-if) # exit
macro description

Use the `macro description` Interface Configuration mode command to enter a description about which macros are applied to an interface. Use the `no` form of this command to remove the description.

Syntax

`macro description text`

`no macro description`

Parameters

`text`—Description text. The text can contain up to 160 characters.

Default Configuration

The command has no default setting.

Command Mode

Interface Configuration mode

User Guidelines

When multiple macros are applied on a single interface, the description text is a concatenation of texts from a number of previously applied macros.

You can verify your setting by entering the `show parser macro description` privileged EXEC mode command.

Example

```
Switch(config) # interface gi1/0/2
Switch(config-if) #  macro apply dup
Switch(config-if) #  end
Switch(config) # interface gi1/0/3
Switch(config-if) #  macro apply duplex $DUPLEX full $SPEED auto
Switch(config-if) #  end
Switch #  show parser macro description
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Macro Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/2</td>
<td></td>
</tr>
<tr>
<td>gi1/0/3</td>
<td></td>
</tr>
</tbody>
</table>
macro global

Use the macro global Global Configuration command to apply a macro to a switch or to apply and trace a macro configuration on a switch.

Syntax

macro global {apply | trace} macro-name [parameter {value}] [parameter {value}] [parameter {value}]

Parameters

- **apply**—Apply a macro to the switch.
- **trace**—Apply and trace a macro to the switch.
- **macro-name**—Specify the name of the macro.
- **parameter**—(Optional) Specify unique parameter values that are specific to the switch. You can enter up to three keyword-value pairs. Parameter keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value.

Default Configuration

The command has no default setting.

Command Mode

Global Configuration mode
User Guidelines

You can use the `macro global trace macro-name` Global Configuration mode command to apply and show the macros running on the switch or to debug the macro in order to locate any syntax or configuration errors.

If a command fails because of a syntax error or a configuration error when you apply a macro, the macro nonetheless continues to apply the remaining commands to the interface.

Use the parameter value keywords to designate values specific to the switch when creating a macro that requires the assignment of unique value.

Keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value. Any full match of a keyword, even if it is part of a large string, is considered a match and replaced by the corresponding value.

Some macros might contain keywords that require a parameter value. You can use the `macro global apply macro-name` command to display a list of any required values in the macro. If you apply a macro without entering the keyword values, the commands are considered invalid and are not applied.

When you apply a macro to the switch, the macro name is automatically added to the switch. You can display the applied commands and macro names by using the `show running-configuration` interface user EXEC mode command.

macro global description

Use the `macro global description` Global Configuration command to enter a description about which macros are applied to the switch. Use the **no** form of this command to remove the description.

Syntax

```
macro global description text
no macro global description
```

Parameters

text—Description text. The text can contain up to 160 characters.
Default Configuration
The command has no default setting.

Command Mode
Global Configuration mode

User Guidelines
When multiple global macros are applied to a switch, the global description text is a concatenation of texts from a number of previously applied macros. You can verify your settings by entering the `show parser macro description` privileged EXEC mode command.

show parser macro
Use the `show parser macro` User EXEC mode command to display the parameters for all configured macros or for one macro on the switch.

Syntax
`show parser macro [{brief | description [interface interface-id] | name macro-name}]`

Parameters
- `brief`—(Optional) Display the name of each macro.
- `description [interface]`—(Optional) Display all macro descriptions.
- `interface-id`—Or the description of a specific interface.
- `name macro-name`—(Optional) Display information about a single macro identified by the macro name.

Command Mode
User EXEC mode
System Management Commands

ping
Use the ping command to send ICMP echo request packets to another node on the network.

Syntax
ping [ip] {ipv4-address | hostname} [size packet_size] [count packet_count] [timeout time_out]

ping ipv6 {ipv6-address | hostname} [size packet_size] [count packet_count] [timeout time_out]

Parameters
- ip—Use IPv4 to check the network connectivity.
- ipv6—Use IPv6 to check the network connectivity.
- ipv4-address—IPv4 address to ping.
- ipv6-address—Unicast or multicast IPv6 address to ping. When the IPv6 address is a Link Local address (IPv6Z address), the outgoing interface name must be specified. Refer to the User Guidelines for the interface name syntax.
- hostname—Hostname to ping (160 characters. Maximum label size: 63.)
- packet_size—Number of bytes in the packet not including the VLAN tag. The default is 64 bytes. (IPv4: 64-1518, IPv6: 68-1518)
- packet_count—Number of packets to send, from 1 to 65535 packets. The default is 4 packets. If 0 is entered, it pings until stopped (0–65535).
- time-out—Timeout in milliseconds to wait for each reply, from 50 to 65535 milliseconds. The default is 2000 milliseconds (50–65535).
Command Mode

EXEC mode

User Guidelines

Press Esc to stop pinging. Following are sample results of the ping command:

- **Destination does not respond**—If the host does not respond, a “no answer from host” appears within 10 seconds.
- **Destination unreachable**—The gateway for this destination indicates that the destination is unreachable.
- **Network or host unreachable**—The switch found no corresponding entry in the route table.

The format of an **IPv6Z** address is: `<ipv6-link-local-address>%<interface-name>`

- `interface-name = vlan<integer> | ch<integer> | isatap<integer> | <physical-port-name> | 0`
- `integer = <decimal-number> | <integer><decimal-number>`
- `decimal-number = 0 / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9`
- `physical-port-name = Designated port number, for example gi1/0/1`

When using the ping **ipv6** command to check network connectivity of a directly attached host using its link local address, the egress interface may be specified in the **IPv6Z** format. If the egress interface is not specified, the default interface is selected. Specifying interface zone=0 is equivalent to not defining an egress interface.

When using the ping **ipv6** command with MC address, the information displayed is taken from all received echo responses.

Examples

```
Console> ping ip 10.1.1.1
Pinging 10.1.1.1 with 64 bytes of data:

64 bytes from 10.1.1.1: icmp_seq=0. time=11 ms
64 bytes from 10.1.1.1: icmp_seq=1. time=8 ms
64 bytes from 10.1.1.1: icmp_seq=2. time=8 ms
```
64 bytes from 10.1.1.1: icmp_seq=3. time=7 ms

-----10.1.1.1 PING Statistics-----
4 packets transmitted, 4 packets received, 0% packet loss
round-trip (ms) min/avg/max = 7/8/11

Console> ping ip yahoo.com
Pinging yahoo.com [66.218.71.198] with 64 bytes of data:

64 bytes from 10.1.1.1: icmp_seq=0. time=11 ms
64 bytes from 10.1.1.1: icmp_seq=1. time=8 ms
64 bytes from 10.1.1.1: icmp_seq=2. time=8 ms
64 bytes from 10.1.1.1: icmp_seq=3. time=7 ms

-----10.1.1.1 PING Statistics-----
4 packets transmitted, 4 packets received, 0% packet loss
round-trip (ms) min/avg/max = 7/8/11

Console> ping ip 176.16.1.1
Pinging 176.16.1.1 with 64 bytes of data:

64 bytes from 176.16.1.1: icmp_seq=0. time=5 ms
64 bytes from 176.16.1.1: icmp_seq=1. time=5 ms
64 bytes from 176.16.1.1: icmp_seq=2. time=5 ms
64 bytes from 176.16.1.1: icmp_seq=3. time=5 ms

-----10.1.1.1 PING Statistics-----
4 packets transmitted, 4 packets received, 0% packet loss
round-trip (ms) min/avg/max = 5/5/5

console> ping ipv6 3003::11
Pinging 3003::11 with 64 bytes of data:

64 bytes from 3003::11: icmp_seq=1. time=0 ms
64 bytes from 3003::11: icmp_seq=2. time=50 ms
64 bytes from 3003::11: icmp_seq=3. time=0 ms
64 bytes from 3003::11: icmp_seq=4. time=0 ms

----3003::11 PING Statistics----
4 packets transmitted, 4 packets received, 0% packet loss
round-trip (ms) min/avg/max = 0/12/50

console> ping ipv6 FF02::1
Pinging FF02::1 with 64 bytes of data:

64 bytes from 3003::11: icmp_seq=1. time=0 ms
64 bytes from 3003::33: icmp_seq=1. time=70 ms
64 bytes from 3003::11: icmp_seq=2. time=0 ms
64 bytes from 3003::55: icmp_seq=1. time=1050 ms
64 bytes from 3003::33: icmp_seq=2. time=70 ms
64 bytes from 3003::55: icmp_seq=2. time=1050 ms
64 bytes from 3003::11: icmp_seq=3. time=0 ms
64 bytes from 3003::33: icmp_seq=3. time=70 ms
64 bytes from 3003::11: icmp_seq=4. time=0 ms
64 bytes from 3003::55: icmp_seq=3. time=1050 ms
64 bytes from 3003::33: icmp_seq=4. time=70 ms
64 bytes from 3003::55: icmp_seq=4. time=1050 ms

---- FF02::1 PING Statistics----
4 packets transmitted, 12 packets received

---traceroute---

To discover (?) the routes that packets will take when traveling to their destination, use the traceroute EXEC command.

Syntax
traceroute ip {ipv4-address | hostname} [size packet_size] [ttl max-ttl] [count packet_count] [timeout time_out] [source ip-address] [tos tos]
traceroute ipv6 {ipv6-address | hostname} [size packet_size] [ttl max-ttl] [count packet_count] [timeout time_out] [source ip-address] [tos tos]
Parameters

- **ip**—Use IPv4 to discover the route.
- **ipv6**—Use IPv6 to discover the route.
- **ipv4-address**—IPv4 address of the destination host. (Range: Valid IP address)
- **ipv6-address**—IPv6 address of the destination host.
- **hostname**—Hostname of the destination host. (Range: 1–160 characters. Maximum label size: 63.)
- **packet_size**—Number of bytes in the packet not including the VLAN tag. The default is 64 bytes. (IPv4: 64-1518, IPv6: 68-1518)
- **ttl max-ttl**—The largest TTL value that can be used. The default is 30. The **traceroute** command terminates when the destination is reached or when this value is reached. (Range: 1–255)
- **count packet_count**—The number of probes to be sent at each TTL level. The default count is 3. (Range: 1–10)
- **timeout time_out**—The number of seconds to wait for a response to a probe packet. The default is 3 seconds. (Range: 1–60)
- **source ip-address**—One of the interface addresses of the device to use as a source address for the probes. The device will normally pick what it feels is the best source address to use. (Range: Valid IP address)
- **tos tos**—The Type-Of-Service byte in the IP Header of the packet. (Range: 0—255)

Command Mode

EXEC mode

User Guidelines

The **traceroute** command works by taking advantage of the error messages generated by routers when a datagram exceeds its time-to-live (TTL) value. The **traceroute** command starts by sending probe datagrams with a TTL value of one. This causes the first router to discard the probe datagram and send back an error message. The **traceroute** command sends several probes at each TTL level and displays the round-trip time for each.
The traceroute command sends out one probe at a time. Each outgoing packet can result in one or two error messages. A "time exceeded" error message indicates that an intermediate router has seen and discarded the probe. A "destination unreachable" error message indicates that the destination node has received the probe and discarded it because it could not deliver the packet. If the timer goes off before a response comes in, the traceroute command prints an asterisk (*).

The traceroute command terminates when the destination responds, when the maximum TTL is exceeded, or when the user interrupts the trace with Esc.

The traceroute command is not relevant to IPv6 link local addresses.

Example

```
Router> traceroute ip umaxp1.physics.lsa.umich.edu
Type Esc to abort.
Tracing the route to umaxp1.physics.lsa.umich.edu (141.211.101.64)
  1 i2-gateway.stanford.edu (192.68.191.83)  0 msec 0 msec 0 msec
  2 STAN.POS.calren2.NET (171.64.1.213) 0 msec 0 msec 0 msec
  3 SUNV--STAN.POS.calren2.net (198.32.249.73) 1 msec 1 msec 1 msec
  4 Abilene--QSV.POS.calren2.net (198.32.249.162) 1 msec 1 msec 1 msec
  5 kscyng-snvang.abilene.ucaid.edu (198.32.8.103) 33 msec 35 msec 35 msec
  6 iplsng-kscyng.abilene.ucaid.edu (198.32.8.80) 47 msec 45 msec 45 msec
  7 so-0-2-0x1.aal.mich.net (192.122.183.9) 56 msec 53 msec 54 msec
  8 atm1-0x24.michnet8.mich.net (198.108.23.82) 56 msec 56 msec 57 msec
 9 * * *
 10 A-ARB3-LSA-NG.c-SEB.umnet.umich.edu (141.211.5.22) 58 msec 58 msec 58 msec
 11 umaxp1.physics.lsa.umich.edu (141.211.101.64) 62 msec 63 msec 63 msec
Trace completed
```
The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Indicates the sequence number of the router in the path to the host.</td>
</tr>
<tr>
<td>i2-gateway.stanford.edu</td>
<td>Host name of this router.</td>
</tr>
<tr>
<td>192.68.191.83</td>
<td>IP address of this router.</td>
</tr>
<tr>
<td>1 msec 1 msec 1 msec</td>
<td>Round-trip time for each of the probes that are sent.</td>
</tr>
</tbody>
</table>

The following are characters that can appear in the traceroute command output:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>The probe timed out.</td>
</tr>
<tr>
<td>?</td>
<td>Unknown packet type.</td>
</tr>
<tr>
<td>A</td>
<td>Administratively unreachable. Usually, this output indicates that an access list is blocking traffic.</td>
</tr>
<tr>
<td>F</td>
<td>Fragmentation required and DF is set.</td>
</tr>
<tr>
<td>H</td>
<td>Host unreachable.</td>
</tr>
<tr>
<td>N</td>
<td>Network unreachable.</td>
</tr>
<tr>
<td>P</td>
<td>Protocol unreachable.</td>
</tr>
<tr>
<td>Q</td>
<td>Source quench.</td>
</tr>
<tr>
<td>R</td>
<td>Fragment reassembly time exceeded</td>
</tr>
<tr>
<td>S</td>
<td>Source route failed.</td>
</tr>
<tr>
<td>U</td>
<td>Port unreachable.</td>
</tr>
</tbody>
</table>

telnet

The *telnet* EXEC mode command enables logging on to a host that supports Telnet.

Syntax

```
telnet {ip-address | hostname} [port] [keyword ...]
```
Parameters

- **ip-address**—Specifies the destination host IP address.
- **hostname**—Specifies the destination host name. (Length: 1-160 characters. Maximum label length: 63 characters.)
- **port**—Specifies the decimal TCP port number or one of the keywords listed in the Ports table in the User Guidelines.
- **keyword**—Specifies the one or more keywords listed in the Keywords table in the User Guidelines.

Default Configuration

The default port is the Telnet port (23) on the host.

By default, Telnet is enabled.

Command Mode

EXEC mode

User Guidelines

Telnet software supports special Telnet commands in the form of Telnet sequences that map generic terminal control functions to operating system-specific functions. To enter a Telnet sequence, press the escape sequence keys (Ctrl-shift-6) followed by a Telnet command character.

Special Telnet Sequences

<table>
<thead>
<tr>
<th>Telnet Sequence</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl-shift-6-b</td>
<td>Break</td>
</tr>
<tr>
<td>Ctrl-shift-6-c</td>
<td>Interrupt Process (IP)</td>
</tr>
<tr>
<td>Ctrl-shift-6-h</td>
<td>Erase Character (EC)</td>
</tr>
<tr>
<td>Ctrl-shift-6-o</td>
<td>Abort Output (AO)</td>
</tr>
<tr>
<td>Ctrl-shift-6-t</td>
<td>Are You There? (AYT)</td>
</tr>
<tr>
<td>Ctrl-shift-6-u</td>
<td>Erase Line (EL)</td>
</tr>
</tbody>
</table>

At any time during an active Telnet session, available Telnet commands can be listed by pressing the Ctrl-shift-6-? keys at the system prompt.
A sample of this list follows. Note that the Ctrl-shift-6 sequence appears as ^^ on the screen.

Console> `Ctrl-shift-6` ?
[Special telnet escape help]
^^ B sends telnet BREAK
^^ C sends telnet IP
^^ H sends telnet EC
^^ O sends telnet AO
^^ T sends telnet AYT
^^ U sends telnet EL

Ctrl-shift-6 x suspends the session (return to system command prompt)

Several concurrent Telnet sessions can be opened, enabling switching between the sessions. To open a subsequent session, the current connection has to be suspended by pressing the escape sequence keys (Ctrl-shift-6) and x to return to the system command prompt. Then open a new connection with the telnet EXEC mode command.

This command lists concurrent Telnet connections to remote hosts that were opened by the current Telnet session to the local device. It does not list Telnet connections to remote hosts that were opened by other Telnet sessions.

Keywords Table

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/echo</td>
<td>Enables local echo.</td>
</tr>
<tr>
<td>/quiet</td>
<td>Prevents onscreen display of all messages from the software.</td>
</tr>
<tr>
<td>/source-interface</td>
<td>Specifies the source interface.</td>
</tr>
</tbody>
</table>
Ports Table

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
<th>Port Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP</td>
<td>Border Gateway Protocol</td>
<td>179</td>
</tr>
<tr>
<td>chargen</td>
<td>Character generator</td>
<td>19</td>
</tr>
<tr>
<td>cmd</td>
<td>Remote commands</td>
<td>514</td>
</tr>
<tr>
<td>daytime</td>
<td>Daytime</td>
<td>13</td>
</tr>
<tr>
<td>discard</td>
<td>Discard</td>
<td>9</td>
</tr>
<tr>
<td>domain</td>
<td>Domain Name Service</td>
<td>53</td>
</tr>
<tr>
<td>echo</td>
<td>Echo</td>
<td>7</td>
</tr>
<tr>
<td>exec</td>
<td>Exec</td>
<td>512</td>
</tr>
<tr>
<td>finger</td>
<td>Finger</td>
<td>79</td>
</tr>
<tr>
<td>ftp</td>
<td>File Transfer Protocol</td>
<td>21</td>
</tr>
<tr>
<td>ftp-data</td>
<td>FTP data connections</td>
<td>20</td>
</tr>
<tr>
<td>gopher</td>
<td>Gopher</td>
<td>70</td>
</tr>
<tr>
<td>hostname</td>
<td>NIC hostname server</td>
<td>101</td>
</tr>
<tr>
<td>ident</td>
<td>Ident Protocol</td>
<td>113</td>
</tr>
<tr>
<td>irc</td>
<td>Internet Relay Chat</td>
<td>194</td>
</tr>
<tr>
<td>klogin</td>
<td>Kerberos login</td>
<td>543</td>
</tr>
<tr>
<td>kshell</td>
<td>Kerberos shell</td>
<td>544</td>
</tr>
<tr>
<td>login</td>
<td>Login</td>
<td>513</td>
</tr>
<tr>
<td>lpd</td>
<td>Printer service</td>
<td>515</td>
</tr>
<tr>
<td>nntp</td>
<td>Network News Transport Protocol</td>
<td>119</td>
</tr>
</tbody>
</table>
Example
The following example displays logging in to IP address 176.213.10.50 via Telnet.

Console> `telnet` 176.213.10.50
Esc U sends telnet EL

resume
The `resume` EXEC mode command enables switching to another open Telnet session.

Syntax
`resume [connection]`

Parameters
`connection`—Specifies the connection number. (Range: 1-4 connections.)
Default Configuration
The default connection number is that of the most recent connection.

Command Mode
EXEC mode

Example
The following command switches to open Telnet session number 1.

```
Console> resume 1
```

hostname
The `hostname` Global Configuration mode command specifies or modifies the device host name. Use the `no` form of the command to remove the existing host name.

Syntax

```
hostname name
no hostname
```

Parameters

- **Name**—specifies The Device Host Name. (Length: 1-160 Characters. Maximum label length: 63 characters.)

Default Configuration
No host name is defined.

Command Mode
Global Configuration mode

Example
The following example specifies the device host name as ‘enterprise’.

```
Console(config)# hostname enterprise
enterprise(config)#
```
reload
The *reload* Privileged EXEC mode command reloads the operating system.

Syntax
```
reload [slot stack-member-number]
```

Command Mode
Privileged EXEC mode

Parameters
- **stack-member-number** — Specifies the new master unit number. (Range: 1–8). If unspecified, reloads all the units.

Example
The following example reloads the operating system on all units.

```
Console# reload
This command will reset the whole system and disconnect your current session. Do you want to continue? (y/n) [n]
```

stack master
The *stack master* Global Configuration mode command forces a stack master selection. Use the *no* form of this command to restore the default configuration.

Syntax
```
stack master unit unit
no stack master
```

Parameters
- **unit** — Specifies the new master unit number. (Range: 1–2)

Default Configuration
The default is no forced master.
Command Mode
Global Configuration mode

Example
The following example forces the stack master to be unit 2.

```
Console(config)# stack master unit 2
```

system light
Use the system light EXEC command to light LEDs on a specific unit.

Syntax
```
system light [unit unit-number] [duration seconds]
```
```
system light stop
```

Parameters
- **unit-number**—Specify unit number or all.
- **seconds**—The number of seconds to light the LEDs. If unspecified, defaults to 5 seconds. (Range: 2–6)
- **stop**—Stop lighting the LEDs.

Command Mode
EXEC mode

switch renumber
Use the switch renumber Global Configuration command to change the unit ID of a specific unit.

Syntax
```
switch current-unit-number renumber new-unit-number
```

Parameters
- **current-unit-number**—Specify Unit number. (Range: 1–8)
- `new-unit-number`—The new unit number. (Range: 1–8)

Command Mode
Global Configuration mode

show switch
The `show switch` EXEC mode command displays stack status information for the stack or stack member.

Syntax
`show switch [stack-member-number]`

Parameters
- `stack-member-number`—Specifies the unit number. (Range: 1–6)

Command Mode
EXEC mode

Example
The following examples display the stack status information.

```
Console> show switch

<table>
<thead>
<tr>
<th>Unit</th>
<th>MAC Address</th>
<th>SW</th>
<th>Master</th>
<th>Up-link</th>
<th>Down link</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00:00:b0:87:12:11</td>
<td>3.30</td>
<td>Enabled</td>
<td>2</td>
<td>3</td>
<td>Slave</td>
</tr>
<tr>
<td>3</td>
<td>00:00:b0:87:12:13</td>
<td>3.30</td>
<td>Forced</td>
<td>1</td>
<td>4</td>
<td>Master</td>
</tr>
<tr>
<td>4</td>
<td>00:00:b0:87:12:14</td>
<td>3.30</td>
<td>Enabled</td>
<td>3</td>
<td>5</td>
<td>Slave</td>
</tr>
<tr>
<td>5</td>
<td>00:00:b0:87:12:15</td>
<td>3.30</td>
<td>Enabled</td>
<td>4</td>
<td>6</td>
<td>Slave</td>
</tr>
<tr>
<td>6</td>
<td>00:00:b0:87:12:16</td>
<td>3.30</td>
<td>Enabled</td>
<td>5</td>
<td>7</td>
<td>Slave</td>
</tr>
<tr>
<td>7</td>
<td>00:00:b0:87:12:17</td>
<td>3.30</td>
<td>Enabled</td>
<td>6</td>
<td>8</td>
<td>Slave</td>
</tr>
<tr>
<td>8</td>
<td>00:00:b0:87:12:18</td>
<td>3.30</td>
<td>Enabled</td>
<td>7</td>
<td>2</td>
<td>Slave</td>
</tr>
<tr>
<td>2</td>
<td>00:00:b0:87:12:12</td>
<td>3.30</td>
<td>Enabled</td>
<td>8</td>
<td>1</td>
<td>Slave</td>
</tr>
</tbody>
</table>
```
service cpu-utilization

The service cpu-utilization Global Configuration mode command enables measuring CPU utilization. Use the no form of this command to restore the default configuration.

Syntax

service cpu-utilization
no service cpu-utilization

Default Configuration

Measuring CPU utilization is enabled.

Command Mode

Global Configuration mode

User Guidelines

Use the show cpu utilization Privileged EXEC command to view information on CPU utilization.
Example
The following example enables measuring CPU utilization.

Console(config)# service cpu-utilization

show cpu utilization
The `show cpu utilization` Privileged EXEC mode command displays information about CPU utilization.

Syntax
`show cpu utilization`

Command Mode
Privileged EXEC mode

User Guidelines
Use the `service cpu-utilization` Global Configuration mode command to enable measuring CPU utilization.

Example
The following example displays CPU utilization information.

Console# show cpu utilization
CPU utilization service is on.
CPU utilization

five seconds: 5%; one minute: 3%; five minutes: 3%

clear cpu counters
The `clear cpu counters` EXEC mode command clears traffic counters to and from the CPU.

Syntax
clear cpu counters
Command Mode
EXEC mode

Example
The following example clears the CPU traffic counters.

```
Console# clear cpu counters
```

service cpu-counters
The service cpu-counters Global Configuration mode command enables traffic counting to and from the CPU. To disable counting, use the `no` form of this command.

Syntax
```
service cpu-counters
no service cpu-counters
```

Command Mode
Global Configuration mode

User Guidelines
Use the `show cpu counters` command to display the CPU traffic counters.

Example
The following example enables counting CPU traffic.

```
Console(config)# service cpu-counters
```

show cpu counters
The show cpu counters EXEC mode command displays traffic counter information to and from the CPU.

Syntax
```
show cpu counters
```
Command Mode
EXEC mode

User Guidelines
Use the `service cpu-counters` command to enable traffic counting to and from the CPU.

Example
The following example displays the CPU traffic counters.

```
Console# show cpu counters

CPU counters are active.

In Octets: 987891
In Unicast Packets: 3589
In Multicast Packets: 29
In Broadcast Packets: 8

Out Octets: 972181
Out Unicast Packets: 3322
Out Multicast Packets: 22
Out Broadcast Packets: 8
```

show users
The `show users` EXEC mode command displays information about the active users.

Syntax
```
show users
```

Command Mode
EXEC mode
Example
The following example displays information about the active users.

```
Console# show users
```

<table>
<thead>
<tr>
<th>Username</th>
<th>Protocol</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob</td>
<td>Serial</td>
<td></td>
</tr>
<tr>
<td>John</td>
<td>SSH</td>
<td>172.16.0.1</td>
</tr>
<tr>
<td>Robert</td>
<td>HTTP</td>
<td>172.16.0.8</td>
</tr>
<tr>
<td>Betty</td>
<td>Telnet</td>
<td>172.16.1.7</td>
</tr>
<tr>
<td>Sam</td>
<td></td>
<td>172.16.1.6</td>
</tr>
</tbody>
</table>

show sessions
The `show sessions` EXEC mode command displays open Telnet sessions.

Syntax
`show sessions`

Command Mode
EXEC mode

User Guidelines
The command displays Telnet sessions to remote hosts opened by the current Telnet session to the local device. It does not display Telnet sessions to remote hosts opened by other Telnet sessions to the local device.
Example
The following example displays open Telnet sessions.

```
Console# show sessions
```

<table>
<thead>
<tr>
<th>Connection</th>
<th>Host</th>
<th>Address</th>
<th>Port</th>
<th>Byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Remote router</td>
<td>172.16.1.1</td>
<td>23</td>
<td>89</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.2</td>
<td>172.16.1.2</td>
<td>23</td>
<td>8</td>
</tr>
</tbody>
</table>

The following table describes significant fields shown above.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection</td>
<td>The connection number.</td>
</tr>
<tr>
<td>Host</td>
<td>The remote host to which the device is connected through a Telnet session.</td>
</tr>
<tr>
<td>Address</td>
<td>The remote host IP address.</td>
</tr>
<tr>
<td>Port</td>
<td>The Telnet TCP port number.</td>
</tr>
<tr>
<td>Byte</td>
<td>The number of unread bytes for the user to see on the connection.</td>
</tr>
</tbody>
</table>

show system
The `show system` EXEC mode command displays system information.

Syntax
`show system [unit unit]`

Parameters
- `unit unit`—Specifies the unit number. (Range: 1–8)

Command Mode
EXEC mode
Example
The following example displays the system information.

```
Example
The following example displays the system information.

```

```console

console# `show system`

<table>
<thead>
<tr>
<th>Unit</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PowerConnect 5524</td>
</tr>
<tr>
<td>2</td>
<td>PowerConnect 5524</td>
</tr>
<tr>
<td>3</td>
<td>PowerConnect 5524</td>
</tr>
<tr>
<td>4</td>
<td>PowerConnect 5524</td>
</tr>
<tr>
<td>5</td>
<td>PowerConnect 5524</td>
</tr>
<tr>
<td>6</td>
<td>PowerConnect 5524</td>
</tr>
<tr>
<td>7</td>
<td>PowerConnect 5524</td>
</tr>
<tr>
<td>8</td>
<td>PowerConnect 5524</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit</th>
<th>Main Power Supply</th>
<th>Redundant Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>OK</td>
<td>NOT OPERATIONAL</td>
</tr>
<tr>
<td>8</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit</th>
<th>Fans Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OK</td>
</tr>
<tr>
<td>2</td>
<td>OK</td>
</tr>
<tr>
<td>3</td>
<td>OK</td>
</tr>
<tr>
<td>4</td>
<td>OK</td>
</tr>
<tr>
<td>5</td>
<td>IDLE</td>
</tr>
<tr>
<td>6</td>
<td>OK</td>
</tr>
<tr>
<td>7</td>
<td>OK</td>
</tr>
<tr>
<td>8</td>
<td>FAILURE</td>
</tr>
</tbody>
</table>
```
System Management Commands

Unit	**Temperature (Celsius)**	**Temperature Sensor Status**
1 | 47 | OK
2 | 45 | OK
3 | 49 | OK
4 | 36 | OK
5 | 35 | OK
6 | 45 | OK
7 | 40 | OK
8 | 56 | OK

Unit	**Up time**
1 | 00:00:31:24
2 | 00:00:31:19
3 | 00:00:31:24
4 | 00:00:31:24
5 | 00:00:31:24
6 | 00:00:31:24
7 | 00:00:31:25
8 | 00:00:31:25

```
console# show system unit 2
System Type: PowerConnect 5548
System Up Time (days,hour:min:sec): 08,23:03:46
System Contact:
System Name:
System Location:
System MAC Address: 00:99:88:66:33:33
System Object ID: 1.3.6.1.4.1.674.10895.3031
Type: PowerConnect 5548
Main Power Supply Status: OK
```
Fans Status: OK
Unit Temperature (Celsius) Status
------------- ------------------- -------------
2 42 OK

show version
The show version EXEC mode command displays system version information.

Syntax
show version [unit unit]

Parameters
unit unit—Specifies the unit number. (Range: 1–8)

Command Mode
EXEC mode

Example
The following example displays system version information.

```
console > show version
Unit   SW Version Boot Version HW Version
------   --------- --------- ---------
1  3.131   2.178    1.0.0
2  3.131   2.178    1.0.0
```

system resources routing
The system resources routing Global Configuration mode command configures the routing table maximum size. Use the no form of this command to return to the default size.

Syntax
system resources routing routes hosts interfaces
no system resources routing

Parameters

- **routes**—Specifies the maximum number of remote networks in the routing table.
- **hosts**—Specifies the maximum number of directly attached hosts.
- **interfaces**—Specifies the maximum number of IP interfaces.

Default Configuration
Hosts: 200, Routes: 64, IP Interfaces: 32

Command Mode
Global Configuration mode

User Guidelines
The settings are effective after reboot.

Example
The following example configures the routing table maximum size.

```
Console# system resources routing 20 23 5
```

show system resources routings
The `show system resources routings` EXEC mode command displays system routing resources information.

Syntax
`show system resources routings`

Command Mode
EXEC mode
Example
The following example displays the system routing resources information.

```
Console> show system resources routings

Parameters          Current value       After reboot Value
----------------------------------------------------------------
Hosts:              100                  100
Routes:             32                   32
IP Interfaces:      32                   32
```

show system tcam utilization
The `show system tcam utilization` EXEC mode command displays the Ternary Content Addressable Memory (TCAM) utilization.

Syntax
```
show system tcam utilization [unit unit]
```

Parameters

- `unit unit`—Specifies the unit number. (Range: 1–8)

Command Mode
EXEC mode

Example
The following example displays TCAM utilization information.

```
Console> show system tcam utilization

System: 75%

Unit  TCAM utilization [%]  
------  ---------------------
 1      58                    
 2      57
```
show system defaults

Use the `show system defaults` command to display system defaults.

Syntax

```
show system defaults [section]
```

Parameters

section—Show information for specific session only. Available values are: management, 802.1x, port, fdb, port-mirroring, spanning-tree, vlan, voice-vlan, ip-addressing, network-security and qos-acl.

Command Mode

EXEC mode

Examples

```bash
console# show system defaults
System Mode: Router
Maximum units in stack: 8
# Management defaults
Telnet: Enabled (Maximum 4 sessions, shared with SSH)
SSH: Enabled (Maximum 4 sessions, shared with Telnet)
HTTP: Enabled, port 80 (Maximum 27 sessions)
HTTPS: Disabled
SNMP: Enabled.
    User: first
    SNMP version: V3
    SNMP Local Engine ID: 0000000001
    SNMP Notifications: Enabled
    SNMP Authentication Notifications: Enabled
    Console: Enabled.
    Cryptographic keys are not generated
    HTTPS certificate is not generated
    Management ACL: No ACL is defined
    AAA Telnet authentication login: Local user data base
```
AAA HTTP authentication login: Local database
AAA HTTPS authentication login: Local database
Radius accounting: Disabled
Radius: No server is defined
Tacacs: No server is defined
Syslog: No server is defined
Logging: Enabled
Logging to console: Informational messages
Logging to internal buffer: Informational messages
Logging to file: Error messages
Logging to remote server: Informational messages
Maximum no. of syslog messages: 200
SNTP: supported
SNTP Port No.: 123
SNTP Interface: Enabled
IP Domain Naming System: Enabled
DHCP Server: Enabled
DHCP Auto Configuration: Enabled
DHCP Option 67: Enabled
DHCP Option 82: Disabled

IPv6 defaults

802.1x defaults
802.1X is disabled
Mode: Multiple host
Guest VLAN: Not defined

Interface defaults in present unit
48 GE regular
2 10G fiberOptics
PoE: Enabled
POE mode: Port Limit
Duplex: Full
Negotiation: Enabled
Flow control: Off
Mdix mode: auto
LAGs: No LAG is defined
Storm control: Disabled
Storm control mode: unknown unicast, broadcast, multicast
Port security: Disabled
LLDP: Enabled
LLDPDU Handeling: Filtering
Jumbo frames: Disabled
Port-Channel Load Balancing: Layer 2

Bridging defaults
Maximum 16K entries
Aging time: 5 minutes
iSCSI: Enabled
iSCSI cos: 5, with no remark

Multicast defaults
Multicast filtering: Disabled
IGMP snooping: Disabled
IGMP Querier: Disabled
Multicast TV Vlan Interface: disabled

Port monitoring defaults
Port monitor is not defined
Maximum source port: 4
Maximum destination ports for mirroring: 2

Spanning tree defaults
Spanning tree is Enabled
Spanning tree mode is Classic
Spanning tree interface: Enabled
Port fast: Disabled
BPDU handling: Filtering
BPDU Guard: Disabled

Vlan defaults
Maximum Vlans: 4094
Default VLAN: Enabled
Default VLAN id: 1
GVRP: Disabled
Port mode: undefined
PVID: 1
VLAN membership: 1

Voice vlan defaults
Voice VLAN: Disabled
Cos: 6 with no remark
OUI table:
00:E0:BB 3COM
00:03:6B Cisco
00:E0:75 Veritel
00:D0:1E Pingtel
00:01:E3 Simens
00:60:B9 NEC/Philips
00:0F:E2 Huawei-3COM
00:09:6E Avaya

Network security defaults
DHCP snooping: Disabled
ARP inspection: Disabled
ARP inspection Validation: Disabled

DOS attacks

IP addressing defaults
No IP interface is defined

QOS and ACLs defaults
QoS mode is basic
QoS Basic Trust Mode: CoS
QoS Advanced Trust Mode: CoS-DSCP
Queue default mapping:
show tech-support

Use the `show tech-support` command to display system and configuration information you can provide to the Technical Assistance Center when reporting a problem.

Syntax

```
show tech-support [config] [memory]
```

Parameters

- **Memory**—Displays memory and processor state data.
- **Config**—Displays switch configuration within the CLI commands supported on the device.

Default Configuration

By default, this command displays the output for technical-support-related show commands. Use keywords to specify the type of information to be displayed. If you do not specify any parameters, the system displays all configuration and memory data.

Command Types

Switch command.

Command Mode

EXEC mode
User Guidelines
Caution: Avoid running multiple `show tech-support` commands on a switch or multiple switches on the network segment. Doing so may cause starvation of some time sensitive protocols, like STP.

The `show tech-support` command may timeout if the configuration file output takes longer to display than the configured session timeout time. If this happens, enter a set logout timeout value of 0 to disable automatic disconnection of idle sessions or enter a longer timeout value.

The `show tech-support` command output is continuous, it does not display one screen at a time. To interrupt the output, press Esc.

If you specify the `config` keyword, the `show tech-support` command displays a list of the commands supported on the device.

If user specifies the `memory` keyword, the `show tech-support` command displays the output:
- flash info (dir if existed, or flash mapping)
- show bootvar
- buffers info (like print os buff)
- memory info (like print os mem)
- proc info (like print os tasks)
- versions of software components
- show cpu utilization

system fans always-on
Use the `system fans always-on` Global Configuration command to set the system fans to On regardless of device temperature. Use the `no` form of the command to return to default.

Syntax
```
system fans always-on [unit unit]
no system fans always-on
```

Parameters
- `unit unit`—Unit number or all. If unspecified, defaults to all. (Range: 1–8)
Default Configuration
Automatic mode; The system fan speed depends on the temperature of the device.

Command Mode
Global Configuration mode

show system fans
Use the `show system fans` EXEC command to view the fans’ status.

Syntax
```
show system fans
```

Command Mode
EXEC mode

Example
```
console>show system fans

<table>
<thead>
<tr>
<th>Unit</th>
<th>Temperature</th>
<th>Speed</th>
<th>Admin state</th>
<th>Oper state</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>8000</td>
<td>auto</td>
<td>on</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>8000</td>
<td>on</td>
<td>on</td>
</tr>
</tbody>
</table>
```

asset-tag
The `asset-tag` Global Configuration mode command assigns an asset-tag to a device. Use the `no` form of this command to restore the default setting.

Syntax
```
asset-tag [unit unit] tag

no asset-tag [unit unit]
```
Parameters

- unit — Specifies the unit number. (Range: 1–8)
- tag — Specifies the device asset-tag.

Default Configuration

No asset tag is defined.
The default unit number is the master unit number.

Command Mode

Global Configuration mode

Example

The following example assigns the asset-tag 2365491870 to the device.

```
Console(config) # asset-tag 2365491870
```

show system id

The `show system id` EXEC mode command displays the system identity information.

Syntax

```
show system id [unit unit]
```

Parameters

- unit unit — Specifies the unit number. (Range: 1–8)

Command Mode

EXEC mode
Example
The following example displays the system identity information.

```
Console> **show system id**
Unit   Service tag  Serial number  Asset tag
------ -------------- -------------- -----------
1      89788978      8936589782   7843678957
2      3216523877   5621987728
```

Clock Commands

clock set
The clock set Privileged EXEC mode command manually sets the system clock.

Syntax
clock set \texttt{hh:mm:ss} \{[day month] | [month day]\} year

Parameters
- \texttt{hh:mm:ss}—Specifies the current time in hours (military format), minutes, and seconds. (Range: hh: 0-23, mm: 0-59, ss: 0-59)
- \texttt{day}—Specifies the current day of the month. (Range: 1-31)
- \texttt{month}—Specifies the current month using the first three letters of the month name. (Range: Jan–Dec)
- \texttt{year}—Specifies the current year. (Range: 2000–2037)

Command Mode
Privileged EXEC mode

User Guidelines
The user should enter the local clock time and date.

Example
The following example sets the system time to 13:32:00 on March 7th, 2005.

Console# clock set 13:32:00 7 Mar 2005
clock source

The clock source Global Configuration mode command configures an external time source for the system clock. Use the no form of this command to disable the external time source.

Syntax

clock source {sntp}

no clock source

Parameters
sntp—Specifies that an SNTP server is the external clock source.

Default Configuration

There is no external clock source.

Command Mode

Global Configuration mode

Example

The following example configures an SNTP server as an external time source for the system clock.

```
Console(config)# clock source sntp
```

clock timezone

Use the clock timezone Global Configuration command to set the time zone for display purposes. Use the no form of this command to set the time to Coordinated Universal Time (UTC) or Greenwich Mean Time (GMT), which is the same.

Syntax

clock timezone zone hours-offset [minutes-offset]

no clock timezone
Parameters

- **zone**—The acronym of the time zone. (Range: Up to 4 characters)
- **hours-offset**—Hours difference from UTC. (Range: (-12)–(+13))
- **minutes-offset**—Minutes difference from UTC. (Range: 0–59)

Default Configuration

Offset is 0.

Acronym is empty.

Command Mode

Global Configuration mode

User Guidelines

The system internally keeps time in UTC, so this command is used only for display purposes and when the time is manually set.

Example

```
console(config)# clock timezone abc +2 minutes 32
```

clock summer-time

Use one of the formats of the clock summer-time Global Configuration command to configure the system to automatically switch to summer time (daylight saving time). Use the `no` form of this command to configure the software not to automatically switch to summer time.

Syntax

```
clock summer-time zone recurring {usa | eu | {week day month hh:mm
week day month hh:mm}} [offset]
clock summer-time zone date date month year hh:mm date month year
hh:mm [offset]
clock summer-time zone date month date year hh:mm month date year
hh:mm [offset]
no clock summer-time
```
Parameters

- **zone**—The acronym of the time zone to be displayed when summer time is in effect. (Range: Up to 4 characters)
- **recurring**—Indicates that summer time should start and end on the corresponding specified days every year.
- **date**—Indicates that summer time should start on the first specific date listed in the command and end on the second specific date in the command.
- **usa**—The summer time rules are the United States rules.
- **eu**—The summer time rules are the European Union rules.
- **week**—Week of the month. Can be 1–4, first, last.
- **day**—Day of the week (first three letters by name, such as Sun). (characters)
- **date**—Date of the month. (Range: 1–31)
- **month**—Month (first three letters by name, such as Feb). (characters)
- **year**—year (no abbreviation). (Range: 2000–2097)
- **hh:mm**—Time (military format) in hours and minutes. (Range: hh:mmhh: 0-23, mm: 0-59)
- **offset**—Number of minutes to add during summer time (default is 60). (Range: 1440)

Default Configuration
Summer time is disabled.

Command Mode
Global Configuration mode

User Guidelines
In both the date and recurring forms of the command, the first part of the command specifies when summer time begins, and the second part specifies when it ends. All times are relative to the local time zone. The start time is relative to standard time. The end time is relative to summer time. If the starting month is chronologically after the ending month, the system assumes that you are in the southern hemisphere.
USA rule for daylight saving time:
 • From 2007:
 • Start: Second Sunday in March
 • End: First Sunday in November
 • Time: 2 am local time
 • Before 2007:
 • Start: First Sunday in April
 • End: Last Sunday in October
 • Time: 2 am local time

Example

```
console(config)# clock summer-time abc date apr 1 2010 09:00 aug 2 2010 09:00
```

EU rule for daylight saving time:
 • Start: Last Sunday in March
 • End: Last Sunday in October
 • Time: 1.00 am (01:00) Greenwich Mean Time (GMT)

`sntp authentication-key`

The `sntp authentication-key` Global Configuration mode command defines an authentication key for Simple Network Time Protocol (SNTP). Use the `no` form of this command to remove the authentication key for SNTP.

Syntax

```
sntp authentication-key key-number md5 key-value
no sntp authentication-key key-number
```

Parameters

- `key-number`—Specifies the key number. (Range: 1–4294967295)
- `key-value`—Specifies the key value. (Length: 1–8 characters)
Default Configuration
No authentication key is defined.

Command Mode
Global Configuration mode

Examples
The following example defines the authentication key for SNTP.

```
Console(config)# sntp authentication-key 8 md5 ClkKey
```

```
Device(config)# sntp authentication-key 8 md5 ClkKey
Device(config)# sntp trusted-key 8
Device(config)# sntp authenticate
```

sntp authenticate
The `sntp authenticate` Global Configuration mode command enables authentication for received Simple Network Time Protocol (SNTP) traffic from servers. Use the `no` form of this command to disable the feature.

Syntax
```
sntp authenticate
no sntp authenticate
```

Default Configuration
Authentication is disabled.

Command Mode
Global Configuration mode

User Guidelines
The command is relevant for both unicast and broadcast.
Examples
The following example enables authentication for received SNTP traffic.

```
Console(config)# sntp authenticate
```

Device(config)# sntp authentication-key 8 md5 ClkKey
Device(config)# sntp trusted-key 8
Device(config)# sntp authenticate

sntp trusted-key
The `sntp trusted-key` Global Configuration mode command authenticates the system identity with which Simple Network Time Protocol (SNTP) synchronizes. Use the `no` form of this command to disable system identity authentication.

Syntax
```
sntp trusted-key key-number
no sntp trusted-key key-number
```

Parameters
- **key-number**—Specifies the key number of the authentication key to be trusted. (Range: 1–4294967295)

Default Configuration
No keys are trusted.

Command Mode
Global Configuration mode

User Guidelines
The command is relevant for both received unicast and broadcast.

Examples
The following example authenticates key 8.
sntp client poll timer

The `sntp client poll timer` Global Configuration mode command sets the polling time for the Simple Network Time Protocol (SNTP) client. Use the no form of this command to restore the default configuration.

Syntax
`sntp client poll timer seconds`

`no sntp client poll timer`

Parameters
seconds—Specifies the polling interval in seconds. (Range: 60–86400)

Default Configuration
The default polling interval is 1024 seconds.

Command Mode
Global Configuration mode

Example
The following example sets the polling time for the SNTP client to 120 seconds.

```
Console(config)# sntp client poll timer 120
```

sntp broadcast client enable

The `sntp broadcast client enable` Global Configuration mode command enables Simple Network Time Protocol (SNTP) broadcast clients. Use the no form of this command to disable SNTP broadcast clients.
Syntax
sntp broadcast client enable
no sntp broadcast client enable

Default Configuration
The SNTP broadcast client is disabled.

Command Mode
Global Configuration mode

User Guidelines
Use the sntp client enable Interface Configuration mode command to enable the SNTP client on a specific interface.

Example
The following example enables the SNTP broadcast clients.

```
Console(config)# sntp broadcast client enable
```

sntp anycast client enable
The sntp anycast client enable Global Configuration mode command enables the SNTP anycast client. Use the no form of this command to disable the SNTP anycast client.

Syntax
sntp anycast client enable
no sntp anycast client enable

Default Configuration
The SNTP anycast client is disabled.

Command Mode
Global Configuration mode
User Guidelines
The polling time is configured with the `sntp client poll timer` Global Configuration mode command.

Use the `sntp client enable` Interface Configuration mode command to enable the SNTP client on a specific interface.

Example
The following example enables SNTP anycast clients.

```
Console(config)# sntp anycast client enable
```

sntp client enable
The `sntp client enable` Global Configuration mode command enables the Simple Network Time Protocol (SNTP) broadcast and anycast client on an interface. Use the `no` form of this command to disable the SNTP client.

Syntax
```
sntp client enable {interface-id}
no sntp client enable {interface-id}
```

Parameters
- `interface-id`—Specifies an interface ID, which can be one of the following types: Ethernet port, Port-channel or VLAN.

Default Configuration
The SNTP client is disabled on an interface.

Command Mode
Global Configuration mode

User Guidelines
The `sntp broadcast client enable` Global Configuration mode command globally enables broadcast clients.

The `sntp anycast client enable` Global Configuration mode command globally enables anycast clients.
Example
The following example enables the SNTP broadcast and anycast client on gigabitethernet port gi1/0/3

```
Console(config)# sntp client enable gi1/0/3
```

sntp client enable (Interface)

To enable the Simple Network Time Protocol (SNTP) broadcast and anycast client on an interface, use the `sntp client enable` Interface Configuration command. Use the `no` form of this command to disable the SNTP client.

The `sntp client enable` Interface Configuration (Ethernet, Port-channel, VLAN) mode command enables the Simple Network Time Protocol (SNTP) broadcast and anycast client on an interface. Use the `no` form of this command to disable the SNTP client.

Syntax

```
sntp client enable

no sntp client enable
```

Default Configuration
The SNTP client is disabled on an interface.

Command Mode

Interface Configuration (Ethernet, Port-channel, VLAN) mode

User Guidelines
The `sntp broadcast client enable` Global Configuration mode command globally enables broadcast clients.

The `sntp anycast client enable` Global Configuration mode command globally enables anycast clients.
Example
The following example enables the SNTP broadcast and anycast client on an interface.

Console(config-if)# sntp client enable

sntp unicast client enable
The *sntp unicast client enable* Global Configuration mode command enables the device to use Simple Network Time Protocol (SNTP) predefined unicast clients. Use the *no* form of this command to disable the SNTP unicast clients.

Syntax
sntp unicast client enable

no sntp unicast client enable

Default Configuration
The SNTP unicast client is disabled.

Command Mode
Global Configuration mode

User Guidelines
Use the *sntp server* Global Configuration mode command to define SNTP servers.

Example
The following example enables the device to use Simple Network Time Protocol (SNTP) unicast clients.

Console(config)# sntp unicast client enable
sntp unicast client poll

The `sntp unicast client poll` Global Configuration mode command enables polling for the Simple Network Time Protocol (SNTP) predefined unicast clients. Use the `no` form of this command to disable the polling for the SNTP client.

Syntax

```
sntp unicast client poll
no sntp unicast client poll
```

Default Configuration

Polling is disabled.

Command Mode

Global Configuration mode

User Guidelines

Polling time is configured with the `sntp client poll timer` Global Configuration mode command.

Example

The following example enables polling for SNTP predefined unicast clients.

```
Console(config)# sntp unicast client poll
```

sntp server

The `sntp server` Global Configuration mode command configures the device to use the Simple Network Time Protocol (SNTP) to request and accept Network Time Protocol (NTP) traffic from a specified server. Use the `no` form of this command to remove a server from the list of SNTP servers.

Syntax

```
sntp server {ipv4-address | ipv6-address | ipv6z-address | hostname} [poll] [key keyid]
```
no sntp server \{ipv4-address | ipv6-address | ipv6z-address | hostname\}

Parameters

- ipv4-address—Specifies the server IPv4 address.
- ipv6-address—Specifies the server IPv6 address. A Link Local address (IPv6Z address) can be defined.
- ipv6z-address—Specifies the IPv6Z address to ping. The IPv6Z address format is: \texttt{ipv6-link-local-address}\%\{interface-name\}. The subparameters are:
 - ipv6-link-local-address—Specifies the IPv6 Link Local address.
 - interface-name—Specifies the outgoing interface name. The interface name has the format: vlan \{integer\} | ch \{integer\} | isatap \{integer\} | \{physical-port-name\}. The subparameter integer has the format: \{decimal-digit\} | \{integer\}\{decimal-digit\}. (Range for the decimal-digit: 0–9)
- hostname—Specifies the server hostname. Only translation to IPv4 addresses is supported. (Length: 1–158 characters. Maximum label length: 63 characters)
- poll—Enables polling.
- key keyid—Specifies the Authentication key to use when sending packets to this peer. (Range:1–4294967295)

Default Configuration
No servers are defined.

Command Mode
Global Configuration mode

User Guidelines
Up to 8 SNTP servers can be defined.

The \texttt{sntp unicast client enable} Global Configuration mode command enables predefined unicast clients.

The \texttt{sntp unicast client poll} Global Configuration mode command globally enables polling.
Polling time is configured with the `sntp client poll timer` Global Configuration mode command.

The format of an IPv6Z address is: `<ipv6-link-local-address>%<interface-name>`.

`interface-name = vlan<integer> / ch<integer> / isatap<integer> / <physical-port-name> / 0`

`integer = <decimal-number> / <integer><decimal-number>`

`decimal-number = 0 / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9`

`physical-port-name = Designated port number, for example: gi1/0/16.`

If the egress interface is not specified, the default interface is selected.
Specifying `interface zone=0` is equal to not defining an egress interface.

Example
The following example configures the device to accept SNTP traffic from the server on 192.1.1.1.

```
Console(config)# sntp server 192.1.1.1
```

sntp port
The `sntp port` Global Configuration mode command specifies a Simple Network Time Protocol (SNTP) User Datagram Protocol (UDP) port. Use the `no` form of this command to use the SNTP server default port.

Syntax
```
sntp port port-number
no sntp port
```

Parameters

- `port-number`—Specifies the UDP port number used by an SNTP server.
 (Range 1–65535)

Default Configuration
The default port number is 123.
Clock Commands

Command Mode
Global Configuration mode

Example
The following example specifies that port 321 of the SNTP server is the UDP port.

```
Console(config)# sntp port 321
```

show clock
The show clock EXEC mode command displays the time and date from the system clock.

Syntax
show clock [detail]

Parameters
detail—Displays the TimeZone and SummerTime configuration.

Command Mode
EXEC mode

Example
The following example displays the system time and date.

```
Console> show clock
15:29:03 PDT(UTC-7) Jun 17 2002
Time source is SNTP

Console> show clock detail
15:29:03 PDT(UTC-7) Jun 17 2002
Time source is SNTP

Time zone:
```
Acronym is PST
Offset is UTC-8

Summertime:
Acronym is PDT
Recurring every year.
Begins at first Sunday of April at 2:00.
Ends at last Sunday of October at 2:00.
Offset is 60 minutes.

DHCP timezone: Disabled

Device> show clock detail
15:29:03 PDT(UTC-7) Jun 17 2002
Time source is SNTP

Timezone (DHCP):
Acronym is PST
Offset is UTC-8

Timezone (static):
Acronym is PST
Offset is UTC-8

Summertime (Static):
Acronym is PDT
Recurring every year.
Begins at first Sunday of April at 2:00.
Ends at last Sunday of October at 2:00.
Offset is 60 minutes.

DHCP timezone: Enabled
show sntp configuration

The `show sntp configuration` Privileged EXEC mode command displays the Simple Network Time Protocol (SNTP) configuration on the device.

Syntax

```
show sntp configuration
```

Command Mode

Privileged EXEC mode

Example

The following example displays the device’s current SNTP configuration.

```
console# show sntp configuration
SNTP port : 123 .
Polling interval: 1024 seconds.
No MD5 authentication keys.
Authentication is not required for synchronization.
No trusted keys.
Unicast Clients: Enabled
Unicast Clients Polling: Enabled
Server          Polling     Encryption Key
-------------------------- ---------- --------------
1.1.1.121         Disabled   Disabled
Broadcast Clients: disabled
Anycast Clients: disabled
No Broadcast Interfaces.
```

show sntp status

The `show sntp status` Privileged EXEC mode command displays the Simple Network Time Protocol (SNTP) servers status.
Syntax
show sntp status

Command Mode
Privileged EXEC mode

Example
The following examples display the SNTP servers status.

Console# show sntp status

Clock is synchronized, stratum 4, reference is 176.1.1.8, unicast
Reference time is AFE2525E.70597B34 (00:10:22.438 PDT Jul 5 1993)

Unicast servers:

<table>
<thead>
<tr>
<th>Server</th>
<th>Status</th>
<th>Last response</th>
<th>Offset [mSec]</th>
<th>Delay [mSec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>176.1.1.8</td>
<td>Up</td>
<td>19:58:22.289</td>
<td>7.33</td>
<td>117.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDT Feb 19 2005</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 176.1.8.17 | Unknown | 12:17.17.987 | 8.98 | 189.19 |
| | | PDT Feb 19 2005 | | |

Anycast server:

<table>
<thead>
<tr>
<th>Server</th>
<th>Interface</th>
<th>Status</th>
<th>Last response</th>
<th>Offset [mSec]</th>
<th>Delay [mSec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>176.1.11.8</td>
<td>VLAN 118</td>
<td>Up</td>
<td>9:53:21.789</td>
<td>7.19</td>
<td>119.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PDT Feb 19 2005</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Broadcast:

<table>
<thead>
<tr>
<th>Server</th>
<th>Interface</th>
<th>Last response</th>
</tr>
</thead>
<tbody>
<tr>
<td>176.9.1.1</td>
<td>VLAN 119</td>
<td>19:17:59.792</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDT Feb 19 2002</td>
</tr>
</tbody>
</table>

Device# show sntp status

Clock is synchronized, stratum 4, reference is 176.1.1.8, unicast
Reference time is AFE2525E.70597B34 (00:10:22.438 PDT Jul 5 1993)
Configuration/Image File Commands

copy
The copy Privileged EXEC mode command copies files from a source to a destination.

Syntax
copy source-url destination-url [snmp]

Parameters
- **source-url**—Specifies the source file location URL or source file reserved keyword to be copied. (Length: 1–160 characters)
- **destination-url**—Specifies the destination file URL or destination file reserved keyword. (Length: 1–160 characters)
- **snmp**—Specifies that the destination/source file is in SNMP format. Used only when copying from/to startup-config.

The following table displays URL options.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Source or Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>flash://</td>
<td>Source or destination URL for flash memory. This is the default URL if a URL is specified without a prefix.</td>
</tr>
<tr>
<td>running-config</td>
<td>Currently running configuration file.</td>
</tr>
<tr>
<td>startup-config</td>
<td>Startup configuration file.</td>
</tr>
<tr>
<td>image</td>
<td>Image file. If specified as the source file, it is the active image file. If specified as the destination file, it is the non-active image file.</td>
</tr>
</tbody>
</table>
Command Mode

Privileged EXEC mode

User Guidelines

The location of a file system dictates the format of the source or destination URL.

The entire copying process may take several minutes and differs from protocol to protocol and from network to network.

If the IPv6 address is a Link Local address (IPv6Z address), the outgoing interface name must be specified. The format of an IPv6Z address is: `{ipv6-link-local-address}%{interface-name}`. The subparameters are:

- `ipv6-link-local-address`—Specifies the IPv6 Link Local address.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Source or Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>boot</td>
<td>Boot file.</td>
</tr>
<tr>
<td>tftp://</td>
<td>Source or destination URL for a TFTP network server. The syntax for this alias is <code>tftp://host/[directory]/filename</code>. The host can be either an IP address or a host name.</td>
</tr>
<tr>
<td>usb://</td>
<td>Copy to a file on the USB device. The syntax is: <code>usb://directory/filename</code></td>
</tr>
<tr>
<td>xmodem:</td>
<td>Source for the file from a serial connection that uses the Xmodem protocol.</td>
</tr>
<tr>
<td>unit://member/image</td>
<td>Image file on one of the units. To copy from the master to all units, specify * in the member field.</td>
</tr>
<tr>
<td>unit://member/boot</td>
<td>Boot file on one of the units. To copy from the master to all units, specify * in the member field</td>
</tr>
<tr>
<td>unit://member/startup-config</td>
<td>Configuration file used during initialization (startup) on one of the units.</td>
</tr>
<tr>
<td>null:</td>
<td>Null destination for copies or files. A remote file can be copied to null to determine its size.</td>
</tr>
<tr>
<td>mirror-config</td>
<td>Mirrored configuration file</td>
</tr>
<tr>
<td>WORD<1-128></td>
<td>Specify URL prefixes.</td>
</tr>
</tbody>
</table>
• **interface-name**—Specifies the outgoing interface name. The interface name has the format: *vlan{integer} | ch{integer} | isatap{integer} | {physical-port-name}. The subparameter *integer* has the format: {decimal-digit} | {integer}{decimal-digit}. *decimal-digit* has the range 0–9.

If the egress interface is not specified, the default interface is selected. Specifying *interface zone=0* is equal to not defining an egress interface.

Understanding Invalid Combinations of Source and Destination

Some invalid combinations of source and destination exist. Specifically, if one of the following conditions exists:

- The source file and destination file are the same file.
- **xmodem**: is the destination file. The source file can be copied to **image**, **boot** and **null**: only.
- **tftp://** is the source file and destination file on the same copy.
- ***.prv** files cannot be copied.
- The source or destination is a slave unit (except for image and boot files).
 - **mirror-config** cannot be used as a destination

The following table describes the copy characters:

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>For network transfers, indicates that the copy process is taking place. Each exclamation point indicates successful transfer of ten packets (512 bytes each).</td>
</tr>
<tr>
<td>.</td>
<td>For network transfers, indicates that the copy process timed out. Generally, several periods in a row means that the copy process may fail.</td>
</tr>
</tbody>
</table>

Copying an Image File from a Server to Flash Memory

Use the **copy source-url/image** command to copy an image file from a server to flash memory.

Copying a Boot File from a Server to Flash Memory

Use the **copy source-url/boot** command to copy a boot file from a server to flash memory.

Copying a Configuration File from a Server to the Running Configuration File
Use the `copy source-url running-config` command to load a configuration file from a network server to the running device configuration file. The commands in the loaded configuration file are added to those in the running configuration file as if the commands were typed in the command-line interface (CLI). The resulting configuration file is a combination of the previous running configuration and the loaded configuration files, with the loaded configuration file taking precedence.

Copying a Configuration File from a Server to the Startup Configuration

Use the `copy source-url startup-config` command to copy a configuration file from a network server to the device startup configuration file. The startup configuration file is replaced by the copied configuration file.

Storing the Running or Startup Configuration on a Server

Use the `copy running-config destination-url` command to copy the current configuration file to a network server using TFTP.

Use the `copy startup-config destination-url` command to copy the startup configuration file to a network server.

Saving The Running Configuration To The Startup Configuration

Use the `copy running-config startup-config` command to copy the running configuration to the startup configuration file.

Backing Up the Running Configuration or Startup Configuration to a Backup Configuration file

Use the `copy running-config file` command to back up the running configuration to a backup configuration file.

Use the `copy startup-config file` command to back up the startup configuration to a backup configuration file.

Examples

The following example copies system image file1 from the TFTP server 172.16.101.101 to a non-active image file.

```
Console# copy tftp://172.16.101.101/file1 image

Accessing file 'file1' on 172.16.101.101...
```
Copying an Image from a Server to Flash Memory

The following example copies a system image named file1 from the TFTP server with an IP address of 172.16.101.101 to a non-active image file.

Router# copy tftp://172.16.101.101/file1 image
Accessing file 'file1' on 172.16.101.101...
Loading file1 from 172.16.101.101:
!!
!!
!!
!!!! [OK]
Copy took 0:01:11 [hh:mm:ss]
write memory

Use the `write memory` Privileged EXEC mode command to save the running configuration to the startup configuration file.

Syntax

```
write memory
```

Parameters

This command has no arguments or keywords.

Command Mode

Privileged EXEC mode

Examples

The following example copies system image file1 from the TFTP server 172.16.101.101 to a non-active image file.

```
Console# write memory
Overwrite file [startup-config] ?[Yes/press any key for no]....15-Sep-2010 11:27
:48 %COPY-I-FILECPY: Files Copy - source URL running-config destination URL flash
h://startup-config
15-Sep-2010 11:27:50 %COPY-N-TRAP: The copy operation was completed successfully
Copy succeeded
```

delete

The `delete` Privileged EXEC mode command deletes a file from a flash memory device.

Syntax

```
delete url
```
Parameters
url—Specifies the location URL or reserved keyword of the file to be deleted. (Length: 1–160 characters)

The following table displays keywords and URL prefixes:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Source or Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>flash://</td>
<td>URL of the flash memory. This is the default URL if a URL is specified without a prefix.</td>
</tr>
<tr>
<td>usb://</td>
<td>URL of the USB memory.</td>
</tr>
<tr>
<td>startup-config</td>
<td>Startup configuration file.</td>
</tr>
<tr>
<td>WORD</td>
<td>Specify URL prefixes.</td>
</tr>
</tbody>
</table>

Command Mode
Privileged EXEC mode

User Guidelines
*.sys, *.prv, image-1 and image-2 files cannot be deleted.

Example
The following example deletes the file called ‘test’ from the flash memory.

```
Console# delete flash:test
Delete flash:test? [confirm]
```

pwd
Use the pwd Privileged EXEC mode command to display a full, clarified path to the current directory.

Parameters
This command has no arguments or keywords.

Command Mode
EXEC mode
dir

The **dir** Privileged EXEC mode command displays the list of files on a flash file system.

Syntax

`dir`

`dir [directory-path]`

Command Mode

Privileged EXEC mode

Example

The following example displays the list of files on a flash file system

Total size of flash: 33292288 bytes

Free size of flash: 20708893 bytes

```
console# dir
Directory of flash:

<table>
<thead>
<tr>
<th>File Name</th>
<th>Permission</th>
<th>Size</th>
<th>Data Size</th>
<th>Modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>tmp</td>
<td>rw</td>
<td>524288</td>
<td>104</td>
<td>01-Jan-2010 05:35:04</td>
</tr>
<tr>
<td>image-1</td>
<td>rw</td>
<td>10485760</td>
<td>10485760</td>
<td>01-Jan-2010 06:10:23</td>
</tr>
<tr>
<td>image-2</td>
<td>rw</td>
<td>10485760</td>
<td>10485760</td>
<td>01-Jan-2010 05:43:54</td>
</tr>
<tr>
<td>dhcpsn.prv</td>
<td>--</td>
<td>262144</td>
<td></td>
<td>01-Jan-2010 05:25:07</td>
</tr>
<tr>
<td>sshkeys.prv</td>
<td>--</td>
<td>262144</td>
<td></td>
<td>04-Jan-2010 06:05:00</td>
</tr>
<tr>
<td>syslog1.sys</td>
<td>r-</td>
<td>524288</td>
<td></td>
<td>01-Jan-2010 05:57:00</td>
</tr>
<tr>
<td>syslog2.sys</td>
<td>r-</td>
<td>524288</td>
<td></td>
<td>01-Jan-2010 05:57:00</td>
</tr>
<tr>
<td>directory.prv</td>
<td>--</td>
<td>262144</td>
<td></td>
<td>01-Jan-2010 05:25:07</td>
</tr>
<tr>
<td>startup-config</td>
<td>rw</td>
<td>786432</td>
<td>1081</td>
<td>01-Jan-2010 10:05:34</td>
</tr>
</tbody>
</table>

Total size of flash: 66322432 bytes

Free size of flash: 42205184 bytes
**more**

The `more` Privileged EXEC mode command displays a file.

**Syntax**

`more url`

**Parameters**

- **url**—Specifies the location URL or reserved keyword of the source file to be displayed. (Length: 1–160 characters).

The following table displays options for the URL parameter:

<table>
<thead>
<tr>
<th><strong>Keyword</strong></th>
<th><strong>Source or Destination</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>flash:///</code></td>
<td>Source or destination URL for flash memory. If a URL is specified without a prefix, this is the default URL.</td>
</tr>
<tr>
<td><code>running-config</code></td>
<td>Current running configuration file.</td>
</tr>
<tr>
<td><code>startup-config</code></td>
<td>Startup configuration file.</td>
</tr>
<tr>
<td><code>mirror-config</code></td>
<td>Mirrored configuration file.</td>
</tr>
<tr>
<td><code>usb:</code></td>
<td>Universal Serial Bus (USB) File System</td>
</tr>
</tbody>
</table>

**Command Mode**

Privileged EXEC mode

**User Guidelines**

Files are displayed in ASCII format, except for the images, which are displayed in a hexadecimal format.

* .prv files cannot be displayed.

**Example**

The following example displays the running configuration file contents.
console# more running-config
no spanning-tree
interface range gi1/0/1-48
speed 1000
exit
no lldp run
line console
exec-timeout 0
exit

**cd**

Use the cd Privileged EXEC mode command to change the current directory.

\[ \text{cd new-directory} \]

**Parameters**

*new-directory*—The new directory. The new directory path may be specified as either a Full Clarified Path or a Relative Path.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

When command cd changes the current file system, the current directory of the previous file system is saved and when the command specifying only the file system (for example, cd usb:) sets the file system as current, the current directory is restored.

**Example**

console cd usb://private/conf
console pwd
usb://private/conf
console cd ..
console pwd
usb://private
console# cd flash:
rename

The **rename** Privileged EXEC mode command renames a file.

**Syntax**

`rename url new-url`

**Parameters**

- **url**—Specifies the file location URL. (Length: 1–160 characters)
- **new-url**—Specifies the file’s new URL. (Length: 1–160 characters)

The following table displays options for the URL parameter:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Source or Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>flash://</td>
<td>URL for flash memory. If a URL is specified without a prefix, this is the default URL.</td>
</tr>
<tr>
<td>usb:</td>
<td>Universal Serial Bus (USB) File System</td>
</tr>
<tr>
<td>WORD</td>
<td>Specify URL prefixes.</td>
</tr>
</tbody>
</table>

**Command Mode**

Privileged EXEC mode

**User Guidelines**

*.sys and *.prv files cannot be renamed.
Example
The following example renames the configuration file.

```
Console# rename configuration.bak m-config.bak
```

boot system
The `boot system` Privileged EXEC mode command specifies the active system image file that is loaded by the device at startup.

**Syntax**

```
boot system { image-1 | image-2 } [switch number | all]
```

**Parameters**

- `switch number`—Specifies the unit number. If unspecified, defaults to the master unit number.
- `image-1`—Specifies that image-1 is loaded as the system image during the next device startup.
- `image-2`—Specifies that image-2 is loaded as the system image during the next device startup.

**Default Configuration**

This command has no default configuration.

The default unit number is the master unit number.

**Command Mode**

Privileged EXEC mode

**User Guidelines**

Use the `show bootvar` command to determine which image is the active image.
Example
The following example specifies that `image-1` is the active system image file loaded by the device at startup.

```
Console# boot system image-1
```

**show running-config**
The `show running-config` Privileged EXEC mode command displays the current running configuration file contents.

**Syntax**
```
show running-config
```

**Parameters**
This command has no arguments or keywords.

**Command Mode**
Privileged EXEC mode

**Example**
The following example displays the running configuration file contents.

```
Console# show running-config
no spanning-tree
interface range gi1/0/1-48
 speed 1000
 exit
no lldp run
interface vlan 1
 ip address 1.1.1.1 255.0.0.0
 exit
 line console
 exec-timeout 0
 exit
console#
```
**show startup-config**

The `show startup-config` Privileged EXEC mode command displays the startup configuration file contents.

**Syntax**

```
show startup-config
```

**Command Mode**

Privileged EXEC mode

**Example**

The following example displays the startup configuration file contents.

```
Console# show startup-config
no spanning-tree
interface range gi1/0/1-48
 speed 1000
 exit
no lldp run
interface vlan 1
 ip address 1.1.1.1 255.0.0.0
 exit
line console
 exec-timeout 0
 exit
console#
```

**show bootvar**

The `show bootvar` EXEC mode command displays the active system image file that is loaded by the device at startup.

**Syntax**

```
show bootvar [unit unit]
```
**Parameters**

unit unit—Specifies the unit number.

**Command Mode**

EXEC mode

**Example**

The following example displays the active system image file that is loaded by the device at startup.

```
Console# show bootvar

<table>
<thead>
<tr>
<th>Unit</th>
<th>Image</th>
<th>Filename</th>
<th>Version</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>file1</td>
<td>3.1.31</td>
<td>23-Jul-2002 17:34:19</td>
<td>Active</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>file2</td>
<td>3.2.19</td>
<td>22-Jan-2003 19:22:32</td>
<td>Not active*</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>file1</td>
<td>3.1.31</td>
<td>23-Jul-2002 17:34:19</td>
<td>Not active</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>file2</td>
<td>3.2.19</td>
<td>22-Jan-2003 19:22:32</td>
<td>Active</td>
</tr>
</tbody>
</table>
```

"*": Designates that the image was selected for the next boot.
Auto-Update and Auto-Configuration

**boot host auto-config**

Use the *boot host auto-config* Global Configuration mode command to enable the support of auto configuration via DHCP. Use the *no* form of this command to disable DHCP auto configuration.

**Syntax**

```
boot host auto-config
no boot host auto-config
```

**Parameters**

This command has no arguments or key words.

**Command Mode**

Global Configuration mode

**Default Configuration**

Enabled by default.

---

**boot host auto-update**

Use the *boot host auto-update* Global Configuration mode command to enable the support of auto updated via DHCP. Use the *no* form of this command to disable DHCP auto configuration.
Syntax
boot host auto-update
no boot host auto-update

Parameters
This command has no arguments or key words.

Command Mode
Global Configuration mode

Default Configuration
Enabled by default.

---

**boot host dhcp**

Use the `boot host dhcp` Global Configuration mode command to force the mechanism used to download a configuration file at the next system startup. Use the `no` form of this command to restore the host configuration file to the default.

Syntax
boot host dhcp
no boot host dhcp

Parameters
This command has no arguments or key words.

Command Mode
Global Configuration mode

User Guidelines
Configuring `boot host dhcp` does not take effect until the next reboot.
**boot host auto-save**

Use the `boot host auto-save` Global Configuration mode command to enable automatic saving Running in Startup after download. Use the `no` form of this command restore default behavior.

**Syntax**

`boot host auto-save`

`no boot host auto-save`

**Parameters**

This command has no arguments or key words.

**Command Mode**

Global Configuration mode

**Default Configuration**

Disable

---

**show boot**

Use the `show boot` Privilege EXEC mode command to show the status of the IP DHCP Auto Config process.

**Syntax**

`show boot`

**Parameters**

This command has no keywords or arguments.

**Command Mode**

Privilege EXEC mode

**Examples**

```
console# show boot
```
Auto Config
----------
Config Download via DHCP: enable
Next Boot Config Download via DHCP: force

Auto Config State: Finished
TFTP Server IP address: 1.2.20.2
Configuration filename: /config/configfile1.cfg

Auto Update
---------
Image Download via DHCP: enabled

Example 3.
```bash
console# show boot
Auto Config

Config Download via DHCP: enable
Next Boot Config Download via DHCP: default
Auto Config State: Opening <hostname>-config file

Auto Update

Image Download via DHCP: enabled
```
console# show boot
Auto Config
--------
Config Download via DHCP: enable
Next Boot Config Download via DHCP: default
Auto Config State: Searching hostname in indirect configuration file

Auto Update
--------
Image Download via DHCP: enabled

console# show boot
Auto Config
--------
Config Download via DHCP: enable
Next Boot Config Download via DHCP: default
Auto Config State: Quit - failed all steps of finding existing configuration file

Auto Update
--------
Image Download via DHCP: enabled

console# show boot
Auto Config
--------
Config Download via DHCP: enable
Next Boot Config Download via DHCP: default

Auto Update
--------
Image Download via DHCP: enabled
Auto Update State: Downloaded indirect image file
**ip dhcp tftp-server ip addr**

Use the **ip dhcp tftp-server ip addr** Global Configuration mode command to set the TFTP server’s IP address, used by a switch when it has not been received from the DHCP server. Use the **no** form of this command to remove the address.

**Syntax**

*ip dhcp tftp-server ip addr ip-addr*

*no ip dhcp tftp-server ip-addr*
Parameters
ip-addr IP—Address of TFTP server

Default Configuration
No IP address

Command Mode
Global Configuration mode

```
ip dhcp tftp-server file
```

Use the **ip dhcp tftp-server file** Global Configuration mode command to set the full file name on the TFTP server by a switch when it has not been received from the DHCP server. Use the **no** form of this command to remove the name.

**Syntax**
```
ip dhcp tftp-server file file-path
no ip dhcp tftp-server file
```

**Parameters**
file-path—full file name on TFTP server

**Default Configuration**
No file name

**Command Mode**
Global Configuration mode

```
show ip dhcp tftp-server
```

Use the **show ip dhcp tftp-server** EXEC mode command to display information about the TFTP server.

**Syntax**
```
show ip dhcp tftp-server
```
**Command Mode**

EXEC

**Example**

```bash
console# show ip dhcp tftp server
tftp server address
active 1.1.1.1 from sname
manual 2.2.2.2
file path on tftp server
active conf/conf-file from option 67
```
Management ACL Commands

management access-list
The management access-list Global Configuration mode command configures a management access list and enters the Management Access-List Configuration command mode. Use the no form of this command to delete an access list.

Syntax
management access-list name

no management access-list name

Parameters
name—Specifies the access list name. (Length: 1–32 characters)

Command Mode
Global Configuration mode

User Guidelines
Use this command to configure a management access list. This command enters the Management Access-List Configuration mode, where the denied or permitted access conditions are defined with the deny and permit commands.

If no match criteria are defined, the default value is deny.

When re-entering the access-list context, the new rules are entered at the end of the access list.

Use the management access-class command to select the active access list.

The active management list cannot be updated or removed.
For IPv6 management traffic that is tunneled in IPv4 packets, the management ACL is applied first on the external IPv4 header (rules with service field are ignored), and then again on the inner IPv6 header.

**Example**
The following example creates a management access list called `mlist`, configures management `gigabitethernet` interfaces 1/0/1 and 1/0/9, and makes the new access list the active list.

```
Console(config)# management access-list mlist
Console(config-macl)# permit gi1/0/1
Console(config-macl)# permit gi1/0/9
Console(config-macl)# exit
Console(config)# management access-class mlist
```

The following example creates a management access list called ‘mlist’, configures all interfaces to be management interfaces except `gigabitethernet` interfaces 1/0/1 and 1/0/9, and makes the new access list the active list.

```
Console(config)# management access-list mlist
Console(config-macl)# deny gi1/0/1
Console(config-macl)# deny gi1/0/9
Console(config-macl)# permit
Console(config-macl)# exit
Console(config)# management access-class mlist
```

**permit (Management)**
The `permit Management` Access-List Configuration mode command sets conditions for the management access list.

**Syntax**
```
permit interface-id | service service
permit ip-source {ipv4-address | ipv6-address | ipv6-prefix-length} [mask
{mask | prefix-length}] [interface-id] [service service]
```
Parameters

- `interface-id:`—Specify an interface ID. The interface ID can be one of the following types: Ethernet port, Port-channel or VLAN.
- `service service`—Specifies the service type. Possible values are: Telnet, SSH, HTTP, HTTPS and SNMP.
- `ipv4-address`—Specifies the source IPv4 address.
- `ipv6-address/ipv6-prefix-length`— Specifies the source IPv6 address and source IPv6 address prefix length. The prefix length must be preceded by a forward slash (/). The parameter is optional.
- `mask`—Specifies the source IPv4 address network mask. This parameter is relevant only to IPv4 addresses.
- `mask prefix-length`—Specifies the number of bits that comprise the source IPv4 address prefix. The prefix length must be preceded by a forward slash (/). This parameter is relevant only to IPv4 addresses. (Range: 0–32)

Command Mode
Management Access-List Configuration mode

User Guidelines
Rules with ethernet, VLAN, and port-channel parameters are valid only if an IP address is defined on the appropriate interface.

Example
The following example permits all ports in the access list called `mlist`

```plaintext
Console(config)# management access-list mlist
Console(config-macl)# permit
```

`deny (Management)`
The `deny` Management Access-List Configuration mode command sets conditions for the management access list.

Syntax
`deny [interface-id] [service service]`
deny ip-source {ipv4-address | ipv6-address/ipv6-prefix-length} [mask {mask | prefix-length}] [interface-id] [service service]

Parameters

- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port, Port-channel or VLAN
- **service service**—Specifies the service type. Possible values are: Telnet, SSH, HTTP, HTTPS and SNMP.
- **ipv4-address**—Specifies the source IPv4 address.
- **ipv6-address/ipv6-prefix-length**—Specifies the source IPv6 address and source IPv6 address prefix length. The prefix length must be preceded by a forward slash (/). The parameter is optional.
- **mask**—Specifies the source IPv4 address network mask. The parameter is relevant only to IPv4 addresses.
- **mask prefix-length**—Specifies the number of bits that comprise the source IPv4 address prefix. The prefix length must be preceded by a forward slash (/). The parameter is relevant only to IPv4 addresses. (Range: 0–32)

Command Mode
Management Access-List Configuration mode

User Guidelines
Rules with ethernet, VLAN, and port-channel parameters are valid only if an IP address is defined on the appropriate interface.

Example
The following example denies all ports in the access list called **mlist**.

```console
Console(config)# management access-list mlist
Console(config-macl)# deny
```

**management access-class**
The **management access-class** Global Configuration mode command restricts management connections by defining the active management access list. To
disable management connection restrictions, use the no form of this command.

**Syntax**

management access-class {console-only | name}

no management access-class

**Parameters**

- **console-only**—Specifies that the device can be managed only from the console.
- **name**—Specifies the access list name to be used. (Length: 1–32 characters)

**Default Configuration**

The default configuration is no management connection restrictions.

**Command Mode**

Global Configuration mode

**Example**

The following example defines an access list called `mlist` as the active management access list.

```console
Console(config)# management access-class mlist
```

**show management access-list**

The `show management access-list` Privileged EXEC mode command displays management access lists.

**Syntax**

show management access-list [name]

**Parameters**

- **name**—Specifies the name of a management access list to be displayed. (Length: 1–32 characters)
**Command Mode**  
Privileged EXEC mode

**Example**  
The following example displays the mlist management access list.

```
Console# show management access-list mlist
console-only

deny
! (Note: all other access implicitly denied)
mlist

permit gi1/0/1
permit gi1/0/9
! (Note: all other access implicitly denied)
console#
```

**show management access-class**  
The `show management access-class` Privileged EXEC mode command displays information about the active management access list.

**Syntax**  
`show management access-class`

**Command Mode**  
Privileged EXEC mode

**Example**  
The following example displays the active management access list information.

```
Console# show management access-class
Management access-class is enabled, using access list mlist
```
### SNMP Commands

#### snmp-server

Use the `snmp-server server` Global Configuration mode command to enable the device to be configured by SNMP. Use the `no` form of this command to disable this function.

**Syntax**

```
snmp-server server
no snmp-server server
```

**Parameters**

This command has no arguments or keywords.

**Default**

Enabled

**Command Mode**

Global Configuration mode

**Example**

```
snmp-server server
```

```
console(config)# snmp-server server
```

#### snmp-server community

Use the `snmp-server community` Global Configuration mode command to set up the community access string to permit access to the Simple Network...
Management Protocol command. Use the no form of this command to remove the specified community string.

**Syntax**

```
snmp-server community string [view view-name] [ro | rw | su] {ipv4-address | ipv6-address} [mask | prefix-length]
```

```
snmp-server community-group string group-name {ipv4-address | ipv6-address} [mask | prefix-length]
```

```
no snmp-server community string [ipv4-address | ipv6-address]
```

**Parameters**

- **string**—Community string that acts like a password and permits access to the SNMP protocol. (Range: 1–20 characters)
- **ro**—Specifies read-only access (default)
- **rw**—Specifies read-write access
- **su**—Specifies SNMP administrator access
- **view view-name**—Specifies the name of a view to be configured using the command `snmp-server view` (no specific order of the command configurations is imposed on the user). The view defines the objects available to the community. It is not relevant for `su`, which has access to the whole MIB. If unspecified, all the objects, except the community-table and SNMPv3 user and access tables, are available. (Range: 1–30 characters)
- **ipv4-address**—Management station IPv4 address. The default is all IP addresses.
- **ipv6-address**—Management station IPv4 address. The default is all IP addresses.
- **mask**—Specifies the mask of the IPv4 address. This is not a network mask, but rather a mask that defines which bits of the packet’s source address are compared to the configured IP address. If unspecified, it defaults to 255.255.255.255. The command returns an error if the mask is specified without an IPv4 address.
- **prefix-length**—Specifies the number of bits that comprise the IPv4 address prefix. If unspecified, it defaults to 32. The command returns an error if the prefix-length is specified without an IPv4 address.
• group-name—Specifies the name of a group that should be configured using the command `snmp-server group` with v1 or v2 parameter (no specific order of the two command configurations is imposed on the user). The group defines the objects available to the community. (Range: 1–30 characters)

**Default**
No community is defined

**Command Mode**
Global Configuration mode

**User Guidelines**
You can’t specify view-name for su, which has access to the whole MIB. You can use the view-name to restrict the access rights of a community string. The logical key of the command is the pair (community, ip-address). If ip-address is omitted then the key is (community, All-Ips).

By specifying the view-name parameter, the software:

- Generates an internal security-name.
- Maps the internal security-name for SNMPv1 and SNMPv2 security models to an internal group-name.
- Maps the internal group-name for SNMPv1 and SNMPv2 security models to view-name (read-view and notify-view always, and for rw for write-view also),

You can use the group-name to restrict the access rights of a community string. By specifying the group-name parameter the software:

- Generates an internal security-name.
- Maps the internal security-name for SNMPv1 and SNMPv2 security models to the group-name.

The `snmp-server community-group` command and `snmp-server user` command for v1 and v2 are equivalent. You should use the `snmp-server community-group` command when you want to configure the ipv4-address|ipv6-address management addresses.
The Type keyword is used for a different purpose. Therefore, when defining an SNMP community, the administrator must indicate which tables are being configured. If Type is router, it means that the device's tables are being configured.

Example

```
snmp-server community

console(config)# snmp-server community abcd su 1.1.1.121 mask 255.0.0.0
console(config)# snmp-server community-group tom abcd 1.1.1.122 prefix 8
```

**snmp-server view**

The `snmp-server view` Global Configuration mode command creates or updates a Simple Network Management Protocol (SNMP) server view entry. Use the `no` form of this command to remove an SNMP server view entry.

**Syntax**

```
snmp-server view view-name oid-tree {included | excluded}
no snmp-server view view-name [oid-tree]
```

**Parameters**

- **view-name**—Specifies the label for the view record that is being created or updated. The name is used to reference the record. (Length: 1–30 characters)
- **oid-tree**—Specifies the ASN.1 subtree object identifier to be included or excluded from the view. To identify the subtree, specify a text string consisting of numbers, such as 1.3.6.2.4, or a word, such as System. Replace a single sub-identifier with the asterisk (*) wildcard to specify a subtree family; for example 1.3.*.4.
- **included**—Specifies that the view type is included.
- **excluded**—Specifies that the view type is excluded.

**Default Configuration**

Default and DefaultSuper are the default view names.
Command Mode
Global Configuration mode

User Guidelines
This command can be entered multiple times for the same view record.
The command logical key is the pair (view-name, oid-tree).
The number of views is limited to 64.
Default and DefaultSuper views are reserved for internal software use and cannot be deleted or modified.

Example
The following example creates a view that includes all objects in the MIB-II system group except for sysServices (System 7) and all objects for interface 1 in the MIB-II interface group.

```
Console(config)# snmp-server view user-view system included
Console(config)# snmp-server view user-view system.7 excluded
Console(config)# snmp-server view user-view ifEntry.*.1 included
```

snmp-server group
The `snmp-server group` Global Configuration mode command configures a new Simple Network Management Protocol (SNMP) group or a table that maps SNMP users to SNMP views. Use the `no` form of this command, remove a specified SNMP group.

Syntax
```
snmp-server group groupname {v1 | v2 | v3 {noauth | auth | priv} [notify notifyview]} [read readview] [write writeview]
```
```
no snmp-server group groupname {v1 | v2 | v3 [noauth | auth | priv]} [context name]
```

Parameters
- `groupname`—Specifies the group name. (Length: 1–30 characters)
• v1—Specifies the SNMP Version 1 security model.
• v2—Specifies the SNMP Version 2 security model.
• v3—Specifies the SNMP Version 3 security model.
• noauth—Specifies no packet authentication. Applicable only to the SNMP Version 3 security model.
• auth—Specifies packet authentication without encryption. Applicable only to the SNMP Version 3 security model.
• priv—Specifies packet authentication with encryption. Applicable only to the SNMP Version 3 security model.
• notify notifyview—Specifies the view name that enables specifying an inform or a trap. Applicable only to the SNMP Version 3 security model. (Length: 1–30 characters)
• read readview—Specifies the view name that enables viewing only the agent contents. (Length: 1–30 characters)
• write writeview—Specifies the view name that enables entering data and configuring the agent contents. (Length: 1–30 characters)

Default Configuration
No group entry exists.

If notifyview is not specified, nothing is defined for the notify view.

If readview is not specified, all objects except for the community-table and SNMPv3 user and access tables are available.

If writeview is not specified, nothing is defined for the write view.

Command Mode
Global Configuration mode

User Guidelines
The command logical key is (groupname, snmp-version, security-level). For snmp-version v1/v2 the security-level is always noauth.

The Router context is translated to "" context in the MIB.
Example
The following example attaches a group called user-group to SNMPv3 and assigns to the group the privacy security level and read access rights to a view called user-view.

```
Console(config)# snmp-server group user-group v3 priv read user-view
```

snmp-server user

Use the `snmp-server user` Global Configuration mode command to configure a new SNMP Version 3 user. Use the `no` form of the command to remove a user.

Syntax
```
snmp-server user username groupname {v1 | v2c | [remote host] v3 [encrypted] [auth {md5 | sha} auth-password]}
```
```
no snmp-server user username [remote host]
```

Parameters
- **username**—The name of the user on the host that connects to the agent. (Range: Up to 20 characters)
- **groupname**—The name of the group to which the user belongs. The group should be configured using the command `snmp-server group` with v3 parameters (no specific order of the 2 command configurations is imposed on the user). (Range: Up to 30 characters)
- **remote host**—IP address of the remote SNMP host.
- **v1**—Specifies that v1 is to be used.
- **v2c**—Specifies that v2c is to be used.
- **v3**—Specifies that v3 is to be used.
- **encrypted**—Specifies whether the password appears in encrypted format.
- **auth**—Specifies which authentication level is to be used.
- **md5**—Specifies the HMAC-MD5-96 authentication level.
• Sha—Specifies the HMAC-SHA-96 authentication level.
• auth-password—Specifies the authentication password.

Parameters Range

- engineid-string5 - 32 characters.
- auth-passwordUp to 32 characters.

Default
No group entry exists.

Command Mode
Global configuration

User Guidelines
If auth md5 or auth sha is specified, both authentication and privacy are enabled for the user.

When you enter a show running-config command, you do not see a line for this user. To see if this user has been added to the configuration, type the show snmp user command.

An SNMP EngineID should be defined in order to add users to the device.

Changing or removing the value of snmpEngineID deletes the SNMPv3 users’ database.

The logical key of the command is Username.

Configuring a remote host is required in order to send informs to that host. A configured remote host is also able to manage the device (besides getting the informs)

To configure a remote user, specify the IP address for the remote SNMP agent of the device where the user resides. Also, before you configure remote users for a particular agent, configure the SNMP engine ID, using the snmp-server engineID remote command. The remote agent’s SNMP engine ID is needed when computing the authentication and privacy digests from the password. If the remote engine ID is not configured first, the configuration command fails.

Example

snmp-server user
console(config)# snmp-server user tom acbd v1
console(config)# snmp-server user tom acbd v2c
console(config)# snmp-server engineid local default
The engine-id must be unique within your administrative domain. Do you wish to continue? [Y/N]
y
The SNMPv3 database will be erased. Do you wish to continue? [Y/N]
y
console(config)# snmp-server user tom acbd v3

---

**snmp-server filter**

The `snmp-server filter` Global Configuration mode command creates or updates a Simple Network Management Protocol (SNMP) server filter entry. Use the `no` form of this command to remove the specified SNMP server filter entry.

**Syntax**

```
snmp-server filter filter-name oid-tree {included | excluded}
no snmp-server filter filter-name [oid-tree]
```

**Parameters**

- `filter-name`—Specifies the label for the filter record that is being updated or created. The name is used to reference the record. (Length: 1–30 characters)

- `oid-tree`—Specifies the ASN.1 subtree object identifier to be included or excluded from the view. To identify the subtree, specify a text string consisting of numbers, such as 1.3.6.2.4, or a word, such as System. Replace a single sub-identifier with the asterisk (*) wildcard to specify a subtree family; for example, 1.3.*.4.

- `included`—Specifies that the filter type is included.
- `excluded`—Specifies that the filter type is excluded.

**Default Configuration**

No view entry exists.
Command Mode
Global Configuration mode

User Guidelines
This command can be entered multiple times for the same filter record. If an object identifier is included in two or more lines, later lines take precedence. The command’s logical key is the pair (filter-name, oid-tree).

Example
The following example creates a filter that includes all objects in the MIB-II system group except for sysServices (System 7) and all objects for interface 1 in the MIB-II interfaces group.

```
Console(config)# snmp-server filter filter-name system included
Console(config)# snmp-server filter filter-name system.7 excluded
Console(config)# snmp-server filter filter-name ifEntry.*.1 included
```

snmp-server host
Use the `snmp-server host` Global Configuration mode command to specify the recipient of a Simple Network Management Protocol notification operation. Use the no form of this command to remove the specified host.

Syntax
```
snmp-server host { ipv4-address | ipv6-address | hostname} [traps | informs] [version {1 | 2c | 3 [auth | noauth | priv]}] community-string [udp-port port] [filter filtername] [timeout seconds] [retries retries]
```
```
no snmp-server host { ipv4-address | ipv6-address | hostname} [traps | informs] [version {1 | 2c | 3}]
```

Parameters
- `ipv4-address`—IPv4 address of the host (the targeted recipient).
- `ipv6-address`—IPv6 address of the host (the targeted recipient). When the IPv6 address is a Link Local address (IPv6Z address), the outgoing interface name must be specified. Refer to the User Guidelines for the interface name syntax.
- `hostname`—Hostname of the host. (Range: 1–158 characters. Maximum label size: 63)
- `trap`—Sends SNMP traps to this host (default).
- `informs`—Sends SNMP informs to this host. Not applicable to SNMPv1.
- `1`—SNMPv1 traps are used.
- `2c`—SNMPv2 traps are used
- `3`—SNMPv2 traps are used
- `community-string`—Password-like community string sent with the notification operation. (Range: 1–20 characters)
- `noauth`—Specifies no authentication of a packet.
- `auth`—Specifies authentication of a packet without encrypting it.
- `priv`—Specifies authentication of a packet with encryption.
- `udp-port port`—UDP port of the host to use. The default is 162. (Range: 1–65535)
- `filter filtername`—A string that is the name of the filter that defines the filter for this host. If unspecified, nothing is filtered. The filter should be defined using the command `snmp-server filter` (no specific order of the command configurations is imposed on the user). (Range: Up to 30 characters)
- `timeout seconds`—Number of seconds to wait for an acknowledgment before resending informs. The default is 15 seconds. The parameter is relevant only for informs. (Range: 1–300)
- `retries retries`—Maximum number of times to resend an inform request, when a response is not received for a generated message. The default is 3. The parameter is relevant only for informs. (Range: 0–255)

**Command Mode**
Global Configuration mode
**User Guidelines**

The logical key of the command is the pair (ip-address/hostname, traps/informs, version).

When configuring snmp v1 or v2 notifications recipient the software would automatically generate a notification view for that recipient for all the MIB. (.For SNMPv3 the software doesn’t automatically create a user nor a notify view. Use the commands `snmp-server user`, `snmp-server group` and `snmp-server view` in Global Configuration mode to create a user, a group or a notify group respectively.

The format of an IPv6Z address is: `<ipv6-link-local-address>%<interface-name>`

interface-name = `vlan<integer> | ch<integer> | isatap<integer> / <physical-port-name> / 0`

integer = `<decimal-number> / <integer><decimal-number>`

decimal-number = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

physical-port-name = Designated port number, for example 1/0/16

If the egress interface is not specified, the default interface is selected. Specifying interface zone=0 is equal to not defining an egress interface.

**Example**

The following defines a host at the IP address displayed.

```
console(config)# snmp-server host 1.1.1.121 abc
```

---

**snmp-server engineID local**

The `snmp-server engineID local` Global Configuration mode command specifies the Simple Network Management Protocol (SNMP) engineID on the local device. Use the `no` form of this command to remove the configured engine ID.

**Syntax**

```
snmp-server engineID local {engineid-string | default}

no snmp-server engineID local
```
Parameters

- **engineid-string**—Specifies a concatenated hexadecimal character string identifying the engine ID. Each byte in a hexadecimal character string is two hexadecimal digits. Bytes are separated by a period or colon. If an odd number of hexadecimal digits are entered, the system automatically prefixes the digit 0 to the string. (Length: 5–32 characters, 9–64 hexadecimal digits)

- **default**—Specifies that the engine ID is created automatically based on the device MAC address.

Default Configuration

The engine ID is not configured.

If SNMPv3 is enabled using this command, and the default is specified, the default engine ID is defined per standard as:

- First 4 octets: First bit = 1, the rest is IANA Enterprise number = 674.
- Fifth octet: Set to 3 to indicate the MAC address that follows.
- Last 6 octets: The device MAC address.

Command Mode

Global Configuration mode

User Guidelines

To use SNMPv3, specify an engine ID for the device. Any ID can be specified or use a default string, which is generated using the device MAC address.

As the EngineID should be unique within an administrative domain, the following guidelines are recommended:

- For standalone devices, use the default keyword to configure the Engine ID.
- For stackable systems, configure an EngineID, and verify that it is unique within the administrative domain.

Changing or removing the value of `snmpEngineID` deletes the SNMPv3 users database.

The SNMP EngineID cannot be all 0x0 or all 0xF or 0x000000001
Example
The following example enables SNMPv3 on the device and sets the device local engine ID to the default value.

```
Console(config)# snmp-server engineID local default
```
User Guidelines
A remote engine ID is required when an SNMP version 3 inform is configured. The remote engine ID is used to compute the security digest for authenticating and encrypting packets sent to a user on the remote host.

snmp-server enable traps
Use the snmp-server enable traps Global Configuration mode command to enable the device to send SNMP traps. Use the no form of the command to disable SNMP traps.

Syntax
snmp-server enable traps
no snmp-server enable traps

Default Configuration
SNMP traps are enabled.

Command Mode
Global Configuration mode

Example
The following example enables SNMP traps.

```
Console(config)# snmp-server enable traps
```

---

snmp-server trap authentication
Use the snmp-server trap authentication Global Configuration mode command to enable the device to send SNMP traps when authentication fails. Use the no form of this command to disable SNMP failed authentication traps.

Syntax
snmp-server trap authentication
no snmp-server trap authentication
**Default Configuration**
SNMP failed authentication traps are enabled.

**Command Mode**
Global Configuration mode

**Example**
The following example enables SNMP failed authentication traps.

```
Console(config)# snmp-server trap authentication
```

**snmp-server contact**
Use the `snmp-server contact` Global Configuration mode command to configure the system contact (sysContact) string. Use the no form of the command to remove the system contact information.

**Syntax**
```
snmp-server contact text
no snmp-server contact
```

**Parameters**
text—Specifies the string describing system contact information. (Length: 1–160 characters)

**Command Mode**
Global Configuration mode

**Example**
The following example configures the system contact point called Technical_Support.

```
Console(config)# snmp-server contact Technical_Support
```
snmp-server location

Use the ```snmp-server location``` Global Configuration mode command to configure the system location string. Use the ```no``` form of this command to remove the location string.

**Syntax**

```snmp-server location text```

```no snmp-server location```

**Parameters**

- **text**—Specifies a string describing system location information. (Length: 1–160 characters)

**Command Mode**

Global Configuration mode

**Example**

The following example defines the device location as New_York.

```Console(config)# snmp-server location New_York```

snmp-server set

Use the ```snmp-server set``` Global Configuration mode command to define the SNMP MIB value.

Syntax

```snmp-server set variable-name name value [name2 value2 ...]```

**Parameters**

- **variable-name**—Specifies the SNMP MIB variable name, which must be a valid string.
• **name value**—Specifies a list of name and value pairs. Each name and value must be a valid string. In the case of scalar MIBs, there is only a single name-value pair. In the case of an entry in a table, there is at least one name-value pair, followed by one or more fields.

**Command Mode**
Global Configuration mode

**User Guidelines**
Although the CLI can set any required configuration, there might be a situation where an SNMP user sets a MIB variable that does not have an equivalent command. To generate configuration files that support those situations, use the `snmp-server set` command.

**Example**
The following example configures the scalar MIB `sysName` with the value `TechSupp`.

```
Console(config)# snmp-server set sysName sysname TechSupp
```

**show snmp**
Use the `show snmp` Privileged EXEC mode command to display the SNMP status.

**Syntax**
`show snmp`

**Command Mode**
Privileged EXEC mode
**Example**
The following example displays the SNMP communications status.

```console
Console# **show snmp**
SNMP is enabled

<table>
<thead>
<tr>
<th>Community-String</th>
<th>Community-Access</th>
<th>View name</th>
<th>IP Address</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>public</td>
<td>read only</td>
<td>user-view</td>
<td>All</td>
<td>Router</td>
</tr>
<tr>
<td>private</td>
<td>read write</td>
<td>Default</td>
<td>172.16.1.1</td>
<td>Router</td>
</tr>
<tr>
<td></td>
<td>su</td>
<td>DefaultSuper</td>
<td>0 172.16.1.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Community-string</th>
<th>Group name</th>
<th>IP address</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>public</td>
<td>user-group</td>
<td>All</td>
<td>Router</td>
</tr>
</tbody>
</table>

Traps are enabled.
Authentication trap is enabled.
Version 1,2 notifications

<table>
<thead>
<tr>
<th>Target Address</th>
<th>Type</th>
<th>Community</th>
<th>Version</th>
<th>UDP Port</th>
<th>Filter name</th>
<th>TO Sec</th>
<th>Retries</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.122.173.42</td>
<td>Trap</td>
<td>public</td>
<td>2</td>
<td>162</td>
<td></td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>192.122.173.42</td>
<td>Info</td>
<td>public</td>
<td>2</td>
<td>162</td>
<td></td>
<td>15</td>
<td>3</td>
</tr>
</tbody>
</table>

Version 3 notifications

<table>
<thead>
<tr>
<th>Target Address</th>
<th>Type</th>
<th>Username</th>
<th>Security Level</th>
<th>UDP Port</th>
<th>Filter name</th>
<th>TO Sec</th>
<th>Retries</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.122.173.42</td>
<td>Info</td>
<td>Bob</td>
<td>Priv</td>
<td>162</td>
<td></td>
<td>15</td>
<td>3</td>
</tr>
</tbody>
</table>

System Contact: Robert
System Location: Marketing
The following table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community-string</td>
<td>The community access string permitting access to the SNMP protocol.</td>
</tr>
<tr>
<td>Community-access</td>
<td>The access type—read-only, read-write, super access.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The management station IP Address.</td>
</tr>
<tr>
<td>Trap-Rec-Address</td>
<td>The targeted recipient.</td>
</tr>
<tr>
<td>Trap-Rec-Community</td>
<td>The statistics sent with the notification operation.</td>
</tr>
<tr>
<td>Version</td>
<td>The SNMP version (1 or 2) for the sent trap.</td>
</tr>
</tbody>
</table>

show snmp engineID

Use the `show snmp engineID` Privileged EXEC mode command to display the local Simple Network Management Protocol (SNMP) engine ID.

Syntax

`show snmp engineID`

Command Mode

Privileged EXEC mode

Example

The following example displays the SNMP engine ID.

```
Console # show snmp engineID
Local SNMP engineID: 08009009020C0B099C075878
#Editor: If snmp-server engineID remote command is supported add the following line
IP address       Remote SNMP engineID
----------------- -------------------------------
172.16.1.1        08009009020C0B099C075879
```
show snmp views

Use the show snmp views Privileged EXEC mode command to display the configured SNMP views.

Syntax
show snmp views [viewname]

Parameters
viewname—Specifies the view name. (Length: 1–30 characters)

Command Mode
Privileged EXEC mode

Example
The following example displays the configured SNMP views.

```
Console# show snmp views

Name      OID Tree              Type
---------------------------
Default    iso                  Included
Default    snmpNotificationMIB Excluded
```

show snmp groups

Use the show snmp groups Privileged EXEC mode command to display the configured SNMP groups.

Syntax
show snmp groups [groupname]

Parameters
groupname—Specifies the group name. (Length: 1–30 characters)
Command Mode
Privileged EXEC mode

Example
The following example displays the configured SNMP groups.

```
Console# show snmp groups
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Security Model</th>
<th>Security Level</th>
<th>Read</th>
<th>Write</th>
<th>Notify</th>
</tr>
</thead>
<tbody>
<tr>
<td>user-group</td>
<td>V3</td>
<td>priv</td>
<td>Default</td>
<td></td>
<td></td>
</tr>
<tr>
<td>managers-group</td>
<td>V3</td>
<td>priv</td>
<td>Default</td>
<td>Default</td>
<td></td>
</tr>
</tbody>
</table>

The following table describes significant fields shown above.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Group name.</td>
</tr>
<tr>
<td>Security Model</td>
<td>SNMP model in use (v1, v2 or v3).</td>
</tr>
<tr>
<td>Security Level</td>
<td>Packet authentication with encryption. Applicable to SNMP v3 security only.</td>
</tr>
<tr>
<td>Views</td>
<td>Read View name enabling viewing the agent contents. If unspecified, all objects except the community-table and SNMPv3 user and access tables are available. View name enabling data entry and managing the agent contents. View name enabling specifying an inform or a trap.</td>
</tr>
</tbody>
</table>

show snmp filters
Use the `show snmp filters` Privileged EXEC mode command to display the configured SNMP filters.
Syntax

show snmp filters [filtername]

Parameters

filtername—Specifies the filter name. (Length: 1–30 characters)

Command Mode

Privileged EXEC mode

Example

The following example displays the configured SNMP filters.

```
Console# show snmp filters

<table>
<thead>
<tr>
<th>Name</th>
<th>OID Tree</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>user-filter</td>
<td>1.3.6.1.2.1.1</td>
<td>Included</td>
</tr>
<tr>
<td>user-filter</td>
<td>1.3.6.1.2.1.1.7</td>
<td>Excluded</td>
</tr>
<tr>
<td>user-filter</td>
<td>1.3.6.1.2.1.2.2.1.*.1</td>
<td>Included</td>
</tr>
</tbody>
</table>
```

show snmp users

Use the show snmp users Privileged EXEC mode command to display the configured SNMP users.

Syntax

show snmp users [username]

Parameters

username—Specifies the user name. (Length: 1–30 characters)

Command Mode

Privileged EXEC mode
Example
The following example displays the configured SNMP users.

```
Console# show snmp users

<table>
<thead>
<tr>
<th>Name</th>
<th>Group name</th>
<th>Auth Method</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>user-group</td>
<td>md5</td>
<td>08009009020C0B099C075879</td>
</tr>
<tr>
<td>John</td>
<td>user-group</td>
<td>md5</td>
<td></td>
</tr>
</tbody>
</table>
```
RSA and Certificate Commands

crypto key generate dsa
The `crypto key generate dsa` Global Configuration mode command generates DSA key pairs.

Syntax
`crypto key generate dsa`

Default Configuration
DSA key pairs do not exist.

Command Mode
Global Configuration mode

User Guidelines
DSA keys are generated in pairs - one public DSA key and one private DSA key.

If the device already has DSA keys, a warning is displayed with a prompt to replace the existing keys with new keys.

This command is not saved in the router configuration. However, the keys generated by this command are saved in the private configuration (which is never displayed to the user or backed up to another device).

Example
The following example generates DSA key pairs.

```
Console(config)# crypto key generate dsa
```
crypto key generate rsa

The crypto key generate rsa Global Configuration mode command generates RSA key pairs.

Syntax
crypto key generate rsa

Default Configuration
RSA key pairs do not exist.

Command Mode
Global Configuration mode

User Guidelines
RSA keys are generated in pairs - one public RSA key and one private RSA key. If the device already has RSA keys, a warning is displayed with a prompt to replace the existing keys with new keys.

This command is not saved in the router configuration; however, the keys generated by this command are saved in the private configuration (which is never displayed to the user or backed up to another device).

Example
The following example generates RSA key pairs.

console(config)# crypto key generate rsa

show crypto key mypubkey

The show crypto key mypubkey Privileged EXEC mode command displays the device SSH public keys.

Syntax
show crypto key mypubkey [rsa | dsa]
Parameters

- rsa—Displays the RSA key.
- dsa—Displays the DSA key.

Command Mode

Privileged EXEC mode

Example

The following example displays the SSH public RSA keys on the device.

```console
Console# show crypto key mypubkey rsa
RSA key data:
005C300D 06092A86 4886F70D 01010105 00034B00 30480241 00C5E23B 55D6AB22
04AEF1BA A54028A6 9ACC01C5 129D99E4 64CAB820 847EDAD9 DF0B4E4C 73A05DD2
BD62A8A9 FA603DD2 E2A8A6F8 98F76E28 D58AD221 B583D7A4 71020301 87685768
Fingerprint(Bubble Babble): yteriught jgkljhglk yewiury hdskjfrtyt gfhkjglk
```

crypto certificate generate

The `crypto certificate generate` Global Configuration mode command generates a self-signed certificate for HTTPS.

Syntax

```
crypto certificate number generate [key-generate [length]] [passphrase string] [cn common-name] [ou organization-unit] [or organization] [loc location] [st state] [cu country] [duration days]
```

Parameters

- number—Specifies the certificate number. (Range: 1–2)
- key-generate—Regenerates SSL RSA key.
- length—Specifies the SSL's RSA key length. (Range: 512–2048)
- passphrase string—Specifies the passphrase used for exporting the certificate in PKCS12 file format. (Length: 8–96 characters)
• **cn common-name**—Specifies the fully qualified device URL or IP address. (Length: 1–64 characters)

• **ou organization-unit**—Specifies the organization-unit or department name. (Length: 1–64 characters)

• **or organization**—Specifies the organization name. (Length: 1–64 characters)

• **loc location**—Specifies the location or city name. (Length: 1–64 characters)

• **st state**—Specifies the state or province name. (Length: 1–64 characters)

• **cu country**—Specifies the country name. (Length: 2 characters)

• **duration days**—Specifies the number of days a certification is valid. (Range: 30–3650)

Default Configuration
The default certificate number is 1.
The default SSL’s RSA key length is 1024.

If **passphrase string** is not specified, the certificate is not exportable.

If **cn common-name** is not specified, it defaults to the device’s lowest static IPv6 address (when the certificate is generated), or to the device’s lowest static IPv4 address if there is no static IPv6 address, or to 0.0.0.0 if there is no static IP address.

If **duration days** is not specified, it defaults to 365 days.

Command Mode
Global Configuration mode

User Guidelines
This command is not saved in the router configuration. However, the certificate and keys generated by this command are saved in the private configuration (which is never displayed to the user or backed up to another device).

When exporting a RSA key pair to a PKCS#12 file, the RSA key pair is as secure as the passphrase. Keep the passphrase secure.

If the RSA key does not exist, you must use the parameter **key-generate**.
Example
The following example generates a self-signed certificate for HTTPS.

Console# crypto certificate generate key-generate

crypto certificate request
The crypto certificate request Privileged EXEC mode command generates and displays a certificate request for HTTPS.

Syntax
crypto certificate number request [cn common-name] [ou organization-unit] [or organization] [loc location] [st state] [cu country]

Parameters
- number—Specifies the certificate number. (Range: 1–2)
- cn common-name—Specifies the device’s fully qualified URL or IP address. (Length: 1–64 characters)
- ou organization-unit—Specifies the organization-unit or department name. (Length: 1–64 characters)
- or organization—Specifies the organization name. (Length: 1–64 characters)
- loc location—Specifies the location or city name. (Length: 1–64 characters)
- st state—Specifies the state or province name. (Length: 1–64 characters)
- cu country—Specifies the country name. (Length: 2 characters)

Command Mode
Privileged EXEC mode

User Guidelines
Use this command to export a certificate request to a Certification Authority. The certificate request is generated in Base64-encoded X.509 format.
Before generating a certificate request, first generate a self-signed certificate using the `crypto certificate generate` Global Configuration mode command to generate the keys. The certificate fields must be re-entered.

After receiving the certificate from the Certification Authority, use the `crypto certificate import` Global Configuration mode command to import the certificate into the device. This certificate replaces the self-signed certificate.

Example

The following example displays the certificate request for HTTPS.

```
Console# crypto certificate 1 request
-----BEGIN CERTIFICATE REQUEST-----
MIwTCCASoCAQAwYjELMAkGA1UEBhMCUFAxCzAJBgNVBAgTAkNDMQswCQYDVQQH
EwRDEMMAoGA1UEChMDZGxkMQwwCgYDVQQLEwNkbGQxEzAVBgNVBAMTAmxkMRAw
DgKoZIhvcNAQkBFgFsMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC8ecwQ
HdML0831i0fh/F0MV/Kib6Sz5p+3nUUenbfHp/igVpFM+1nbqTDekb2ymCu6K
aKvEbVLFL9F2LmM7VPjDBb9bb4jnxkvwW/wzDLvW2rsy5NPmHlQV1+8Ubx3GyCm
/oW93BSOFwxxEsP58kf+sPYPy+/8wmmoNtDwIDAQABoB8wHQYJKoZIhvcNAQkH
MRDjEyMwgjTECAAgICAIAgIMA0GCSqGSIb3DQEBAUA4GBAGb8UgLx7rB05m+2
m5ZZPhlw18ARSFXwhVdJexFjbnmvccqjPG8pIiRV6LkxryGF2bVU3jKEipcZa
g+uNpyTktDt3ZVU72p/z/8aTF0n3
-----END CERTIFICATE REQUEST-----

CN= router.gm.com
O= General Motors
C= US
```

crypto certificate import

The `crypto certificate import` Global Configuration mode command imports a certificate signed by a Certification Authority for HTTPS.

Syntax

```
crypto certificate number import
```
Parameters

number—Specifies the certificate number. (Range: 1–2)

Command Mode

Global Configuration mode

User Guidelines

To end the session, use a blank line.

The imported certificate must be based on a certificate request created by the `crypto certificate request` privileged EXEC command.

If the public key found in the certificate does not match the device’s SSL RSA key, the command fails.

This command is not saved in the router configuration. However, the certificate imported by this command is saved in the private configuration (which is never displayed to the user or backed up to another device).

Example

The following example imports a certificate signed by Certification Authority for HTTPS.

```
Console(config)# crypto certificate 1 import
------BEGIN CERTIFICATE------
... (Certificate data starts here) ...
Certificate imported successfully.
Issued to: router.gm.com
Issued by: www.verisign.com
Valid from: 8/9/2003 to 8/9/2004
Subject: CN= router.gm.com, 0= General Motors, C= US
------END CERTIFICATE------
```
crypto certificate export pkcs12

The crypto certificate export pkcs12 Privileged EXEC mode command exports the certificate and the RSA keys within a PKCS12 file.

Syntax

crypto certificate *number* export pkcs12

Parameters

number—Specifies the certificate number. (Range: 1–2)

Command Mode

Privileged EXEC mode

User Guidelines

The crypto certificate export pkcs12 command creates a PKCS 12 file that contains the certificate and an RSA key pair.

The passphrase for the export is determined when the key is generated.

The certificate and key pair are exported in a standard PEM-format PKCS12 file. This format can be converted to and from the binary PFX file used by Windows and Linux by using the openssl command-line tool. See an open source OpenSSL user manual (man pkcs12) for more information.

Example

The following example exports the certificate and the RSA keys within a PKCS12 file.

Console# crypto certificate 1 export pkcs12

Bag Attributes

localKeyId: 0C 75 81 77 5A 31 53 D1 FF 4E 26 BE 8D 4A FD 8B 22 9F 45 D4

subject=/C=us/ST= /L= /CN= /O= /OU=

issuer= /C=us/ST= /L= /CN= /O= /OU=

-----BEGIN CERTIFICATE-----

MIIBfDCCASYCAQAwDQYJKoZIhvcNAQEEBwAwhlcQYDVQQDDA9TY2NlcnQgQ2VydGlmaWVy

188 | RSA and Certificate Commands
crypto certificate import pkcs12

The **crypto certificate import pkcs12** Privileged EXEC mode command imports the certificate and the RSA keys within a PKCS12 file.

Syntax

```
crypto certificate number import pkcs12 passphrase
```

Parameters

- **number**—Specifies the certificate number. (Range: 1–2)
- **passphrase**—Specifies the passphrase used to encrypt the PKCS12 file for export. (Length: 8–96 characters)
Command Mode
Privileged EXEC mode

User Guidelines
Use the passphrase that was exported by the crypto certificate export pkcs12 command.

NOTE: This passphrase is saved for later exports.

Example
The following example imports the certificate and the RSA keys within a PKCS12 file.

```
Console# crypto certificate 1 import pkcs12 passphrase
Bag Attributes
localKeyID: 0C 75 81 77 5A 31 53 D1 FF 4E 26 BE 8D 4A FD 8B 22 9F 45 D4
subject=/C=us/ST= /L= /CN= /O= /OU=
issuer=/C=us/ST= /L= /CN= /O= /OU=
-----BEGIN CERTIFICATE-----
MIIBfDCCASYCAQAwDQYJKoZIhvcNAQEEBQAwSTELMAkGA1UEBhMCdXMxCjAIBgNV
BAgTASAxCjAIBgNVBAcTASAxNVBAcTASAxCjAIBgNVBAoTASAxCjAIBgNV
BAAsTASAwHhcNMDQwMjA3MTU1NDQ4WjA2MTU1NDQ4WjBJMQswCQYDVQQG
EwJ1czEKMgAGA1UEBMBIDEKMAgA1UEBAMHcIBiMDQgCjAIBgNVBAsTASAwHhcNMDQw
MjA3MTU1NDQ4WjA2MTU1NDQ4WjBJMQswCQYDVQQG
EwJ1czEKMgAGA1UEBMBIDEKMAgA1UEBAMHcIBiMDQgCjAIBgNVBAsTASAwHhcNMDQw
MjA3MTU1NDQ4WjA2MTU1NDQ4WjBJMQswCQYDVQQG
EwJ1czEKMgAGA1UEBMBIDEKMAgA1UEBAMHcIBiMDQgCjAIBgNVBAsTASAwHhcNMDQw
MjA3MTU1NDQ4WjA2MTU1NDQ4WjBJMQswCQYDVQQG
-----BEGIN CERTIFICATE-----
-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4, ENCRYPTED
DEK-Info: DES-EDE3-CBC, 085DCBF3A41D2669
dac0m9jqEp1Dm50s1Db8Jq1jxW/1P0kgSxuMhc250dBE/1fPBg9VSvV1ARaYt16W
bX67UyJ8t3HHF3AowjCwzElQ5GJgsO0VemsqsRQzjpcTk090rx+cNwViVoedqQ
Mtl5+fKIAcqsFqEGJNXQ4jEzsXAkWfQlFfget4703IpkJUn0ArQztJDoC28Uxp
```
show crypto certificate mycertificate

The show crypto certificate mycertificate Privileged EXEC mode command displays the device SSL certificates.

Syntax
show crypto certificate mycertificate [number]

Parameters
number—Specifies the certificate number. (Range: 1–2)

Command Mode
Privileged EXEC mode

Example
The following example displays SSL certificate # 1 present on the device.

Console# show crypto certificate mycertificate 1

-----BEGIN CERTIFICATE-----
dHmUgUm9vdCBDZXJ0aWZpZXIxXDBDQgMBAAG5zIiBlZmFsc2UgZ2VuZXJhbSB0b3A=

Issued by: www.verisign.com
Valid from: 8/9/2003 to 8/9/2004
Subject: CN= router.gm.com, O= General Motors, C= US
Finger print: DC789788 DC88A988 127897BC BB789788
Web Server Commands

ip http server
The `ip http server` Global Configuration mode command enables configuring and monitoring the device from a web browser. Use the `no` form of this command to disable this function.

Syntax
`ip http server`
`no ip http server`

Default Configuration
HTTP server is enabled.

Command Mode
Global Configuration mode
Example
The following example enables configuring the device from a web browser.

```
Console(config)# ip http server
```

ip http port
The `ip http port` Global Configuration mode command specifies the TCP port used by the web browser interface. Use the `no` form of this command to restore the default configuration.

Syntax

```
ip http port port-number
no ip http port
```

Parameters

| port-number | Port number—For use by the HTTP server. (Range: 0–65534) |

Default Configuration
The default port number is 80.

Command Mode
Global Configuration mode

Example
The following example configures the http port number as 100.

```
Console(config)# ip http port 100
```

ip http timeout-policy
Use the `ip http timeout-policy` Global Configuration mode command to set the interval for the system to wait for user input in http sessions before automatic logoff. Use the `no` form of this command to return to the default value.
Syntax
ip http timeout-policy idle seconds
no ip http timeout-policy

Parameters
seconds—Specifies the maximum number of seconds that a connection is kept open if no data is received or response data cannot be sent out. (Range: 0–86400)

Default
600 seconds

Command Mode
Global Configuration mode

User Guidelines
This command also configures the timeout-policy for HTTPS.
To specify no timeout, enter the ip http timeout-policy 0 command.

Example
The following example configures the http port number as 100.

```
Console(config)# ip http timeout-policy 0
```

ip http secure-server

Use the ip http secure-server Global Configuration mode command to enable the device to be configured securely from a browser, and to also enable the device to be monitored or have its configuration modified securely from a browser,. Use the no form of this command to disable this function.

Syntax
ip http secure-server

no ip http secure-server
Parameters
This command has no arguments or keywords.

Default
Disabled

Command Mode
Global Configuration mode

User Guidelines
Use the `crypto certificate generate` command to generate an HTTPS certificate.

Example

```
console(config)# ip http secure-server
```

ip http secure-port
To specify the TCP port to be used by the secure web browser interface, use the `ip http secure-port` Global Configuration mode command. To use the default port, use the `no` form of this command.

Syntax

```
ip http secure-port port-number
no ip http secure-port
```

Parameters

- `port-number`—Port number for use by the HTTPS server (Range: 0–65534)

Default
The default port number is 443.

Command Mode
Global Configuration mode
Example

```
console(config)# ip http secure-port 1234
```

ip https certificate

The `ip https certificate` Global Configuration mode command configures the active certificate for HTTPS. Use the `no` form of this command to restore the default configuration.

Syntax

`ip https certificate number`

`no ip https certificate`

Parameters

`number`—Specifies the certificate number. (Range: 1–2)

Default Configuration

The default certificate number is 1.

Command Mode

Global Configuration mode

User Guidelines

Use the `crypto certificate generate` command to generate a HTTPS certificate.

Example

The following example configures the active certificate for HTTPS.

```
Console(config)# ip https certificate 2
```
show ip http
The show ip http EXEC mode command displays the HTTP server configuration.

Syntax
show ip http

Command Mode
EXEC mode

Example
The following example displays the HTTP server configuration.

Console# show ip http
HTTP server enabled
Port: 80
Interactive timeout: 10 minutes

show ip https
The show ip https Privileged EXEC mode command displays the HTTPS server configuration.

Syntax
show ip https

Command Mode
Privileged EXEC mode

Example
The following example displays the HTTPS server configuration.

Console# show ip https
HTTPS server enabled
Port: 443
Interactive timeout: Follows the HTTP interactive timeout (10 minutes)

Certificate 1 is active
Issued by: www.verisign.com
Valid from: 8/9/2003 to 8/9/2004
Subject: CN= router.gm.com, O= General Motors, C= US
Finger print: DC789788 DC88A988 127897BC BB789788

Certificate 2 is inactive
Issued by: self-signed
Valid from: 8/9/2003 to 8/9/2004
Subject: CN= router.gm.com, O= General Motors, C= US
Finger print: 1873B936 88DC3411 BC8932EF 782134BA

ssl version

Use the *ssl version* Global Configuration command to define the version of the supported SSL.

Use the no form to return to the default.

Syntax
ssl version {v2&v3 | v3}
no ssl version

Parameters

- **v2&v3**—SSLv2 and SSLv3 are supported.
- **v3**—Only versions starting with SSLv3 are supported.

Defaults

v3
Command Modes
Global configuration

Examples
Console(config)#ssl version v2&v3

show ssl version

Use the `show ssl versions` Privilege EXEC command to display the SSL supported version.

Syntax

```
show ssl version
```

Parameters

N/A

Defaults

N/A

Command Modes

Privilege EXEC

Examples

```
Console#show ssl version
Current supported version: SSLv2 and SSLv3
```
Telnet, SSH and Slogin Commands

ip telnet server
The `ip telnet server` Global Configuration mode command enables the device to be configured from a Telnet server. Use the `no` form of this command to disable the device configuration from a Telnet server.

Syntax

```
ip telnet server
```
```
no ip telnet server
```

Default Configuration
Device configuration from a Telnet server is enabled.

Command Mode
Global Configuration mode

User Guidelines
To control the device configuration by SSH, use the `ip ssh server` Global Configuration mode command.

Example
The following example enables the device to be configured from a Telnet server.

```
Console(config)# ip telnet server
```
ip ssh port

The *ip ssh port* Global Configuration mode command specifies the port used by the SSH server. Use the *no* form of this command to restore the default configuration.

Syntax

```
ip ssh port port-number

no ip ssh port
```

Parameters

port-number—Specifies the port number to be used by the SSH server.

(Range: 1–65535)

Default Configuration

The default port number is 22.

Command Mode

Global Configuration mode

Example

The following example specifies that port number 8080 is used by the SSH server.

```
Console(config)# ip ssh port 8080
```

ip ssh server

The *ip ssh server* Global Configuration mode command enables the device to be configured from an SSH server. Use the *no* form of this command to disable the device configuration from a SSH server.

Syntax

```
ip ssh server

no ip ssh server
```
Default Configuration
Device configuration from an SSH server is enabled.

Command Mode
Global Configuration mode

User Guidelines
If encryption keys are not generated, the SSH server is in standby until the keys are generated. To generate SSH server keys, use the `crypto key generate dsa` and `crypto key generate rsa` Global Configuration mode commands.

Example
The following example enables configuring the device from a SSH server.

```
Console(config)# ip ssh server
```

ip ssh pubkey-auth
The `ip ssh pubkey-auth` Global Configuration mode command enables public key authentication of incoming SSH sessions. Use the `no` form of this command to disable this function.

Syntax
```
ip ssh pubkey-auth
no ip ssh pubkey-auth
```

Default Configuration
Public Key authentication of incoming SSH sessions is disabled.

Command Mode
Global Configuration mode

User Guidelines
AAA authentication is independent.
Example
The following example enables public key authentication for incoming SSH sessions.

```
Console(config)# ip ssh pubkey-auth
```

crypto key pubkey-chain ssh
The `crypto key pubkey-chain ssh` Global Configuration mode command enters the SSH Public Key-chain Configuration mode. This mode is used to manually specify other device public keys such as SSH client public keys.

Syntax
crypto key pubkey-chain ssh

Default Configuration
Keys do not exist.

Command Mode
Global Configuration mode

User Guidelines
Use this command when you want to manually specify SSH client’s public keys.

Example
The following example enters the SSH Public Key-chain Configuration mode and manually configures the RSA key pair for SSH public key-chain to ‘bob’.

```
Console(config)# crypto key pubkey-chain ssh
Console(config-pubkey-chain)# user-key bob
Console(config-pubkey-key)# key-string rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQCvTnRwPWl4kpqIw9GBRonZxjHkcqKL6rM1Q+
ZNxfZk/HG+QusIZ/76ILmFT34v7u7ChFAE+
Vu4GRefSwoQUvV35LqJk67IOU/zfwOl1g
```
user-key

The user-key SSH Public Key-string Configuration mode command specifies which SSH public key is manually configured. Use the no form of this command to remove an SSH public key.

Syntax
user-key username {rsa | dsa}
no user-key username

Parameters
- username—Specifies the remote SSH client username. (Length: 1–48 characters)
- rsa—Specifies that the RSA key pair is manually configured.
- dsa—Specifies that the DSA key pair is manually configured.

Default Configuration
No SSH public keys exist.

Command Mode
SSH Public Key-string Configuration mode

User Guidelines
Follow this command with the key-string SSH Public Key-String Configuration mode command to specify the key.
Please note that after entering this command, the existing key is deleted even if no new key is defined by the `key-string` command

Example
The following example enables manually configuring an SSH public key for SSH public key-chain **bob**.

```
Console(config)# crypto key pubkey-chain ssh
Console(config-pubkey-chain)# user-key bob rsa
Console(config-pubkey-key)# key-string row
AAAAB3NzaC1yc2EAAAADAQABAAABAQAABACvTnRwPF1
```

key-string
The `key-string` SSH Public Key-string Configuration mode command manually specifies an SSH public key.

Syntax
`key-string [row key-string]`

Parameters
- **row**—Specifies the SSH public key row by row.
- **key-string**—Specifies the key in UU-encoded DER format. UU-encoded DER format is the same format as in the authorized_keys file used by OpenSSH. (Length:0–160)

Default Configuration
Keys do not exist.

Command Mode
SSH Public Key-string Configuration mode

User Guidelines
Use the `key-string` SSH Public Key-string Configuration mode command without the `row` parameter to specify which SSH public key is to be
interactively configured next. Enter a row with no characters to complete the command.

Use the **key-string row** SSH Public Key-string Configuration mode command to specify the SSH public key, row by row. Each row must begin with a **key-string row** command.

The UU-encoded DER format is the same format as in the authorized_keys file used by OpenSSH.

Example
The following example enters public key strings for SSH public key client ‘bob’.

```
Console(config)# crypto key pubkey-chain ssh
Console(config-pubkey-chain)# user-key bob rsa
Console(config-pubkey-key)# key-string
AAAAB3NzaC1yc2EAAAADAQABAABAQCVTnRwPWl
A14kpqIw9GBRonZQZxjHKcqKL6rM1Q+
ZNxfZSkvHG+QusIZ/76ILmPT34v7u7ChFAE+
Vu4GRfpSwoQUvV35LqJJk67IOU/zfw011g
kTwnl75Q9gHujsKwGN2QWXgh3ub8gDjTSq
muSn/Wd05iDX2IExQWu08icglk02LYciz
+Z4TrEU/9FJxwPiVQOjc+KBXuR0juNg5nFysY
02CKn0/W9a/tnkm1shRE7di71+w3fNiOA
6w9o44t6+AINETCBCCA4YcF6zMzaT1weFwMwX6f+
Rmt5nihqdAtN/4oJfceu166DqVX1gWmN
zNR4DYDvSzg01DnwcAC8Qh

```

```
Console(config)# crypto key pubkey-chain ssh
Console(config-pubkey-chain)# user-key bob rsa
Console(config-pubkey-key)# key-string row AAAAB3Nza
```

```
Console(config)# crypto key pubkey-chain ssh
Console(config-pubkey-chain)# user-key bob rsa
Console(config-pubkey-key)# key-string row C1yc2
```
show ip ssh

The `show ip ssh` Privileged EXEC mode command displays the SSH server configuration.

Syntax

```
show ip ssh
```

Command Mode

Privileged EXEC mode

Example

The following example displays the SSH server configuration.

```
Console# show ip ssh

SSH server enabled. Port: 22
RSA key was generated.
DSA (DSS) key was generated.

SSH Public Key Authentication is enabled.

Active incoming sessions:

<table>
<thead>
<tr>
<th>IP address</th>
<th>SSH username</th>
<th>Version</th>
<th>Cipher</th>
<th>Auth code</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.0.1</td>
<td>John Brown</td>
<td>1.5</td>
<td>3DES</td>
<td>HMAC-SHA1</td>
</tr>
</tbody>
</table>
```

The following table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>The client address</td>
</tr>
<tr>
<td>SSH username</td>
<td>The user name</td>
</tr>
<tr>
<td>Version</td>
<td>The SSH version number</td>
</tr>
</tbody>
</table>
show crypto key pubkey-chain ssh

The show crypto key pubkey-chain ssh Privileged EXEC mode command displays SSH public keys stored on the device.

Syntax

show crypto key pubkey-chain ssh [username username] [fingerprint {bubble-babble | hex}]

Parameters

- **username username**—Specifies the remote SSH client username. (Length: 1–48 characters)
- **fingerprint {bubble-babble | hex}**—Specifies the fingerprint display format. The possible values are:
 - **bubble-babble**—Specifies that the fingerprint is displayed in Bubble Babble format.
 - **hex**—Specifies that the fingerprint is displayed in hexadecimal format.

Default Configuration

The default fingerprint format is hexadecimal.

Command Mode

Privileged EXEC mode

Example

The following examples display SSH public keys stored on the device.

```
Console# show crypto key pubkey-chain ssh

Username
--------
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cipher</td>
<td>The encryption type (3DES, Blowfish, RC4)</td>
</tr>
<tr>
<td>Auth Code</td>
<td>The authentication Code (HMAC-MD5, HMAC-SHA1)</td>
</tr>
</tbody>
</table>
bob

john

Fingerprint

Console# show crypto key pubkey-chain ssh username bob
Username: bob
Key: 005C300D 06092A86 4886F70D 01010105 00034B00 30480241
00C5E23B 55D6AB22 04AEF1BA A54028A6 9ACC01C5 129D99E4
Fingerprint:
Line Commands

line
The `line` Global Configuration mode command identifies a specific line for configuration and enters the Line Configuration command mode.

Syntax
```
line {console | telnet | ssh}
```

Parameters
- **console**—Enters the console terminal line mode.
- **telnet**—Configures the device as a virtual terminal for remote console access (Telnet).
- **ssh**—Configures the device as a virtual terminal for secured remote console access (SSH).

Command Mode
Global Configuration mode

Example
The following example configures the device as a virtual terminal for remote (Telnet) console access.

```
Console(config)# line telnet
Console(config-line)#
```
speed

The `speed` Line Configuration mode command sets the line baud rate. Use the `no` form of this command to restore the default configuration.

Syntax

```
speed bps
no speed
```

Parameters

- `bps`—Specifies the baud rate in bits per second (bps). Possible values are 2400, 4800, 9600, 19200, 38400, 57600, and 115200.

Default Configuration

The default speed is 9600 bps.

Command Mode

Line Configuration (console) mode

User Guidelines

The configured speed is applied when Autobaud is disabled. This configuration applies to the current session only.

Example

The following example configures the line baud rate as 9600 bits per second.

```
Console(config-line)# speed 9600
```

autobaud

The `autobaud` Line Configuration mode command sets the line for automatic baud rate detection (autobaud). Use the `no` form of this command to disable automatic baud rate detection.

Syntax

```
autobaud
```

```
no autobaud

**Default Configuration**
Automatic baud rate detection is disabled.

**Command Mode**
Line Configuration mode

**User Guidelines**
To start communication using Autobaud, press the **Enter** key twice.

**Example**
The following example enables autobaud.

```
Console(config)# line console
Console(config-line)# autobaud
```

---

**exec-timeout**
The **exec-timeout** Line Configuration mode command sets the session idle time interval, during which the system waits for user input before automatic logoff. Use the **no** form of this command to restore the default configuration.

**Syntax**

```
exec-timeout minutes [seconds]
no exec-timeout
```

**Parameters**

- **minutes**—Specifies the number of minutes. (Range: 0-65535)
- **seconds**—Specifies the number of seconds. (Range: 0-59)

**Default Configuration**
The default idle time interval is 10 minutes.

**Command Mode**
Line Configuration mode
User Guidelines
To specify no timeout, enter the `exec-timeout 0 0` command.

Example
The following example sets the HTTP session idle time interval before automatic logoff to 20 minutes.

```
Console(config)# line console
Console(config-line)# exec-timeout 20
```

show line
The `show line` EXEC mode command displays line parameters.

Syntax
```
show line [console | telnet | ssh]
```

Parameters
- **console**—Displays the console configuration.
- **telnet**—Displays the Telnet configuration.
- **ssh**—Displays the SSH configuration.

Default Configuration
If the line is not specified, all line configuration parameters are displayed.

Command Mode
EXEC mode

Example
The following example displays the line configuration.

```
Console> show line
Console configuration:
Interactive timeout: Disabled
History: 10
```
Baudrate: 9600
Databits: 8
Parity: none
Stopbits: 1
Telnet configuration:
Telnet is enabled.
Interactive timeout: 10 minutes 10 seconds
History: 10
SSH configuration:
SSH is enabled.
Interactive timeout: 10 minutes 10 seconds
History: 10
AAA Commands

aaa authentication login

The `aaa authentication login` Global Configuration mode command sets an authentication method applied during login. Use the `no` form of this command to restore the default authentication method.

Syntax

```
aaa authentication login {default | list-name} method [method2 ...]
no aaa authentication login {default | list-name}
```

Parameters

- **default**—Uses the listed authentication methods that follow this argument as the default method list when a user logs in.
- **list-name**—Specifies a name for a list of authentication methods activated when a user logs in. (Length: 1–12 characters)
- **method [method2 ...]**—Specifies a list of methods that the authentication algorithm tries, in the given sequence. The additional authentication methods are used only if the previous method returns an error, not if it fails. To ensure that the authentication succeeds even if all methods return an error, specify `none` as the final method in the command line. Select one or more methods from the following list:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Uses the enable password for authentication.</td>
</tr>
<tr>
<td>line</td>
<td>Uses the line password for authentication.</td>
</tr>
<tr>
<td>local</td>
<td>Uses the local username database for authentication.</td>
</tr>
</tbody>
</table>
**Default Configuration**
The local user database is the default authentication method. This is the same as entering the command `aaa authentication login local`.

**NOTE:** If an authentication method is not defined, console users can log in without any authentication verification.

**Command Mode**
Global Configuration mode

**User Guidelines**
The default and additional list names created with the `aaa authentication login` command are used with the `login authentication` command.

Create a list by entering the `aaa authentication login list-name method` command for a particular protocol, where list-name is any character string used to name this list. The method argument identifies the list of methods that the authentication algorithm tries, in the given sequence.

The additional methods of authentication are used only if the previous method returns an error, not if it fails. Specify `none` as the final method in the command line to ensure that the authentication succeeds even if all methods return an error.

**Example**
The following example sets the authentication login methods.

```
Console (config)# aaa authentication login default radius local enable none
```
aaa authentication enable

The aaa authentication enable Global Configuration mode command sets an authentication method for accessing higher privilege levels. To restore the default authentication method, use the no form of this command.

Syntax

aaa authentication enable {default | list-name} method [method2 ...]

no aaa authentication enable {default | list-name}

Parameters

• **default**—Uses the listed authentication methods that follow this argument as the default method list, when accessing higher privilege levels.

• **list-name**—Specifies a name for the list of authentication methods activated when a user accesses higher privilege levels. (Length: 1–12 characters)

• **method [method2 ...]**—Specifies a list of methods that the authentication algorithm tries, in the given sequence. The additional authentication methods are used only if the previous method returns an error, not if it fails. Specify **none** as the final method in the command line to ensure that the authentication succeeds, even if all methods return an error. Select one or more methods from the following list:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Uses the enable password for authentication.</td>
</tr>
<tr>
<td>line</td>
<td>Uses the line password for authentication.</td>
</tr>
<tr>
<td>none</td>
<td>Uses no authentication.</td>
</tr>
<tr>
<td>radius</td>
<td>Uses the list of all RADIUS servers for authentication. Uses username &quot;$enabx$.&quot; where x is the privilege level.</td>
</tr>
<tr>
<td>tacacs</td>
<td>Uses the list of all TACACS servers for authentication. Uses username &quot;$enabx$.&quot; where x is the privilege level.</td>
</tr>
</tbody>
</table>
Default Configuration

The **enable password** command is the default authentication login method. This is the same as entering the command **aaa authentication enable default enable**.

On a console, the enable password is used if a password exists. If no password is set, authentication still succeeds. This is the same as entering the command **aaa authentication enable default enable none**.

Command Mode

Global Configuration mode

User Guidelines

The default and additional list names created with the **aaa authentication enable** command are used with the **enable authentication** command.

All **aaa authentication enable default** requests sent by the device to a RADIUS or TACACS+ server include the username **$enabx$**, where x is the requested privilege level.

Create a list by entering the **aaa authentication enable list-name method** command where list-name is any character string used to name this list. The method argument identifies the list of methods that the authentication algorithm tries, in the given sequence.

The additional methods of authentication are used only if the previous method returns an error, not if it fails. Specify **none** as the final method in the command line to ensure that the authentication succeeds even if all methods return an error.

Example

The following example sets the enable password for authentication for accessing higher privilege levels.

```
Console(config)# aaa authentication enable default enable
```
login authentication

The login authentication Line Configuration mode command specifies the login authentication method list for a remote Telnet or console session. Use the no form of this command to restore the default authentication method.

**Syntax**

login authentication {default | list-name}

no login authentication

**Parameters**

- **default**—Uses the default list created with the aaa authentication login command.
- **list-name**—Uses the specified list created with the aaa authentication login command. (Length: 1–12 characters).

**Default Configuration**

The default is the aaa authentication login command default.

**Command Mode**

Line Configuration mode

**Example**

The following example specifies the login authentication method for a console session.

```
Console(config)# line console
Console(config-line)# login authentication default
```

enable authentication

The enable authentication Line Configuration mode command specifies the authentication method for accessing a higher privilege level from a remote Telnet or console. Use the no form of this command to restore the default authentication method.
enable authentication {default | list-name}

no enable authentication

Parameters

- default—Uses the default list created with the `aaa authentication enable` command.
- list-name—Uses the specified list created with the `aaa authentication enable` command. (Length: 1–12 characters).

Default Configuration
The default is the `aaa authentication enable` command default.

Command Mode
Line Configuration mode

Example
The following example specifies the authentication method when accessing a higher privilege level from a console.

```
Console(config)# line console
Console(config-line)# enable authentication default
```

**ip http authentication**
The `ip http authentication` Global Configuration mode command specifies authentication methods for HTTP server access. Use the `no` form of this command to restore the default authentication method.

Syntax

```
ip http authentication aaa login-authentication method1 [method2...]
```

no ip http authentication aaa login-authentication

Parameters

- method [method2 ...]—Specifies a list of methods that the authentication algorithm tries, in the given sequence. The additional authentication
methods are used only if the previous method returns an error, not if it fails. Specify **none** as the final method in the command line to ensure that the authentication succeeds, even if all methods return an error. Select one or more methods from the following list:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>Uses the local username database for authentication.</td>
</tr>
<tr>
<td>none</td>
<td>Uses no authentication.</td>
</tr>
<tr>
<td>radius</td>
<td>Uses the list of all RADIUS servers for authentication.</td>
</tr>
<tr>
<td>tacacs</td>
<td>Uses the list of all TACACS+ servers for authentication.</td>
</tr>
</tbody>
</table>

**Default Configuration**
The local user database is the default authentication login method. This is the same as entering the **ip http authentication local** command.

**Command Mode**
Global Configuration mode

**User Guidelines**
The command is relevant for HTTP and HTTPS server users.
The additional methods of authentication are used only if the previous method returns an error, not if it fails. Specify **none** as the final method in the command line to ensure that the authentication succeeds, even if all methods return an error.

**Example**
The following example specifies the HTTP access authentication methods.

```
Console(config)# ip http authentication aaa login-authentication radius local
```

**show authentication methods**
The **show authentication methods** Privileged EXEC mode command displays information about the authentication methods.
Syntax
show authentication methods

Command Mode
Privileged EXEC mode

Example
The following example displays the authentication configuration.

---

Console# show authentication methods

Login Authentication Method Lists
-----------------------------
Default: Radius, Local, Line
Console_Login: Line, None

Enable Authentication Method Lists
-----------------------------
Default: Radius, Enable
Console_Enable: Enable, None

<table>
<thead>
<tr>
<th>Line</th>
<th>Login Method List</th>
<th>Enable Method List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Console</td>
<td>Console_Login</td>
<td>Console_Enable</td>
</tr>
<tr>
<td>Telnet</td>
<td>Default</td>
<td>Default</td>
</tr>
<tr>
<td>SSH</td>
<td>Default</td>
<td>Default</td>
</tr>
</tbody>
</table>

HTTP: Radius, local
HTTPS: Radius, local
Dot1x: Radius

password
The password Line Configuration mode command specifies a password on a line, also known as access method, such as a console or Telnet. Use the no form of this command to return to the default password.
**Syntax**
password *password* [encrypted]
no password

**Parameters**
- **password**—Specifies the password for this line. (Length: 0–159 characters)
- **encrypted**—Specifies that the password is encrypted and copied from another device configuration.

**Default Configuration**
No password is defined.

**Command Mode**
Line Configuration mode

**Example**
The following example specifies the password ‘secret’ on a console.

```
Console(config)# line console
Console(config-line)# password secret
```

**service password-recovery**
Use the `service password-recovery` global configuration mode command to enable full functionality of the password-recovery mechanism. Use the `no service password-recovery` command to allow password-recovery mechanism without keeping the configuration and user files.

**Syntax**
service password-recovery

**Parameters**
N/A
Default Configuration
The full service password recovery is enabled by default.

Command Mode
Gobal Configuration mode

User Guidelines
This mechanism allows an end user, with physical access to the console port of the device, to enter the boot menu and trigger the password recovery process. The following functionality occurs:

- If password recovery is enabled, the user can access the boot menu and trigger the password recovery in the boot menu. All configuration files and user files are kept.
- If password recovery is disabled, the user still can access the boot menu and trigger the password recovery in the boot menu. However, the configuration files and user files are removed, and the following log message is generated to the terminal: “All the configuration and user files were removed”

Example
The following command disables password recovery:

```
console# no service password recovery
```

Note that choosing to use Password recovery option in the Boot Menu during the boot process will remove the configuration files and the user files. Would you like to continue? Y/N.

enable password
Use the enable password Global Configuration mode command to set a local password to control access to normal and privilege levels. Use the no form of this command to return to the default password.
Syntax

enable password [ level privilege-level ] { password | encrypted encrypted-password }

no enable password [ level level ]

Parameters

- level privilege-level—Level for which the password applies. If not specified the level is 15. (Range: 1–15)
- password—Password for this level. (Range: 0–159 chars)
- encrypted-password—Encrypted password you enter, copied from another device configuration.

Default

Default for level is 15.

Command Mode

Global Configuration mode

Example

```
console(config)# enable password level 15 let-me-in
```

username

Use the username Global Configuration mode command to establish a username-based authentication system. Use the no form to remove a user name.

Syntax

username name { nopassword | password password | privilege privilege-level | password encrypted encrypted-password }

username name

no username name
Parameters

- **name**—The name of the user. (Range: 1–20 characters)
- **nopassword**—No password is required for this user to log in.
- **password**—The authentication password for the user. (Range: 1–159)
- **password-encrypted**—Encrypted password you enter, copied from another device configuration.
- **privilege privilege-level**—Privilege level for which the password applies. If not specified the level is 15. (Range: 1–15)

Default
No user is defined.

Command Mode
Global Configuration mode

Example

```
console(config)# username tom privilege 15 password 1234
```

show user accounts

The **show user accounts** Privileged EXEC mode command displays information about the users local database.

Syntax

```
show user accounts
```

Command Mode
Privileged EXEC mode
Example
The following example displays information about the users local database.

```
Console# show user accounts
```

<table>
<thead>
<tr>
<th>Username</th>
<th>Privilege</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob</td>
<td>15</td>
</tr>
<tr>
<td>Robert</td>
<td>15</td>
</tr>
<tr>
<td>Smith</td>
<td>15</td>
</tr>
</tbody>
</table>

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>The user name.</td>
</tr>
<tr>
<td>Privilege</td>
<td>The user’s privilege level.</td>
</tr>
</tbody>
</table>

aaa accounting login
Use the `aaa accounting login` command in Global Configuration mode to enable accounting of device management sessions. Use the `no` form of this command to disable accounting.

**Syntax**

`aaa accounting login start-stop group radius`

`no aaa accounting login start-stop group radius`

**Parameters**

This command has no arguments or keywords.

**Default**

Disabled

**Command Mode**

Global Configuration mode
**User Guidelines**

This command enables the recording of device management sessions (Telnet, serial and WEB but not SNMP).

It records only users that were identified with a username (e.g. a user that was logged in with a line password is not recorded).

If accounting is activated, the device sends a “start”/“stop” messages to a Radius server when a user logs in / logs out respectively.

The device uses the configured priorities of the available Radius servers in order to select the Radius server.

The following table describes the supported Radius accounting Attributes Values, and when they are sent by the switch.

<table>
<thead>
<tr>
<th>Name</th>
<th>Start</th>
<th>Stop</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-Name (1)</td>
<td>Yes</td>
<td>Yes</td>
<td>User’s identity.</td>
</tr>
<tr>
<td>NAS-IP-Address (4)</td>
<td>Yes</td>
<td>Yes</td>
<td>The switch IP address that is used for the session with the Radius server.</td>
</tr>
<tr>
<td>Class (25)</td>
<td>Yes</td>
<td>Yes</td>
<td>Arbitrary value is included in all accounting packets for a specific session.</td>
</tr>
<tr>
<td>Called-Station-ID (30)</td>
<td>Yes</td>
<td>Yes</td>
<td>The switch IP address that is used for the management session.</td>
</tr>
<tr>
<td>Calling-Station-ID (31)</td>
<td>Yes</td>
<td>Yes</td>
<td>The user IP address.</td>
</tr>
<tr>
<td>Acct-Session-ID (44)</td>
<td>Yes</td>
<td>Yes</td>
<td>A unique accounting identifier.</td>
</tr>
<tr>
<td>Acct-Authenticate (45)</td>
<td>Yes</td>
<td>Yes</td>
<td>Indicates how the supplicant was authenticated.</td>
</tr>
<tr>
<td>Acct-Session-Time (46)</td>
<td>No</td>
<td>Yes</td>
<td>Indicates how long the user was logged in.</td>
</tr>
<tr>
<td>Acct-Terminate-Cause (49)</td>
<td>No</td>
<td>Yes</td>
<td>Reports why the session was terminated.</td>
</tr>
</tbody>
</table>

**Example**

```
console(config)# aaa accounting login start-stop group radius
```
aaa accounting dot1x
To enable accounting of 802.1x sessions, use the **aaa accounting dot1x** Global Configuration mode command. Use the **no** form of this command to disable accounting.

**Syntax**

```plaintext
aaa accounting dot1x start-stop group radius
no aaa accounting dot1x start-stop group radius
```

**Parameters**
This command has no arguments or keywords.

**Default**
Disabled

**Command Mode**
Global Configuration mode

**User Guidelines**
This command enables the recording of 802.1x sessions.

If accounting is activated, the device sends a “start”/“stop” messages to a Radius server when a user logs in / logs out to the network, respectively.

The device uses the configured priorities of the available Radius servers in order to select the Radius server.

If a new replaces an old supplicant (even if the port state remains authorized), the software sends a “stop” message for the old supplicant and a “start” message for the new supplicant.

In multiple sessions mode (dot1x multiple-hosts authentication), the software sends “start”/“stop” messages for each authenticated supplicant.

In multiple hosts mode (dot1x multiple-hosts), the software sends “start”/“stop” messages only for the supplicant that has been authenticated.
The software does not send “start”/“stop” messages if the port is force-authorized.

The software does not send “start”/“stop” messages for hosts that are sending traffic on the guest VLAN or on the unauthenticated VLANs.

The following table describes the supported Radius accounting Attributes Values and when they are sent by the switch.

<table>
<thead>
<tr>
<th>Name</th>
<th>Start</th>
<th>Stop</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-Name (1)</td>
<td>Yes</td>
<td>Yes</td>
<td>Supplicant’s identity.</td>
</tr>
<tr>
<td>NAS-IP-Address (4)</td>
<td>Yes</td>
<td>Yes</td>
<td>The switch IP address that is used for the session with the Radius server.</td>
</tr>
<tr>
<td>NAS-Port (5)</td>
<td>Yes</td>
<td>Yes</td>
<td>The switch port from where the supplicant has logged in.</td>
</tr>
<tr>
<td>Class (25)</td>
<td>Yes</td>
<td>Yes</td>
<td>Arbitrary value is included in all accounting packets for a specific session.</td>
</tr>
<tr>
<td>Called-Station-ID (30)</td>
<td>Yes</td>
<td>Yes</td>
<td>The switch MAC address.</td>
</tr>
<tr>
<td>Calling-Station-ID (31)</td>
<td>Yes</td>
<td>Yes</td>
<td>The supplicant MAC address.</td>
</tr>
<tr>
<td>Acct-Session-ID (44)</td>
<td>Yes</td>
<td>Yes</td>
<td>A unique accounting identifier.</td>
</tr>
<tr>
<td>Acct-Authentic (45)</td>
<td>Yes</td>
<td>Yes</td>
<td>Indicates how the supplicant was authenticated.</td>
</tr>
<tr>
<td>Acct-Session-Time (46)</td>
<td>No</td>
<td>Yes</td>
<td>Indicated how long the supplicant was logged in.</td>
</tr>
<tr>
<td>Acct-Terminate-Cause (49)</td>
<td>No</td>
<td>Yes</td>
<td>Reports why the session was terminated.</td>
</tr>
<tr>
<td>Nas-Port-Type (61)</td>
<td>Yes</td>
<td>Yes</td>
<td>Indicates the supplicant physical port type.</td>
</tr>
</tbody>
</table>

Example

```console
console(config)# aaa accounting dot1x start-stop group radius
```
show accounting
The show accounting EXEC mode command displays information about the accounting status.

Syntax
show accounting

Command Mode
EXEC mode

Example
The following example displays information about the accounting status.

```
Console# show accounting
Login: Radius
802.1x: Disabled
```

passwords min-length
The passwords min-length Global Configuration mode command configures the minimal password length in the local database. Use the no form of this command to remove the restriction.

Syntax
passwords min-length length
no passwords min-length

Parameters
length—Specifies the minimal length required for passwords. (Range: 8-64)

Default Configuration
There is no minimal length requirement until this command is executed.
**Command Mode**
Global Configuration mode

**User Guidelines**
The setting is relevant to local user passwords, line passwords, and enable passwords.

The software checks the minimum length requirement when defining a password in an unencrypted format, or when a user tries to log in.

Note that if a password is inserted in encrypted format, the minimum length requirement is checked during user login only.

Passwords that were defined before defining the minimum length requirement are only checked during user login.

**Example**
The following example configures the minimal required password length to 8 characters.

```
Console (config)# passwords min-length 8
```

**passwords strength-check enable**
Use the `passwords strength-check enable` Global Configuration mode command to enforce minimum password strength. The no form of this command disables enforcing password strength.

**Syntax**
```
passwords strength-check enable
no passwords strength-check enable
```

**Parameters**
This command has no arguments or keywords

**Default**
Disabled
**Command Mode**
Global Configuration mode

**User Guidelines**
If password strength is enabled, the user is forced to enter passwords that:

- Contain characters from user-defined several character classes (uppercase letters, lowercase letters, numbers, and special characters available on a standard keyboard).
- Contain no character that is repeated more than user-defined times consecutively.

The user can control the above attributes of password strength with specific commands.

**Example**
The following example enables password strength and configures the character classes to 3.

```text
Console (config)# passwords strength-check enable
Console (config)# passwords strength minimum character-classes 3
```

**passwords strength minimum character-classes**
Use the `passwords strength minimum character-classes` Global Configuration mode command to configure the minimal classes required for passwords in the local database. Use the `no` form to remove the requirement.

**Syntax**
`passwords strength minimum character-classes number`
`no passwords strength minimum character-classes`

**Parameters**
`number`—The minimal length required for passwords. (Range: 0–4)

**Default**
0
**Command Mode**
Global Configuration mode

**User Guidelines**
The setting is relevant to local users’ passwords, line passwords and enable passwords.

The software checks the minimum length requirement when you define a password in an unencrypted format.

The classes are: upper case letters, lower case letters, numbers and special characters.

---

**passwords strength max-limit repeated-characters**

Use the `passwords strength max-limit repeated-characters` Global Configuration mode command to configure the maximum number of characters in the new password that can be repeated consecutively. Use the `no` form to remove the requirement.

**Syntax**

`passwords strength max-limit repeated-characters number`

`no passwords strength max-limit repeated-characters`

**Parameters**

`number`—The maximum number of characters in the new password that can be repeated consecutively. (Range: 1–16)

**Default**

1

**Command Mode**
Global Configuration mode
User Guidelines
The setting is relevant to local users’ passwords, line passwords and enable passwords. The software checks the maximum number of characters in the new password that can be repeated consecutively.

passwords aging
Use the passwords aging Global Configuration mode command to enforce password aging. Use the no form of this command to return to default.

Syntax
passwords aging days
no passwords aging

Parameters
days—Specifies the number of days before a password change is forced. You can use 0 to disable aging. (Range: 0–365)

Default
Disabled

Command Mode
Global Configuration mode

User Guidelines
Aging is relevant only to users of the local database with privilege level 15 and to “enable” a password of privilege level 15.

Example
The following example configures the aging time to be 24.

Console (config)# passwords aging 24
passwords history
The passwords history Global Configuration mode command configures the number of password changes required before a password can be reused. Use the no form of this command to remove the requirement.

Syntax
passwords history number
no passwords history

Parameters
number—Specifies the number of password changes required before a password can be reused. (Range: 1–8)

Default Configuration
Password history is disabled.

Command Mode
Global Configuration mode

User Guidelines
The setting is relevant to local users’ passwords, line passwords and enable passwords.
Password history is not checked during a configuration download.
The password history is kept even if the password history check is disabled.
The password history for a user is kept as long as the user is defined.

Example
The following example sets the number of password changes required before a password can be reused to 10.

Console(config)# passwords history 10
passwords history hold-time

The passwords history hold-time Global Configuration mode command configures the duration that a password is relevant for tracking passwords history. Use the no form of this command to return to the default configuration.

Syntax
passwords history hold-time days
no passwords history hold-time

Parameters
days—Specifies the number of days a password is relevant for tracking passwords history. (Range: 1–365)

Default Configuration

Command Mode
Global Configuration mode

User Guidelines
The setting is relevant to local users’ passwords, line passwords and enable passwords.

The passwords are not deleted from the history database when they are not relevant for the password history tracking. Increasing the hold time might "return back" passwords.

Example
The following example configures the duration that a password is relevant for tracking passwords history.

Console(config)# passwords history hold-time 10
passwords lockout

The passwords lockout Global Configuration mode command enables user account lockout after a series of authentication failures. Use the no form of this command to disable the lockout feature.

Syntax

passwords lockout number

no passwords lockout

Parameters

number—Specifies the number of authentication failures before the user account is locked-out. (Range: 1–5)

Default Configuration

Lockout is disabled.

Command Mode

Global Configuration mode

User Guidelines

The setting is relevant to local users’ passwords, line passwords and enable passwords.

The account is not locked out for access from the local console.

A user with privilege level 15 can release accounts that are locked out by using the set username active, set enable-password active and set line active Privileged EXEC mode commands.

Disabling lockout unlocks all users.

Re-enabling lockout resets the authentication failures counters.

Changing the authentication failures threshold does not reset the counters.
**Example**
The following example enables user account lockout after 3 successive authentication failures.

```
Console(config)# passwords lockout 3
```

**aaa login-history file**
The `aaa login-history file` Global Configuration mode command enables writing to the login history file. Use the `no` form of this command to disable writing to the login history file.

**Syntax**
```
aaa login-history file
no aaa login-history file
```

**Default Configuration**
Writing to the login history file is enabled.

**Command Mode**
Global Configuration mode

**User Guidelines**
The login history is stored in the device internal buffer.

**Example**
The following example enables writing to the login history file.

```
Console(config)# aaa login-history file
```

**set username active**
The `set username active` Privileged EXEC mode command reactivates a locked out user account.
Syntax
set username name active

Parameters
name—Specifies the user name: (Length: 1–20 characters)

Default Configuration
There is no default configuration for this command.

Command Mode
Privileged EXEC mode

Example
The following example reactivates user ‘Bob’.

```
Console(config)# set username Bob active
```

set line active
The set line active Privileged EXEC mode command reactivates a locked out line.

Syntax
set line {console / telnet / ssh} active

Parameters
• console—Reactivates the console terminal line.
• telnet—Reactivates the virtual terminal for remote (Telnet) console access.
• ssh—Reactivates the virtual terminal for secured remote (SSH) console access.

Default Configuration
There is no default configuration for this command.
**Command Mode**
Privileged EXEC mode

**Example**
The following example reactivates the virtual terminal for remote (Telnet) console access.

```
Console(config)# set line telnet active
```

---

**set enable-password active**
The *set enable-password active* Privileged EXEC mode command reactivates a locked out local password.

**Syntax**
```
set enable-password level active
```

**Parameters**
- **level**—Specifies the privilege level to which the password applies. (Range 1–15)

**Default Configuration**
There is no default configuration for this command.

**Command Mode**
Privileged EXEC mode

**Example**
The following example reactivates a local password that applies to privilege level 1.

```
Console(config)# set enable-password 1 active
```
show passwords configuration

The **show passwords configuration** Privileged EXEC mode command displays information about the password management configuration.

**Syntax**

```
show passwords configuration
```

**Parameters**

**Command Mode**

Privileged EXEC mode

**Example**

```
Console# show passwords configuration
Passwords aging is enabled with aging time 180 days.
Minimal length: 8
Minimum character classes: 4
Maximal number of repeated characters: 2
History: 10
History hold time: 365 days
Lockout control: Disabled
Enable Passwords
Level Lockout
----- --------
1 1
15 0

Line Passwords
Line Lockout
----- ----------

Console-
Telnet LOCKOUT
SSH 0
```
The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal length</td>
<td>The minimal length required for passwords in the local database.</td>
</tr>
<tr>
<td>Minimal character classes</td>
<td>The minimal number of different types of characters (special characters, integers and so on) required to be part of the password.</td>
</tr>
<tr>
<td>Maximum number of repeated characters</td>
<td>The maximum number of times a single character can be repeated in the password.</td>
</tr>
<tr>
<td>History</td>
<td>The number of password changes required before a password in the local database can be reused.</td>
</tr>
<tr>
<td>History hold time</td>
<td>The duration that a password is relevant for tracking password history.</td>
</tr>
<tr>
<td>Lockout control</td>
<td>The user account lockout control status after a series of authentication failures.</td>
</tr>
<tr>
<td>Level</td>
<td>The applied password privilege level.</td>
</tr>
<tr>
<td>Aging</td>
<td>The password aging time in days.</td>
</tr>
<tr>
<td>Expiry date</td>
<td>The password expiration date.</td>
</tr>
<tr>
<td>Lockout</td>
<td>If lockout control is enabled, the specific number of times a user failed to enter the correct password since the last successful login is displayed. If the user is locked out, &quot;LOCKOUT&quot; is displayed.</td>
</tr>
<tr>
<td>Line</td>
<td>The applied password line type.</td>
</tr>
</tbody>
</table>

**show users login-history**

The `show users login-history` Privileged EXEC mode command displays information about the user's login history.

**Syntax**

`show users login-history [username name]`

**Parameters**

*name*—Name of the user. (Range: 1–20 characters)
**Command Mode**  
Privileged EXEC mode

**Example**  
The following example displays information about the users’ login history.

```console
Console# `show users login-history`

File save: Enabled.

<table>
<thead>
<tr>
<th>Login Time</th>
<th>Username</th>
<th>Protocol</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 18 2004 23:58:17</td>
<td>Robert</td>
<td>HTTP</td>
<td>172.16.1.8</td>
</tr>
<tr>
<td>Jan 19 2004 07:59:23</td>
<td>Robert</td>
<td>HTTP</td>
<td>172.16.0.8</td>
</tr>
<tr>
<td>Jan 19 2004 08:23:48</td>
<td>Bob</td>
<td>Serial</td>
<td></td>
</tr>
<tr>
<td>Jan 19 2004 08:29:29</td>
<td>Robert</td>
<td>HTTP</td>
<td>172.16.0.8</td>
</tr>
<tr>
<td>Jan 19 2004 08:42:31</td>
<td>John</td>
<td>SSH</td>
<td>172.16.0.1</td>
</tr>
<tr>
<td>Jan 19 2004 08:49:52</td>
<td>Betty</td>
<td>Telnet</td>
<td>172.16.1.7</td>
</tr>
</tbody>
</table>
```
RADIUS Commands

radius-server host
Use the radius-server host Global Configuration mode command to specify a RADIUS server host. Use the no form of the command to delete the specified RADIUS server host.

Syntax
radius-server host {ipv4-address | ipv6-address | ipv6z-address | hostname} [auth-port auth-port-number] [timeout timeout] [retransmit retries] [deadtime deadtime] [key key-string] [source {ipv4-address | ipv6-address}] [priority priority] [usage {login | 802.1x | all}]

no radius-server host {ipv4-address | ipv6-address | hostname}

Parameters
• ipv4-address—Specifies the RADIUS server host IPv4 address.
• ipv6-address—Specifies the RADIUS server host IPv6 address.
• ipv6z-address—Specifies the RADIUS server host IPv6Z address. The IPv6Z address format is: {ipv6-link-local-address}%{interface-name}. The subparameters are:
  • ipv6-link-local-address—Specifies the IPv6 Link Local address.
  • interface-name—Specifies the outgoing interface name. The interface name has the format:
    vlan{integer} | ch{integer} | isatap{integer} | {physical-port-name}.
  • The subparameter integer has the format: {decimal-digit} | {integer}{decimal-digit}. decimal-digit has the range 0–9.
hostname—Specifies the RADIUS server host name. Translation to IPv4 addresses only is supported. (Length: 1–158 characters. Maximum label length: 63 characters)

auth-port auth-port-number—Specifies the port number for authentication requests. If the port number is set to 0, the host is not used for authentication. (Range: 0–65535)

timeout—Specifies the timeout value in seconds. (Range: 1–30)

retransmit retries—Specifies the retransmit value. (Range: 1–10)

deadtime deadtime—Specifies the length of time in minutes during which a RADIUS server is skipped over by transaction requests. (Range: 0–2000)

key key-string—Specifies the authentication and encryption key for all RADIUS communications between the device and the RADIUS server. This key must match the encryption used on the RADIUS daemon. To specify an empty string, enter "". (Length: 0–128 characters)

source {ipv4-address | ipv6-address}—Specifies the source IPv4 or IPv6 address to use for communication. 0.0.0.0 is interpreted as a request to use the IP address of the outgoing IP interface.

priority priority—Specifies the order in which servers are used, where 0 has the highest priority. (Range: 0–65535)

usage {login | 802.1x | all}—Specifies the RADIUS server usage type. The possible values are:

- login—Specifies that the RADIUS server is used for user login parameters authentication.
- 802.1x—Specifies that the RADIUS server is used for 802.1x port authentication.
- all—Specifies that the RADIUS server is used for user login parameters authentication and 802.1x port authentication.

Default Configuration
No RADIUS host is specified; the global radius-server command values are the default values.

The default authentication port number is 1812.

If timeout is not specified, the global value is used.
If `retransmit` is not specified, the global value is used.
If `key-string` is not specified, the global value is used.
If the `source` value is not specified, the global value is used.
The default usage type is `all`.

**Command Mode**
Global Configuration mode

**User Guidelines**
To specify multiple hosts, multiple `radius-server host` commands can be used.
If no host-specific `timeout`, `retries`, `deadtime` or `key-string` values are specified, the global values apply to each RADIUS server host.
The `source` parameter address type must be the same as that of the `host` parameter.

**Example**
The following example specifies a RADIUS server host with IP address 192.168.10.1, authentication request port number 20, and a 20-second timeout period.

```
Console(config)# radius-server host 192.168.10.1 auth-port 20 timeout 20
```

**radius-server key**
Use the `radius-server key` Global Configuration mode command to set the authentication and encryption key for all RADIUS communications between the device and the RADIUS daemon. Use the `no` form of this command to restore the default configuration.

**Syntax**
```
radius-server key [key-string]
```
```
no radius-server key
```
**Parameters**

- **key-string**—Specifies the authentication and encryption key for all RADIUS communications between the device and the RADIUS server. This key must match the encryption used on the RADIUS daemon. (Range: 0–128 characters)

**Default Configuration**

The key-string is an empty string.

**Command Mode**

Global Configuration mode

**Example**

The following example defines the authentication and encryption key for all RADIUS communications between the device and the RADIUS daemon.

```
Console(config)# radius-server key enterprise-server
```

---

**radius-server retransmit**

Use the `radius-server retransmit` Global Configuration mode command to specify the number of times the software searches the list of RADIUS server hosts. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
radius-server retransmit retries
no radius-server retransmit
```

**Parameters**

- **retries**—Specifies the retransmit value. (Range: 1–10)

**Default Configuration**

The software searches the list of RADIUS server hosts 3 times.

**Command Mode**

Global Configuration mode
Example
The following example configures the number of times the software searches all RADIUS server hosts as 5.

```
console(config)# radius-server retransmit 5
```

radius-server source-ip
Use the `radius-server source-ip` Global Configuration mode command to specify the source IP address used for communication with RADIUS servers. Use the no form of this command to restore the default configuration.

Syntax
```
radius-server source-ip {source}
no radius-server source-ip {source}
```

Parameters
- `source`—Specifies the source IP address.

Default Configuration
The source IP address is the IP address of the outgoing IP interface.

Command Mode
Global Configuration mode

User Guidelines
If there is no available IP interface of the configured IP source address, an error message is issued when attempting to communicate with the IP address.

Example
The following example configures the source IP address used for communication with all RADIUS servers to 10.1.1.1.

```
console(config)# radius-server source-ip 10.1.1.1
```
**radius-server source-ipv6**

Use the `radius-server source-ipv6` Global Configuration mode command to specify the source IPv6 address used for communication with RADIUS servers. Use the no form of this command to restore the default configuration.

**Syntax**

`radius-server source-ipv6 {source}`

`no radius-server source-ipv6 {source}`

**Parameters**

- **source**—Specifies the source IPv6 address.

**Default Configuration**

The source IP address is the IP address of the outgoing IP interface.

**Command Mode**

Global Configuration mode

**User Guidelines**

If there is no available IP interface of the configured IP source address, an error message is issued when attempting to communicate with the IP address.

**Example**

The following example configures the source IP address used for communication with all RADIUS servers to 3ffe:1900:4545:3:200:f8ff:fe21:67cf.

```
criconf(config)# radius-server source-ipv6
```
radius-server timeout

Use the radius-server timeout Global Configuration mode command to set the time interval during which the device waits for a server host to reply. Use the no form of this command to restore the default configuration.

Syntax
radius-server timeout timeout

no radius-server timeout

Parameters
timeout—Specifies the timeout value in seconds. (Range: 1–30)

Default Configuration
The default timeout value is 3 seconds.

Command Mode
Global Configuration mode

Example
The following example sets the timeout interval on all RADIUS servers to 5 seconds.

Console(config)# radius-server timeout 5

radius-server deadtime

Use the radius-server deadtime Global Configuration mode command to configure the time interval during which unavailable RADIUS servers are skipped over by transaction requests. This improves RADIUS response time when servers are unavailable. Use the no form of this command to restore the default configuration.

Syntax
radius-server deadtime deadtime

no radius-server deadtime
**Parameters**

**deadtime**—Specifies the time interval in minutes during which a RADIUS server is skipped over by transaction requests. (Range: 0–2000)

**Default Configuration**

The default deadtime interval is 0.

**Command Mode**

Global Configuration mode

**Example**

The following example sets all RADIUS server deadtimes to 10 minutes.

```
Console(config)# radius-server deadtime 10
```

**show radius-servers**

Use the `show radius-servers` Privileged EXEC mode command to display the RADIUS server settings.

**Syntax**

```
show radius-servers
```

**Command Mode**

Privileged EXEC mode
Example
The following example displays RADIUS server settings.

```
Console# show radius-servers

<table>
<thead>
<tr>
<th>IP address</th>
<th>Auth</th>
<th>Acct</th>
<th>Time</th>
<th>Retrans</th>
<th>Dead</th>
<th>Source</th>
<th>Priority</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.1</td>
<td>1812</td>
<td>1813</td>
<td>-----</td>
<td>--------</td>
<td>-----</td>
<td>------</td>
<td>1</td>
<td>All</td>
</tr>
<tr>
<td>172.16.1.2</td>
<td>1812</td>
<td>1813</td>
<td>Global</td>
<td>Global</td>
<td>Global</td>
<td>Global</td>
<td>2</td>
<td>All</td>
</tr>
</tbody>
</table>

Global values

TimeOut: 3
Retransmit: 3
Deadtime: 0
Source IP: 172.16.8.1
```
TACACS+ Commands

**tacacs-server host**

Use the `tacacs-server host` Global Configuration mode command to specify a TACACS+ host. Use the `no` form of this command to delete the specified TACACS+ host.

**Syntax**

```
tacacs-server host {ip-address | hostname} [single-connection] [port port-number] [timeout timeout] [key key-string] [source {source}] [priority priority]
```

```
no tacacs-server host {ip-address | hostname}
```

**Parameters**

- `ip-address`—Specifies the TACACS+ server host IP address.
- `hostname`—Specifies the TACACS+ server host name. (Length: 1-158 characters. Maximum label length: 63 characters)
- `single-connection`—Specifies that a single open connection is maintained between the device and the daemon, instead of the device opening and closing a TCP connection to the daemon each time it communicates.
- `port port-number`—Specifies the server port number. If the port number is 0, the host is not used for authentication. (Range: 0–65535)
- `timeout timeout`—Specifies the timeout value in seconds. (Range: 1–30)
- `key key-string`—Specifies the authentication and encryption key for all TACACS+ communications between the device and the TACACS+ server. This key must match the encryption used on the TACACS+ daemon. To specify an empty string, enter "". (Length: 0-128 characters)
• **source** \{source\}—Specifies the source IP to use for the communication. 0.0.0.0 indicates a request to use the outgoing IP interface IP address.

• **priority priority**—Specifies the order in which the TACACS+ servers are used, where 0 is the highest priority. (Range: 0–65535)

**Default Configuration**
No TACACS+ host is specified.

The default **port-number** is 49.

If **timeout** is not specified, the global value is used.

If **key-string** is not specified, the global value is used.

If **source** is not specified, the global value is used.

**Command Mode**
Global Configuration mode

**User Guidelines**
Multiple **tacacs-server host** commands can be used to specify multiple hosts.

If no host-specific timeout, key, or source values are specified, the global values apply to each host. Example

The following example specifies a TACACS+ host.

```
Console(config)# tacacs-server host 172.16.1.1
```

**tacacs-server key**
Use the **tacacs-server key** Global Configuration mode command to set the authentication encryption key used for all TACACS+ communications between the device and the TACACS+ daemon. Use the **no** form of this command to disable the key.

**Syntax**
**tacacs-server key** *key-string*

**no tacacs-server key**
**Parameters**

*key-string*—Specifies the authentication and encryption key for all TACACS+ communications between the device and the TACACS+ server. This key must match the encryption used on the TACACS+ daemon. (Length: 0–128 characters)

**Default Configuration**
The default key is an empty string.

**Command Mode**
Global Configuration mode

**Example**
The following example sets Enterprise as the authentication encryption key for all TACACS+ servers.

```
Console(config)# tacacs-server key enterprise
```

---

**tacacs-server timeout**

Use the `tacacs-server timeout` Global Configuration mode command to set the interval during which the device waits for a TACACS+ server to reply. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
tacacs-server timeout timeout
no tacacs-server timeout
```

**Parameters**

*timeout*—Specifies the timeout value in seconds. (Range: 1–30)

**Default Configuration**
The default timeout value is 5 seconds.

**Command Mode**
Global Configuration mode
Example
The following example sets the timeout value to 30 for all TACACS+ servers.

Console(config)# tacacs-server timeout 30

**tacacs-server source-ip**

Use the **tacacs-server source-ip** Global Configuration mode command to configure the source IP address to be used for communication with TACACS+ servers. Use the no form of this command to restore the default configuration.

**Syntax**

tacacs-server source-ip {source}

no tacacs-server source-ip {source}

**Parameters**

source—Specifies the source IP address. (Range: Valid IP address)

**Default Configuration**
The default source IP address is the outgoing IP interface address.

**Command Mode**
Global Configuration mode

**User Guidelines**
If the configured IP source address has no available IP interface, an error message is issued when attempting to communicate with the IP address.

**Example**
The following example specifies the source IP address for all TACACS+ servers.

Console(config)# tacacs-server source-ip 172.16.8.1
show tacacs
Use the show tacacs Privileged EXEC mode command to display configuration and statistical information for a TACACS+ server.

Syntax
show tacacs [ip-address]

Parameters
ip-address—Specifies the TACACS+ server name or IP address.

Default Configuration
If ip-address is not specified, information for all TACACS+ servers is displayed.

Command Mode
Privileged EXEC mode

Example
The following example displays configuration and statistical information for all TACACS+ servers.

```
Console# show tacacs

<table>
<thead>
<tr>
<th>IP address</th>
<th>Status</th>
<th>Port</th>
<th>Single Connection</th>
<th>Time Out</th>
<th>Source IP</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.1</td>
<td>Connected</td>
<td>49</td>
<td>No</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Global values

TimeOut: 3
Source IP: 172.16.8.1
```
Syslog Commands

logging on
Use the logging on Global Configuration mode command to control error message logging. This command sends debug or error messages to a logging process, which logs messages asynchronously to designated locations for the process that generated the messages. Use the no form of this command to disable the logging process.

Syntax
logging on
no logging on

Default Configuration
Message logging is enabled.

Command Mode
Global Configuration mode

User Guidelines
The logging process controls the logging messages distribution at various destinations, such as the logging buffer, logging file or syslog server. Logging on and off at these destinations can be individually configured using the logging buffered, logging file, and logging Global Configuration mode commands. However, if the logging on command is disabled, no messages are sent to these destinations. Only the console receives messages.
Example
The following example enables logging error messages.

```
Console(config)# logging on
```

Logging host
Use the `logging host` global configuration command to log messages to a syslog server. Use the `no` form of this command to delete the syslog server with the specified address from the list of syslogs.

Syntax
```
logging host {ipv4-address | ipv6-address | hostname} \ [port port] \ [severity level] \ [facility facility] \ [description text]
```

```
no logging host {ipv4-address | ipv6-address | hostname}
```

Parameters
- `ipv4-address`—IPv4 address of the host to be used as a syslog server.
- `ipv6-address`—IPv6 address of the host to be used as a syslog server. When the IPv6 address is a Link Local address (IPv6Z address), the outgoing interface name must be specified. Refer to the User Guidelines for the interface name syntax.
- `hostname`—Hostname of the host to be used as a syslog server. Only translation to IPv4 addresses is supported. (Range: 1–158 characters. Maximum label size: 63)
- `port`—Port number for syslog messages. If unspecified, the port number defaults to 514. (Range: 1–65535)
- `level`—Limits the logging of messages to the syslog servers to a specified level: emergencies, alerts, critical, errors, warnings, notifications, informational, debugging.
- `facility`—The facility that is indicated in the message. It can be one of the following values: local0, local1, local2, local3, local4, local5, local6, local7. If unspecified, the port number defaults to local7.
- `text`—Description of the syslog server. (Range: Up to 64 characters)
**Default**
No messages are logged to a syslog server host.

**Command Mode**
Global Configuration mode

**User Guidelines**
You can use multiple syslog servers.

The format of an IPv6Z address is: `<ipv6-link-local-address>%<interface-name>`

`interface-name = vlan<integer> / ch<integer> / isatap<integer> / <physical-port-name> / 0`

`integer = <decimal-number> / <integer><decimal-number>`

`decimal-number = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9`

`physical-port-name = Designated port number, for example 1/0/16.`

If the egress interface is not specified, the default interface is selected.
Specifying interface zone=0 is equal to not defining an egress interface.

**Examples**

```
console(config)# logging host 1.1.1.121
```

```
console(config)# logging host 3000::100
```

**logging console**
Use the `logging console` Global Configuration mode command to limit messages logged to the console to messages with a specific severity level. Use the `no` form of this command to disable logging limiting to the console.

**Syntax**

`logging console level`

`no logging console`
Parameters

level—Specifies the severity level of logged messages displayed on the console. The possible values are: emergencies, alerts, critical, errors, warnings, notifications, informational and debugging.

Default Configuration
The default severity level is informational.

Command Mode
Global Configuration mode

Example
The following example limits logging messages displayed on the console to messages with severity level errors.

```
Console(config)# logging console errors
```

logging buffered

Use the logging buffered Global Configuration mode command to limit the syslog message display from an internal buffer to messages with a specific severity level, and to define the buffer size. Use the no form of this command to cancel using the buffer and returning the buffer size to default.

Syntax

```
logging buffered [buffer-size] [severity-level]

no logging buffered
```

Parameters

buffer-size—Specifies the maximum number of messages stored in the history table. (Range: 20–400)

severity-level—Specifies the severity level of messages logged in the buffer. The possible values are: emergencies, alerts, critical, errors, warnings, notifications, informational and debugging.
Default Configuration
The default severity level is informational.

Command Mode
Global Configuration mode

User Guidelines
All the syslog messages are logged to the internal buffer. This command limits the messages displayed to the user.

Example
The following example limits the syslog message display from an internal buffer to messages with severity level debugging.

```
Console(config)# logging buffered debugging
```

clear logging
Use the clear logging Privileged EXEC mode command to clear messages from the internal logging buffer.

Syntax
clear logging

Command Mode
Privileged EXEC mode

Example
The following example clears messages from the internal logging buffer.

```
Console# clear logging
Clear logging buffer [confirm]
```
logging file
Use the logging file Global Configuration mode command to limit syslog messages sent to the logging file to messages with a specific severity level. Use the no form of this command to cancel using the buffer.

Syntax
logging file level
no logging file

Parameters
level—Specifies the severity level of syslog messages sent to the logging file. The possible values are: emergencies, alerts, critical, errors, warnings, notifications, informational and debugging.

Default Configuration
The default severity level is errors.

Command Mode
Global Configuration mode

Example
The following example limits syslog messages sent to the logging file to messages with severity level alerts.

Console(config)# logging file alerts

clear logging file
Use the clear logging file Privileged EXEC mode command to clear messages from the logging file.

clear logging file
**Command Mode**
Privileged EXEC mode

**Example**
The following example clears messages from the logging file.

```
Console# clear logging file
Clear Logging File [y/n]
```

**aaa logging**
Use the `aaa logging` Global Configuration mode command to enable logging AAA login events. Use the `no` form of this command to disable logging AAA login events.

**Syntax**
```
aaa logging {login}
no aaa logging {login}
```

**Parameters**
`login`—Enables logging messages related to successful AAA login events, unsuccessful AAA login events and other AAA login-related events.

**Default Configuration**
Logging of AAA login events is enabled.

**Command Mode**
Global Configuration mode

**User Guidelines**
This command enables logging messages related to successful login events, unsuccessful login events and other login-related events. Other types of AAA events are not subject to this command.
Example
The following example enables logging messages related to AAA login events.

```
Console(config)# aaa logging login
```

**file-system logging**

Use the `file-system logging` Global Configuration mode command to enable the logging of file system events. Use the `no` form of this command to disable logging file system events.

**Syntax**

```plaintext
file-system logging {copy | delete-rename}
no file-system logging {copy | delete-rename}
```

**Parameters**

- `copy`—Specifies logging messages related to file copy operations.
- `delete-rename`—Specifies logging messages related to file deletion and renaming operations.

**Default Configuration**

Logging file system events is enabled.

**Command Mode**

Global Configuration mode

**Example**

The following example enables logging messages related to file copy operations.

```
Console(config)# file-system logging copy
```
management logging
Use the management logging Global Configuration mode command to enable logging Management Access List (ACL) deny events. Use the no form of this command to disable logging management access list events.

Syntax
management logging {deny}
no management logging {deny}

Parameters
deny—Enables logging messages related to management ACL deny actions.

Default Configuration
Logging management ACL deny events is enabled.

Command Mode
Global Configuration mode

User Guidelines
Other management ACL events are not subject to this command.

Example
The following example enables logging messages related to management ACL deny actions.

Console(config)# management logging deny

show logging
Use the show logging Privileged EXEC mode command to display the logging status and the syslog messages stored in the internal buffer.

Syntax
show logging
Command Mode
Privileged EXEC mode

Example
The following example displays the logging status and the syslog messages stored in the internal buffer.

core# show logging
Logging is enabled.
Console Logging: Level info. Console Messages: 0 Dropped.
4 messages were not logged

Application filtering control

<table>
<thead>
<tr>
<th>Application</th>
<th>Event</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>Login</td>
<td>Enabled</td>
</tr>
<tr>
<td>File system</td>
<td>Copy</td>
<td>Enabled</td>
</tr>
<tr>
<td>File system</td>
<td>Delete-Rename</td>
<td>Enabled</td>
</tr>
<tr>
<td>Management ACL</td>
<td>Deny</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Aggregation: Disabled.
Aggregation aging time: 300 Sec

01-Jan-2010 05:29:46 :%INIT-I-Startup: Warm Startup
01-Jan-2010 05:29:02 :%LINK-I-Up: Vlan 1
01-Jan-2010 05:29:02 :%LINK-I-Up: gi1/0/48
01-Jan-2010 05:29:02 :%LINK-I-Up: gi1/0/47
01-Jan-2010 05:29:00 :%LINK-W-Down: gi1/0/48

show logging file
Use the show logging file Privileged EXEC mode command to display the logging status and the syslog messages stored in the logging file.
**Syntax**

show logging file

**Command Mode**

Privileged EXEC mode

**Example**

The following example displays the logging status and the syslog messages stored in the logging file.

Logging is enabled.

Console Logging: Level info. Console Messages: 0 Dropped.


4 messages were not logged

**Application filtering control**

<table>
<thead>
<tr>
<th>Application</th>
<th>Event</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>Login</td>
<td>Enabled</td>
</tr>
<tr>
<td>File system</td>
<td>Copy</td>
<td>Enabled</td>
</tr>
<tr>
<td>File system</td>
<td>Delete-Rename</td>
<td>Enabled</td>
</tr>
<tr>
<td>Management ACL</td>
<td>Deny</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Aggregation: Disabled.

Aggregation aging time: 300 Sec

01-Jan-2010 05:57:00 :%SSHD-E-ERROR: SSH error: key_read: type mismatch: encoding error

01-Jan-2010 05:56:36 :%SSHD-E-ERROR: SSH error: key_read: type mismatch: encoding error

01-Jan-2010 05:55:37 :%SSHD-E-ERROR: SSH error: key_read: type mismatch: encoding error
01-Jan-2010 05:55:03 :%SSHD-E-ERROR: SSH error: key_read: key_from_blob bgEgGnt9
z6NHgZwKI5xKqF7cBtdl1xmFgSEWuDhho5UedydAjVkJ5XR2... failed

01-Jan-2010 05:55:03 :%SSHD-E-ERROR: SSH error: key_from_blob: invalid key type.

01-Jan-2010 05:56:34 :%SSHD-E-ERROR: SSH error: bad sigbloblen 58 != SIGBLOB_LEN
console#

---

**show syslog-servers**

Use the `show syslog-servers` Privileged EXEC mode command to display the syslog server settings.

**Syntax**

`show syslog-servers`

**Command Mode**

Privileged EXEC mode

**Example**

The following example displays the syslog server settings.

```
console# show syslog-servers

Device Configuration

<table>
<thead>
<tr>
<th>IP address</th>
<th>Port</th>
<th>Severity</th>
<th>Facility</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.121</td>
<td>514</td>
<td>info</td>
<td>local7</td>
<td></td>
</tr>
<tr>
<td>3000:100</td>
<td>514</td>
<td>info</td>
<td>local7</td>
<td></td>
</tr>
</tbody>
</table>
```

console#
RMON Commands

**show rmon statistics**

Use the `show rmon statistics` EXEC mode command to display RMON Ethernet statistics.

**Syntax**

```plaintext
show rmon statistics {interface-id}
```

**Parameters**

- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

**Command Mode**

EXEC mode

**Example**

The following example displays RMON Ethernet statistics for gigabitethernet port 1/0/1.

```plaintext
console# show rmon statistics gi1/0/1
Port gi1/0/1
Dropped: 0
Octets: 0 Packets: 0
Broadcast: 0 Multicast: 0
CRC Align Errors: 0 Collisions: 0
Undersize Pkts: 0 Oversize Pkts: 0
Fragments: 0 Jabbers: 0
64 Octets: 0 65 to 127 Octets: 1
```
The following table describes the significant fields displayed.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dropped</td>
<td>The total number of events in which packets were dropped by the probe due to lack of resources. Note that this number is not necessarily the number of packets dropped. It is the number of times this condition was detected.</td>
</tr>
<tr>
<td>Octets</td>
<td>The total number of octets of data (including those in bad packets) received on the network (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Packets</td>
<td>The total number of packets (including bad packets, broadcast packets, and multicast packets) received.</td>
</tr>
<tr>
<td>Broadcast</td>
<td>The total number of good packets received and directed to the broadcast address. This does not include multicast packets.</td>
</tr>
<tr>
<td>Multicast</td>
<td>The total number of good packets received and directed to a multicast address. This number does not include packets directed to the broadcast address.</td>
</tr>
<tr>
<td>CRC Align Errors</td>
<td>The total number of packets received with a length (excluding framing bits, but including FCS octets) of between 64 and 1518 octets, inclusive, but with either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).</td>
</tr>
<tr>
<td>Collisions</td>
<td>The best estimate of the total number of collisions on this Ethernet segment.</td>
</tr>
<tr>
<td>Undersize Pkts</td>
<td>The total number of packets received, less than 64 octets long (excluding framing bits, but including FCS octets) and otherwise well formed.</td>
</tr>
<tr>
<td>Oversize Pkts</td>
<td>The total number of packets received, longer than 1518 octets (excluding framing bits, but including FCS octets) and otherwise well formed.</td>
</tr>
</tbody>
</table>
rmon collection stats

Use the rmon collection stats Interface Configuration mode command to enable Remote Monitoring (RMON) MIB history group of statistics on an

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragments</td>
<td>The total number of packets received, less than 64 octets in length (excluding framing bits but including FCS octets) and either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).</td>
</tr>
<tr>
<td>Jabbers</td>
<td>The total number of packets received, longer than 1518 octets (excluding framing bits, but including FCS octets), and either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).</td>
</tr>
<tr>
<td>64 Octets</td>
<td>The total number of packets (including bad packets) received that are 64 octets in length (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>65 to 127 Octets</td>
<td>The total number of packets (including bad packets) received that are between 65 and 127 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>128 to 255 Octets</td>
<td>The total number of packets (including bad packets) received that are between 128 and 255 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>256 to 511 Octets</td>
<td>The total number of packets (including bad packets) received that are between 256 and 511 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>512 to 1023 Octets</td>
<td>The total number of packets (including bad packets) received that were between 512 and 1023 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>1024 to max</td>
<td>The total number of packets (including bad packets) received that were between 1024 octets and the maximum frame size in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
</tbody>
</table>

**Fragments**

The total number of packets received, less than 64 octets in length (excluding framing bits but including FCS octets) and either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).

**Jabbers**

The total number of packets received, longer than 1518 octets (excluding framing bits, but including FCS octets), and either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).

**64 Octets**

The total number of packets (including bad packets) received that are 64 octets in length (excluding framing bits but including FCS octets).

**65 to 127 Octets**

The total number of packets (including bad packets) received that are between 65 and 127 octets in length inclusive (excluding framing bits but including FCS octets).

**128 to 255 Octets**

The total number of packets (including bad packets) received that are between 128 and 255 octets in length inclusive (excluding framing bits but including FCS octets).

**256 to 511 Octets**

The total number of packets (including bad packets) received that are between 256 and 511 octets in length inclusive (excluding framing bits but including FCS octets).

**512 to 1023 Octets**

The total number of packets (including bad packets) received that were between 512 and 1023 octets in length inclusive (excluding framing bits but including FCS octets).

**1024 to max**

The total number of packets (including bad packets) received that were between 1024 octets and the maximum frame size in length inclusive (excluding framing bits but including FCS octets).
interface. Use the no form of this command to remove a specified RMON history group of statistics.

Syntax

```
route collection stats index [owner ownername] [buckets bucket-number] [interval seconds]
```

```
no route collection stats index
```

Parameters

- **index**—The requested group of statistics index. (Range: 1–65535)
- **owner ownername**—Records the name of the owner of the RMON group of statistics. If unspecified, the name is an empty string. (Range: Valid string)
- **buckets bucket-number**—A value associated with the number of buckets specified for the RMON collection history group of statistics. If unspecified, defaults to 50. (Range: 1–50)
- **interval seconds**—The number of seconds in each polling cycle. If unspecified, defaults to 1800 (Range: 1–3600).

Command Mode

Interface Configuration (Ethernet, Port-channel) mode. Cannot be configured for a range of interfaces (range context).

---

**show route collection stats**

Use the show route collection stats EXEC mode command to display the requested RMON history group statistics.

Syntax

```
show route collection stats [interface-id]
```

Parameters

- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.
Command Mode
EXEC mode

Example
The following example displays all RMON history group statistics.

```
Console# show rmon collection stats

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Interval</th>
<th>Requested Samples</th>
<th>Granted Samples</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>gi1/0/1</td>
<td>30</td>
<td>50</td>
<td>50</td>
<td>CLI</td>
</tr>
<tr>
<td>2</td>
<td>gi1/0/1</td>
<td>1800</td>
<td>50</td>
<td>50</td>
<td>Manager</td>
</tr>
</tbody>
</table>
```

The following table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>An index that uniquely identifies the entry.</td>
</tr>
<tr>
<td>Interface</td>
<td>The sampled Ethernet interface.</td>
</tr>
<tr>
<td>Interval</td>
<td>The interval in seconds between samples.</td>
</tr>
<tr>
<td>Requested Samples</td>
<td>The requested number of samples to be saved.</td>
</tr>
<tr>
<td>Granted Samples</td>
<td>The granted number of samples to be saved.</td>
</tr>
<tr>
<td>Owner</td>
<td>The entity that configured this entry.</td>
</tr>
</tbody>
</table>

**show rmon history**

Use the `show rmon history` EXEC mode command to display RMON Ethernet history statistics.

**Syntax**

```
show rmon history index {throughput | errors | other} [period seconds]
```

**Parameters**

- **index**—Specifies the set of samples to display. (Range: 1–65535)
- **throughput**—Displays throughput counters.
- **errors**—Displays error counters.
- **other**—Displays drop and collision counters.
- **period seconds**—Specifies the period of time in seconds to display.
  (Range: 1–2147483647)

**Command Mode**

EXEC mode

**Example**

The following examples display RMON Ethernet history statistics for index 1

```bash
Console# show rmon history 1 throughput
Sample Set: 1 Owner: CLI
Interface: gi1/0/1 Interval: 1800
Requested samples: 50 Granted samples: 50

Maximum table size: 500

<table>
<thead>
<tr>
<th>Time</th>
<th>Octets</th>
<th>Packets</th>
<th>Broadcast</th>
<th>Multicast</th>
<th>Util</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>Jan 18 2005</td>
<td>303595962</td>
<td>357568</td>
<td>3289</td>
<td>7287</td>
<td>19%</td>
</tr>
<tr>
<td>21:57:00</td>
<td>287696304</td>
<td>275686</td>
<td>2789</td>
<td>5878</td>
<td>20%</td>
</tr>
<tr>
<td>Jan 18 2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21:57:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Console# show rmon history 1 errors
Sample Set: 1 Owner: Me
Interface: gi1/0/1 Interval: 1800
Requested samples: 50 Granted samples: 50

Maximum table size: 500 (800 after reset)

<table>
<thead>
<tr>
<th>Time</th>
<th>CRC Align</th>
<th>Under size</th>
<th>Oversize</th>
<th>Fragments</th>
<th>Jabbers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>---------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>Jan 18 2005</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>49</td>
<td>0</td>
</tr>
<tr>
<td>21:57:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan 18 2005</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>21:57:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
The following table describes significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Date and Time the entry is recorded.</td>
</tr>
<tr>
<td>Octets</td>
<td>The total number of octets of data (including those in bad packets and excluding framing bits but including FCS octets) received on the network.</td>
</tr>
<tr>
<td>Packets</td>
<td>The number of packets (including bad packets) received during this sampling interval.</td>
</tr>
<tr>
<td>Broadcast</td>
<td>The number of good packets received during this sampling interval that were directed to the broadcast address.</td>
</tr>
<tr>
<td>Multicast</td>
<td>The number of good packets received during this sampling interval that were directed to a multicast address. This number does not include packets addressed to the broadcast address.</td>
</tr>
<tr>
<td>Utilization</td>
<td>The best estimate of the mean physical layer network utilization on this interface during this sampling interval, in hundredths of a percent.</td>
</tr>
<tr>
<td>CRC Align</td>
<td>The number of packets received during this sampling interval that had a length (excluding framing bits but including FCS octets) between 64 and 1518 octets, inclusive, but had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).</td>
</tr>
<tr>
<td>Undersize</td>
<td>The number of packets received during this sampling interval that were less than 64 octets long (excluding framing bits but including FCS octets) and were otherwise well formed.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Oversize</td>
<td>The number of packets received during this sampling interval that were longer than 1518 octets (excluding framing bits but including FCS octets) but were otherwise well formed.</td>
</tr>
<tr>
<td>Fragments</td>
<td>The total number of packets received during this sampling interval that were less than 64 octets in length (excluding framing bits but including FCS octets) and had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error), or a bad FCS with a non-integral number of octets (Alignment Error). It is normal for etherHistoryFragments to increment because it counts both runts (which are normal occurrences due to collisions) and noise hits.</td>
</tr>
<tr>
<td>Jabbers</td>
<td>The number of packets received during this sampling interval that were longer than 1518 octets (excluding framing bits but including FCS octets), and had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).</td>
</tr>
<tr>
<td>Dropped</td>
<td>The total number of events in which packets were dropped by the probe due to lack of resources during this sampling interval. This number is not necessarily the number of packets dropped, it is the number of times this condition has been detected.</td>
</tr>
<tr>
<td>Collisions</td>
<td>The best estimate of the total number of collisions on this Ethernet segment during this sampling interval.</td>
</tr>
</tbody>
</table>

**rmon alarm**

Use the **rmon alarm** Global Configuration mode command to configure alarm conditions. Use the **no** form of this command to remove an alarm.

**Syntax**

```
rmon alarm index mib-object-id interval rthreshold fthreshold revent fevent
 [type {absolute | delta}]
 [startup {rising | rising-falling | falling}] [owner name]
no rmon alarm index
```

**Parameters**

- **index**—Specifies the alarm index. (Range: 1–65535)
• **mib-object-id**—Specifies the object identifier of the variable to be sampled. (Valid OID)

• **interval**—Specifies the interval in seconds during which the data is sampled and compared with rising and falling thresholds. (Range: 1–4294967295)

• **rthreshold**—Specifies the rising threshold value. (Range: 0–4294967295)

• **fthreshold**—Specifies the falling threshold value. (Range: 0–4294967295)

• **revent**—Specifies the index of the event triggered when a rising threshold is crossed. (Range: 0–65535)

• **fevent**—Specifies the index of the event triggered when a falling threshold is crossed. (Range: 0–65535)

• **type** {absolute | delta}—Specifies the method used for sampling the selected variable and calculating the value to be compared against the thresholds. The possible values are:
  
  • **absolute**—Specifies that the selected variable value is compared directly with the thresholds at the end of the sampling interval.
  
  • **delta**—Specifies that the selected variable value of the last sample is subtracted from the current value, and the difference is compared with the thresholds.

• **startup** {rising | rising-falling | falling}—Specifies the alarm that may be sent when this entry becomes valid. The possible values are:
  
  • **rising**—Specifies that if the first sample (after this entry becomes valid) is greater than or equal to **rthreshold**, a single rising alarm is generated.
  
  • **rising-falling**—Specifies that if the first sample (after this entry becomes valid) is greater than or equal to **rthreshold**, a single rising alarm is generated. If the first sample (after this entry becomes valid) is less than or equal to **fthreshold**, a single falling alarm is generated.
  
  • **falling**—Specifies that if the first sample (after this entry becomes valid) is less than or equal to **fthreshold**, a single falling alarm is generated.

• **owner name**—Specifies the name of the person who configured this alarm. (Valid string)
Default Configuration
The default method type is **absolute**.

The default startup direction is **rising-falling**.

If the owner **name** is not specified, it defaults to an empty string.

Command Mode
Global Configuration mode

Example
The following example configures an alarm with index 1000, MIB object ID D-Link, sampling interval 360000 seconds (100 hours), rising threshold value 1000000, falling threshold value 1000000, rising threshold event index 10, falling threshold event index 10, absolute method type and rising-falling alarm.

```
console(config)# rmon alarm 1000 1.3.6.1.2.1.2.2.1.10.1 360000 1000000 1000000 10 20
```

**show rmon alarm-table**
Use the **show rmon alarm-table** EXEC mode command to display a summary of the alarms table.

**Syntax**
show rmon alarm-table

Command Mode
EXEC mode
Example
The following example displays the alarms table.

```
Console# show rmon alarm-table

<table>
<thead>
<tr>
<th>Index</th>
<th>OID</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.3.6.1.2.1.2.2.1.10.1</td>
<td>CLI</td>
</tr>
<tr>
<td>2</td>
<td>1.3.6.1.2.1.2.2.1.10.1</td>
<td>Manager</td>
</tr>
<tr>
<td>3</td>
<td>1.3.6.1.2.1.2.2.1.10.9</td>
<td>CLI</td>
</tr>
</tbody>
</table>
```

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>An index that uniquely identifies the entry.</td>
</tr>
<tr>
<td>OID</td>
<td>Monitored variable OID.</td>
</tr>
<tr>
<td>Owner</td>
<td>The entity that configured this entry.</td>
</tr>
</tbody>
</table>

**show rmon alarm**

Use the `show rmon alarm` EXEC mode command to display alarm configuration.

**Syntax**

```
show rmon alarm number
```

**Parameters**

`number`—Specifies the alarm index. (Range: 1–65535)

**Command Mode**

EXEC mode

**Example**

The following example displays RMON 1 alarms.
Console# show rmon alarm 1
Alarm 1
-------
OID: 1.3.6.1.2.1.2.2.1.10.1
Last sample Value: 878128
Interval: 30
Sample Type: delta
Startup Alarm: rising
Rising Threshold: 8700000
Falling Threshold: 78
Rising Event: 1
Falling Event: 1
Owner: CLI

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm</td>
<td>Alarm index.</td>
</tr>
<tr>
<td>OID</td>
<td>Monitored variable OID.</td>
</tr>
<tr>
<td>Last Sample Value</td>
<td>The value of the statistic during the last sampling period. For example, if the sample type is delta, this value is the difference between the samples at the beginning and end of the period. If the sample type is absolute, this value is the sampled value at the end of the period.</td>
</tr>
<tr>
<td>Interval</td>
<td>The interval in seconds over which the data is sampled and compared with the rising and falling thresholds.</td>
</tr>
<tr>
<td>Sample Type</td>
<td>The method of sampling the variable and calculating the value compared against the thresholds. If the value is absolute, the variable value is compared directly with the thresholds at the end of the sampling interval. If the value is delta, the variable value at the last sample is subtracted from the current value, and the difference is compared with the thresholds.</td>
</tr>
</tbody>
</table>
rmon event
Use the rmon event Global Configuration mode command to configure an event. Use the no form of this command to remove an event.

Syntax
rmon event index {none | log | trap | log-trap} [community text] [description text] [owner name]

no rmon event index

Parameters
• index—Specifies the event index. (Range: 1–65535)
• none—pecifies that no notification is generated by the device for this event.
• log—Specifies that a notification entry is generated in the log table by the device for this event.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup Alarm</td>
<td>The alarm that may be sent when this entry is first set. If the first sample is greater than or equal to the rising threshold, and startup alarm is equal to rising or rising-falling, then a single rising alarm is generated. If the first sample is less than or equal to the falling threshold, and startup alarm is equal falling or rising-falling, then a single falling alarm is generated.</td>
</tr>
<tr>
<td>Rising Threshold</td>
<td>The sampled statistic rising threshold. When the current sampled value is greater than or equal to this threshold, and the value at the last sampling interval is less than this threshold, a single event is generated.</td>
</tr>
<tr>
<td>Falling Threshold</td>
<td>The sampled statistic falling threshold. When the current sampled value is less than or equal to this threshold, and the value at the last sampling interval is greater than this threshold, a single event is generated.</td>
</tr>
<tr>
<td>Rising Event</td>
<td>The event index used when a rising threshold is crossed.</td>
</tr>
<tr>
<td>Falling Event</td>
<td>The event index used when a falling threshold is crossed.</td>
</tr>
<tr>
<td>Owner</td>
<td>The entity that configured this entry.</td>
</tr>
</tbody>
</table>
• **trap**—Specifies that an SNMP trap is sent to one or more management stations by the device for this event.

• **log-trap**— Specifies that an entry is generated in the log table and an SNMP trap is sent to one or more management stations by the device for this event.

• **community text**—Specifies the SNMP community to which an SNMP trap is sent. (Octet string; length: 0–127 characters)

• **description text**—Specifies a comment describing this event. (Length: 0–127 characters)

• **owner name**—Specifies the name of the person who configured this event. (Valid string)

**Default Configuration**
If the owner name is not specified, it defaults to an empty string.

**Command Mode**
Global Configuration mode

**Example**
The following example configures an event identified as index 10, for which the device generates a notification in the log table.

```
Console(config)# rmon event 10 log
```

**show rmon events**
Use the `show rmon events` EXEC mode command to display the RMON event table.

**Syntax**
show rmon events

**Command Mode**
EXEC mode
Example
The following example displays the RMON event table.

```
Console# show rmon events

Index | Description | Type | Community | Owner | Last time sent
------ | ----------- |------ |----------- |------- |----------------|
1 | Errors | Log | CLI | | Jan18 2006 23:58:17
2 | High Broadcast | Log-Trap | Router Manager | | Jan18 2006 23:59:48
```

The following table describes significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>A unique index that identifies this event.</td>
</tr>
<tr>
<td>Description</td>
<td>A comment describing this event.</td>
</tr>
<tr>
<td>Type</td>
<td>The type of notification that the device generates about this event. Can have the following values: none, log, trap, log-trap. In the case of log, an entry is made in the log table for each event. In the case of trap, an SNMP trap is sent to one or more management stations.</td>
</tr>
<tr>
<td>Community</td>
<td>If an SNMP trap is to be sent, it is sent to the SNMP community specified by this octet string.</td>
</tr>
<tr>
<td>Owner</td>
<td>The entity that configured this event.</td>
</tr>
<tr>
<td>Last time sent</td>
<td>The time this entry last generated an event. If this entry has not generated any events, this value is zero.</td>
</tr>
</tbody>
</table>

**show rmon log**

Use the `show rmon log` EXEC mode command to display the RMON log table.
**Syntax**

```
show rmon log [event]
```

**Parameters**

- **event**—Specifies the event index. (Range: 0–65535)

**Command Mode**

EXEC mode

**Example**

The following examples display the RMON log table.

```
Console# show rmon log
Maximum table size: 500 (800 after reset)

<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MIB Var.: 1.3.6.1.2.1.2.2.1.10.53, Delta, Rising, Actual Val: 800, Thres.Set: 100, Interval (sec): 1</td>
<td>Jan 18 2006 23:48:19</td>
</tr>
</tbody>
</table>
```

---

**rmon table-size**

Use the `rmon table-size` Global Configuration mode command to configure the maximum size of RMON tables. Use the no form of this command to return to the default configuration.

**Syntax**

```
rmon table-size {history entries | log entries}
no rmon table-size {history | log}
```

**Parameters**

- **history entries**—Specifies the maximum number of history table entries. (Range: 20–270)
• **log entries**—Specifies the maximum number of log table entries. (Range: 20–100)

**Default Configuration**
The default history table size is 270 entries.
The default log table size is 200 entries.

**Command Mode**
Global Configuration mode

**User Guidelines**
The configured table size takes effect after the device is rebooted.

**Example**
The following example configures the maximum size of RMON history tables to 100 entries.

```
Console(config)# rmon table-size history 100
```
**802.1x Commands**

### aaa authentication dot1x

Use the `aaa authentication dot1x` Global Configuration mode command to specify one or more authentication, authorization, and accounting (AAA) methods for use on interfaces running IEEE 802.1x. Use the `no` form of this command to restore the default configuration.

#### Syntax

```
aaa authentication dot1x default method [method2 ...]
no aaa authentication dot1x default
```

#### Parameters

- `method [method2 ...]`—Specify at least one method from the following list:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>radius</td>
<td>Uses the list of all RADIUS servers for authentication</td>
</tr>
<tr>
<td>none</td>
<td>Uses no authentication</td>
</tr>
</tbody>
</table>

#### Default Configuration

The default method is Radius.

#### Command Mode

Global Configuration mode

#### User Guidelines

Additional methods of authentication are used only if the previous method returns an error and not if the request for authentication is denied. Specify
none as the final method in the command line to ensure that authentication succeeds even if all methods return an error.

Example
The following example uses the aaa authentication dot1x default command with no authentication.

```
Console(config)# aaa authentication dot1x default none
```

**dot1x system-auth-control**

Use the `dot1x system-auth-control` Global Configuration mode command to enable 802.1x globally. Use the no form of this command to restore the default configuration.

**Syntax**
```
dot1x system-auth-control
```
```
no dot1x system-auth-control
```

**Default Configuration**

All the ports are in FORCE_AUTHORIZED state.

**Command Mode**

Global Configuration mode

**Example**
The following example enables 802.1x globally.

```
Console(config)# dot1x system-auth-control
```

**dot1x port-control**

Use the `dot1x port-control` Interface Configuration (Ethernet) mode command to enable manual control of the port authorization state. Use the no form of this command to restore the default configuration.
Syntax
dot1x port-control \{auto / force-authorized / force-unauthorized\}

no dot1x port-control

Parameters
- **auto**—Enables 802.1x authentication on the interface and causes the port to transition to the authorized or unauthorized state based on the 802.1x authentication exchange between the device and the client.
- **force-authorized**—Disables 802.1x authentication on the interface and causes the port to transition to the authorized state without any authentication exchange required. The port resends and receives normal traffic without 802.1x-based client authentication.
- **force-unauthorized**—Denies all access through this interface by forcing the port to transition to the unauthorized state and ignoring all attempts by the client to authenticate. The device cannot provide authentication services to the client through the interface.

Default Configuration
The port is in the force-authorized state.

Command Mode
Interface Configuration (Ethernet) mode

User Guidelines
It is recommended to disable spanning tree or to enable spanning-tree PortFast mode on 802.1x edge ports (ports in auto state that are connected to end stations), in order to proceed to the forwarding state immediately after successful authentication.

Example
The following example enables 802.1x authentication on gigabitethernet port 1/0/15.

```
Console(config)# interface gi1/0/15
Console(config-if)# dot1x port-control auto
```
**dot1x re-authentication**

Use the `dot1x reauthentication` Interface Configuration mode command to enable periodic re-authentication of the client. Use the `no` form of this command to return to the default setting.

**Syntax**

dot1x reauthentication

no dot1x reauthentication

**Parameters**

This command has no arguments or keywords.

**Default**

Periodic re-authentication is disabled.

**Command Mode**

Interface configuration (Ethernet)

**Example**

```plaintext
console(config)# interface gi1/0/1
console(config-if)# dot1x reauthentication
```

**dot1x timeout reauth-period**

Use the `dot1x timeout reauth-period` Interface Configuration mode command to set the number of seconds between re-authentication attempts. Use the `no` form of this command to return to the default setting.

**Syntax**

dot1x timeout reauth-period *seconds*

no dot1x timeout reauth-period
Parameters
seconds—Number of seconds between re-authentication attempts. (Range: 30–4294967295)

Default
3600

Command Mode
Interface Configuration (Ethernet) mode

Example
```
console(config)# interface gi1/0/1
console(config-if)# dot1x timeout reauth-period 5000
```

**dot1x re-authenticate**
The `dot1x re-authenticate` Privileged EXEC mode command manually initiates re-authentication of all 802.1x-enabled ports or the specified 802.1x-enabled port.

**Syntax**
dot1x re-authenticate [interface-id]

**Parameters**
interface-id—Specifies an interface ID. The interface ID must be an Ethernet port.

**Command Mode**
Privileged EXEC mode

**Example**
The following command manually initiates re-authentication of 802.1x-enabled gigabitethernet port 1/0/15.
```
Console# dot1x re-authenticate gi1/0/15
```
dot1x timeout quiet-period

Use the dot1x timeout quiet-period Interface Configuration (Ethernet) mode command to set the time interval that the device remains in a quiet state following a failed authentication exchange (for example, the client provided an invalid password). Use the no form of this command to restore the default configuration.

Syntax

dot1x timeout quiet-period seconds

no dot1x timeout quiet-period

Parameters

seconds—Specifies the time interval in seconds that the device remains in a quiet state following a failed authentication exchange with the client. (Range: 0–65535 seconds)

Default Configuration

The default quiet period is 60 seconds.

Command Mode

Interface Configuration (Ethernet) mode

User Guidelines

During the quiet period, the device does not accept or initiate authentication requests.

The default value of this command should only be changed to adjust to unusual circumstances, such as unreliable links or specific behavioral problems with certain clients and authentication servers.

To provide faster response time to the user, a smaller number than the default value should be entered.

Example

The following example sets the time interval that the device remains in the quiet state following a failed authentication exchange to 3600 seconds.
dot1x timeout tx-period

Use the *dot1x timeout tx-period* Interface Configuration (Ethernet) mode command to set the time interval during which the device waits for a response to an Extensible Authentication Protocol (EAP) request/identity frame from the client before resending the request. Use the *no* form of this command to restore the default configuration.

**Syntax**

dot1x timeout tx-period *seconds*

no dot1x timeout tx-period

**Parameters**

*seconds*—Specifies the time interval in seconds during which the device waits for a response to an EAP-request/identity frame from the client before resending the request. (Range: 1–65535 seconds)

**Default Configuration**
The default timeout period is 30 seconds.

**Command Mode**

Interface Configuration (Ethernet) mode

**User Guidelines**
The default value of this command should be changed only to adjust to unusual circumstances, such as unreliable links or specific behavioral problems with certain clients and authentication servers.

**Example**
The following command sets the time interval during which the device waits for a response to an EAP request/identity frame to 3600 seconds.

```
Console(config)# interface gi1/0/15
Console(config-if)# dot1x timeout tx-period 3600
```
**dot1x max-req**

Use the `dot1x max-req` Interface Configuration mode command to set the maximum number of times that the device sends an Extensible Authentication Protocol (EAP) request/identity frame (assuming that no response is received) to the client before restarting the authentication process. Use the `no` form of this command to restore the default configuration.

**Syntax**

dot1x max-req count

no dot1x max-req

**Parameters**

count—Specifies the maximum number of times that the device sends an EAP request/identity frame before restarting the authentication process. (Range: 1–10)

**Default Configuration**
The default maximum number of attempts is 2.

**Command Mode**
Interface Configuration (Ethernet) mode

**User Guidelines**
The default value of this command should be changed only to adjust to unusual circumstances, such as unreliable links or specific behavioral problems with certain clients and authentication servers.

**Example**
The following example sets the maximum number of times that the device sends an EAP request/identity frame to 6

```
Console(config)# interface gi1/0/15
Console(config-if)# dot1x max-req 6
```


**dot1x timeout supp-timeout**

Use the `dot1x timeout supp-timeout` Interface Configuration (Ethernet) mode command to set the time interval during which the device waits for a response to an Extensible Authentication Protocol (EAP) request frame from the client before resending the request. Use the `no` form of this command to restore the default configuration.

**Syntax**

dot1x timeout supp-timeout seconds

no dot1x timeout supp-timeout

**Parameters**

- `seconds`—Specifies the time interval in seconds during which the device waits for a response to an EAP request frame from the client before resending the request. (Range: 1–65535 seconds)

**Default Configuration**

The default timeout period is 30 seconds.

**Command Mode**

Interface Configuration (Ethernet) mode

**User Guidelines**

The default value of this command should be changed only to adjust to unusual circumstances, such as unreliable links or specific behavioral problems with certain clients and authentication servers.

**Example**

The following example sets the time interval during which the device waits for a response to an EAP request frame from the client before resending the request to 3600 seconds.

```
Console(config)# interface gi1/0/15
Console(config-if)# dot1x timeout supp-timeout 3600
```
dot1x timeout server-timeout

Use the dot1x timeout server-timeout Interface Configuration (Ethernet) mode command to set the time interval during which the device waits for a response from the authentication server. Use the no form of this command to restore the default configuration.

Syntax

dot1x timeout server-timeout seconds

no dot1x timeout server-timeout

Parameters

seconds—Specifies the time interval in seconds during which the device waits for a response from the authentication server. (Range: 1–65535 seconds)

Default Configuration

The default timeout period is 30 seconds.

Command Mode

Interface Configuration (Ethernet) mode

User Guidelines

The actual timeout period can be determined by comparing the value specified by the dot1x timeout server-timeout command to the result of multiplying the number of retries specified by the radius-server retransmit command by the timeout period specified by the radius-server timeout command, and selecting the lower of the two values.

Example

The following example sets the time interval between retransmission of packets to the authentication server to 3600 seconds.

Console(config)# interface gi1/0/15
Console(config-if)# dot1x timeout server-timeout 3600
**show dot1x**

Use the `show dot1x` Privileged EXEC mode command to display the 802.1x device or specified interface status.

**Syntax**

```
show dot1x [interface interface-id | detailed]
```

**Parameters**

- **interface-id**—Specify an interface ID. The interface ID must be an Ethernet port.
- **detailed**—Displays information for non-present ports in addition to present ports

**Default Configuration**

Display is for present ports.

**Command Mode**

Privileged EXEC mode

**Example**

The following examples display the status of present 802.1x-enabled Ethernet ports.

```
Console# show dot1x
802.1x is enabled

<table>
<thead>
<tr>
<th>Port</th>
<th>Admin Mode</th>
<th>Oper Mode</th>
<th>Reauth Control</th>
<th>Reauth Period</th>
<th>Username</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Auto</td>
<td>Authorized</td>
<td>Ena</td>
<td>3600</td>
<td>Bob</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Auto</td>
<td>Authorized</td>
<td>Ena</td>
<td>3600</td>
<td>John</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>Auto</td>
<td>Unauthorized</td>
<td>Ena</td>
<td>3600</td>
<td>Clark</td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>Force-auth</td>
<td>Authorized</td>
<td>Dis</td>
<td>3600</td>
<td>n/a</td>
</tr>
<tr>
<td>gi1/0/5</td>
<td>Force-auth</td>
<td>Unauthorized</td>
<td>Dis</td>
<td>3600</td>
<td>n/a</td>
</tr>
</tbody>
</table>
```
* Port is down or not present.

Console# `show dot1x interface gi1/0/3`

802.1x is enabled.

<table>
<thead>
<tr>
<th>Port</th>
<th>Admin Mode</th>
<th>Oper Mode</th>
<th>Reauth Control</th>
<th>Reauth Period</th>
<th>Username</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/3</td>
<td>Auto</td>
<td>Unauthorized</td>
<td>Enable</td>
<td>3600</td>
<td>Clark</td>
</tr>
</tbody>
</table>

Quiet period: 60 Seconds
Tx period: 30 Seconds
Max req: 2
Supplicant timeout: 30 Seconds

Server timeout: 30 Seconds
Session Time (HH:MM:SS): 08:19:17
MAC Address: 00:08:78:32:98:78
Authentication Method: Remote
Termination Cause: Supplicant logoff

Authenticator State Machine
State: HELD

Backend State Machine
State: IDLE
Authentication success: 9
Authentication fails: 1
The following table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The port number.</td>
</tr>
<tr>
<td>Admin mode</td>
<td>The port admin mode. Possible values: Force-auth, Force-unauth, Auto.</td>
</tr>
<tr>
<td>Oper mode</td>
<td>The port oper mode. Possible values: Authorized, Unauthorized or Down.</td>
</tr>
<tr>
<td>Reauth Control</td>
<td>Reauthentication control.</td>
</tr>
<tr>
<td>Reauth Period</td>
<td>Reauthentication period.</td>
</tr>
<tr>
<td>Username</td>
<td>The username representing the supplicant identity. This field shows the username if the port control is auto. If the port is Authorized, it displays the username of the current user. If the port is Unauthorized, it displays the last user authenticated successfully.</td>
</tr>
<tr>
<td>Quiet period</td>
<td>The number of seconds that the device remains in the quiet state following a failed authentication exchange (for example, the client provided an invalid password).</td>
</tr>
<tr>
<td>Tx period</td>
<td>The number of seconds that the device waits for a response to an Extensible Authentication Protocol (EAP) request/identity frame from the client before resending the request.</td>
</tr>
<tr>
<td>Max req</td>
<td>The maximum number of times that the device sends an EAP request frame (assuming that no response is received) to the client before restarting the authentication process.</td>
</tr>
<tr>
<td>Supplicant timeout</td>
<td>The number of seconds that the device waits for a response to an EAP-request frame from the client before resending the request.</td>
</tr>
<tr>
<td>Server timeout</td>
<td>The number of seconds that the device waits for a response from the authentication server before resending the request.</td>
</tr>
<tr>
<td>Session Time</td>
<td>The amount of time (HH:MM:SS) that the user is logged in.</td>
</tr>
<tr>
<td>MAC address</td>
<td>The supplicant MAC address.</td>
</tr>
</tbody>
</table>
show dot1x users
Use the show dot1x users Privileged EXEC mode command to display active 802.1x authenticated users for the device.

Syntax
show dot1x users [username username]

Parameters
username—Specifies the supplicant username (Length: 1–160 characters)

Command Mode
Privileged EXEC mode
Example
The following example displays 802.1x users.

```
Switch# show dot1x users
Port Username Session Auth MAC VLAN
Filter --- -------- --------- ------- ----------------------
 Time Method Address ---- ----
gi1/0/1 Bob 1d 03:08:58 Remote 0008.3b79.8787 3
 OK
gi1/0/2 John 08:19:17 None 0008.3b89.3127 2

Warning
Switch# show dot1x users username Bob
Port Username Session Auth MAC VLAN
Filter --- -------- --------- ------- ----------------------
 Time Method Address ---- ----
gi1/0/1 Bob 1d 09:07:38 Remote 0008.3b79.8787 3 OK
Filter ID #1: Supplicant-IPv4
Filter ID #2: Supplicant-IPv6
Switch# show dot1x users username Bernie
Port Username Session Auth MAC VLAN
Filter --- -------- --------- ------- ----------------------
 Time Method Address ---- ----
gi1/0/1 Bernard 03:08:58 Remote 0008.3b79.3232 9 OK
Filter ID #1: Supplicant-IPv4
```
**show dot1x statistics**

Use the **show dot1x statistics** Privileged EXEC mode command to display 802.1x statistics for the specified interface.

**Syntax**

```
show dot1x statistics interface interface-id
```

**Parameters**

```
interface-id—Specifies an interface ID. The interface ID must be an Ethernet port.
```

**Command Mode**

Privileged EXEC mode

**Example**

The following example displays 802.1x statistics for gigabitethernet port 1/0/1.

```
Console# show dot1x statistics interface gi1/0/1

EapolFramesRx: 11
EapolFramesTx: 12
EapolStartFramesRx: 1
EapolLogoffFramesRx: 1
EapolRespIdFramesRx: 3
EapolRespFramesRx: 6
EapolReqIdFramesTx: 3
EapolReqFramesTx: 6
InvalidEapolFramesRx: 0
EapLengthErrorFramesRx: 0
LastEapolFrameVersion: 1
LastEapolFrameSource: 00:08:78:32:98:78
```
The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EapolFramesRx</td>
<td>The number of valid EAPOL frames of any type that have been received by this Authenticator.</td>
</tr>
<tr>
<td>EapolFramesTx</td>
<td>The number of EAPOL frames of any type that have been transmitted by this Authenticator.</td>
</tr>
<tr>
<td>EapolStartFramesRx</td>
<td>The number of EAPOL Start frames that have been received by this Authenticator.</td>
</tr>
<tr>
<td>EapolLogoffFramesRx</td>
<td>The number of EAPOL Logoff frames that have been received by this Authenticator.</td>
</tr>
<tr>
<td>EapolRespIdFramesRx</td>
<td>The number of EAP Resp/Id frames that have been received by this Authenticator.</td>
</tr>
<tr>
<td>EapolRespFramesRx</td>
<td>The number of valid EAP Response frames (other than Resp/Id frames) that have been received by this Authenticator.</td>
</tr>
<tr>
<td>EapolReqIdFramesTx</td>
<td>The number of EAP Req/Id frames that have been transmitted by this Authenticator.</td>
</tr>
<tr>
<td>EapolReqFramesTx</td>
<td>The number of EAP Request frames (other than Req/Id frames) that have been transmitted by this Authenticator.</td>
</tr>
<tr>
<td>InvalidEapolFramesRx</td>
<td>The number of EAPOL frames that have been received by this Authenticator for which the frame type is not recognized.</td>
</tr>
<tr>
<td>EapLengthErrorFramesRx</td>
<td>The number of EAPOL frames that have been received by this Authenticator in which the Packet Body Length field is invalid.</td>
</tr>
<tr>
<td>LastEapolFrameVersion</td>
<td>The protocol version number carried in the most recently received EAPOL frame.</td>
</tr>
<tr>
<td>LastEapolFrameSource</td>
<td>The source MAC address carried in the most recently received EAPOL frame.</td>
</tr>
</tbody>
</table>

**clear dot1x statistics**

Use the `clear dot1x statistics` Privileged EXEC mode command to clear 802.1x statistics.
**Syntax**
clear dot1x statistics [interface-id]

**Parameters**

interface-id—Specify an Ethernet port ID.

**Default Configuration**

Statistics on all ports are cleared.

**Command Mode**

Privileged EXEC mode

**Example**

The following example displays how to clear 802.1x statistics on all ports

```
Console# clear dot1x statistics
```

---

**dot1x auth-not-req**

Use the `dot1x auth-not-req` Interface Configuration (VLAN) mode command to enable unauthorized devices access to the VLAN. Use the `no` form of this command to disable access to the VLAN.

**Syntax**

dot1x auth-not-req

no dot1x auth-not-req

**Default Configuration**

Access is enabled.

**Command Mode**

Interface Configuration (VLAN) mode

**User Guidelines**

An access port cannot be a member in an unauthenticated VLAN.
The native VLAN of a trunk port cannot be an unauthenticated VLAN.
For a general port, the PVID can be an unauthenticated VLAN (although only tagged packets are accepted in the unauthorized state).

**Example**
The following example enables unauthorized devices access to VLAN 5.

```console
Console(config)# interface vlan 5
Console(config-if)# dot1x auth-not-req
```

**dot1x host-mode**
Use the `dot1x host-mode` Interface Configuration mode command to allow a single host (client) or multiple hosts on an IEEE 802.1x-authorized port. Use the `no` form of this command to return to the default setting.

**Syntax**
```plaintext
dot1x host-mode {multi-host / single-host / multi-sessions}
```

**Parameters**
- `multi-host`—Enable multiple-hosts mode.
- `single-host`—Enable single-hosts mode.
- `multi-sessions`—Enable multiple-sessions mode.

**Default**
Default mode is multi-host.

**Command Mode**
Interface Configuration (Ethernet) mode

**User Guidelines**
In multiple hosts mode only one of the attached hosts must be successfully authorized for all hosts to be granted network access. If the port becomes unauthorized, all attached clients are denied access to the network.

In multiple sessions mode each host must be successfully authorized in order to grant network access. Please note that packets are NOT encrypted, and
after successful authentication, filtering is based on the source MAC address only.

Port security on a port can’t be enabled in single-host mode and in multiple-sessions mode.

It is recommended to enable reauthentication when working in multiple-sessions mode in order to detect User Logout for users that hadn’t sent Logoff.

**Example**

```bash
console(config)# interface gi1/0/1
console(config-if)# dot1x host-mode multi-host
console(config-if)# dot1x host-mode single-host
console(config-if)# dot1x host-mode multi-sessions
```

**dot1x violation-mode**

Use the `dot1x violation-mode` Interface Configuration (Ethernet) mode command to configure the action to be taken, when a station whose MAC address is not the supplicant MAC address, attempts to access the interface. Use the `no` form of this command to return to default.

**Syntax**

```bash
dot1x violation-mode {restrict / protect / shutdown}
```

```bash
no dot1x violation-mode
```

**Parameters**

- **restrict**—Generates a trap when a station whose MAC address is not the supplicant MAC address, attempts to access the interface. The minimum time between the traps is 1 second. Those frames are forwarded but their source address are not learned.

- **protect**—Discard frames with source addresses not the supplicant address.

- **shutdown**—Discard frames with source addresses not the supplicant address and shutdown the port.
**Default Configuration**
Protect

**Command Mode**
Interface Configuration (Ethernet) mode

**User Guidelines**
The command is relevant for single-host mode.
The command is not relevant for multiple-hosts mode.
The command is relevant for multiple-sessions mode, but you should note that since PCs are sending traffic prior to successful 802.1X authentication, this command might not be useful in this mode.
BPDU message whose MAC address is not the supplicant MAC address wouldn’t be discarded in the protect mode.
BPDU message whose MAC address is not the supplicant MAC address would cause a shutdown in the shutdown mode.

**Example**

```
console(config)# interface gigabitethernet gi1/0/1
console(config-if)# dot1x violation-mode protect
```

**dot1x guest-vlan**
Use the `dot1x guest-vlan` Interface Configuration (VLAN) mode command to define a guest VLAN. Use the `no` form of this command to restore the default configuration.

**Syntax**
dot1x guest-vlan
no dot1x guest-vlan

**Default Configuration**
No VLAN is defined as a guest VLAN.
**Command Mode**
Interface Configuration (VLAN) mode

**User Guidelines**
Use the `dot1x guest-vlan enable` Interface Configuration mode command to enable unauthorized users on an interface to access the guest VLAN.

If the guest VLAN is defined and enabled, the port automatically joins the guest VLAN when the port is unauthorized and leaves it when the port becomes authorized. To be able to join or leave the guest VLAN, the port should not be a static member of the guest VLAN.

**Example**
The following example defines VLAN 2 as a guest VLAN.

```
Console# configure
Console(config)# interface vlan 2
Console(config-if)# dot1x guest-vlan
```

**dot1x guest-vlan timeout**
Use the `dot1x guest-vlan timeout` Global Configuration mode command to set the time delay between enabling 802.1x (or port up) and adding a port to the guest VLAN. Use the `no` form of this command to restore the default configuration.

**Syntax**
```
dot1x guest-vlan timeout timeout
no dot1x guest-vlan timeout
```

**Parameters**
- `timeout`—Specifies the time delay in seconds between enabling 802.1x (or port up) and adding the port to the guest VLAN. (Range: 30–180)

**Default Configuration**
The guest VLAN is applied immediately.
**Command Mode**
Global Configuration mode

**User Guidelines**
This command is relevant if the guest VLAN is enabled on the port. Configuring the timeout adds delay from enabling 802.1X (or port up) to the time the device adds the port to the guest VLAN.

**Example**
The following example sets the delay between enabling 802.1x and adding a port to a guest VLAN to 60 seconds.

```
Console(config)# dot1x guest-vlan timeout 60
```

**dot1x guest-vlan enable**
Use the `dot1x guest-vlan enable` Interface Configuration (Ethernet) mode command to enable unauthorized users on the interface access to the guest VLAN. Use the `no` form of this command to disable access.

**Syntax**
dot1x guest-vlan enable
no dot1x guest-vlan enable

**Default Configuration**
The default configuration is disabled.

**Command Mode**
Interface Configuration (Ethernet) mode

**User Guidelines**
A device can have only one global guest VLAN. The guest VLAN is defined using the `dot1x guest-vlan` Interface Configuration mode command.
Example
The following example enables unauthorized users on gigabitethernet port 1/0/1 to access the guest VLAN.

```
Console(config)# interface gi1/0/15
Console(config-if)# dot1x guest-vlan enable
```

**dot1x mac-authentication**
Use the `dot1x mac-authentication` Interface Configuration (Ethernet) mode command to enable authentication based on the station’s MAC address. Use the `no` form of this command to disable access.

**Syntax**
```
dot1x mac-authentication {mac-only | mac-and-802.1x}
no dot1x mac-authentication
```

**Parameters**
- **mac-only**—Enables authentication based on the station’s MAC address only. 802.1X frames are ignored.
- **mac-and-802.1x**—Enables 802.1X authentication and MAC address authentication on the interface.

**Default Configuration**
Authentication based on the station’s MAC address is disabled.

**Command Mode**
Interface Configuration (Ethernet) mode

**User Guidelines**
The guest VLAN must be enabled when MAC authentication is enabled.
Static MAC addresses cannot be authorized. Do not change an authenticated MAC address to a static address.
It is not recommended to delete authenticated MAC addresses.
Reauthentication must be enabled when working in this mode.
Example
The following example enables authentication based on the station’s MAC address on gigabitethernet port 1/0/1.

```
Console(config)# interface gi1/0/1
Console(config-if)# dot1x mac-authentication mac-only
```

dot1x traps mac-authentication success
Use the `dot1x traps mac-authentication success` Global Configuration mode command to enable sending traps when a MAC address is successfully authenticated by the 802.1X mac-authentication access control. Use the `no` form of this command to disable the traps.

Syntax
`dot1x traps mac-authentication success`
`no dot1x traps mac-authentication success`

Parameters
This command has no arguments or keywords.

Default
Default is disabled.

Command Mode
Global Configuration mode

dot1x traps mac-authentication failure
Use the `dot1x traps mac-authentication failure` Global Configuration mode command to enable sending traps when MAC address was failed in authentication of the 802.1X MAC authentication access control. Use the `no` form of this command to disable the traps.
Syntax

dot1x traps mac-authentication failure

no dot1x traps mac-authentication failure

Parameters

This command has no arguments or keywords.

Default

Default is disabled.

Command Mode

Global Configuration mode

dot1x radius-attributes vlan

Use the dot1x radius-attributes vlan Interface Configuration mode command, to enable user-based VLAN assignment. Use the no form of this command to disable user-based VLAN assignment.

Syntax

dot1x radius-attributes vlan

no dot1x radius-attributes vlan

Parameters

This command has no arguments or keywords.

Default

Disabled

Command Mode

Interface Configuration (Ethernet) mode

User Guidelines

The configuration of this command is allowed only when the port is Forced Authorized.
Radius attributes are supported only in the multiple sessions mode (multiple hosts with authentication).

When Radius attributes are enabled and the Radius Accept message does not contain the supplicant’s VLAN as an attribute, then the supplicant is rejected.

Packets to the supplicant are sent untagged.

After successful authentication the port remains member in the unauthenticated VLANs and in the Guest VLAN. Other static VLAN configuration is not applied on the port. If the supplicant VLAN does not exist on the switch, the supplicant is rejected.

Example

```
console(config)# interface gi1/0/1
console(config-if)# dot1x radius-attributes vlan
```

**dot1x radius-attributes filter-id**

Use the `dot1x radius-attributes filter-id` Interface Configuration mode command to enable user-based ACL/Qos-Policy assignment. Use the `no` form of this command to disable user-based ACL/Qos-Policy assignment.

**Syntax**

```
dot1x radius-attributes filter-id

no dot1x radius-attributes filter-id
```

**Parameters**

This command has no arguments or keywords.

**Default**

Disabled

**Command Mode**

Interface Configuration (Ethernet) mode
**User Guidelines**
User based ACL/Qos-Policy assignment is supported only in 802.1x multiple sessions.

The configuration of the parameter is allowed only when the port is Forced Authorized or Forced Unauthorized.

---

**dot1x radius-attributes errors**

Use the `dot1x radius-attributes errors` Global Configuration mode command to specify error handling for the Radius attributes feature. Use the `no` form of this command to return to default.

**Syntax**

`dot1x radius-attributes errors filter-id resources {accept | reject}`

`no dot1x radius-attributes errors filter-id resources`

**Parameters**

`accept`—If the Filter-ID cannot be allocated for resource allocation reasons, the user is accepted. If the Filter-ID cannot be allocated for other reasons, the user is rejected.

`reject`—If the Filter-ID cannot be assigned, the user is rejected.

**Default**

Reject

**Command Mode**

Global Configuration mode

---

**dot1x legacy-supp-mode**

Use the `dot1x legacy-supp-mode` Interface Configuration mode command in multiple session mode to enable 802.1x switch to send a periodic EAPOL request identity frame according to tx timeout period in order to verify authentication in multiple session mode of clients that do not follow 802.1x standard behavior. Use the `no` form of this command to return to the default setting.
Syntax

dot1x legacy-supp-mode

no dot1x legacy-supp-mode

Parameters
This command has no arguments or keywords.

Default
Legacy support is disabled.

Command Mode
Interface Configuration (Ethernet) mode

User Guidelines
The command causes 802.1x switch to send an Extensible Authentication Protocol (EAP)-request/identity frame from the authenticator (switch) each tx-period automatically, when in multiple session mode. The command should be activated only when all devices connected to that port do not follow 802.1x standard behavior to send EAPOL start packets when the client link goes up (for example, some Windows OS with pre Service Pack 3).

---

show dot1x advanced

Use the show dot1x advanced Privileged EXEC mode command to display 802.1x advanced features for the device or specified interface.

Syntax

show dot1x advanced [interface-id | detailed]

Parameters

- interface-id—Specify an interface ID. The interface ID must be an Ethernet port.
- detailed—Displays information for non-present ports in addition to present ports
**Default Configuration**
Displays is for present ports.

**Command Mode**
Privileged EXEC mode

**Example**
The following example displays 802.1x advanced features for the device.

```
console# show dot1x advanced
Guest VLAN: 3978
Unauthenticated VLANs: 91, 92
Interface Multiple Guest MAC VLAN Legacy- Policy
Hosts VLAN Authentication Assignment supp Mode Assignment
------------------ --------------------- ----------- --------- -----
gi1/0/1 Disabled Enabled MAC-and-802.1X Enabled Enable Disabled

gi1/0/2 Enabled Disabled Disabled Enabled Enable Disabled

Switch# show dot1x advanced gi1/0/1

Interface Multiple Guest MAC VLAN Legacy- Policy
Hosts VLAN Authentication Assignment supp Mode Assignment
------------------ ---------------------- ----------- ------ -------
gi1/0/1 Disabled Enabled MAC-and-802.1X Enabled Enable
Legacy-Supp mode is disabled
Policy assignment resource err handling: Accept
Single host parameters
Violation action: Discard
Trap: Enabled
Status: Single-host locked
Violations since last trap: 9
```

**dot1x system-auth-control monitor**
Use the `dot1x system-auth-control monitor` Global Configuration command to enable 802.1x globally the 802.1x Monitoring mode and define the Monitor VLAN. Use the `no` format of the command to return to default.
Syntax

dot1x system-auth-control monitor [vlan vlan-id]

no dot1x system-auth-control monitor

Parameters

vlan vlan-id—Specifies the 802.1x Monitoring VLAN. If the parameter is omitted, the Default VLAN is used as the 802.1x Monitoring VLAN. (Range: Any manually created VLAN or the Default VLAN)

Default

Disabled

Command Mode

Global Configuration mode

User Guidelines

The 802.1x Monitoring VLAN cannot be deleted manually.

show dot1x monitoring result

Use the show dot1x monitoring result Privileged EXEC mode command to display the captured information of each interface/host on the switch/stack.

Syntax

show dot1x monitoring result [username username]

Parameters

username username—Specifies supplicant username (Range: 1–80 characters)

Command Mode

Privileged EXEC mode
User Guidelines
The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usernamr</td>
<td>Supplicant Username</td>
</tr>
<tr>
<td>VLAN</td>
<td>VLAN assigned to Supplicant</td>
</tr>
<tr>
<td>MAC address</td>
<td>Supplicant MAC address</td>
</tr>
<tr>
<td>Port</td>
<td>Ethernet port or port-channel</td>
</tr>
<tr>
<td>Reject reason</td>
<td>Reason in the case of failure. The following table describes the reasons.</td>
</tr>
<tr>
<td>Time</td>
<td>Supplicant Session time</td>
</tr>
</tbody>
</table>

Table 1: Reject Reason Description

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL-DEL</td>
<td>ACL was deleted by a user</td>
</tr>
<tr>
<td>ACL-NOTEXT</td>
<td>ACL sent by radius Server does not exist on the device</td>
</tr>
<tr>
<td>ACL-OVRFL</td>
<td>ACL sent by radius server can not be applied because of TCAM overflow</td>
</tr>
<tr>
<td>AUTH-ERR</td>
<td>Rejected by Radius due wrong user name or password in Radius server</td>
</tr>
<tr>
<td>FLTR-ERR</td>
<td>Radius accept message contains more than 2 filter-id</td>
</tr>
<tr>
<td>FRS-MTH-DENY</td>
<td>First method is &quot;deny&quot;</td>
</tr>
<tr>
<td>IPv6WithMAC</td>
<td>Radius accept message contains filter with IPv6 DIP and MAC addresses</td>
</tr>
<tr>
<td>IPV6WithNotIP</td>
<td>Radius accept message contains IPv6 and not IP simultaneously</td>
</tr>
<tr>
<td>POL-BasicMode</td>
<td>Policy Map is not supported in the QoS basic mode</td>
</tr>
<tr>
<td>POL-DEL</td>
<td>Policy Map was deleted by a user</td>
</tr>
<tr>
<td>POL-OVRFL</td>
<td>Policy Map sent by radius server can not be applied because of TCAM overflow</td>
</tr>
<tr>
<td>RAD-APIERR</td>
<td>RADIUS API returned error (e.g. No RADIUS server is configured).</td>
</tr>
</tbody>
</table>
Table 1: Reject Reason Description

<table>
<thead>
<tr>
<th>RAD_INVLRES</th>
<th>RADIUS server returned invalid packet (e.g. EAP Attribute is missing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAD-NORESP</td>
<td>RADIUS server is not responding</td>
</tr>
<tr>
<td>VLAN-DFLT</td>
<td>VLAN sent by radius server can not be applied because it is the Default VLAN</td>
</tr>
<tr>
<td>VLAN-DYNAM</td>
<td>VLAN sent by radius server can not be applied because it is a Dynamic VLAN</td>
</tr>
<tr>
<td>VLAN-GUEST</td>
<td>VLAN sent by radius server can not be applied because it is the Guest VLAN</td>
</tr>
</tbody>
</table>

Examples

Example 1
Switch# show dot1x monitoring results
Monitoring VLAN: 100

<table>
<thead>
<tr>
<th>Port VLAN</th>
<th>Username</th>
<th>MAC Address</th>
<th>Reject Reason</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>100</td>
<td>0008.3b79.8787</td>
<td>VLAN-NOTEX</td>
<td>08:19:17</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>15</td>
<td>0008.3b89.3128</td>
<td>SERV-ERR</td>
<td>09:20:11</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>5</td>
<td>0008.3b89.3129</td>
<td>SERV-ERR</td>
<td>09:20:11</td>
</tr>
</tbody>
</table>

Example 2
Switch# show dot1x monitoring Bob
Username: Bob
Port gi1/0/1
Quiet period: 60 Seconds
Tx period: 30 Seconds
Max req: 2
Supplicant timeout: 30 Seconds
Server timeout: 30 Seconds
Session Time (HH:MM:SS): 08:19:17
MAC Address: 00:08:78:32:98:78
Authentication Method: Remote
Assigned VLAN: 207
Reason for Failure: Radius server rejected authentication because username/password mismatch

Example 3
Switch# show dot1x monitoring Tom
Username: Tom
Port gi1/0/1
Quiet period: 60 Seconds
Tx period: 30 Seconds
Max req: 2
Supplicant timeout: 30 Seconds
Server timeout: 30 Seconds
Session Time (HH:MM:SS): 08:19:17
MAC Address: 00:08:78:32:98:78
Authentication Method: Remote
Assigned VLAN: 207
Reason for Failure: VLAN was not defined on Switch
Ethernet Configuration Commands

**interface**
Use the `interface` Global Configuration mode command to configure an interface and enter interface configuration mode.

**Syntax**
```
interface interface-id
```

**Parameters**
- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

**interface range**
Use the `interface range` command to execute a command on multiple ports at the same time.

**Syntax**
```
interface range interface-id-list
```

**Parameters**
- `interface-id-list`—Specify list of interface IDs. The interface ID can be one of the following types: Ethernet port or Port-channel

**User Guidelines**
Commands under the interface range context are executed independently on each interface in the range: If the command returns an error on one of the interfaces, it does not stop the execution of the command on other interfaces.
Example

```
console(config)# interface range gi1/0/1-20
```

description
Use the `description` Interface Configuration (Ethernet, Port-channel) mode command to add a description to an interface. Use the `no` form of this command to remove the description.

Syntax
```
description string
no description
```

Parameters
`string`—Specifies a comment or a description of the port to assist the user. (Length: 1–64 characters)

Default Configuration
The interface does not have a description.

Command Mode
Interface Configuration (Ethernet, Port-channel) mode

Example
The following example adds the description ‘SW#3’ to gigabitethernet port 1/0/5.

```
Console(config)# interface gi1/0/5
Console(config-if)# description SW#3
```

speed
Use the `speed` Interface Configuration (Ethernet, Port-channel) mode command to configure the speed of a given Ethernet interface when not
using auto-negotiation. Use the no form of this command to restore the default configuration.

**Syntax**
```
speed {10 | 100 | 1000 | 10000}
no speed
```

**Parameters**
- 10—Forces 10 Mbps operation.
- 100—Forces 100 Mbps operation.
- 1000—Forces 1000 Mbps operation.
- 10000—Forces 10000 Mbps operation.

**Default Configuration**
The port operates at its maximum speed capability.

**Command Mode**
Interface Configuration (Ethernet, Port-channel) mode

**User Guidelines**
The no speed command in a Port-channel context returns each port in the Port-channel to its maximum capability.

**Example**
The following example configures the speed of gigabitethernet port 1/0/5 to 100 Mbps operation.

```
Console(config)# interface gi1/0/5
Console(config-if)# speed 100
```

**duplex**
Use the duplex Interface Configuration (Ethernet, Port-channel) mode command to configure the full/half duplex operation of a given Ethernet
interface when not using auto-negotiation. Use the no form of this command to restore the default configuration.

**Syntax**

duplex {half | full}

no duplex

**Parameters**

- half—Forces half-duplex operation.
- full—Forces full-duplex operation.

**Default Configuration**
The interface operates in full duplex mode.

**Command Mode**
Interface Configuration (Port-channel) mode

**Example**
The following example configures gigabitethernet port 1/0/5 to operate in full duplex mode.

```
Console(config)# interface gi1/0/5
Console(config-if)# duplex full
Console(config-if)#
```

**negotiation**

Use the negotiation Interface Configuration (Ethernet, Port-channel) mode command to enable auto-negotiation operation for the speed and duplex parameters and master-slave mode of a given interface, where the preferred default mode is master mode. Use the no form of this command to disable auto-negotiation.

**Syntax**

negotiation [capability [capability2 ... capability5]] [preferred {master | slave}]
no negotiation

**Parameters**

- **capability**—Specifies the capabilities to advertise. (Possible values: 10h, 10f, 100h, 100f, 1000f). If unspecified, defaults to list of all the capabilities of the port.

- **Preferred**—Specifies the master-slave preference:
  - Master—Advertise master preference
  - Slave—Advertise slave preference

**Default Configuration**

Auto-negotiation is enabled and preferred default mode is master mode.

**Command Mode**

Interface Configuration (Ethernet, Port-channel) mode

**Example**

The following example enables auto-negotiation on gigabitethernet port 1/0/5.

```
Console(config)# interface gi1/0/5
Console(config-if)# negotiation
Console(config-if)#
```

**flowcontrol**

Use the `flowcontrol` Interface Configuration (Ethernet, Port-channel) mode command to configure the Flow Control on a given interface. Use the `no` form of this command to disable Flow Control.

**Syntax**

```
flowcontrol {auto | on | off}

no flowcontrol
```
Parameters

- **aut**—Specifies auto-negotiation.
- **on**—Enables Flow Control.
- **off**—Disables Flow Control.

**Default Configuration**
Flow control is enabled.

**Command Mode**
Interface Configuration (Ethernet, Port-channel) mode

**User Guidelines**
Use the `negotiation` command to enable flow control auto.

**Example**
The following example enables Flow Control on port gi1/0/1

```
Console(config)# interface gi1/0/1
Console(config-if)# flowcontrol on
```

### mdix

Use the `mdix` Interface Configuration (Ethernet) mode command to enable cable crossover on a given interface. Use the `no` form of this command to disable cable crossover.

**Syntax**
```
mdix {on | auto}
no mdix
```

**Parameters**

- **on**—Enables manual MDIX.
- **auto**—Enables automatic MDI/MDIX.
**Default Configuration**
The default setting is On.

**Command Mode**
Interface Configuration (Ethernet) mode

**Example**
The following example enables automatic crossover on port 1/5.

```
Console(config)# interface gi1/0/1/5
Console(config-if)# mdix auto.
```

The following example enables automatic crossover on port gigabitethernet 1/0/1.

```
Console(config)# interface gi1/0/5
Console(config-if)# mdix auto
```

**back-pressure**
Use the back-pressure Interface Configuration (Ethernet) mode command to enable back pressure on a specific interface. Use the no form of this command to disable back pressure.

**Syntax**
back-pressure
no back-pressure

**Default Configuration**
Back pressure is enabled.

**Command Mode**
Interface Configuration (Ethernet) mode
Example
The following example enables back pressure on port gi1/0/5.

```
Console(config)# interface gi1/0/5
Console(config-if)# back-pressure
```

**port jumbo-frame**
Use the `port jumbo-frame` Global Configuration mode command to enable jumbo frames on the device. Use the `no` form of this command to disable jumbo frames.

**Syntax**
```
port jumbo-frame
no port jumbo-frame
```

**Default Configuration**
Jumbo frames are disabled on the device.

**Command Mode**
Global Configuration mode

**User Guidelines**
This command takes effect only after resetting the device.

**Example**
The following example enables jumbo frames on the device.

```
Console(config)# port jumbo-frame
```

**clear counters**
Use the clear counters EXEC mode command to clear counters on all or on a specific interface
Syntax
clear counters [interface-id]

Parameters
- interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode
EXEC mode

Example
The following example clears the statistics counters for gigabitethernet port 1/0/5.

```diff
Console# clear counters gi1/0/5.
```

**set interface active**
Use the set interface active EXEC mode command to reactivate an interface that was shut down.

Syntax
set interface active {interface-id}

Parameters
interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode
EXEC mode

User Guidelines
This command is used to activate interfaces that were configured to be active, but were shut down by the system.
Example
The following example reactivates gigabitethernet port 1/0/1.

console# set interface active gi1/0/1

show interfaces configuration
Use the show interfaces configuration EXEC mode command to display the configuration for all configured interfaces or for a specific interface.

Syntax
show interfaces configuration [interface-id | detailed]

Parameters
- interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.
- detailed—Displays information for non-present ports in addition to present ports.

Default Configuration
Display is for present ports.

Command Mode
EXEC mode

Example
The following example displays the configuration of all present configured interfaces:

code=console# show interfaces configuration
Flow     Admin  Back     Mdix
Port   Type      Duplex  Speed  Neg      control  State  Pressure Mode
------ --------- ------  -----  -------- -------  -----  -------- -
gi1/0/1 1G-Copper Full    10000  Disabled Off      Up     Disabled Off
gi1/0/2 1G-Copper Full    1000   Disabled Off      Up     Disabled Off
show interfaces status

Use the show interfaces status EXEC mode command to display the status of all configured interfaces or of a specific interface.

Syntax

```
show interfaces status [interface-id | detailed]
```

Parameters

- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.
- **detailed**—Displays information for non-present ports in addition to present ports.

Default Configuration

Display is for present ports.

Command Mode

EXEC mode

Example

The following example displays the status of all present configured interfaces.

```
console# show interfaces status

Port Type Duplex Speed Neg ctrl State Pressure Mode
------- --------- ------ ----- -------- ---- ------ -------- --
gi1/0/1 1G-Copper Full 1000 Disabled Off Up Disabled Off

console# show interfaces status

Port Type Duplex Speed Neg ctrl State Pressure Mode
------- --------- ------ ----- -------- ---- ------ -------- --
gi1/0/1 1G-Copper Full 1000 Disabled Off Up Disabled Off
```
**show interfaces advertise**

Use the `show interfaces advertise` EXEC mode command to display auto-negotiation advertisement information for all configured interfaces or for a specific interface.

**Syntax**

`show interfaces advertise [interface-id | detailed]`

**Parameters**

- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.
- `detailed`—Displays information for non-present ports in addition to present ports.

**Default Configuration**

Display is for present ports.

**Command Mode**

EXEC mode

**Examples**

The following examples display auto-negotiation information for all present interfaces.

```
Console# show interfaces advertise

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Neg</th>
<th>Operational Link Advertisement</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>1G-Copper</td>
<td>Enable</td>
<td>1000f, 100f, 10f, 10h</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>1G-Copper</td>
<td>Enable</td>
<td>1000f</td>
</tr>
</tbody>
</table>
```
Console# **show interfaces advertise** gi1/0/1
Port: gi1/0/1
Type: 1G-Copper
Link state: Up
Auto Negotiation: enabled

<table>
<thead>
<tr>
<th>10h</th>
<th>10f</th>
<th>100</th>
<th>100f</th>
<th>1000f</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>---</td>
<td>h</td>
<td>----</td>
<td>------</td>
</tr>
</tbody>
</table>

Admin Local link Advertisement: yes
Oper Local link Advertisement: yes
Remote Local link Advertisement: yes
Priority Resolution: yes

Console# **show interfaces advertise** gi1/0/1
Port: gi1/0/1
Type: 1G-Copper
Link state: Up
Auto negotiation: disabled.

---

**show interfaces description**

Use the **show interfaces description** EXEC mode command to display the description for all configured interfaces or for a specific interface.

**Syntax**

`show interfaces description [interface-id | detailed]`

**Parameters**

- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.
- **detailed**—Displays information for non-present ports in addition to present ports.

**Default Configuration**

Display is for present ports.

**Command Mode**

EXEC mode
Example
The following example displays the description of all present configured interfaces.

```
Console# show interfaces description

Port Description
gi1/0/1 -------------------------------
gi1/0/1 Port that should be used for management only
```

show interfaces counters
Use the show interfaces counters EXEC mode command to display traffic seen by all the physical interfaces or by a specific interface.

Syntax
```
show interfaces counters [interface-id | detailed]
```

Parameters
- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.
- **detailed**—Displays information for non-present ports in addition to present ports.

Default Configuration
Display is for present ports.
**Command Mode**
EXEC mode

**Example**
The following example displays traffic seen by all present physical interfaces.

```
console# show interfaces counters

<table>
<thead>
<tr>
<th>Port</th>
<th>InUcastPkts</th>
<th>InMcastPkts</th>
<th>InBcastPkts</th>
<th>InOctets</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port</th>
<th>OutUcastPkts</th>
<th>OutMcastPkts</th>
<th>OutBcastPkts</th>
<th>OutOctets</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>0</td>
<td>1</td>
<td>35</td>
<td>7051</td>
</tr>
</tbody>
</table>

Alignment Errors: 0
FCS Errors: 0
Single Collision Frames: 0
Multiple Collision Frames: 0
SQE Test Errors: 0
Deferred Transmissions: 0
Late Collisions: 0
Excessive Collisions: 0
Carrier Sense Errors: 0
Oversize Packets: 0
Internal MAC Rx Errors: 0
Symbol Errors: 0
Received Pause Frames: 0
Transmitted Pause Frames: 0
```
The following table describes the fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InOctets</td>
<td>The number of received octets.</td>
</tr>
<tr>
<td>InUcastPkts</td>
<td>The number of received unicast packets.</td>
</tr>
<tr>
<td>InMcastPkts</td>
<td>The number of received multicast packets.</td>
</tr>
<tr>
<td>InBcastPkts</td>
<td>The number of received broadcast packets.</td>
</tr>
<tr>
<td>OutOctets</td>
<td>The number of transmitted octets.</td>
</tr>
<tr>
<td>OutUcastPkts</td>
<td>The number of transmitted unicast packets.</td>
</tr>
<tr>
<td>OutMcastPkts</td>
<td>The number of transmitted multicast packets.</td>
</tr>
<tr>
<td>OutBcastPkts</td>
<td>The number of transmitted broadcast packets.</td>
</tr>
<tr>
<td>FCS Errors</td>
<td>The number of frames received that are an integral number of octets in length but do not pass the FCS check.</td>
</tr>
<tr>
<td>Single Collision Frames</td>
<td>The number of frames that are involved in a single collision, and are subsequently transmitted successfully.</td>
</tr>
<tr>
<td>Multiple Collision Frames</td>
<td>The number of frames that are involved in more than one collision and are subsequently transmitted successfully.</td>
</tr>
<tr>
<td>SQE Test Errors</td>
<td>The number of times that the SQE TEST ERROR is received. The SQE TEST ERROR is set in accordance with the rules for verification of the SQE detection mechanism in the PLS Carrier Sense Function as described in IEEE Std. 802.3, 2000 Edition, section 7.2.4.6.</td>
</tr>
<tr>
<td>Deferred Transmissions</td>
<td>The number of frames for which the first transmission attempt is delayed because the medium is busy.</td>
</tr>
<tr>
<td>Late Collisions</td>
<td>The number of times that a collision is detected later than one slotTime into the transmission of a packet.</td>
</tr>
<tr>
<td>Excessive Collisions</td>
<td>The number of frames for which transmission fails due to excessive collisions.</td>
</tr>
<tr>
<td>Oversize Packets</td>
<td>The number of frames received that exceed the maximum permitted frame size.</td>
</tr>
</tbody>
</table>
show port jumbo-frame
Use the show port jumbo-frame EXEC mode command to display the configuration of jumbo frames.

**Syntax**
show port jumbo-frame

**Command Mode**
EXEC mode

**Example**
The following example displays the configuration of jumbo frames on the device.

```
Console# show port jumbo-frame
Jumbo frames are disabled
Jumbo frames will be enabled after reset
```

show errdisable interfaces
Use the show errdisable interfaces EXEC mode command to display the Err-Disable state of all interfaces or of a specific interface.
**Syntax**
show errdisable interfaces

**Parameters**
- Interface - Interface number
- port-channel-number - Port channel index.

**Command Mode**
EXEC mode

**Example**
The following example displays the Err-Disable state of all interfaces.

```
Console# show errdisable interfaces
Interface Reason
---------- --------------
gi1/1/50 stp-bpdu-guard
```

**storm-control broadcast enable**
Use the `storm-control broadcast enable` Interface Configuration mode command to enable storm control. Use the `no` form of this command to disable storm control.

**Syntax**

```
storm-control broadcast enable
no storm-control broadcast enable
```

**Parameters**
This command has no arguments or keywords.

**Default Configuration**
Disabled
**Command Mode**  
Interface Configuration mode(Ethernet)

**User Guidelines**

- Use the `storm-control broadcast level` Interface Configuration command to set the maximum rate.

- Use the `storm-control include-multicast` Interface Configuration command to also count multicast packets and optionally unknown unicast packets in the storm control calculation.

**Example**

```console
console(config)# interface gi1/0/1
console(config-if)# storm-control broadcast enable
```

**storm-control broadcast level kbps**  
Use the `storm-control broadcast level` Interface Configuration mode command to configure the maximum rate of broadcast. Use the `no` form of this command to return to default.

**Syntax**

```plaintext
storm-control broadcast level kbps kbps
no storm-control broadcast level
```

**Parameters**

- `kbps`—Maximum of kilo bits per second of broadcast traffic on a port. (Range: GE: 3.5M–1G, 10GE: 8.5M–10G)

**Default Configuration**

1000

**Command Mode**  
Interface Configuration mode (Ethernet)
User Guidelines
Use the `storm-control broadcast enable` Interface Configuration command to enable storm control.

The calculated rate includes the 20 bytes of Ethernet framing overhead (preamble+SFD+IPG).

Example

```
console(config)# interface gi1/0/1
console(config-if)# storm-control broadcast level kbps 12345
```

**storm-control include-multicast**

Use the `storm-control include-multicast` Interface Configuration mode command to count multicast packets in the broadcast storm control. Use the `no` form of this command to disable counting of multicast packets in the broadcast storm control.

**Syntax**

```
storm-control include-multicast
no storm-control include-multicast
```

**Parameters**

**Default Configuration**

Disabled

**Command Mode**

Interface Configuration mode (Ethernet)

**Example**

```
console(config)# interface gi1/0/1
console(config-if)# storm-control include-multicast
```
**show storm-control**

Use the `show storm-control` EXEC mode command to display the configuration of storm control.

**Syntax**

```
show storm-control [interface-id | detailed]
```

**Parameters**

- **interface-id**—Specifies the interface.
- **detailed**—Displays information for non-present ports in addition to present ports.

**Default Configuration**

Display is for present ports.

**Command Mode**

EXEC mode

**Example**

```
console# show storm-control
Port State Rate [Kbits/Sec] Included
------- -------- --------------- ------------------------
gi1/0/1 Enabled 12345 Broadcast, Multicast, Unknown unicast
gi1/0/2 Disabled 100000 Broadcast
```

**User Guidelines**

Use the `storm-control broadcast enable` Interface Configuration command to enable storm control.

The calculated rate includes the 20 bytes of Ethernet framing overhead (preamble+SFD+IPG).

If the suppression level in percentage is translated (for the current port’s speed) to a rate that is lower then the minimum rate, the minimum rate would be set.
Example

```console
console(config)# interface gi1/0/1
console(config-if)# storm-control broadcast level kbps 12345
```
PHY Diagnostics Commands

test cable-diagnostics tdr
Use the test cable-diagnostics tdr Privileged EXEC mode command to use Time Domain Reflectometry (TDR) technology to diagnose the quality and characteristics of a copper cable attached to a port.

Syntax

test cable-diagnostics tdr interface interface-id

Parameters

interface-id—Specifies an interface ID. The interface ID must be an Ethernet port.

Command Mode

Privileged EXEC mode

User Guidelines

The port to be tested should be shut down during the test, unless it is a combination port with fiber port active.

The maximum length of cable for the TDR test is 120 meters.

Example

The following examples test the copper cables attached to ports 7 and 8.

Console# test cable-diagnostics tdr interface gi1/0/7
Cable is open at 64 meters

Console# test cable-diagnostics tdr interface gi1/0/8
show cable-diagnostics tdr

Use the show cable-diagnostics tdr EXEC mode command to display information on the last Time Domain Reflectometry (TDR) test performed on all copper ports or on a specific copper port.

Syntax

```
show cable-diagnostics tdr [interface interface-id | detailed]
```

Parameters

- **interface-id**—Specifies an interface ID. The interface ID must be an Ethernet port.
- **detailed**—Displays information for non-present ports in addition to present ports.

Default Configuration

Display is for present ports.

Command Mode

EXEC mode

User Guidelines

The maximum length of cable for the TDR test is 120 meters.

Example

The following example displays information on the last TDR test performed on all present copper ports.

```
Console> show cable-diagnostics tdr

<table>
<thead>
<tr>
<th>Port</th>
<th>Result</th>
<th>Length [meters]</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Short</td>
<td>50</td>
<td>13:32:00 23 July 2010</td>
</tr>
</tbody>
</table>
```
**show cable-diagnostics cable-length**

Use the `show cable-diagnostics cable-length` EXEC mode command to display the estimated copper cable length attached to all ports or to a specific port.

**Syntax**

```
show cable-diagnostics cable-length [interface interface-id | detailed]
```

**Parameters**

- **interface-id**—Specify an interface ID. The interface ID must be an Ethernet port.
- **detailed**—Displays information for non-present ports in addition to present ports.

**Default**

Display is for present ports.

**Command Mode**

EXEC mode

**User Guidelines**

The port must be active and working at 100 M or 1000 M.

<table>
<thead>
<tr>
<th>gi1/0/3</th>
<th>Test has not been performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/4</td>
<td>Open 64 13:32:00 23 July 2010</td>
</tr>
<tr>
<td>gi1/0/5</td>
<td>Fiber - -</td>
</tr>
</tbody>
</table>
Example
The following example displays the estimated copper cable length attached to all present ports.

```
Console> show cable-diagnostics cable-length
 Port Length [meters]
 ---- ---------------
 gi1/0/1 < 50
 gi1/0/2 Copper not active
 gi1/0/3 110-140
 gi1/0/4 Fiber
```

**show fiber-ports optical-transceiver**

Use the `show fiber-ports optical-transceiver` EXEC mode command to display the optical transceiver diagnostics.

**Syntax**
```
show fiber-ports optical-transceiver [interface interface-id [detailed] | all-ports]
```

**Parameters**
- `interface-id`—Specifies an interface ID. The interface ID must be an Ethernet port.
- `detailed`—Displays detailed diagnostics.
- `all-ports`—Displays diagnostics for non-present as well as present ports.

**Default Configuration**
Display is for present ports.

**Command Mode**
EXEC mode
Example
The following examples display the optical transceiver diagnostics results.

```
console# show fiber-ports optical-transceiver
Port Temp Voltage Current Output Input LOS
 Power Power
----------- ------ ------- ------- ------- ------- ---
 gi1/0/1 W OK OK OK OK OK
 gi1/0/2 OK OK OK E OK OK
Temp - Internally measured transceiver temperature
Voltage - Internally measured supply voltage
Current - Measured TX bias current
Output Power - Measured TX output power in milliWatts
Input Power - Measured RX received power in milliWatts
LOS - Loss of signal
N/A - Not Available, N/S - Not Supported, W - Warning, E - Error
```

```
console# show fiber-ports optical-transceiver detailed
Port Temp Voltage Current Output Input LOS
 [C] [Volt] [mA] Power Power
 [mWatt] [mWatt]
----------- ------ ------- ------- ------- ------- ---
 gi0/1 Copper
 gi0/26 Copper
 gi0/27 28 3.32 7.26 3.53 3.68 No
 gi0/28 29 3.33 6.50 3.53 3.71 No
Temp - Internally measured transceiver temperature
Voltage - Internally measured supply voltage
Current - Measured TX bias current
Output Power - Measured TX output power in milliWatts
Input Power - Measured RX received power in milliWatts
LOS - Loss of signal
N/A - Not Available, N/S - Not Supported, W - Warning, E - Error
```
Power over Ethernet (PoE) Commands

power inline
Use the power inline Interface Configuration mode command to configure the inline power administrative mode on an interface.

Syntax
power inline {auto | never}

Parameters
- auto—Turns on the device discovery protocol and applies power to the device.
- never—Turns off the device discovery protocol and stops supplying power to the device.

Default Configuration
The default configuration is set to auto.

Command Mode
Interface Configuration (Ethernet) mode

Example
The following example turns on the device discovery protocol on port 4.

Console(config)# interface gi1/0/4
Console(config-if)# power inline auto
power inline limit-mode

Use the power inline limit-mode Global Configuration mode command to set the power limit mode of the system. Use the no form of this command to return to the default.

Syntax

power inline limit-mode {port | max-port-power }

no power inline limit-mode

Parameters

• port—The power limit of a port depends on port configuration
• max-port-power—in this mode, each port can get up to the maximum power, which is 15.4W.

Command Mode

Global Configuration mode

User Guidelines

Changing the PoE limit mode of the system turns the power OFF and ON for all PoE ports.

Example

The following example sets the power limit to port.

switchxxxxxx(config)# power inline limit-mode port

power inline powered-device

Use the power inline powered-device Interface Configuration mode command to add a description of the powered device type. Use the no form of this command to remove the description.

Syntax

power inline powered-device pd-type

no power inline powered-device
Parameters
pd-type—Enters a comment or a description to assist in recognizing the type of the powered device attached to this interface. (Length: 1–24 characters)

Default Configuration
There is no description.

Command Mode
Interface Configuration (Ethernet) mode

Example
The following example adds the description ‘ip phone’ of the device connected to port 4.

```
Console(config)# interface gi1/0/4
Console(config-if)# power inline powered-device ip phone
```

**power inline priority**
Use the **power inline priority** Interface Configuration (Ethernet) mode command to configure the interface inline power management priority. Use the no form of this command to restore the default configuration.

**Syntax**
```
power inline priority {critical | high | low}
no power inline priority
```

**Parameters**
- **critical**—Specifies that the powered device operation is critical.
- **high**—Specifies that the powered device operation is high priority.
- **low**—Specifies that the powered device operation is low priority.

**Default Configuration**
The default configuration is set to low priority.
Command Mode
Interface Configuration (Ethernet) mode

Example
The following example sets the inline power management priority of gigabitethernet port 4 to High.

```shell
Console(config)# interface gi1/0/4
Console(config-if)# power inline priority high
```

power inline usage-threshold
Use the `power inline usage-threshold` Global Configuration mode command to configure the threshold for initiating inline power usage alarms. Use the `no` form of this command to restore the default configuration.

Syntax
```
power inline usage-threshold percent
no power inline usage-threshold
```

Parameters
- `percent`—Specifies the threshold in percent to compare to the measured power. (Range: 1–99)

Default Configuration
The default threshold is 95 percent.

Command Mode
Global Configuration mode

Example
The following example configures the threshold for initiating inline power usage alarms to 90 percent.

```shell
Console(config)# power inline usage-threshold 90
```
**power inline traps enable**

Use the `power inline traps enable` Global Configuration mode command to enable inline power traps. Use the `no` form of this command to disable traps.

**Syntax**

```
power inline traps enable
no power inline traps enable
```

**Default Configuration**

Inline power traps are disabled.

**Command Mode**

Global Configuration mode

**Example**

The following example enables inline power traps.

```
Console(config)# power inline traps enable
```

---

**power inline limit**

Use the `power inline limit` Interface Configuration mode command to configure the power limit per port on an interface. Use the `no` form of the command to return to default.

**Syntax**

```
power inline limit power
no power inline limit
```

**Parameters**

`power`—States the port power consumption limit in Milliwatts (Range: 0-15400)
**Default Configuration**
The default value is the maximum power allowed in the specific working mode:

- 15.4W

**Command Mode**
Interface Configuration (Ethernet) mode

**Example**
The following example sets inline power on a port.

```plaintext
console(config)# interface gi1/0/1
console(config-if)# power inline limit 2222
```

**show power inline**
Use the `show power inline` EXEC mode command to display information about the inline power for all interfaces or for a specific interface.

**Syntax**
`show power inline [interface-id | module stack-member-number]`

**Parameters**
- `interface-id`—Specifies an interface ID. The interface ID must be an Ethernet port.
- `stack-member-number`—Specifies the switch member in a stack.

**Default Configuration**
There is no default configuration for this command.

**Command Mode**
EXEC mode
Example 1:
The following example displays information about the inline power.

```
console(config)# show power inline
Port based power-limit mode
Unit Power Nominal Consumed Usage Traps
 Power Power Threshold
----- ------- ------- ------- ------ --------
 1 On 500 Watts 100 Watts (20%) 95 Disable
 2 Off 1 Watts 0 Watts (0%) 95 Disable
 3 Off 1 Watts 0 Watts (0%) 95 Disable
 4 Off 1 Watts 0 Watts (0%) 95 Disable
 5 Off 1 Watts 0 Watts (0%) 95 Disable
 6 Off 1 Watts 0 Watts (0%) 95 Disable
 7 Off 1 Watts 0 Watts (0%) 95 Disable
 8 Off 1 Watts 0 Watts (0%) 95 Disable
```

```
Port Powered Device State Status Priority Class
----- -------------- ----------- -------- -------- -------
gi1/0/1 IP Phone Model A Auto On High Class0
```

Example 2:
The following example displays information about the inline power for a specific port.

```
console(config)# show power inline gi1/1/1
Port Powered Device State Status Priority Class
----- -------------- ------- ------ -------- -------
gi1/1/1 IP Phone Model A Auto On High Class0
```

Power limit (for port power-limit mode): 15.4W
Overload Counter: 0
Short Counter: 0
Denied Counter: 0
Absent Counter: 0
Invalid Signature Counter: 0

The following table describes the fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>The inline power sourcing equipment operational status.</td>
</tr>
<tr>
<td><strong>Nominal Power</strong></td>
<td>The inline power sourcing equipment nominal power in Watts.</td>
</tr>
<tr>
<td><strong>Consumed Power</strong></td>
<td>The measured usage power in Watts.</td>
</tr>
<tr>
<td>Usage Threshold</td>
<td>The usage threshold expressed in percent for comparing the measured power and initiating an alarm if threshold is exceeded.</td>
</tr>
<tr>
<td>Traps</td>
<td>Indicates if inline power traps are enabled.</td>
</tr>
<tr>
<td>Port</td>
<td>The Ethernet port number.</td>
</tr>
<tr>
<td>Powered device</td>
<td>A description of the powered device type.</td>
</tr>
<tr>
<td>Admin State</td>
<td>Indicates if the port is enabled to provide power. The possible values are Auto or Never.</td>
</tr>
<tr>
<td>Priority</td>
<td>The port inline power management priority. The possible values are Critical, High or Low.</td>
</tr>
<tr>
<td>Oper State</td>
<td>Describes the port inline power operational state. The possible values are On, Off, Test-Fail, Testing, Searching or Fault.</td>
</tr>
<tr>
<td>Classification</td>
<td>The power consumption classification of the powered device.</td>
</tr>
<tr>
<td>Overload Counter</td>
<td>Counts the number of overload conditions detected.</td>
</tr>
<tr>
<td>Short Counter</td>
<td>Counts the number of short conditions detected.</td>
</tr>
<tr>
<td>Denied Counter</td>
<td>Counts the number of times power was denied.</td>
</tr>
<tr>
<td>Absent Counter</td>
<td>Counts the number of times power was removed because powered device dropout was detected.</td>
</tr>
<tr>
<td>Invalid Signature Counter</td>
<td>Counts the number of times an invalid signature of a powered device was detected.</td>
</tr>
</tbody>
</table>
The following table describes the fields shown in the display:

Following is a list of port status values:
Port is on - valid capacitor detected
Port is on - valid resistor detected
Port is off - main supply voltage is high
Port is off - main supply voltage is low
Port is off - 'disable all ports' pin is active
Port is off - non-existing port number Fewer ports are available than the max.
Port is off - Port is yet undefined
Port is off - internal hardware fault
Port is off - user setting
Port is off - detection is in process
Port is off - non-802.3af powered device
Port is off - Overload & Underload states
Port is off - Underload state
Port is off - Overload state
Port is off - power budget exceeded
Port is off - internal hardware fault
Port is off - voltage injection into the port
Port is off - improper Capacitor Detection results
Port is off - discharged load Port fails Capacitor
Port is on - detection regardless (Force On)
Undefined error during Force On
Supply voltage higher than settings
Supply voltage lower than settings
Disable_PDU flag raised during Force On
Port is forced on, then disabled
Port is off - forced power error due to Overload
Port is off - “out of power budget” during Force On
Communication error with PoE devices after Force On
Port is off - short condition
Port is off - over temperature at the port
Port is off - device is too hot
Unknown device port status
Power over Ethernet (PoE) Commands

FILE LOCATION:  C:\Users\gina\Desktop\Check out_new\CLI Folders\Dell Contax CLI\files\PoE.fm

DELL CONFIDENTIAL – PRELIMINARY 10/21/13 - FOR PROOF ONLY

Force Power Error Short Circuit
Force Power Error Channel Over Temperature
Force Power Error Chip Over Temperature
Power Management-Static
Power Management-Static -ovl
Force Power Error Management Static
Force Power Error Management Static -ovl
High power port is ON
Chip Over Power
Force Power Error Chip Over Power

show power inline consumption
Use the show power inline consumption EXEC mode command to display information about the inline power consumption for all interfaces or for a specific interface.

Syntax
show power inline consumption [interface-id | module stack-member-number]

Parameters

- Interface-id—Specifies an interface ID. The interface ID must be an Ethernet port.
- stack-member-number—Specifies the switch member in a stack.

Default Configuration
There is no default configuration for this command.

Command Mode
EXEC mode
Example
The following example displays information about the inline power consumption.

```
Console# show power inline consumption

<table>
<thead>
<tr>
<th>Port</th>
<th>Power Limit (W)</th>
<th>Power (W)</th>
<th>Voltage (V)</th>
<th>Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>15.4</td>
<td>4.115</td>
<td>50.8</td>
<td>81</td>
</tr>
<tr>
<td>gi1/0/1</td>
<td>15.4</td>
<td>4.157</td>
<td>50.7</td>
<td>82</td>
</tr>
<tr>
<td>gi1/0/1</td>
<td>15.4</td>
<td>4.021</td>
<td>50.9</td>
<td>79</td>
</tr>
</tbody>
</table>
```

**show power inline version**
Use the `show power inline version` EXEC mode command to display the power inline microcontroller's software version for all the stacking units or for a specific unit.

**Syntax**
```
show power inline version [unit unit]
```

**Parameters**
- `unit unit`—Specifies the stacking unit number.

**Default Configuration**
There is no default configuration for this command.

**Command Mode**
EXEC mode
Example
The following example displays information about the inline power consumption.

```
Console# show power inline version

<table>
<thead>
<tr>
<th>Unit</th>
<th>Software version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.12</td>
</tr>
<tr>
<td>2</td>
<td>1.12</td>
</tr>
</tbody>
</table>
```
EEE Commands

**eee enable (global)**

Use the `eee enable` Global Configuration command to enable the EEE mode globally. Use the `no` format of the command to disable the mode.

**Syntax**

```
eee enable
no eee enable
```

**Default Configuration**

EEE is enabled.

**Command Mode**

Global Configuration mode

**User Guidelines**

Since EEE uses the Auto-Negotiation to negotiate the EEE support on both sides of the link, if Auto-Negotiation is not enabled on the port, the EEE Operational status is disabled.

**eee enable (interface)**

Use the `eee enable` Interface Configuration command to enable the EEE mode on an Ethernet port. Use the `no` format of the command to disable the mode.

**Syntax**

```
eee enable
```
no eee enable

**Default Configuration**
EEE is enabled.

**Command Mode**
Interface Configuration mode (Ethernet)

**User Guidelines**
Since EEE uses the Auto-Negotiation to negotiate the EEE support on both sides of the link, if Auto-Negotiation is not enabled on the port, the EEE Operational status is disabled.

---

**eee lldp enable**

Use the `eee lldp enable` Interface Configuration command to enable EEE support by LLDP on an Ethernet port. Use the `no` format of the command to disable the support.

**Syntax**

```
eee lldp enable
no eee lldp enable
```

**Default Configuration**

Enabled

**Command Mode**

Interface Configuration mode (Ethernet)

**User Guidelines**

Enabling EEE LLDP advertisement allows devices to choose and change system wake-up times in order to get the optimal energy saving mode.

---

**show eee**

Use the `show eee` EXEC command to display EEE information.
Syntax
show eee [interface-id]

Parameters
interface-id—Specify an interface ID. The interface ID must be an Ethernet port.

Command Mode
EXEC

Examples

Example 1. Brief Information about all ports
Switch>show eee
EEE globally enabled
EEE Administrate status is enabled on ports: gi1/0/1-6,gi1/0/12
EEE Operational status is enabled on ports: gi1/0/1,gi1/0/3-6,gi1/0/12,gi1/0/15
EEE LLDP Administrate status is enabled on ports: gi1/0/1-10
EEE LLDP Operational status is enabled on ports: gi1/0/3-5

Example 2. Port in state notPresent, no information if port supports EEE
Switch> show eee gi1/0/10
Port Status: notPresent
EEE Administrate status: enabled
EEE LLDP Administrate status: enabled
EEE LLDP Administrate status: enabled

Example 3. Port in status DOWN
Switch>show eee gi1/0/10
Port Status: DOWN
EEE capabilities:
  Speed 10M: EEE not supported
EEE Commands

FILE LOCATION:  C:\Users\gina\Desktop\Check out_new\CLI Folders\Dell Contax CLI\files\750_EEE.fm

DELL CONFIDENTIAL – PRELIMINARY 10/21/13 - FOR PROOF ONLY

Speed 100M: EEE supported
Speed 1G: EEE supported
Speed 10G: EEE not supported
EEE Administtrate status: enabled
EEE LLDP Administrate status: enabled

Example 4. Port in status UP and does not support EEE
Switch>show eee gi1/0/20
Port Status: UP
EEE capabilities:
  Speed 10M: EEE not supported
  Speed 100M: EEE supported
  Speed 1G: EEE supported
  Speed 10G: EEE not supported
Current port speed: 1Gbps
EEE Administtrate status: enabled
EEE LLDP Administrate status: enabled

Example 5. Neighbor does not support EEE
Switch>show eee gi1/0/15
Port Status: UP
EEE capabilities:
  Speed 10M: EEE not supported
  Speed 100M: EEE supported
  Speed 1G: EEE supported
  Speed 10G: EEE not supported
Current port speed: 1Gbps
EEE Remote status: disabled
EEE Administtrate status: enabled
EEE Operational status: disabled (neighbor does not support)
EEE LLDP Administrate status: enabled
EEE LLDP Operational status: disabled

Example 6. EEE is disabled on the port
Switch>show eee gi1/0/10
Port Status: UP
EEE capabilities:
  Speed 10M: EEE not supported
  Speed 100M: EEE supported
  Speed 1G: EEE supported
  Speed 10G: EEE not supported
Current port speed: 1Gbps
EEE Administrate status: disabled
EEE Operational status: disabled
EEE LLDP Administrate status: enabled
EEE LLDP Operational status: disabled

Example 7. EEE is running on the port, EEE LLDP is disabled
Switch>show eee gi1/0/12
Port Status: UP
EEE capabilities:
  Speed 10M: EEE not supported
  Speed 100M: EEE supported
  Speed 1G: EEE supported
  Speed 10G: EEE not supported
Current port speed: 1Gbps
EEE Remote status: enabled
EEE Administrate status: enabled
EEE Operational status: enabled
EEE LLDP Administrate status: disabled
EEE LLDP Operational status: disabled
Resolved Tx Timer: 10usec
Local Tx Timer: 10 usec
Resolved Timer: 25 usec
Local Rx Timer: 20 usec

Example 8. EEE and EEE LLDP are running on the port
Switch>show eee gi1/0/3
Port Status: UP
EEE capabilities:
  Speed 10M: EEE not supported
  Speed 100M: EEE supported
  Speed 1G: EEE supported
  Speed 10G: EEE not supported
Current port speed: 1Gbps
EEE Remote status: enabled
EEE Administrate status: enabled
EEE Operational status: enabled
EEE LLDP Administrate status: enabled
EEE LLDP Operational status: enabled
Resolved Tx Timer: 10usec
Local Tx Timer: 10 usec
Remote Rx Timer: 5 usec
Resolved Timer: 25 usec
Local Rx Timer: 20 usec
Remote Tx Timer: 25 usec

Example 9. EEE is running on the port, EEE LLDP enabled but not synchronized with remote link partner
Switch>show eee gi1/0/9
Port Status: up
EEE capabilities:
  Speed 10M: EEE not supported
  Speed 100M: EEE supported
Speed 1G: EEE supported
Speed 10G: EEE not supported
Current port speed: 1Gbps
EEE Remote status: enabled
EEE Administrate status: enabled
EEE Operational status: enabled
EEE LLDP Administrate status: enabled
EEE LLDP Operational status: disabled
Resolved Tx Timer: 64
Local Tx Timer: 64
Resolved Rx Timer: 16
Local Rx Timer: 16

Example 10. EEE and EEE LLDP are running on the port
Switch>show eee gi1/0/3
Port Status: UP
EEE capabilities:
  Speed 10M: EEE not supported
  Speed 100M: EEE supported
  Speed 1G: EEE supported
  Speed 10G: EEE not supported
Current port speed: 1Gbps
EEE Remote status: enabled
EEE Administrate status: enabled
EEE Operational status: enabled
EEE LLDP Administrate status: enabled
EEE LLDP Operational status: enabled
Resolved Tx Timer: 10usec
Local Tx Timer: 10 usec
Remote Rx Timer: 5 usec
Resolved Timer: 25 usec
Local Rx Timer: 20 usec
Remote Tx Timer: 25 usec
Green Ethernet

show green-ethernet
Use the show green-ethernet Privileged EXEC mode command to show green-ethernet configuration and information.

Syntax
show green-ethernet [interface-id | detailed]

Parameters
- interface-id—Specify an interface ID. The interface ID must be an Ethernet port.
- detailed—Displays information for non-present ports in addition to present ports

Default Configuration
When no interface is specified, this command shows information for present interfaces.

Command Mode
Privileged EXEC mode

User Guidelines
The following describes all possible reasons the show command displays, and their descriptions.
If there are several reasons for non-operation, then only the highest priority reason is displayed.

<table>
<thead>
<tr>
<th>Energy-detect Non-operational Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>priority</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Short-Reach Non-operational Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Example

```
console# show green-ethernet
Energy-Detect mode: Enabled
Short-Reach mode: Disabled
Power Consumption: 76% (3.31W out of maximum 4.33W)
Cumulative Energy Saved: 33 [Watt*Hour]
Short-Reach cable length threshold: 50m
<table>
<thead>
<tr>
<th>Port</th>
<th>Energy-Detect</th>
<th>Short-Reach</th>
<th>VCT Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Admin Oper Reason</td>
<td>Admin Force Oper Reason</td>
<td>Length</td>
</tr>
<tr>
<td>gi1/0/1</td>
<td>on</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>off LU</td>
<td>on</td>
<td>off</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>off LU</td>
<td>off</td>
<td>off</td>
</tr>
</tbody>
</table>
```
green-ethernet short-reach (global)
Use the `green-ethernet short-reach` Global Configuration mode command to enable green-ethernet short-reach mode globally. Use the `no` form of this command to disabled it.

**Syntax**
green-ethernet short-reach

no green-ethernet short-reach

**Parameters**
This command has no arguments or keywords.

**Default Configuration**
EEE is enabled.

**Command Mode**
Global Configuration mode

**Example**

```bash
console(config)# green-ethernet short-reach
```

green-ethernet short-reach (interface)
Use the `green-ethernet short-reach` Interface Configuration mode command to enable green-ethernet short-reach mode on an interface. Use the `no` form of this command to disable it on an interface.

**Syntax**
green-ethernet short-reach

no green-ethernet short-reach

**Parameters**
This command has no arguments or keywords.
**Default Configuration**
EEE is enabled.

**Command Mode**
Interface Configuration mode (Ethernet)

**User Guidelines**
When short-reach Mode is enabled and is not forced, the VCT (Virtual Cable Tester) length check must be performed. The VCT length check can be performed only on a copper port operating at a speed of 1000 Mbps. If the media is not copper or the link speed is not 1000 Mbps and short-reach mode is not forced (by `green-ethernet short-reach force`), short-reach mode is not applied.

When the interface is set to enhanced mode, after the VCT length check has completed and set the power to low, an active monitoring for errors is done continuously. In the case of errors crossing a certain threshold, the PHY will be reverted to long reach.

**Example**

```console
console(config)# interface gi1/0/1
console(config-if)# green-ethernet short-reach
```

---

**`green-ethernet short-reach force`**
Use the `green-ethernet short-reach force` Interface Configuration mode command to force short-reach mode on an interface. Use the `no` form of this command to return to default.

**Syntax**
`green-ethernet short-reach force`

`no green-ethernet short-reach force`

**Parameters**
This command has no arguments or keywords.
Default Configuration
Short-reach mode is not forced.

Command Mode
Interface Configuration mode (Ethernet)

Example

```
console(config)# interface gi1/0/1
console(config-if)# green-ethernet short-reach force
```

green-ethernet short-reach threshold
Use the `green-ethernet short-reach threshold` Global Configuration mode command to set the maximum cable length for applying short-reach. Use the `no` form of this command to return to default.

Syntax
```
green-ethernet short-reach threshold cable-length
no green-ethernet short-reach threshold
```

Parameters
- `cable-length`—Specifies the maximum cable length (in meters) measured by VCT that allows applying short-reach mode (cable-length 0–70 meters)

Default Configuration
The default length is 40 meters.

Command Mode
Global Configuration mode

User Guidelines
Note that the automatic cable length measurement accuracy is +/-10 meters. i.e. a cable with a real length of 30 m may be evaluated in the range of 20m–40m. Length performance depends on the link partner signal quality, cable quality and whether link partner also operates in short-reach mode.
The recommended default is 50m, as recommended by Marvell PHY team for any cable type. see appendix

However, Marvell tests show that link partner can operate error free with an up to 80 m cable (cat 5e).

The user may choose to change the threshold parameter under certain circumstances.

Setting the threshold to 0 meters basically results in the short reach feature always being disabled, because the threshold will always be exceeded.

---

green-ethernet power-meter reset

Use the green-ethernet power meter reset Privileged EXEC mode command to reset the power save meter.

**Syntax**

green-ethernet power-meter reset

**Command Mode**

Privileged EXEC mode.
Port Channel Commands

channel-group
Use the `channel-group` Interface Configuration (Ethernet) mode command to associate a port with a port-channel. Use the `no` form of this command to remove a port from a port-channel.

Syntax
`channel-group port-channel mode {on | auto}`
`no channel-group`

Parameters
- `port-channel`—Specifies the port channel number for the current port to join.
- `mode {on | auto}`—Specifies the mode of joining the port channel. The possible values are:
  - `on`—Forces the port to join a channel without an LACP operation.
  - `auto`—Forces the port to join a channel as a result of an LACP operation.

Default Configuration
The port is not assigned to a port-channel.

Command Mode
Interface Configuration (Ethernet) mode
Example
The following example forces port gi1/0/1 to join port-channel 1 without an LACP operation.

```console
Console(config)# interface gi1/0/1
Console(config-if)# channel-group 1 mode on
```

**port-channel load-balance**

Use the `port-channel load-balance` Global Configuration mode command to configure the load balancing policy of the port channeling. Use the no form of this command to reset to default.

**Syntax**

```plaintext
port-channel load-balance {src-dst-mac | src-dst-ip | src-dst-mac-ip}
```

```plaintext
no port-channel load-balance
```

**Parameters**

- **src-dst-mac**—Port channel load balancing is based on the source and destination MAC address.
- **src-dst-ip**—Port channel load balancing is based on the source and destination IP address.
- **src-dst-mac-ip**—Port channel load balancing is based on the source and destination of MAC and IP addresses.

**Default Configuration**

src-dst-mac is the default option.

**Command Mode**

Global Configuration mode

**User Guidelines**

In src-dst-mac-ip-port load balancing policy, fragmented packets might be reordered.
**Example**

```
console#
console# configure
console(config)# port-channel load-balance src-dst-mac
console(config)# port-channel load-balance src-dst-ip
console(config)# port-channel load-balance src-dst-mac-ip
console(config)# port-channel load-balance src-dst-mac-ip-port
console(config)#
```

**show interfaces port-channel**

Use the `show interfaces port-channel` EXEC mode command to display port-channel information for all port channels or for a specific port channel.

**Syntax**

```
show interfaces port-channel [interface-id]
```

**Parameters**

- `interface-id`—Specify an interface ID. The interface ID must be a Port Channel.

**Command Mode**

EXEC mode

**Example**

The following example displays information on all port-channels.

```
console#
console# show interfaces port-channel
Load balancing: src-dst-mac.
Gathering information...
Channel Ports
------- -----
Po1 Active: gi1/0/1, Inactive: gi1/0/2-3
Po2 Active: gi1/0/25, Inactive: gi1/0/24
```
Po3
console# show interfaces switchport gi1/0/10
Gathering information...

Name: gi1/0/10
Switchport: enable
Administrative Mode: access
Operational Mode: down
Access Mode VLAN: 1
Access Multicast TV VLAN: none
Trunking Native Mode VLAN: 1
Trunking VLANs Enabled: 1

2-4094 (Inactive)
General PVID: 1
General VLANs Enabled: none
General Egress Tagged VLANs Enabled: none
General Forbidden VLANs: none
General Ingress Filtering: enabled
General Acceptable Frame Type: all
General GVRP status: disabled
Customer Mode VLAN: none
Private-vlan promiscuous-association primary VLAN: none
Private-vlan promiscuous-association Secondary VLANs Enabled: none
Private-vlan host-association primary VLAN: none
Private-vlan host-association Secondary VLAN Enabled: none
DVA: disable
Address Table Commands

**bridge multicast filtering**

Use the *bridge multicast filtering* Global Configuration mode command to enable the filtering of multicast addresses. Use the **no** form of this command to disable multicast address filtering.

**Syntax**

bridge multicast filtering

no bridge multicast filtering

**Default Configuration**

Multicast address filtering is disabled. All multicast addresses are flooded to all ports.

**Command Mode**

Global Configuration mode

**User Guidelines**

If multicast devices exist on the VLAN, do not change the unregistered multicast addresses’ states to drop on the device ports.

If multicast devices exist on the VLAN and IGMP-snooping is not enabled, the **bridge multicast forward-all** command should be used to enable forwarding all multicast packets to the multicast switches.

**Example**

The following example enables bridge multicast filtering.

```
Console(config)# bridge multicast filtering
```
**bridge multicast address**

Use the `bridge multicast address` Interface Configuration (VLAN) mode command to register a MAC-layer multicast address in the bridge table and statically add or remove ports to or from the group. Use the `no` form of this command to unregister the MAC address.

**Syntax**

`bridge multicast address {mac-multicast-address} [[add | remove] {ethernet interface-list | port-channel port-channel-list}]`

`no bridge multicast address {mac-multicast-address}`

**Parameters**

- `mac-multicast-address`—Specifies the group MAC multicast address.
- `add`—Adds ports to the group.
- `remove`—Removes ports from the group.
- `ethernet interface-list`—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
- `port-channel port-channel-list`—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces; use a hyphen to designate a range of port channels.

**Default Configuration**

No multicast addresses are defined.

If `ethernet interface-list` or `port-channel port-channel-list` is specified without specifying `add` or `remove`, the default option is `add`.

**Command Mode**

Interface Configuration (VLAN) mode

**User Guidelines**

To register the group in the bridge database without adding or removing ports or port channels, specify the `mac-multicast-address` parameter only.

Static multicast addresses can be defined on static VLANs only.
You can execute the command before the VLAN is created.

**Example**
The following example registers the MAC address to the bridge table:

```plaintext
Console(config)# interface vlan 8
Console(config-if)# bridge multicast address 01:00:5e:02:02:03
```

The following example registers the MAC address and adds ports statically.

```plaintext
Console(config)# interface vlan 8
Console(config-if)# bridge multicast address 01:00:5e:02:02:03
 add gi1/0/1-2
```

### bridge multicast forbidden address

Use the `bridge multicast forbidden address` Interface Configuration (VLAN) mode command to forbid adding or removing a specific multicast address to or from specific ports. Use the `no` form of this command to restore the default configuration.

**Syntax**

```
bridge multicast forbidden address {mac-multicast-address} {add | remove}
{ethernet interface-list | port-channel port-channel-list}
```

```
no bridge multicast forbidden address {mac-multicast-address}
```

**Parameters**

- `mac-multicast-address`—Specifies the group MAC multicast address.
- `add`—Forbids adding ports to the group.
- `remove`—Forbids removing ports from the group.
- `ethernet interface-list`—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.
• port-channel port-channel-list—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

Default Configuration
No forbidden addresses are defined.

Command Mode
Interface Configuration (VLAN) mode

User Guidelines
Before defining forbidden ports, the multicast group should be registered.
You can execute the command before the VLAN is created.

Example
The following example forbids MAC address 0100.5e02.0203 on port 2/9 within VLAN 8.

```
Console(config)# interface vlan 8
Console(config-if)# bridge multicast address 0100.5e.02.0203
Console(config-if)# bridge multicast forbidden address 0100.5e02.0203 add gi1/0/9
```

**bridge multicast unregistered**

Use the `bridge multicast unregistered` Interface Configuration (Ethernet, Port-Channel) mode command to configure the forwarding state of unregistered multicast addresses. Use the `no` form of this command to restore the default configuration.

**Syntax**

bridge multicast unregistered {forwarding | filtering}

no bridge multicast unregistered

**Parameters**

• forwarding—Forwards unregistered multicast packets.
• filtering—Filters unregistered multicast packets.

Default Configuration
Unregistered multicast addresses are forwarded.

Command Mode
Interface Configuration (Ethernet, Port-Channel) mode

User Guidelines
Do not enable unregistered multicast filtering on ports that are connected to routers, because the 224.0.0.x address range should not be filtered. Note that routers do not necessarily send IGMP reports for the 224.0.0.x range.

You can execute the command before the VLAN is created.

Example
The following example specifies that unregistered multicast packets are filtered on gigabitethernet port 1/0/1:

```
Console(config)# interface gi1/0/1
Console(config-if)# bridge multicast unregistered filtering
```

**bridge multicast forward-all**

Use the `bridge multicast forward-all` Interface Configuration (VLAN) mode command to enable forwarding all multicast packets for a range of ports or port channels. Use the `no` form of this command to restore the default configuration.

Syntax
`bridge multicast forward-all {add | remove} {ethernet interface-list | port-channel port-channel-list}`

`no bridge multicast forward-all`

Parameters
• `add`—Forces forwarding of all multicast packets.
• `remove`—Does not force forwarding of all multicast packets.
• **ethernet interface-list**—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.

• **port-channel port-channel-list**—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces. Use a hyphen to designate a range of port channels.

**Default Configuration**
Forwarding of all multicast packets is disabled.

**Command Mode**
Interface Configuration (VLAN) mode

**Example**
The following example enables all multicast packets on port gi1/0/8 to be forwarded.

```
Console(config)# interface vlan 2
Console(config-if)# bridge multicast forward-all add gi1/0/8
```

**bridge multicast forbidden forward-all**
Use the `bridge multicast forbidden forward-all` Interface Configuration (VLAN) mode command to forbid a port to dynamically join multicast groups. Use the no form of this command to restore the default configuration.

**Syntax**
```
bridge multicast forbidden forward-all {add | remove} {ethernet interface-list | port-channel port-channel-list}
```

```
no bridge multicast forbidden forward-all
```

**Parameters**
- **add**—Forbids forwarding of all multicast packets.
- **remove**—Does not forbid forwarding of all multicast packets.
• **ethernet interface-list**—Specifies a list of Ethernet ports. Separate nonconsecutive Ethernet ports with a comma and no spaces. Use a hyphen to designate a range of ports.

• **port-channel port-channel-list**—Specifies a list of port channels. Separate nonconsecutive port-channels with a comma and no spaces; use a hyphen to designate a range of port channels.

**Default Configuration**
Ports are not forbidden to dynamically join multicast groups.

**Command Mode**
Interface Configuration (VLAN) mode

**User Guidelines**
Use this command to forbid a port to dynamically join (by IGMP, for example) a multicast group.

The port can still be a multicast router port.

**Example**
The following example forbids forwarding of all multicast packets to gi1/0/1 within VLAN 2.

```plaintext
Console(config)# interface vlan 2
Console(config-if)# bridge multicast forbidden forward-all add ethernet gi1/0/1
```

### mac address-table static

Use the **mac address-table static** Global Configuration mode command to add MAC-layer station source address to the MAC address table. Use the **no** form of this command to delete the MAC address.

**Syntax**
mac address-table static *mac-address* vlan *vlan-id* interface *interface-id*  
[p permanent | delete-on-reset | delete-on-timeout | secure ]

no mac address-table static [ *mac-address*/*vlan* *vlan-id* ]

---

**FILE LOCATION:**  
C:\Users\gina\Desktop\Check out_new\CLI Folders\Dell Contax\CLI\files\Address_Table.fm

**DELL CONFIDENTIAL – PRELIMINARY 10/21/13 - FOR PROOF ONLY**
**Parameters**

mac-address—AC address (Range: Valid MAC address)

vlan-id—Specify the VLAN

interface-id—Specify an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel (Range: Valid Ethernet port, Valid Port-channel number)

permanent—The address can only deleted by the no bridge address command.

delete-on-reset—The address is deleted after reset.

delete-on-timeout—The address is deleted after aged out.

secure—The address is deleted after the port changes mode to unlock learning (no port security command). Available only when the port is in learning locked mode.

**Default Configuration**

No static addresses are defined. The default mode for an added address is permanent.

**Command Mode**

Global Configuration mode

**Example**

```
console(config)# mac address-table static 00:3f:bd:45:5a:b1 vlan 1 gil/0/1
```

---

**clear mac address-table**

Use the `clear mac address-table` Privileged EXEC command to remove learned or secure entries from the forwarding database.

**Syntax**

`clear mac address-table dynamic [ interface interface-id ]`

`clear mac address-table secure interface interface-id`
Parameters
interface interface-id—Delete all dynamic address on the specified interface. The interface ID can be one of the following types: Ethernet port or port-channel.

Command Mode
Privileged EXEC mode

Example

```
console# clear mac address-table dynamic
```

**mac address-table aging-time**

Use the **mac address-table aging-time** global configuration command to set the aging time of the address table. Use the **no** form of this command to restore the default.

Syntax

```
mac address-table aging-time seconds
no mac address-table aging-time
```

Parameters

seconds—Time is number of seconds. (Range: 10–300)

Default Configuration

300

Command Mode

Global Configuration mode

Example

```
console(config)# mac address-table aging-time 600
```
**port security**

Use the **port security** Interface Configuration (Ethernet, Port-channel) mode command to enable port security on an interface. Use the **no** form of this command to disable port security on an interface.

**Syntax**

```plaintext
port security [forward | discard | discard-shutdown] [trap seconds]

no port security
```

**Parameters**

- **forward**—Forwards packets with unlearned source addresses, but does not learn the address.
- **discard**—Discards packets with unlearned source addresses.
- **discard-shutdown**—Discards packets with unlearned source addresses and shuts down the port.
- **trap seconds**—Sends SNMP traps and specifies the minimum time interval in seconds between consecutive traps. (Range: 1–1000000)

**Default Configuration**

The feature is disabled

The default mode is discard.

**Command Mode**

Interface Configuration (Ethernet, port-channel) mode

**Example**

The following example forwards all packets to port gi1/0/1 without learning addresses of packets from unknown sources and sends traps every 100 seconds if a packet with an unknown source address is received.

```plaintext
console(config)# gi1/0/1
Console(config-if)# port security forward trap 100
```
port security mode

Use the port security mode Interface Configuration (Ethernet, port-channel) mode command to configure the port security learning mode. Use the no form of this command to restore the default configuration.

Syntax
port security mode {lock | max-addresses }
no port security mode

Parameters

- lock—Saves the current dynamic MAC addresses associated with the port and disables learning, relearning and aging.
- max-addresses—Deletes the current dynamic MAC addresses associated with the port and learns up to the maximum number of addresses allowed on the port. Relearning and aging are enabled.

Default Configuration
The default port security mode is lock.

Command Mode
Interface Configuration (Ethernet, port-channel) mode

Example
The following example sets the port security mode to dynamic for gigabitethernet interface 1/0/7.

Console(config)# interface gi1/0/7
Console(config-if)# port security mode dynamic

port security max

Use the port security mode Interface Configuration (Ethernet, Port-channel) mode command to configure the maximum number of addresses that can be learned on the port while the port is in port security max-addresses mode. Use the no form of this command to restore the default configuration.
Syntax
port security max {max-addr}
no port security max

Parameters
max-addr—Specifies the maximum number of addresses that can be learned on the port. (Range: 0–128)

Default Configuration
This default maximum number of addresses is 1.

Command Mode
Interface Configuration (Ethernet, Port-channel) mode

User Guidelines
This command is relevant in port security max-addresses mode only.

Example

Console(config) # interface gi1/0/1
Console(config-if) # port security max 20

**port security routed secure-address**

Use the **port security routed secure-address** Interface Configuration (Ethernet, Port-channel) mode command to add a MAC-layer secure address to a routed port. Use the no form of this command to delete a MAC address from a routed port.

Syntax
port security routed secure-address mac-address
no port security routed secure-address [mac-address]

Parameters
mac-address—Specifies the MAC address.
Default Configuration
No addresses are defined.

Command Mode
Interface Configuration (Ethernet, port-channel) mode. It cannot be configured for a range of interfaces (range context).

User Guidelines
This command enables adding secure MAC addresses to a routed port in port security mode. The command is available when the port is a routed port and in port security mode. The address is deleted if the port exits the security mode or is not a routed port.

This command is required because the bridge address command cannot be executed on internal VLANs.

Example
The following example adds the MAC-layer address 66:66:66:66:66:66 to gigabitethernet port 1/0/1.

```
Console(config)# interface gi1/0/1
Console(config-if)# port security routed secure-address
```

show mac address-table
Use the show mac address-table EXEC command to view entries in the MAC address table.

Syntax
```
show mac address-table [dynamic | static | secure] [vlan vlan] [interface interface-id] [address mac-address]
```

Parameters
- **dynamic**—Displays only dynamic MAC address table entries.
- **static**—Displays only static MAC address table entries.
- **secure**—Displays only secure MAC address table entries.
• *vlan*—Specifies VLAN, such as VLAN 1.
• *interface-id*—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.
• *mac-address*—MAC address.

### Default

### Command Mode

EXEC mode

### User Guidelines

Internal usage VLANs (VLANs that are automatically allocated on routed ports) are presented in the VLAN column by a port number and not by a VLAN ID.

### Example

```
Console# show mac address-table
Aging time is 300 sec

<table>
<thead>
<tr>
<th>VLAN</th>
<th>MAC Address</th>
<th>Port</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00:00:26:08:13:23</td>
<td>0</td>
<td>self</td>
</tr>
<tr>
<td>1</td>
<td>00:3f:bd:45:5a:b1</td>
<td>gi1/0/1</td>
<td>static</td>
</tr>
<tr>
<td>1</td>
<td>00:a1:b0:69:63:f3</td>
<td>gi1/0/24</td>
<td>dynamic</td>
</tr>
<tr>
<td>2</td>
<td>00:a1:b0:69:63:f3</td>
<td>gi1/0/24</td>
<td>dynamic</td>
</tr>
</tbody>
</table>

Console# show mac address-table 00:3f:bd:45:5a:b1
Aging time is 300 sec

<table>
<thead>
<tr>
<th>VLAN</th>
<th>MAC Address</th>
<th>Port</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00:3f:bd:45:5a:b1</td>
<td>static</td>
<td>gi1/0/9</td>
</tr>
</tbody>
</table>
```
show mac address-table count

Use the `show mac address-table count` EXEC mode command to display the number of addresses present in the Forwarding Database.

**Syntax**

```
show mac address-table count [vlan vlan | interface interface-id]
```

**Parameters**

- `vlan`—Specifies VLAN.
- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or port-channel.

**Command Mode**

EXEC mode

**Example**

```
Console# show mac address-table count

Capacity: 8192
Free: 8083
Used: 109

Static addresses: 2
Secure addresses: 1
Dynamic addresses: 97
Internal addresses: 9
```

show bridge multicast address-table

Use the `show bridge multicast address-table` EXEC mode command to display multicast MAC address or IP address table information.
Syntax
show bridge multicast address-table [vlan vlan-id] [address {mac-multicast-address | ipv4-multicast-address | ipv6-multicast-address}] [format {ip | mac}]

Parameters
- vlan vlan-id—Specifies the VLAN ID.
- address {mac-multicast-address | ipv4-multicast-address | ipv6-multicast-address}—Specifies the multicast address. The possible values are:
  - mac-multicast-address—Specifies the MAC multicast address.
  - ipv4-multicast-address—Specifies the IPv4 multicast address.
  - ipv6-multicast-address—Specifies the IPv6 multicast address.
- format {ip | mac}—Specifies the multicast address format. The possible values are:
  - ip—Specifies that the multicast address is an IP address.
  - mac—Specifies that the multicast address is a MAC address.

Default Configuration
If the format is not specified, it defaults to mac.

Command Mode
EXEC mode

User Guidelines
A MAC address can be displayed in IP format only if it is within the range 0100.5e00.0000 through 0100.5e7f.ffff.

Multicast Router ports (defined statically or discovered dynamically) are members in all MC groups.

Ports that were defined via bridge multicast forbidden forward-all command are displayed in all forbidden MC entries.

Example
The following example displays bridge multicast address information.

Console# show bridge multicast address-table
Multicast address table for VLANs in MAC-GROUP bridging mode:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>MAC Address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>01:00:5e:02:02:03</td>
<td>Static</td>
<td>1-2</td>
</tr>
</tbody>
</table>

Forbidden ports for multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>MAC Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>01:00:5e:02:02:03</td>
<td>gi1/0/9</td>
</tr>
</tbody>
</table>

Multicast address table for VLANs in IPv4-GROUP bridging mode:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>MAC Address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>224.0.0.251</td>
<td>Dynamic</td>
<td>gi1/0/12</td>
</tr>
</tbody>
</table>

Forbidden ports for multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>MAC Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>232.5.6.5</td>
</tr>
<tr>
<td>1</td>
<td>233.22.2.6</td>
</tr>
</tbody>
</table>

Multicast address table for VLANs in IPv4-SRC-GROUP bridging mode:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>224.2.2.251</td>
<td>11.2.2.3</td>
<td>Dynamic</td>
<td>gi1/0/11</td>
</tr>
</tbody>
</table>

Forbidden ports for multicast addresses:
### Vlan Group Address Source Address Ports

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>239.2.2.2</td>
<td>*</td>
<td>gi1/0/9</td>
</tr>
<tr>
<td>8</td>
<td>239.2.2.2</td>
<td>1.1.1.11</td>
<td>gi1/0/9</td>
</tr>
</tbody>
</table>

Multicast address table for VLANs in IPv6-GROUP bridging mode:

### VLAN IP/MAC Address Type Ports

<table>
<thead>
<tr>
<th>VLAN</th>
<th>IP/MAC Address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>ff02::4:4:4</td>
<td>Static</td>
<td>gi1/0/1-2, gi1/0/7, Po1</td>
</tr>
</tbody>
</table>

Forbidden ports for multicast addresses:

### VLAN IP/MAC Address Ports

<table>
<thead>
<tr>
<th>VLAN</th>
<th>IP/MAC Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>ff02::4:4:4</td>
<td>gi1/0/9</td>
</tr>
</tbody>
</table>

Multicast address table for VLANs in IPv6-SRC-GROUP bridging mode:

### Vlan Group Address Source address Type Ports

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>ff02::4:4:4</td>
<td>*</td>
<td>Static</td>
<td>gi1/0/1-2, gi1/0/7, Po1</td>
</tr>
<tr>
<td>8</td>
<td>ff02::4:4:4</td>
<td>fe80::200:7ff:fe00:200</td>
<td>Static</td>
<td>gi1/0/1-2, gi1/0/7, Po1</td>
</tr>
</tbody>
</table>

Forbidden ports for multicast addresses:

### Vlan Group Address Source address Ports

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>ff02::4:4:4</td>
<td>*</td>
<td>gi1/0/9</td>
</tr>
<tr>
<td>8</td>
<td>ff02::4:4:4</td>
<td>fe80::200:7ff:fe00:200</td>
<td>gi1/0/9</td>
</tr>
</tbody>
</table>
show bridge multicast address-table static

Use the show bridge multicast address-table static EXEC mode command to display the statically configured multicast addresses.

Syntax

show bridge multicast address-table static [vlan vlan-id] [address mac-multicast-address | ipv4-multicast-address | ipv6-multicast-address] [source ipv4-source-address | ipv6-source-address] [all | mac | ip]

Parameters

- **vlan vlan-id**—Specifies the VLAN ID.
- **address {mac-multicast-address | ipv4-multicast-address | ipv6-multicast-address}**—Specifies the multicast address. The possible values are:
  - **mac-multicast-address**—Specifies the MAC multicast address.
  - **ipv4-multicast-address**—Specifies the IPv4 multicast address.
  - **ipv6-multicast-address**—Specifies the IPv6 multicast address.
- **source {ipv4-source-address | ipv6-source-address}**—Specifies the source address. The possible values are:
  - **ipv4-address**—Specifies the source IPv4 address.
  - **ipv6-address**—Specifies the source IPv6 address.

Default Configuration

When all/mac/ip is not specified, all entries (mac and ip) will be displayed.

Command Mode

EXEC mode

User Guidelines

A MAC address can be displayed in IP format only if it is within the range 0100.5e00.0000—0100.5e7f.ffff.
**Example**
The following example displays the statically configured multicast addresses.

Console# `show bridge multicast address-table static`

**MAC-GROUP table**

<table>
<thead>
<tr>
<th>Vlan</th>
<th>MAC Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0100.9923.8787</td>
<td>gi1/0/1, gi1/0/2</td>
</tr>
</tbody>
</table>

Forbidden ports for multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>MAC Address</th>
<th>Ports</th>
</tr>
</thead>
</table>

**IPv4-GROUP Table**

<table>
<thead>
<tr>
<th>Vlan</th>
<th>IP Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>231.2.2.3</td>
<td>gi1/0/1, gi1/0/2</td>
</tr>
<tr>
<td>19</td>
<td>231.2.2.8</td>
<td>gi1/0/1-8</td>
</tr>
<tr>
<td>19</td>
<td>231.2.2.8</td>
<td>gi1/0/9-11</td>
</tr>
</tbody>
</table>

Forbidden ports for multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>IP Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>231.2.2.3</td>
<td>gi1/0/8</td>
</tr>
<tr>
<td>19</td>
<td>231.2.2.8</td>
<td>gi1/0/8</td>
</tr>
</tbody>
</table>

**IPv4-SRC-GROUP Table:**
<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>----</td>
<td>-------------</td>
<td>--------------</td>
<td>------</td>
</tr>
</tbody>
</table>

Forbidden ports for multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>----</td>
<td>-------------</td>
<td>--------------</td>
<td>------</td>
</tr>
</tbody>
</table>

**IPv6-GROUP Table**

<table>
<thead>
<tr>
<th>Vlan</th>
<th>IP Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>----</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>191</td>
<td>FF12::8</td>
<td>gi1/0/1-8</td>
</tr>
</tbody>
</table>

Forbidden ports for multicast addresses:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>IP Address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>FF12::3</td>
<td>gi1/0/8</td>
</tr>
<tr>
<td>191</td>
<td>FF12::8</td>
<td>gi1/0/8</td>
</tr>
</tbody>
</table>

**IPv6-SRC-GROUP Table:**

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Source address</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>----</td>
<td>-------------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>192</td>
<td>FF12::8</td>
<td>--------------</td>
<td>gi1/0/1-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FE80::201:C9A9:FE40:8988</td>
<td>8</td>
</tr>
</tbody>
</table>
show bridge multicast filtering

Use the show bridge multicast filtering EXEC mode command to display the multicast filtering configuration.

**Syntax**
show bridge multicast filtering *vlan-id*

**Parameters**
vlan-id—Specifies the VLAN ID. (Range: Valid VLAN)

**Command Mode**
EXEC mode
Example
The following example displays the multicast configuration for VLAN 1.

```
Console# show bridge multicast filtering 1

Filtering: Enabled

VLAN: 1

<table>
<thead>
<tr>
<th>Port</th>
<th>Forward-All</th>
<th>Static</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>-----</td>
<td>------------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>gi1/0/1</td>
<td>------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Forbidden</td>
<td>Filter</td>
<td>------</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>Forward</td>
<td>Forward(s)</td>
<td>Forward(d)</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**show bridge multicast unregistered**

Use the `show bridge multicast unregistered` EXEC mode command to display the unregistered multicast filtering configuration.

**Syntax**

```
show bridge multicast unregistered [interface-id]
```

**Parameters**

- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

**Command Mode**

EXEC mode
Example
The following example displays the unregistered multicast configuration.

```
Console# show bridge multicast unregistered

<table>
<thead>
<tr>
<th>Port</th>
<th>Unregistered</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Forward</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Filter</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>Filter</td>
</tr>
</tbody>
</table>
```

**show ports security**
Use the `show ports security` Privileged EXEC mode command to display the port-lock status.

**Syntax**
```
show ports security [interface-id | detailed]
```

**Parameters**
- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.
- `detailed`—Displays information for non-present ports in addition to present ports.

**Default Configuration**
Display is for present ports.

**Command Mode**
Privileged EXEC mode

**Example**
The following example displays the port-lock status of all present ports.

```
console# show ports security
```
### Address Table Commands

The following table describes the fields shown above.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The port number.</td>
</tr>
<tr>
<td>Status</td>
<td>The port security status. The possible values are: Enabled or Disabled.</td>
</tr>
<tr>
<td>Mode</td>
<td>The port security mode.</td>
</tr>
<tr>
<td>Action</td>
<td>The action taken on violation.</td>
</tr>
<tr>
<td>Maximum</td>
<td>The maximum number of addresses that can be associated on this port in the Max-Addresses mode.</td>
</tr>
<tr>
<td>Trap</td>
<td>The status of SNMP traps. The possible values are: Enable or Disable.</td>
</tr>
<tr>
<td>Frequency</td>
<td>The minimum time interval between consecutive traps.</td>
</tr>
</tbody>
</table>

**show ports security addresses**

Use the `show ports security addresses` Privileged EXEC mode command to display the current dynamic addresses in locked ports.

**Syntax**

`show ports security addresses [interface-id | detailed]`

**Parameters**

- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.
• **detailed**—Displays information for non-present ports in addition to present ports.

**Default Configuration**
Display is for present ports.

**Command Mode**
Privileged EXEC mode

**Example**
The following example displays dynamic addresses in all present currently locked ports.

```
Console# show ports security addresses

<table>
<thead>
<tr>
<th>Port</th>
<th>Status</th>
<th>Learning</th>
<th>Current</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Enabled</td>
<td>Max-addresses</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Disabled</td>
<td>Max-addresses</td>
<td>-</td>
<td>128</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>Enabled</td>
<td>Lock</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
```
Port Monitor Commands

**port monitor**
Use the `port monitor` Interface Configuration (Ethernet) mode command to start a port monitoring session. Use the `no` form of this command to stop a port monitoring session.

**Syntax**
```
port monitor src-interface-id [rx | tx]
no port monitor src-interface-id
```

**Parameters**
- **rx**—Monitors received packets only. If no option is specified, it monitors both rx and tx.
- **tx**—Monitors transmitted packets only. If no option is specified, it monitors both rx and tx.
- **src-interface-id**—Specifies an interface ID. The interface ID must be an Ethernet port.

**Default Configuration**
Monitors both received and transmitted packets.

**Command Mode**
Interface Configuration (Ethernet) mode. It cannot be configured for a range of interfaces (range context).
User Guidelines
This command enables port copy between Source Port (src-interface) to a Destination Port (The port in context).

The analyzer port for port ingress traffic mirroring should be the same port for all mirrored ports.

The analyzer port for port egress traffic mirroring should be the same port for all mirrored ports.

Following are restrictions apply for ports that are configured to be source ports:

• The port cannot be a destination port.

The following restrictions apply to ports that are configured to be monitor ports:

• The port can’t be source port.
• The port isn’t member in port-channel.
• IP interface is not configured on the port.
• GVRP is not enabled on the port.
• The port is not a member in any VLAN, except for the default VLAN (will be automatically removed from the default VLAN).
• L2 protocols are not active on the copy dest. Port: LLDP, LBD, STP, LACP.

The following restrictions apply to ports that are configured to be monitor ports:

• The port cannot be source port.
• The port is not a member in port-channel.

Notes:

• In this mode some traffic duplication on the analyzer port may be observed. For example:
  • Port 2 is being egress monitored by port 4.
  • Port 2 & 4 are members in VLAN 3.
  • Unknown Unicast packet sent to VLAN 3 will egress from port 4 twice, one instance as normal forward and another instance as mirrored from port 2.
• Moreover, if port 2 is an untagged member in VLAN 3 and port 4 is a tagged member then both instances will look different (one tagged and the other is not).

• When the port is configured to 802.1X auto mode it will forward any mirrored traffic regardless of the .1X state. However, it will operate as a normal network port (forward traffic) only after authorization is done.

• Mirrored traffic is exposed to STP state, i.e. if the port is in STP blocking, it will not egress any mirrored traffic.

Example
The following example copies traffic for both directions (Tx and Rx) from the source port gi1/0/8 to destination port gi1/0/1.

```
Console(config)# interface gi1/0/1
Console(config-if)# port monitor gi1/0/8
```

show ports monitor
Use the `show ports monitor` EXEC mode command to display the port monitoring status.

Syntax
`show ports monitor`

Command Mode
EXEC mode

Example
The following example displays the port monitoring status.

```
Console# show ports monitor
Source port Destination Port Type Status
------------- ---------------- -------- --------
 gi1/0/8 gi1/0/1 RX,TX Active
 gi1/0/2 gi1/0/1 RX,TX Active
 gi1/0/18 gi1/0/1 RX Active
```
sFlow Commands

**sflow receiver**

Use the `sflow receiver` Global Configuration mode command to define sFlow collector. Use the `no` form of this command to remove the definition of the collector.

**Syntax**

```
sflow receiver index {ipv4-address | ipv6-address | hostname} [port port] [max-datagram-size bytes]
```

**Parameters**

- **index**—The index of the receiver. (Range: 1–8)
- **ipv4-address**—IPv4 address of the host to be used as an sFlow Collector.
- **ipv6-address**—IPv6 address of the host to be used as an sFlow Collector. When the IPv6 address is a Link Local address (IPv6Z address), the outgoing interface name must be specified. Refer to the User Guidelines for the interface name syntax.
- **hostname**—Hostname of the host to be used as an sFlow Collector. Only translation to IPv4 addresses is supported.
- **port**—Port number for syslog messages. If unspecified, the port number defaults to 6343. The range is 1-65535.
- **bytes**—Specifies the maximum number of bytes that can be sent in a single sample datagram. If unspecified, it defaults to 1400.

**Default**

No receiver is defined.
**Command Mode**
Global Configuration mode

**User Guidelines**
If the IP address of the sFlow receiver is set to 0.0.0.0, no sFlow datagrams are sent.

---

**sflow flow-sampling**
Use the `sflow flow-sampling` Interface Configuration mode command to enable sFlow Flow sampling and configure the average sampling rate of a specific port. Use the `no` form of this command to disable Flow sampling.

**Syntax**
```
sflow flow-sampling rate receiver-index [max-header-size bytes]
```
```
no sflow flow-sampling
```

**Parameters**
- **rate**—Specifies the average sampling rate (Range: 1, 1024–1073741823.)
- **receiver-index**—Index of the receiver/collector (Range: 1–8.)
- **bytes**—Specifies the maximum number of bytes that would be copied from the sampled packet. If unspecified, defaults to 128. (Range: 20–256.)

**Default**
Disabled

**Command Mode**
Interface Configuration (Ethernet) mode

**User Guidelines**
A new sampling rate configuration is not immediately loaded to the hardware. It will be loaded to the hardware only after the next packet is sampled (based on the current sampling rate).
**sflow counters-sampling**

Use the `sflow counters-sampling` Interface Configuration mode command to enable sFlow Counters sampling and to configure the maximum interval of a specific port. Use the `no` form of this command to disable sFlow Counters sampling.

**Syntax**

```
sflow counters-sampling interval receiver-index
```

```
no sflow counters-sampling
```

**Parameters**

- **interval**—Specifies the maximum number of seconds between successive samples of the interface counters. (Range: 1, 15–86400.)
- **receiver-index**—Index of the receiver/collector. (Range: 1–8.)

**Default**

Disabled

**Command Mode**

Interface Configuration (Ethernet) mode

---

**clear sflow statistics**

Use the `clear sFlow statistics` EXEC mode command to clear sFlow statistics.

**Syntax**

```
clear sflow statistics [interface-id]
```

**Parameters**

- **interface-id**—Specifies an interface ID. The interface ID must be an Ethernet port.

**Command Mode**

EXEC mode
**User Guidelines**
If no interface is specified by the user, the command clears all the sFlow statistics counters (including datagrams sent). If an interface is specified by the user, the command clears only the counter of the specific interface.

---

**show sflow configuration**
Use the `show sflow configuration` EXEC mode command to display the sFlow configuration for ports that are enabled for Flow sampling or Counters sampling.

**Syntax**
```
show sflow configuration [interface-id]
```

**Parameters**
- `interface-id`—Specifies an interface ID. The interface ID must be an Ethernet port.

**Command Mode**
EXEC mode

**Example**
```
Console # show sflow configuration

Receivers

<table>
<thead>
<tr>
<th>Index</th>
<th>IP Address</th>
<th>Port</th>
<th>Max Datagram Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0.0.0</td>
<td>6343</td>
<td>1400</td>
</tr>
<tr>
<td>2</td>
<td>172.16.1.2</td>
<td>6343</td>
<td>1400</td>
</tr>
<tr>
<td>3</td>
<td>0.0.0.0</td>
<td>6343</td>
<td>1400</td>
</tr>
<tr>
<td>4</td>
<td>0.0.0.0</td>
<td>6343</td>
<td>1400</td>
</tr>
<tr>
<td>5</td>
<td>0.0.0.0</td>
<td>6343</td>
<td>1400</td>
</tr>
<tr>
<td>6</td>
<td>0.0.0.0</td>
<td>6343</td>
<td>1400</td>
</tr>
<tr>
<td>7</td>
<td>0.0.0.0</td>
<td>6343</td>
<td>1400</td>
</tr>
<tr>
<td>8</td>
<td>0.0.0.0</td>
<td>6343</td>
<td>1400</td>
</tr>
</tbody>
</table>
```

Interfaces
show sflow statistics

Use the show sflow statistics EXEC mode command to display the sFlow statistics for ports that are enabled for Flow sampling or Counters sampling.

Syntax
show sflow statistics [interface-id]

Parameters
interface-id—Specifies an interface ID. The interface ID must be an Ethernet port.

Command Mode
EXEC mode

Example

Console # show sflow statistics
Total sFlow datagrams sent to collectors: 100

<table>
<thead>
<tr>
<th>Interface</th>
<th>Packets sampled</th>
<th>datagrams sent to collector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>1/2</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Port</td>
<td>Value 1</td>
<td>Value 2</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>1/1</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1/2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
LLDP Commands

**lldp run**
Use the `lldp run` Global Configuration mode command to enable Link Layer Discovery Protocol (LLDP). To disable LLDP, use the `no` form of this command.

**Syntax**
```
lldp run
no lldp run
```

**Parameters**
This command has no arguments or keywords.

**Default**
Enabled

**Command Mode**
Global Configuration mode

**Example**
```
console(config)# lldp run
```

**lldp transmit**
Use the `lldp transmit` Interface Configuration mode command to enable transmitting Link Layer Discovery Protocol (LLDP) on an interface. Use the `no` form of this command to stop transmitting LLDP on an interface.
Syntax
lldp transmit
no lldp transmit

Parameters
This command has no arguments or keywords.

Default
Enabled

Command Mode
Interface Configuration (Ethernet) mode

User Guidelines
LLDP manages LAG ports individually. LLDP sends separate advertisements on each port in a LAG.

LLDP operation on a port is not dependent on the STP state of a port. I.e. LLDP frames are sent on blocked ports.

If a port is controlled by 802.1X, LLDP would operate only if the port is authorized.

Example

```plaintext
console(config)# interface gi1/0/1
console(config-if)# lldp transmit
```

Ildp receive

Use the **lldp receive** Interface Configuration mode command to enable receiving Link Layer Discovery Protocol (LLDP) on an interface. Use the **no** form of this command to stop receiving LLDP on an interface.

Syntax
lldp receive
no lldp receive
Parameters
This command has no arguments or keywords.

Default
Enabled

Command Mode
Interface Configuration (Ethernet) mode

User Guidelines
LLDP manages LAG ports individually. LLDP data received through LAG ports is stored individually per port.

LLDP operation on a port is not dependent on the STP state of a port. I.e. LLDP frames are received on blocked ports.

If a port is controlled by 802.1X, LLDP would operate only if the port is authorized.

Example

```
console(config)# interface gi1/0/1
console(config-if)# lldp receive
```

lldp timer
Use the `lldp timer` Global Configuration mode command to specify how often the software sends Link Layer Discovery Protocol (LLDP) updates. Use the `no` form of this command to restore the default configuration.

Syntax
```
lldp timer seconds
no lldp timer
```

Parameters
seconds—Specifies, in seconds, how often the software sends LLDP updates. (Range: 5-32768 seconds)
**Default Configuration**
The default update interval is 30 seconds.

**Command Mode**
Global Configuration mode

**Example**
The following example sets the interval for sending LLDP updates to 60 seconds.

```
Console(config)# lldp timer 60
```

**lldp hold-multiplier**
Use the `lldp hold-multiplier` Global Configuration mode command to set the time interval during which the receiving device holds a Link Layer Discovery Protocol (LLDP) packet before discarding it. Use the `no` form of this command to restore the default configuration.

**Syntax**
```
lldp hold-multiplier number
no lldp hold-multiplier
```

**Parameters**
- `number`—Specifies the LLDP packet hold time interval as a multiple of the LLDP timer value. (Range: 2-10)

**Default Configuration**
The default LLDP hold multiplier is 4.

**Command Mode**
Global Configuration mode

**User Guidelines**
The actual Time-To-Live (TTL) value of LLDP frames is expressed by the following formula:
TTL = $\min(65535, \text{LLDP-Timer} \times \text{LLDP-HoldMultiplier})$

For example, if the value of the LLDP timer is 30 seconds, and the value of the LLDP hold multiplier is 4, then the value 120 is encoded in the TTL field of the LLDP header.

**Example**

The following example sets the LLDP packet hold time interval to 90 seconds.

```
Console(config)# lldp timer 30
Console(config)# lldp hold-multiplier 3
```

**lldp reinit**

Use the `lldp reinit` Global Configuration mode command to specify the minimum time an LLDP port waits before reinitializing LLDP transmission. Use the `no` form of this command to revert to the default setting.

**Syntax**

```
lldp reinit seconds
no lldp reinit
```

**Parameters**

- **seconds**—Specifies the minimum time in seconds an LLDP port waits before reinitializing LLDP transmission. (Range: 1–10)

**Default**

2 seconds

**Command Mode**

Global Configuration mode

**Example**

```
console(config)# lldp reinit 4
```
**lldp tx-delay**

Use the *lldp tx-delay* Global Configuration mode command to set the delay between successive LLDP frame transmissions initiated by value/status changes in the LLDP local systems MIB. Use the *no* form of this command to restore the default configuration.

**Syntax**

```
lldp tx-delay seconds
no lldp tx-delay
```

**Parameters**

- `seconds`—Specifies the delay in seconds between successive LLDP frame transmissions initiated by value/status changes in the LLDP local systems MIB. (Range: 1-8192 seconds)

**Default Configuration**

The default LLDP frame transmission delay is 2 seconds.

**Command Mode**

Global Configuration mode

**User Guidelines**

It is recommended that the tx-delay be less than 0.25 of the LLDP timer interval.

**Example**

The following example sets the LLDP transmission delay to 10 seconds.

```
Console(config)# lldp tx-delay 10
```

---

**lldp optional-tlv**

Use the *lldp optional-tlv* Interface Configuration (Ethernet) mode command to specify which optional TLVs from the basic set are transmitted. Use the *no* form of this command to restore the default configuration.
Syntax
lldp optional-tlv tlv [tlv2 ... tlv5]
nolldp optional-tlv

Parameters
tlv—Specifies TLV that should be included. Available optional TLVs are:
port-desc, sys-name, sys-desc, sys-cap, 802.3-mac-phy, 802.3-lag, 802.3-max-frame-size.

Default Configuration
No optional TLV is transmitted.

Command Mode
Interface Configuration (Ethernet) mode

Example
The following example specifies that the port description TLV is transmitted
on gigabitethernet port 1/0/2.

console(config)# interface gi1/0/2
Console(config-if)# lldp optional-tlv port-desc

lldp management-address
Use the lldp management-address Interface Configuration (Ethernet) mode
command to specify the management address advertised from an interface.
Use the no form of this command to stop advertising management address
information.

Syntax
lldp management-address {ip-address | none | automatic [interface-id] }
nolldp management-address

Parameters
- ip-address—Specifies the static management address to advertise.
- none—Specifies that no address is advertised.
• **automatic**—Specifies that the software would automatically choose a management address to advertise from all the IP addresses of the product. In case of multiple IP addresses the software chooses the lowest IP address among the dynamic IP addresses. If there are no dynamic addresses, the software chooses the lowest IP address among the static IP addresses.

• **automatic interface-id**—Specifies that the software automatically chooses a management address to advertise from the IP addresses that are configured (associated) for the interface ID. In case of multiple IP addresses, the software chooses the lowest IP address among the dynamic IP addresses of the interface. If there are no dynamic addresses, the software chooses the lowest IP address among the static IP addresses of the interface. The interface ID can be one of the following types: Ethernet port, Port-channel or VLAN. Note that if the port or port-channel are members in a VLAN that has an IP address, that address is not included because the address is associated with the VLAN.

**Default Configuration**
No IP address is advertised.

The default advertisement is **automatic**.

**Command Mode**
Interface Configuration (Ethernet) mode

**User Guidelines**
Each port can advertise one IP address.

**Example**
The following example sets the LLDP management address advertisement mode to **automatic** on gigabitethernet port 1/0/2.

```
Console(config)# interface gi1/0/2
Console(config)# lldp management-address automatic
```

**lldp notifications**
Use the **lldp notifications** Interface Configuration (Ethernet) mode command to enable or disable sending Link Layer Discovery Protocol (LLDP)
notifications on an interface. Use the no form of this command to restore the default configuration.

**Syntax**

```plaintext
lldp notifications {enable | disable}
no lldp notifications
```

**Parameters**

- **enable**—Enables sending LLDP notifications.
- **disable**—Disables sending LLDP notifications.

**Default Configuration**

Sending LLDP notifications is disabled.

**Command Mode**

Interface Configuration (Ethernet) mode

**Example**

The following example enables sending LLDP notifications on gigabitethernet port 1/0/5.

```plaintext
Console(config)# interface gi1/0/5
Console(config)# lldp notifications 10
```

### lldp notifications interval

Use the `lldp notifications interval` Global Configuration mode command to configure the maximum transmission rate of LLDP notifications. Use the no form of this command to return to the default.

**Syntax**

```plaintext
lldp notifications interval seconds
no lldp notifications interval
```
Parameters
seconds—The device should not send more than one notification in the indicated period. (Range: 5–3600)

Default
5 seconds

Command Mode
Global Configuration mode

Example

```
console(config)# lldp notification interval 10
```

**lldp optional-tlv 802.1**

Use the *lldp optional-tlv* Interface Configuration mode command to specify which optional TLVs from the basic set to transmit. Use the *no* form of this command revert to the default setting.

**Syntax**

```
lldp optional-tlv 802.1 pvid
no lldp optional-tlv 802.1 pvid
lldp optional-tlv 802.1 ppvid add ppvid
lldp optional-tlv 802.1 ppvid remove ppvid
lldp optional-tlv 802.1 vlan-name add vlan-id
lldp optional-tlv 802.1 vlan-name remove vlan-id
lldp optional-tlv 802.1 protocol add {stp | rstp | mstp | pause | 802.1x | lacp | gvrp}
lldp optional-tlv 802.1 protocol remove {stp | rstp | mstp | pause | 802.1x | lacp | gvrp}
```

**Parameters**

- *pvid*—Advertises the PVID of the port.
• **ppvid**—Adds/removes PPVID for advertising. PPVID 0 can be used to advertise the PPVIDs capabilities of the interface. (Range: 0–4094)
• **vlan**—Adds/removes VLAN ID for advertising. (Range: 1–4094)

**Default**
No optional TLV is transmitted.

**Command Mode**
Interface Configuration (Ethernet) mode

---

### lldp med enable

Use the **lldp med enable** Interface Configuration (Ethernet) mode command to enable Link Layer Discovery Protocol (LLDP) Media Endpoint Discovery (MED) on an interface. Use the **no** form of this command to disable LLDP MED on an interface.

**Syntax**
```
lldp med enable [tlv ... tlv-4]
```
```
no lldp med enable
```

**Parameters**
- **tlv**—Specifies the TLV that should be included. Available TLVs are: network-policy, location, and poe-pse, inventory. The capabilities TLV is always included if LLDP-MED is enabled.

**Default Configuration**
LLDP MED is disabled.

**Command Mode**
Interface Configuration (Ethernet) mode

**Example**
The following example enables LLDP MED with the **location** TLV on gigabitethernet port 1/0/3.
Console(config)# interface gi1/0/3
Console(config)# lldp med enable location

**lldp med notifications topology-change**

Use the `lldp med notifications topology-change` Interface Configuration (Ethernet) mode command to enable sending LLDP MED topology change notifications. Use the `no` form of this command to restore the default configuration.

**Syntax**

```plaintext
lldp med notifications topology-change {enable | disable}
no lldp med notifications topology-change
```

**Parameters**

- `enable`—Enables sending LLDP MED topology change notifications.
- `disable`—Disables sending LLDP MED topology change notifications.

**Default Configuration**

Disable is the default.

**Command Mode**

Interface Configuration (Ethernet) mode

**Example**

The following example enables sending LLDP MED topology change notifications on gigabitethernet port 1/0/2.

```plaintext
Console(config)# interface gi1/0/2
Console(config)# lldp med notifications topology-change enable
```
lldp med fast-start repeat-count

Use the **lldp med fast-start repeat-count** Global Configuration mode command to configure the number of times the fast start LLDPDU is being sent during the activation of the fast start mechanism defined by LLDP-MED. Use the **no** form of this command return to default.

**Syntax**

```
lldp med fast-start repeat-count number
```

```
no lldp med fast-start repeat-count
```

**Parameters**

`number`—Specifies the number of times the fast start LLDPDU is being sent during the activation of the fast start mechanism.

**Default**

3

**Command Mode**

Global Configuration mode

**Example**

```
console(config)# lldp med fast-start repeat-count 4
```

lldp med network-policy (global)

Use the **lldp med network-policy** Global Configuration mode command to define LLDP MED network policy. Use the **no** form of this command to remove LLDP MED network policy.

**Syntax**

```
lldp med network-policy number application [vlan-id] [vlan-type {tagged | untagged}] [up priority] [dscp value]
```

```
no lldp med network-policy number
```
**Parameters**

- **number**—Network policy sequential number.
- **application**—The name or the number of the primary function of the application defined for this network policy. Available application names are: voice, voice-signaling, guest-voice, guest-voice-signaling, softphone-voice, video-conferencing, streaming-video, video-signaling.
- **vlan id**—VLAN identifier for the application.
- **vlan-type**—Specifies if the application is using a Tagged or an Untagged VLAN.
- **up priority**—User Priority (Layer 2 priority) to be used for the specified application.
- **dscp value**—DSCP value to be used for the specified application.

**Default**

No Network policy is defined.

**Command Mode**

Global Configuration mode

**User Guidelines**

Use the `lldp med network-policy` Interface Configuration command to attach a network policy to a port.

Up to 32 network policies can be defined.

**Example**

```
console(config)# lldp med network-policy 1 voice-signaling vlan 1
```

**lldp med network-policy (interface)**

Use the `lldp med network-policy` Interface Configuration (Ethernet) mode command to attach or remove an LLDP MED network policy on an interface. Use the `no` form of this command to remove all the LLDP MED network policies from the interface.
Syntax
lldp med network-policy {add | remove} number
no lldp med network-policy number

Parameters
• number—Specifies the network policy sequential number.
• add—Attaches the specified network policy to the interface.
• remove—Removes the specified network policy from the interface.

Default Configuration
No network policy is attached to the interface.

Command Mode
Interface Configuration (Ethernet) mode

User Guidelines
For each port, only one network policy per application (voice, voice-signaling, etc.) can be defined.

Example
The following example attaches LLDP MED network policy 1 to gigabitethernet port 1/0/1.

console(config)# interface gi1/0/1
console(config-if)# lldp med network-policy add 1

clear lldp table

Use the clear lldp table command in Privileged EXEC mode to restart the LLDP RX state machine and clear the neighbors table.

Syntax
clear lldp table [interface-id]
Parameters
interface-id—Specifies an interface ID. The interface ID must be an Ethernet port.

Command Mode
Privileged EXEC mode

Example

```
console# clear lldp table gi1/0/1
```

lldp med location

Use the `lldp med location` Interface Configuration (Ethernet) mode command to configure the location information for the Link Layer Discovery Protocol (LLDP) Media Endpoint Discovery (MED) for an interface. Use the `no` form of this command to delete location information for an interface.

Syntax

```
lldp med location {{coordinate data} | {civic-address data} | {ecs-elin data}}
```

no lldp med location {coordinate | civic-address | ecs-elin}

Parameters

- coordinate—Specifies the location data as coordinates.
- civic-address—Specifies the location data as a civic address.
- ecs-elin—Specifies the location data as an Emergency Call Service Emergency Location Identification Number (ECS ELIN).
- data—Specifies the location data in the format defined in ANSI/TIA 1057: dotted hexadecimal data: Each byte in a hexadecimal character string is two hexadecimal digits. Bytes are separated by a period or colon. (Length: coordinate: 16 bytes. Civic-address: 6-160 bytes. Ecs-elin: 10-25 bytes)

Default Configuration
The location is not configured.
**Command Mode**  
Interface Configuration (Ethernet) mode

**Example**  
The following example configures the LLDP MED location information on gigabitethernet port 1/0/2 as a civic address.

```plaintext
console(config)# interface gi1/0/2
console(config-if)# lldp med location civic-address 616263646566
```

**show lldp configuration**  
Use the `show lldp configuration` Privileged EXEC mode command to display the Link Layer Discovery Protocol (LLDP) configuration for all interfaces or for a specific interface.

**Syntax**  
`show lldp configuration [interface-id | detailed]`

**Parameters**
- `interface-id`—Specifies an interface ID. The interface ID must be an Ethernet port.
- `detailed`—Displays information for non-present ports in addition to present ports.

**Default Configuration**  
Display is for present ports.

**Command Mode**  
Privileged EXEC mode

**Example**  
The following example displays LLDP configuration for all present ports.

```plaintext
Switch# show lldp configuration
State: Enabled
```
Timer: 30 Seconds
Hold multiplier: 4
Reinit delay: 2 Seconds
Tx delay: 2 Seconds
Notifications interval: 5 seconds

LLDP packets handling: Filtering

<table>
<thead>
<tr>
<th>Port</th>
<th>State</th>
<th>Optional TLVs</th>
<th>Address</th>
<th>Notifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>RX, TX</td>
<td>PD, SN, SD, SC</td>
<td>172.16.1.1</td>
<td>Disabled</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>TX</td>
<td>PD, SN</td>
<td>172.16.1.1</td>
<td>Disabled</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>RX, TX</td>
<td>PD, SN, SD, SC</td>
<td>None</td>
<td>Disabled</td>
</tr>
<tr>
<td>gi1/0/5</td>
<td>RX, TX</td>
<td>D, SN, SD, SC</td>
<td>automatic</td>
<td>Disabled</td>
</tr>
<tr>
<td>gi1/0/6</td>
<td>RX, TX</td>
<td>PD, SN, SD, SC</td>
<td>auto vlan 1</td>
<td>Disabled</td>
</tr>
<tr>
<td>gi1/0/7</td>
<td>RX, TX</td>
<td>PD, SN, SD, SC</td>
<td>auto g1</td>
<td>Disabled</td>
</tr>
<tr>
<td>gi1/0/8</td>
<td>RX, TX</td>
<td>PD, SN, SD, SC</td>
<td>auto ch1</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Switch# show lldp configuration gi1/0/1
State: Enabled
Timer: 30 Seconds
Hold multiplier: 4
Reinit delay: 2 Seconds
Tx delay: 2 Seconds
Notifications interval: 5 seconds
LLDP packets handling: Filtering

<table>
<thead>
<tr>
<th>Port</th>
<th>State</th>
<th>Optional TLVs</th>
<th>Address</th>
<th>Notifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>RX, TX</td>
<td>PD, SN, SD, SC</td>
<td>72.16.1.1</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

802.3 optional TLVs: 802.3-mac-phy, 802.3-lag, 802.3-max-frame-size

802.1 optional TLVs
PVID: Enabled
PPVIDs: 0, 1, 92
VLANs: 1, 92
The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>The time interval between LLDP updates.</td>
</tr>
<tr>
<td>Hold multiplier</td>
<td>The amount of time (as a multiple of the timer interval) that the receiving device holds a Link Layer Discovery Protocol (LLDP) packet before discarding it.</td>
</tr>
<tr>
<td>Reinit timer</td>
<td>The minimum time interval an LLDP port waits before re-initializing an LLDP transmission.</td>
</tr>
<tr>
<td>Tx delay</td>
<td>The delay between successive LLDP frame transmissions initiated by value/status changes in the LLDP local systems MIB.</td>
</tr>
<tr>
<td>Port</td>
<td>The port number.</td>
</tr>
<tr>
<td>State</td>
<td>The port's LLDP state.</td>
</tr>
<tr>
<td>Optional TLVs</td>
<td>Optional TLVs that are advertised. Possible values are: PD - Port description, SN - System name, SD - System description, SC - System capabilities.</td>
</tr>
<tr>
<td>Address</td>
<td>The management address that is advertised.</td>
</tr>
<tr>
<td>Notifications</td>
<td>Indicates whether LLDP notifications are enabled or disabled.</td>
</tr>
</tbody>
</table>

**show lldp med configuration**

Use the `show lldp med configuration` Privileged EXEC mode command to display the Link Layer Discovery Protocol (LLDP) Media Endpoint Discovery (MED) configuration for all interfaces or for a specific interface.

**Syntax**

`show lldp med configuration [interface-id]`

**Parameters**

- **interface-id**—Specifies an interface ID. The interface ID must be an Ethernet port.
**Command Mode**
Privileged EXEC mode

**Example**
The following examples display the LLDP MED configuration for all interfaces and for gigabitethernet port 1/0/1.

```
console# show lldp med configuration

Fast Start Repeat Count: 4.
Network policy 1

Application type: voiceSignaling
VLAN ID: 1 untagged
Layer 2 priority: 0
DSCP: 0

<table>
<thead>
<tr>
<th>Port</th>
<th>Capabilities</th>
<th>Network policy</th>
<th>Location</th>
<th>Notifications</th>
<th>Inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Enabled</td>
<td>Yes</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Enabled</td>
<td>No</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Enabled</td>
<td>No</td>
</tr>
</tbody>
</table>

console# show lldp med configuration gi1/0/1

<table>
<thead>
<tr>
<th>Port</th>
<th>Capabilities</th>
<th>Network policy</th>
<th>Location</th>
<th>Notifications</th>
<th>Inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Enabled</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Network policies:
Location:
show lldp local tlvs-overloading

Use the `show lldp local tlvs-overloading` EXEC mode command to display the status of TLVs overloading of the Link Layer Discovery Protocol (LLDP).

Syntax

show lldp local tlvs-overloading \[interface-id\]

Parameters

`interface-id`—Specifies an interface ID. The interface ID must be an Ethernet port.

Command Mode

EXEC mode

User Guidelines

The command calculates the overloading status of the current LLDP configuration, and not for the last LLDP packet that was sent.

Example

Switch# show lldp local tlvs-overloading
Ports with LLDP TLV overloading are: gi1/0/1, gi1/0/9
Switch# show lldp local tlvs-overloading
No LLDP TLV overloading.
Switch# show lldp local tlvs-overloading gi1/0/1

<table>
<thead>
<tr>
<th>TLVs Group</th>
<th>Bytes</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory</td>
<td>31</td>
<td>Transmitted</td>
</tr>
<tr>
<td>LLDP-MED Capabilities</td>
<td>9</td>
<td>Transmitted</td>
</tr>
<tr>
<td>LLDP-MED Location</td>
<td>200</td>
<td>Transmitted</td>
</tr>
<tr>
<td>802.1 1360</td>
<td>Overloading</td>
<td></td>
</tr>
</tbody>
</table>

Total: 1600 bytes
Left: 100 bytes
show lldp local

Use the `show lldp local` Privileged EXEC mode command to display the Link Layer Discovery Protocol (LLDP) information that is advertised from a specific port.

Syntax

`show lldp local interface-id`

Parameters

Interface-id—Specifies an interface ID. The interface ID must be an Ethernet port.

Command Mode

Privileged EXEC mode

Example

The following examples display LLDP information that is advertised from gigabitethernet ports 1/0/1 and 1/0/2.

```
Switch# show lldp local gi1/0/1
Device ID: 0060.704C.73FF
Port ID: gi1/0/1
Capabilities: Bridge
System Name: ts-7800-1
System description:
Port description:
Management address: 172.16.1.8
802.3 MAC/PHY Configuration/Status
Auto-negotiation support: Supported
Auto-negotiation status: Enabled
Auto-negotiation Advertised Capabilities: 100BASE-TX full duplex, 1000BASE-T full duplex
Operational MAU type: 1000BaseTFD
802.3 Link Aggregation
Aggregation capability: Capable of being aggregated
Aggregation status: Not currently in aggregation
```
Aggregation port ID: 1
802.3 Maximum Frame Size: 1522

802.3 EEE
Local Tx: 30 usec
Local Rx: 25 usec
Remote Tx Echo: 30 usec
Remote Rx Echo: 25 usec

802.1 PVID: 1
802.1 PPVID: 2 supported, enabled
802.1 VLAN: 2 (VLAN2)
802.1 Protocol: 88 8E 01

LLDP-MED capabilities: Network Policy, Location Identification
LLDP-MED Device type: Network Connectivity
LLDP-MED Network policy
Application type: Voice
Flags: Tagged VLAN
VLAN ID: 2
Layer 2 priority: 0
DSCP: 0

LLDP-MED Power over Ethernet
Device Type: Power Sourcing Entity
Power source: Primary Power Source
Power priority: High
Power value: 9.6 Watts

LLDP-MED Location

LLDP-MED Inventory
Hardware Revision: B1
Firmware Revision: A1
Switch# show lldp local gi1/0/2

LLDP is disabled.

show lldp neighbors

Use the show lldp neighbors Privileged EXEC mode command to display information about neighboring devices discovered using Link Layer Discovery Protocol (LLDP). The information can be displayed for all interfaces or for a specific interface.

Syntax

```
show lldp neighbors [interface-id]
```

Parameters

`interface-id`—Specifies an interface ID. The interface ID must be an Ethernet port.

Command Mode

Privileged EXEC mode

User Guidelines

There are no guidelines for this command.

A TLV value that cannot be displayed as an ASCII string is displayed as an hexadecimal string.

Example

The following examples display information about neighboring devices discovered using LLDP.

Location information, if it exists, is also displayed.
Switch# show lldp neighbors

<table>
<thead>
<tr>
<th>Port</th>
<th>Device ID</th>
<th>Port ID</th>
<th>System Name</th>
<th>Capabilities</th>
<th>TTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>00:00:00:11:11:11</td>
<td>gi1/0/1</td>
<td>ts-7800-2</td>
<td>B</td>
<td>90</td>
</tr>
<tr>
<td>gi1/0/1</td>
<td>00:00:00:11:11:11 D</td>
<td>gi1/0/1</td>
<td>ts-7800-2</td>
<td>B</td>
<td>90</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>00:00:26:08:13:24</td>
<td>gi1/0/3</td>
<td>ts-7900-1</td>
<td>B, R</td>
<td>90</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>00:00:26:08:13:24</td>
<td>gi1/0/2</td>
<td>ts-7900-2</td>
<td>W</td>
<td>90</td>
</tr>
</tbody>
</table>

Switch# show lldp neighbors gi1/0/1

Device ID: 00:00:00:11:11:11
Port ID: gi1/0/
System Name: ts-7800-2
Capabilities: B
System description:
Port description:
Management address: 172.16.1.1
Time To Live: 90 seconds

802.3 MAC/PHY Configuration/Status
Auto-negotiation support: Supported.
Auto-negotiation status: Enabled.
Auto-negotiation Advertised Capabilities: 100BASE-TX full duplex, 1000BASE-T full duplex.
Operational MAU type: 1000BaseTFD

802.3 Power via MDI
MDI Power support Port Class: PD
PSE MDI Power Support: Not Supported
PSE MDI Power State: Not Enabled
PSE power pair control ability: Not supported.
PSE Power Pair: Signal
PSE Power class: 1

802.3 Link Aggregation
Aggregation capability: Capable of being aggregated
Aggregation status: Not currently in aggregation
Aggregation port ID: 1

802.3 Maximum Frame Size: 1522

802.3 EEE
Remote Tx: 25 usec
Remote Rx: 30 usec
Local Tx Echo: 30 usec
Local Rx Echo: 25 usec

802.1 PVID: 1
802.1 PPVID: 2 supported, enabled
802.1 VLAN: 2(VLAN2)
802.1 Protocol: 88 8E 01

LLDP-MED capabilities: Network Policy.
LLDP-MED Device type: Endpoint class 2.

LLDP-MED Network policy
Application type: Voice
Flags: Unknown policy
VLAN ID: 0
Layer 2 priority: 0
DSCP: 0

LLDP-MED Power over Ethernet
Device Type: Power Device
Power source: Primary power
Power priority: High
Power value: 9.6 Watts

LLDP-MED Inventory
Hardware revision: 2.1
Firmware revision: 2.3
Software revision: 2.7.1
Serial number: LM759846587
Manufacturer name: VP
Model name: TR12
Asset ID: 9

LLDP-MED Location

The following table describes significant LLDP fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The port number.</td>
</tr>
<tr>
<td>Device ID</td>
<td>The neighbor device's configured ID (name) or MAC address.</td>
</tr>
<tr>
<td>Port ID</td>
<td>The neighbor device's port ID.</td>
</tr>
<tr>
<td>System name</td>
<td>The neighbor device's administratively assigned name.</td>
</tr>
<tr>
<td>Capabilities</td>
<td>The capabilities discovered on the neighbor device.</td>
</tr>
<tr>
<td></td>
<td>Possible values are:</td>
</tr>
<tr>
<td></td>
<td>B - Bridge</td>
</tr>
<tr>
<td></td>
<td>R - Router</td>
</tr>
<tr>
<td></td>
<td>W - WLAN Access Point</td>
</tr>
<tr>
<td></td>
<td>T - Telephone</td>
</tr>
<tr>
<td></td>
<td>D - DOCSIS cable device</td>
</tr>
<tr>
<td></td>
<td>H - Host</td>
</tr>
<tr>
<td></td>
<td>r - Repeater</td>
</tr>
<tr>
<td></td>
<td>O - Other</td>
</tr>
<tr>
<td>System description</td>
<td>The neighbor device's system description.</td>
</tr>
<tr>
<td>Port description</td>
<td>The neighbor device's port description.</td>
</tr>
<tr>
<td>Management address</td>
<td>The neighbor device's management address.</td>
</tr>
<tr>
<td>Auto-negotiation support</td>
<td>The auto-negotiation support status on the port.</td>
</tr>
<tr>
<td></td>
<td>(Supported or Not Supported)</td>
</tr>
<tr>
<td>Auto-negotiation status</td>
<td>The active status of auto-negotiation on the port.</td>
</tr>
<tr>
<td></td>
<td>(Enabled or Disabled)</td>
</tr>
<tr>
<td>Auto-negotiation Advertised Capabilities</td>
<td>The port speed/duplex/flow-control capabilities advertised by the auto-negotiation.</td>
</tr>
<tr>
<td>Operational MAU type</td>
<td>The port MAU type.</td>
</tr>
<tr>
<td>LLDP MED Capabilities</td>
<td>The sender’s LLDP-MED capabilities.</td>
</tr>
<tr>
<td>Device type</td>
<td>The device type. Indicates whether the sender is a Network Connectivity Device or Endpoint Device, and if an Endpoint, to which Endpoint Class it belongs.</td>
</tr>
<tr>
<td>LLDP MED - Network Policy Application type</td>
<td>The primary function of the application defined for this network policy.</td>
</tr>
<tr>
<td>Flags</td>
<td>Flags. The possible values are: Unknown policy: Policy is required by the device, but is currently unknown. Tagged VLAN: The specified application type is using a Tagged VLAN. Untagged VLAN: The specified application type is using an Untagged VLAN.</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>The VLAN identifier for the application.</td>
</tr>
<tr>
<td>Layer 2 priority</td>
<td>The Layer 2 priority used for the specified application.</td>
</tr>
<tr>
<td>DSCP</td>
<td>The DSCP value used for the specified application.</td>
</tr>
<tr>
<td>LLDP MED - Power Over Ethernet Power type</td>
<td>The device power type. The possible values are: Power Sourcing Entity (PSE) or Power Device (PD).</td>
</tr>
<tr>
<td>Power Source</td>
<td>The power source utilized by a PSE or PD device. A PSE device advertises its power capability. The possible values are: Primary power source and Backup power source. A PD device advertises its power source. The possible values are: Primary power, Local power, Primary and Local power.</td>
</tr>
<tr>
<td>Power priority</td>
<td>The PD device priority. A PSE device advertises the power priority configured for the port. A PD device advertises the power priority configured for the device. The possible values are: Critical, High and Low.</td>
</tr>
</tbody>
</table>
show lldp statistics

Use the show lldp statistics EXEC mode command to display the Link Layer Discovery Protocol (LLDP) statistics.

Syntax
show lldp statistics [interface-id | detailed]

Parameters
- interface-id—Specifies an interface ID. The interface ID must be an Ethernet port.
- detailed—Displays information for non-present ports in addition to present ports.

Default Configuration
Display is for present ports.

Command Mode
EXEC mode

Example
The following example displays LLDP statistics for all present ports

Switch# show lldp statistics
Contax(config-if)# do show lldp statistics
Tables Last Change Time: 14-Oct-2010 32:08:18
Tables Inserts: 26
Tables Deletes: 2

<table>
<thead>
<tr>
<th>Power value</th>
<th>The total power in watts required by a PD device from a PSE device, or the total power a PSE device is capable of sourcing over a maximum length cable based on its current configuration.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLDP MED - Location</td>
<td></td>
</tr>
<tr>
<td>Coordinates, Civic address, ECS ELIN.</td>
<td>The location information raw data.</td>
</tr>
</tbody>
</table>
Tables Dropped: 0
Tables Ageouts: 1

<table>
<thead>
<tr>
<th>Port</th>
<th>TX Frames</th>
<th>RX Frames</th>
<th>RX TLVs</th>
<th>RX Ageouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>730</td>
<td>850</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>730</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi1/0/5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi1/0/6</td>
<td>8</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi1/0/7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi1/0/8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi1/0/9</td>
<td>730</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi1/0/10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Spanning-Tree Commands

spanning-tree
Use the spanning-tree Global Configuration mode command to enable spanning-tree functionality. Use the no form of this command to disable the spanning-tree functionality.

Syntax
spanning-tree
no spanning-tree

Default Configuration
Spanning-tree is enabled.

Command Mode
Global Configuration mode

Example
The following example enables spanning-tree functionality.

Console(config)# spanning-tree

spanning-tree mode
Use the spanning-tree mode Global Configuration mode command to configure the spanning-tree protocol currently running. Use the no form of this command to restore the default configuration.
Syntax
```
spanning-tree mode {stp | rstp | mst}
```
```
no spanning-tree mode
```

Parameters
- **stp**—Specifies that the Spanning Tree Protocol (STP) is enabled.
- **rstp**—Specifies that the Rapid Spanning Tree Protocol (RSTP) is enabled.
- **mst**—Specifies that the Multiple Spanning Tree Protocol (MSTP) is enabled.

Default Configuration
The default is RSTP.

Command Mode
Global Configuration mode

User Guidelines
In RSTP mode, the device uses STP when the neighbor device uses STP.

In MSTP mode, the device uses RSTP when the neighbor device uses RSTP, and uses STP when the neighbor device uses STP.

Example
The following example configures the spanning-tree protocol as RSTP.

```
console(config)# spanning-tree mode mstp
```

spanning-tree forward-time
Use the `spanning-tree forward-time` Global Configuration mode command to configure the spanning-tree bridge forward time, which is the amount of time a port remains in the listening and learning states before entering the forwarding state. Use the `no` form of this command to restore the default configuration.
Syntax
spanning-tree forward-time seconds
no spanning-tree forward-time

Parameters
seconds—Specifies the spanning-tree forward time in seconds. (Range: 4–30)

Default Configuration
The default forwarding time for the IEEE Spanning Tree Protocol (STP) is 15 seconds.

Command Mode
Global Configuration mode

User Guidelines
When configuring the forwarding time, the following relationship should be maintained:

\[2 \times (\text{Forward-Time} - 1) \geq \text{Max-Age} \]

Example
The following example configures the spanning tree bridge forwarding time to 25 seconds.

```
Console(config)# spanning-tree forward-time 25
```

spanning-tree hello-time
Use the `spanning-tree hello-time` Global Configuration mode command to configure the spanning tree bridge Hello time, which is how often the device broadcasts Hello messages to other devices. Use the `no` form of this command to restore the default configuration.

Syntax
spanning-tree hello-time seconds
no spanning-tree hello-time
Parameters
seconds—Specifies the spanning-tree Hello time in seconds. (Range: 1–10)

Default Configuration
The default Hello time for IEEE Spanning Tree Protocol (STP) is 2 seconds.

Command Mode
Global Configuration mode

User Guidelines
When configuring the Hello time, the following relationship should be maintained:

Max-Age >= 2*(Hello-Time + 1)

Example
The following example configures the spanning-tree bridge hello time to 5 seconds.

```console
Console(config)# spanning-tree hello-time 5
```

spanning-tree max-age
Use the spanning-tree max-age Global Configuration mode command to configure the spanning-tree bridge maximum age. Use the no form of this command to restore the default configuration.

Syntax
spanning-tree max-age seconds
no spanning-tree max-age

Parameters
seconds— Specifies the spanning-tree bridge maximum age in seconds. (Range: 6–40)
Default Configuration
The default maximum age for IEEE Spanning Tree Protocol (STP) is 20 seconds.

Command Mode
Global Configuration mode

User Guidelines
When configuring the maximum age, the following relationships should be maintained:

\[2 \times (\text{Forward-Time} - 1) \geq \text{Max-Age} \]
\[\text{Max-Age} \geq 2 \times (\text{Hello-Time} + 1) \]

Example
The following example configures the spanning-tree bridge maximum age to 10 seconds.

```
Console(config)# spanning-tree max-age 10
```

spanning-tree priority
Use the `spanning-tree priority` Global Configuration mode command to configure the device spanning-tree priority, which is used to determine which bridge is selected as the root bridge. Use the `no` form of this command to restore the default device spanning-tree priority.

Syntax
- `spanning-tree priority priority`
- `no spanning-tree priority`

Parameters
- `priority`—Specifies the bridge priority. (Range: 0–61440)

Default Configuration
The default bridge priority for IEEE Spanning Tree Protocol (STP) is 32768.
Command Mode
Global Configuration mode

User Guidelines
The priority value must be a multiple of 4096.
The switch with the lowest priority is the root of the spanning tree.

Example
The following example configures the spanning-tree priority to 12288.

```
Console(config)# spanning-tree priority 12288
```

spanning-tree disable
Use the spanning-tree disable Interface Configuration (Ethernet, port-channel) mode command to disable the spanning tree on a specific port. Use the no form of this command to enable the spanning tree on a port.

Syntax
spanning-tree disable
no spanning-tree disable

Default Configuration
Spanning tree is enabled on all ports.

Command Mode
Interface Configuration (Ethernet, port-channel) mode

Example
The following example disables the spanning tree on gigabitethernet port 1/0/5

```
Console(config)# interface gi1/0/5
Console(config-if)# spanning-tree disable
```
spanning-tree cost

Use the `spanning-tree cost` Interface Configuration (Ethernet, port-channel) mode command to configure the spanning-tree path cost for a port. Use the `no` form of this command to restore the default configuration.

Syntax

```
spanning-tree cost cost

no spanning-tree cost
```

Parameters

cost—Specifies the port path cost. (Range: 1–200000000)

Default Configuration

Default path cost is determined by port speed and path cost method (long or short) as shown below:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Long</th>
<th>Short</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port-channel</td>
<td>20,000</td>
<td>4</td>
</tr>
<tr>
<td>TenGigabit Ethernet (10000 Mbps)</td>
<td>2000</td>
<td>2</td>
</tr>
<tr>
<td>Gigabit Ethernet (1000 Mbps)</td>
<td>20,000</td>
<td>4</td>
</tr>
<tr>
<td>Fast Ethernet (100 Mbps)</td>
<td>200,000</td>
<td>19</td>
</tr>
<tr>
<td>Ethernet (10 Mbps)</td>
<td>2,000,000</td>
<td>100</td>
</tr>
</tbody>
</table>

Command Mode

Interface Configuration (Ethernet, port-channel) mode

Example

The following example configures the spanning-tree cost on gigabitethernet port 1/0/15 to 35000.

```
Console(config)# interface gi1/0/15
Console(config-if)# spanning-tree cost 35000
```
spanning-tree port-priority

Use the `spanning-tree port-priority` Interface Configuration (Ethernet, port-channel) mode command to configure the port priority. Use the `no` form of this command to restore the default configuration.

Syntax

```
spanning-tree port-priority priority
no spanning-tree port-priority
```

Parameters

`priority`—Specifies the port priority. (Range: 0–240)

Default Configuration

The default port priority for IEEE Spanning Tree Protocol (STP) is 128.

Command Mode

Interface Configuration (Ethernet, port-channel) mode

User Guidelines

The priority value must be a multiple of 16.

Example

The following example configures the spanning priority on gigabitethernet port 1/0/15 to 96

```
Console(config)# interface gi1/0/15
Console(config-if)# spanning-tree port-priority 96
```

spanning-tree portfast

Use the `spanning-tree portfast` Interface Configuration (Ethernet, port-channel) mode command to enable the PortFast mode. In PortFast mode, the interface is immediately put into the forwarding state upon linkup, without waiting for the standard forward time delay. Use the `no` form of this command to disable the PortFast mode.
Syntax
```
spanning-tree portfast [auto]
no spanning-tree portfast
```

Parameters
- **auto**—Specifies that the software waits for 3 seconds (with no BPDUs received on the interface) before putting the interface into the PortFast mode.

Default Configuration
PortFast mode is disabled.

Command Mode
Interface Configuration (Ethernet, port-channel) mode

Example
The following example enables the PortFast mode on gigabitethernet port 1/0/15.

```
Console(config)# interface gi1/0/15
Console(config-if)# spanning-tree portfast
```

spanning-tree link-type
Use the `spanning-tree link-type` Interface Configuration (Ethernet, port-channel) mode command to override the default link-type setting determined by the port duplex mode, and enable Rapid Spanning Tree Protocol (RSTP) transitions to the forwarding state. Use the `no` form of this command to restore the default configuration.

Syntax
```
spanning-tree link-type {point-to-point | shared}
no spanning-tree spanning-tree link-type
```

Parameters
- **point-to-point**—Specifies that the port link type is point-to-point.
• **shared**—Specifies that the port link type is shared.

Default Configuration
The device derives the port link type from the duplex mode. A full-duplex port is considered a point-to-point link and a half-duplex port is considered a shared link.

Command Mode
Interface Configuration (Ethernet, port-channel) mode

Example
The following example enables shared spanning-tree on gigabitethernet port 1/0/15.

```
Console(config)# interface gi1/0/15
Console(config-if)# spanning-tree link-type shared
```

spanning-tree pathcost method
Use the `spanning-tree pathcost method` Global Configuration mode command to set the default path cost method. Use the `no` form of this command to return to the default configuration.

Syntax
```
spanning-tree pathcost method {long | short}
no spanning-tree pathcost method
```

Parameters

- **long**—Specifies that the default port path costs are within the range: 1–200,000,000.
- **short**—Specifies that the default port path costs are within the range: 1–65,535.

Default Configuration
Short path cost method.
Command Mode
Global Configuration mode

User Guidelines
This command applies to all the spanning tree instances on the switch.

- If the short method is chosen, the switch use for the default cost values in the range 1 through 65,535.
- If the long method is chosen, the switch use for the default cost values in the range 1 through 200,000,000.

Example
The following example sets the default path cost method to Long.

```
Console(config)# spanning-tree pathcost method long
```

spanning-tree bpdu (Global)
Use the `spanning-tree bpdu` Global Configuration mode command to define BPDU handling when the spanning tree is disabled globally or on a single interface. Use the `no` form of this command to restore the default configuration.

Syntax
`spanning-tree bpdu {filtering | flooding}

no spanning-tree bpdu`

Parameters
- **filtering**—Specifies that BPDU packets are filtered when the spanning tree is disabled on an interface.
- **flooding**—Specifies that untagged BPDU packets are flooded unconditionally (without applying VLAN rules) to all ports with the spanning tree disabled and BPDU handling mode of flooding. Tagged BPDU packets are filtered.
Default Configuration
The default setting is flooding.

Command Mode
Global Configuration mode

User Guidelines
The filtering and flooding modes are relevant when the spanning tree is disabled globally or on a single interface.

Example
The following example defines the BPDU packet handling mode as flooding when the spanning tree is disabled on an interface.

```
Console(config)# spanning-tree bpdu flooding
```

spanning-tree bpdu (Interface)
Use the spanning-tree bpdu Interface Configuration (Ethernet, Port-channel) mode command to define BPDU handling when the spanning tree is disabled on a single interface. Use the no form of this command to restore the default configuration.

Syntax
```
spanning-tree bpdu {filtering | flooding}
```

Parameters
- filtering—Specifies that BPDU packets are filtered when the spanning tree is disabled on an interface.
- flooding—Specifies that untagged BPDU packets are flooded unconditionally (without applying VLAN rules) to ports with the spanning tree disabled and BPDU handling mode of flooding. Tagged BPDU packets are filtered.
Default Configuration
The `spanning-tree bpdu (Global)` command determines the default configuration.

Command Mode
Interface Configuration (Ethernet, Port-channel) mode

Example
The following example defines the BPDU packet as `flooding` when the spanning tree is disabled on gigabitethernet port 1/0/3.

```
Console(config)# interface gi1/0/3
Console(config-if)# spanning-tree bpdu flooding
```

spanning-tree guard root
Use the `spanning-tree guard root` Interface Configuration (Ethernet, Port-channel) mode command to enable root guard on all spanning-tree instances on the interface. Root guard prevents the interface from becoming the root port of the device. Use the `no` form of this command to disable the root guard on the interface.

Syntax
`spanning-tree guard root`
`no spanning-tree guard root`

Default Configuration
Root guard is disabled.

Command Mode
Interface Configuration (Ethernet, Port-channel) mode

User Guidelines
Root guard can be enabled when the device operates in STP, RSTP and MSTP modes.
When root guard is enabled, the port changes to the alternate state if the spanning-tree calculations select the port as the root port.

Example
The following example prevents gigabitethernet port 1/0/1 from being the root port of the device.

```
Console(config)# interface gi1/0/1
Console(config-if)# spanning-tree guard root
```

spanning-tree bpduguard

Use the `spanning-tree bpduguard` Interface Configuration (Ethernet, port-channel) mode command to shut down an interface when it receives a bridge protocol data unit (BPDU). Use the `no` form of this command to restore the default configuration.

Syntax

```
spanning-tree bpduguard {enable | disable}
no spanning-tree bpduguard
```

Parameters

- **enable**—Enables BPDU Guard.
- **disable**—Disables BPDU Guard.

Default Configuration

BPDU Guard is disabled.

Command Mode

Interface Configuration (Ethernet, Port-channel) mode

User Guidelines

The command can be enabled when the spanning tree is enabled (useful when the port is in the PortFast mode) or disabled.
Example
The following example shuts down Ethernet port 1/0/5 when it receives a BPDU.

```
Console(config)# interface gi1/0/5
Console(config-if)# spanning-tree bpdu-guard enable
```

clear spanning-tree detected-protocols

Use the `clear spanning-tree detected-protocols` Privileged EXEC command to restart the protocol migration process (force the renegotiation with neighboring switches) on all interfaces or on the specified interface.

Syntax

```
clear spanning-tree detected-protocols [interface interface-id]
```

Parameters

`interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode

Privileged EXEC mode

User Guidelines

This feature should be used only when working in RSTP or MSTP mode.

Example

```
console# clear spanning-tree detected-protocols
```

spanning-tree mst priority

Use the `spanning-tree mst priority` Global Configuration mode command to configure the device priority for the specified spanning-tree instance. Use the `no` form of this command to restore the default configuration.
Syntax

spanning-tree mst instance-id priority priority

no spanning-tree mst instance-id priority

Parameters

- **instance-id**—Specifies the spanning-tree instance ID. (Range: 1–15)
- **priority**—Specifies the device priority for the specified spanning-tree instance. This setting affects the likelihood that the switch is selected as the root switch. A lower value increases the probability that the switch is selected as the root switch. (Range: 0–61440)

Default Configuration

The default bridge priority for IEEE Spanning Tree Protocol (STP) is 32768.

Command Mode

Global Configuration mode

User Guidelines

The priority value must be a multiple of 4096.

The switch with the lowest priority is the root of the spanning tree.

Example

The following example configures the spanning tree priority of instance 1 to 4096.

```
Console(config)# spanning-tree mst 1 priority 4096
```

spanning-tree mst max-hops

Use the `spanning-tree mst max-hops` Global Configuration mode command to configure the number of hops in an MST region before the BDPU is discarded and the port information is aged out. Use the `no` form of this command to restore the default configuration.

Syntax

spanning-tree mst max-hops hop-count
no spanning-tree mst max-hops

Parameters

`hop-count`—Specifies the number of hops in an MST region before the BDPU is discarded. (Range: 1–40)

Default Configuration

The default number of hops is 20.

Command Mode

Global Configuration mode

Example

The following example configures the maximum number of hops that a packet travels in an MST region before it is discarded to 10.

```console
Console(config)# spanning-tree mst max-hops 10
```

spanning-tree mst port-priority

Use the `spanning-tree mst port-priority` Interface Configuration (Ethernet, port-channel) mode command to configure the priority of a port. Use the `no` form of this command to restore the default configuration.

Syntax

```
spanning-tree mst instance-id port-priority priority
no spanning-tree mst instance-id port-priority
```

Parameters

- `instance-id`—Specifies the spanning tree instance ID. (Range: 1–15)
- `priority`—Specifies the port priority. (Range: 0–240 in multiples of 16)

Default Configuration

The default port priority for IEEE Spanning Tree Protocol (STP) is 128.
Command Mode

Interface Configuration (Ethernet, port-channel) mode

User Guidelines

The priority value must be a multiple of 16.

Example

The following example configures the port priority of port gi1/0/1 to 144.

```
Console(config)# interface gi1/0/1
Console(config-if)# spanning-tree mst 1 port-priority 144
```

spanning-tree mst cost

Use the `spanning-tree mst` Interface Configuration (Ethernet, Port-channel) mode command to configure the path cost for multiple spanning-tree (MST) calculations. If a loop occurs, the spanning tree considers path cost when selecting an interface to put in the forwarding state. Use the `no` form of this command to restore the default configuration.

Syntax

```
spanning-tree mst instance-id cost cost
```

```
no spanning-tree mst instance-id cost
```

Parameters

- `instance-id`—Specifies the spanning-tree instance ID. (Range: 1–15)
- `cost`—Specifies the port path cost. (Range: 1–200000000)

Default Configuration

Default path cost is determined by the port speed and path cost method (long or short) as shown below:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Long</th>
<th>Short</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port-channel</td>
<td>20,000</td>
<td>4</td>
</tr>
<tr>
<td>TenGigabit Ethernet (10000 Mbps)</td>
<td>2000</td>
<td>2</td>
</tr>
</tbody>
</table>
Command Mode
Interface Configuration (Ethernet, port-channel) mode

Example
The following example configures the MSTP instance 1 path cost for gigabitethernet port 1/0/9 to 4.

```
Console(config)# interface gi1/0/9  
Console(config-if)# spanning-tree mst 1 cost 4
```

spanning-tree mst configuration
Use the `spanning-tree mst configuration` Global Configuration mode command to enable configuring an MST region by entering the Multiple Spanning Tree (MST) mode.

Syntax
spanning-tree mst configuration

Command Mode
Global Configuration mode

User Guidelines
For two or more switches to be in the same MST region, they need to contain the same VLAN mapping, the same configuration revision number, and the same name.

Example
The following example configures an MST region.

```
Console(config)# spanning-tree mst configuration  
Console(config-mst)# instance 1 vlan 10-20
```
instance (MST)

Use instance MST Configuration mode command to map VLANs to an MST instance. Use the no form of this command to restore default mapping.

Syntax

instance instance-id vlan vlan-range
no instance instance-id vlan vlan-range

Parameters

- instance-id—MST instance (Range: 1–15)
- vlan-range—The specified range of VLANs is added to the existing ones. To specify a range, use a hyphen. To specify a series, use a comma. (Range: 1–4094)

Default Configuration

All VLANs are mapped to the common and internal spanning tree (CIST) instance (instance 0).

Command Mode

MST Configuration mode

User Guidelines

All VLANs that are not explicitly mapped to an MST instance are mapped to the common and internal spanning tree (CIST) instance (instance 0) and cannot be unmapped from the CIST.

For two or more devices to be in the same MST region, they must have the same VLAN mapping, the same configuration revision number, and the same name.

Console(config-mst)# name region1
Console(config-mst)# revision 1
Example
The following example maps VLANs 10-20 to MST instance 1.

```
Console(config)# spanning-tree mst configuration
Console(config-mst)# instance 1 vlan 10-20
```

name (MST)
Use the `name` MST Configuration mode command to define the MST configuration name. Use the `no` form of this command to restore the default setting.

Syntax
```
name string
no name
```

Parameters
- `string`—Specifies the MST configuration name. (Length: 1–32 characters)

Default Configuration
The default name is the bridge address.

Command Mode
MST Configuration mode

Example
The following example defines the configuration name as Region1.

```
Console(config)# spanning-tree mst configuration
Console(config-mst)# name region1
```

revision (MST)
Use the `revision` MST Configuration mode command to define the MST configuration revision number. Use the `no` form of this command to restore the default configuration.
Syntax
revision value

no revision

Parameters
value—Specifies the MST configuration revision number. (Range: 0–65535)

Default Configuration
The default configuration revision number is 0.

Command Mode
MST Configuration mode

Example
The following example sets the configuration revision to 1.

```
Console(config) # spanning-tree mst configuration
Console(config-mst) # revision 1
```

show (MST)
Use the show MST Configuration mode command to displays the current or pending MST region configuration.

Syntax
show {current | pending}

Parameters
- current—Displays the current MST region configuration.
- pending—Displays the pending MST region configuration.

Command Mode
MST Configuration mode
Example
The following example displays a pending MST region configuration.

<table>
<thead>
<tr>
<th>Instance</th>
<th>Vlans Mapped</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1-9, 21-4094</td>
<td>Enabled</td>
</tr>
<tr>
<td>1</td>
<td>10-20</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

exit (MST)
Use the exit MST Configuration mode command to exit the MST region Configuration mode and apply all configuration changes.

Syntax
exit

Command Mode
MST Configuration mode

Example
The following example exits the MST Configuration mode and saves changes.

```
Console(config)# spanning-tree mst configuration
Console(config-mst)# exit
Console(config)#
```
abort (MST)

Use the `abort` MST Configuration mode command to exit the MST Configuration mode without applying the configuration changes.

Syntax

`abort`

Command Mode

MST Configuration mode

Example

The following example exits the MST Configuration mode without saving changes.

```
Console(config)# spanning-tree mst configuration
Console(config-mst)# abort
```

show spanning-tree

Use the `show spanning-tree` Privileged EXEC mode command to display the spanning-tree configuration.

Syntax

```
show spanning-tree [interface-id] [instance instance-id | detailed]
show spanning-tree [detail] [active | blockedports] [instance instance-id]
show spanning-tree mst-configuration
```

Parameters

- `instance instance-id`—Specifies the spanning tree instance ID. (Range: 0–15)
- `detail`—Displays detailed information.
- `active`—Displays active ports only.
- `blockedports`—Displays blocked ports only.
- **mst-configuration**—Displays the MST configuration identifier.
- **interface-id**— Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.
- **detailed**—Displays information for non-present ports in addition to present ports.

Default Configuration
Display is for present ports.

Command Mode
Privileged EXEC mode

Example
The following examples display spanning-tree information in various configurations.

```
Console# show spanning-tree
Spanning tree enabled mode RSTP
Default port cost method: long
Loopback guard: Disabled

Root ID  Priority  32768
   Address  00:01:42:97:e0:00
   Path Cost  20000
   Root Port  gi1/0/1

   Hello Time 2 sec   Max Age 20 sec Forward Delay 15 sec

Bridge ID  Priority  36864
   Address  00:02:4b:29:7a:00

   Hello Time 2 sec   Max Age 20 sec Forward Delay 15 sec
```
Spanning-Tree Commands

Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio.</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>FWD</td>
<td>Root</td>
<td>No</td>
<td>P2p (RSTP)</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>FWD</td>
<td>Desg</td>
<td>No</td>
<td>Shared (STP)</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>Disabled</td>
<td>128.3</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>BLK</td>
<td>Altn</td>
<td>No</td>
<td>Shared (STP)</td>
</tr>
<tr>
<td>gi1/0/5</td>
<td>Enabled</td>
<td>128.5</td>
<td>20000</td>
<td>DIS</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Console# `show spanning-tree`

Spanning tree enabled mode RSTP
Default port cost method: long

Root ID Priority 36864
Address 00:02:4b:29:7a:00

This switch is the Root.

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Interfaces
Spanning-Tree Commands

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio.Nbr</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>FWD</td>
<td>Desg</td>
<td>No</td>
<td>P2p (RSTP)</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>FWD</td>
<td>Desg</td>
<td>No</td>
<td>Shared (STP)</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>Disabled</td>
<td>128.3</td>
<td>20000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>FWD</td>
<td>Desg</td>
<td>No</td>
<td>Shared (STP)</td>
</tr>
<tr>
<td>gi1/0/5</td>
<td>Enabled</td>
<td>128.5</td>
<td>20000</td>
<td>DIS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Console# `show spanning-tree`

Spanning tree disabled (BPDU filtering) mode RSTP
Default port cost method: long

Root ID	Priority	N/A
Address	N/A
Path Cost	N/A
Root Port	N/A
Hello Time	N/A	Max Age N/A	Forward Delay N/A

Bridge ID	Priority	36864
Address	00:02:4b:29:7a:00
Hello Time 2 sec	Max Age 20 sec Forward Delay 15 sec

Interfaces
Console# **show spanning-tree active**

Spanning tree enabled mode RSTP
Default port cost method: long

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio.Nbr</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>Disabled</td>
<td>128.3</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gi1/0/5</td>
<td>Enabled</td>
<td>128.5</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Root ID Priority 32768
Address 00:01:42:97:e0:00
Path Cost 20000
Root Port gi1/0/1
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 36864
Address 00:02:4b:29:7a:00
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Interfaces
<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio.Nbr</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>FWD</td>
<td>Root</td>
<td>No</td>
<td>P2p (RSTP)</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>FWD</td>
<td>Desg</td>
<td>No</td>
<td>Shared (STP)</td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>BLK</td>
<td>Altn</td>
<td>No</td>
<td>Shared (STP)</td>
</tr>
</tbody>
</table>

Console# `show spanning-tree blockedports`

Spanning tree enabled mode RSTP
Default port cost method: long

Root ID | Priority | 32768
Address | 00:01:42:97:e0:00
Path Cost | 20000
Root Port | gi1/0/1
Hello Time 2 sec | Max Age 20 sec Forward Delay 15 sec

Bridge ID | Priority | 36864
Address | 00:02:4b:29:7a:00
Hello Time 2 sec | Max Age 20 sec Forward Delay 15 sec

Interfaces
Spanning-Tree Commands

Name	**State**	**Prio.Nbr**	**Cost**	**Sts**	**Role**	**PortFast**	**Type**
gi1/0/4 | - | - | 19 | BLK | Altn | No | Shared (STP)

Console# `show spanning-tree detail`

Spanning tree enabled mode RSTP
Default port cost method: long

Root ID	Priority	32768
Address | 00:01:42:97:e0:00
Path Cost | 20000
Root Port | gi1/0/1
Hello Time 2 sec | Max Age 20 sec Forward Delay 15 sec

Bridge ID	Priority	36864
Address | 00:02:4b:29:7a:00
Hello Time 2 sec | Max Age 20 sec Forward Delay 15 sec

Number of topology changes 2 last change occurred 2d18h ago
Times: hold 1, topology change 35, notification 2
hello 2, max age 20, forward delay 15

Port 1 (gi1/0/1) enabled
State: Forwarding | Role: Root
Port id: 128.1 | Port cost: 20000
Type: P2p (configured: auto) RSTP | Port Fast: No (configured: no)
Designated bridge Priority: 32768 | Address: 00:01:42:97:e0:00
Designated port id: 128.25 | Designated path cost: 0
Guard root: Disabled | BPDU guard: Disabled

Number of transitions to forwarding state: 1
BPDU: sent 2, received 120638
Port 2 (gi1/0/2) enabled
State: Forwarding
Port id: 128.2
Type: Shared (configured: auto) STP
Designated bridge Priority: 32768
Designated port id: 128.2
Guard root: Disabled
Role: Designated
Port cost: 20000
Address: 00:02:4b:29:7a:00
Designated path cost: 20000
BPDU guard: Disabled
Number of transitions to forwarding state: 1
BPDU: sent 2, received 170638

Port 3 (gi1/0/3) disabled
State: N/A
Port id: 128.3
Type: N/A (configured: auto)
Designated bridge Priority: N/A
Designated port id: N/A
Guard root: Disabled
Role: N/A
Port cost: 20000
Address: N/A
Designated path cost: N/A
BPDU guard: Disabled
Number of transitions to forwarding state: N/A
BPDU: sent N/A, received N/A

Port 4 (gi1/0/4) enabled
State: Blocking
Port id: 128.4
Type: Shared (configured: auto) STP
Designated bridge Priority: 28672
Designated port id: 128.25
Guard root: Disabled
Role: Alternate
Port cost: 20000
Address: 00:30:94:41:62:c8
Designated path cost: 20000
BPDU guard: Disabled
Number of transitions to forwarding state: 1
BPDU: sent 2, received 120638

Port 5 (gi1/0/5) enabled
State: Disabled
Port id: 128.5
Type: N/A (configured: auto)
Designated bridge Priority: N/A
Designated port id: N/A
Guard root: Disabled
Role: N/A
Port cost: 20000
Address: N/A
Designated path cost: N/A
BPDU guard: Disabled
Number of transitions to forwarding state: N/A
BPDU: sent N/A, received N/A

Console# `show spanning-tree ethernet gi1/0/1`

Port 1 (gi1/0/1) enabled
State: Forwarding Role: Root
Port id: 128.1 Port cost: 20000
Type: P2p (configured: auto) RSTP Port Fast: No (configured: no)
Designated bridge Priority: 32768 Address: 00:01:42:97:e0:00
Designated port id: 128.25 Designated path cost: 0
Guard root: Disabled BPDU guard: Disabled

Number of transitions to forwarding state: 1
BPDU: sent 2, received 120638

Console# `show spanning-tree mst-configuration`

Name: Region1
Revision: 1

<table>
<thead>
<tr>
<th>Instance</th>
<th>Vlans mapped</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1-9, 21-4094</td>
<td>Enabled</td>
</tr>
<tr>
<td>1</td>
<td>10-20</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
Console# `show spanning-tree`

Spanning tree enabled mode MSTP
Default port cost method: long

MST 0 Vlans Mapped: 1-9

<table>
<thead>
<tr>
<th>CST Root ID</th>
<th>Priority</th>
<th>Address</th>
<th>Path</th>
<th>Cost</th>
<th>Root Port</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32768</td>
<td>00:01:42:97:e0:00</td>
<td>20000</td>
<td></td>
<td>gi1/0/1</td>
</tr>
</tbody>
</table>

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

<table>
<thead>
<tr>
<th>IST Master ID</th>
<th>Priority</th>
<th>Address</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32768</td>
<td>00:02:4b:29:7a:00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This switch is the IST master.
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Max hops 20

<table>
<thead>
<tr>
<th>Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>gi1/0/1</td>
</tr>
<tr>
<td>gi1/0/2</td>
</tr>
<tr>
<td>gi1/0/3</td>
</tr>
<tr>
<td>gi1/0/4</td>
</tr>
</tbody>
</table>
Spanning-Tree Commands

MST 1 Vlans Mapped: 10-20

<table>
<thead>
<tr>
<th>Root ID</th>
<th>Priority 24576</th>
<th>Address 00:02:4b:29:89:76</th>
<th>Path 20000</th>
<th>Cost gi1/0/4</th>
<th>Root 19</th>
<th>Rem hops</th>
</tr>
</thead>
</table>

| Bridge ID | Priority 32768 | Address 00:02:4b:29:7a:00 |

Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Prio.Nbr</th>
<th>Cost</th>
<th>Sts</th>
<th>Role</th>
<th>PortFast</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Enabled</td>
<td>128.1</td>
<td>20000</td>
<td>FWD</td>
<td>Boun</td>
<td>No</td>
<td>P2p Bound (RSTP)</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Enabled</td>
<td>128.2</td>
<td>20000</td>
<td>FWD</td>
<td>Boun</td>
<td>No</td>
<td>Shared Bound (STP)</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>Enabled</td>
<td>128.3</td>
<td>20000</td>
<td>BLK</td>
<td>Altn</td>
<td>No</td>
<td>P2p</td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>Enabled</td>
<td>128.4</td>
<td>20000</td>
<td>FWD</td>
<td>Root</td>
<td>No</td>
<td>P2p</td>
</tr>
</tbody>
</table>

Console

```
show spanning-tree detail
```

Spanning tree enabled mode MSTP
Default port cost method: long

MST 0 Vlans Mapped: 1-9

<table>
<thead>
<tr>
<th>CST Root ID</th>
<th>Priority 32768</th>
<th>Address 00:01:42:97:e0:00</th>
<th>Path 20000</th>
<th>Cost gi1/0/1</th>
<th>Root</th>
</tr>
</thead>
</table>

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
IST Master ID Priority 32768
Address 00:02:4b:29:7a:00

This switch is the IST master.

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Max hops 20
Number of topology changes 2 last change occurred 2d18h ago
Times: hold 1, topology change 35, notification 2
hello 2, max age 20, forward delay 15

Port 1 (gi1/0/1) enabled
State: Forwarding Role: Root
Port id: 128.1 Port cost: 20000
Type: P2p (configured: auto) Boundary RSTP Port Fast: No (configured:no)
Designated bridge Priority: 32768 Address: 00:01:42:97:e0:00
Designated port id: 128.25 Designated path cost: 0
Number of transitions to forwarding state: 1
BPDU: sent 2, received 120638

Port 2 (gi1/0/2) enabled
State: Forwarding Role: Designated
Port id: 128.2 Port cost: 20000
Type: Shared (configured: auto) Boundary STP Port Fast: No (configured:no)
Designated bridge Priority: 32768 Address: 00:02:4b:29:7a:00
Designated port id: 128.2 Designated path cost: 20000
Number of transitions to forwarding state: 1
BPDU: sent 2, received 170638
Port 3 (gi1/0/3) enabled
State: Forwarding
Port id: 128.3
Type: Shared (configured: auto) Internal
Designated bridge Priority: 32768
Designated port id: 128.3
Number of transitions to forwarding state: 1
BPDU: sent 2, received 170638
Role: Designated
Port cost: 20000
Port Fast: No (configured: no)
Address: 00:02:4b:29:7a:00
Designated path cost: 20000

Port 4 (gi1/0/4) enabled
State: Forwarding
Port id: 128.4
Type: Shared (configured: auto) Internal
Designated bridge Priority: 32768
Designated port id: 128.2
Number of transitions to forwarding state: 1
BPDU: sent 2, received 170638
Role: Designated
Port cost: 20000
Port Fast: No (configured: no)
Address: 00:02:4b:29:7a:00
Designated path cost: 20000

####### MST 1 Vlans Mapped: 10-20

Root ID
Priority 24576
Address 00:02:4b:29:89:76
Path Cost20000
Root Port gi1/0/4
Rem hops 19

Bridge ID
Priority 32768
Address 00:02:4b:29:7a:00
Number of topology changes 2 last change occurred 1d9h ago
Times: hold 1, topology change 2, notification 2
hello 2, max age 20, forward delay 15
Port 1 (gi1/0/1) enabled
State: Forwarding Role: Boundary
Port id: 128.1 Port cost: 20000
Type: P2p (configured: auto) Boundary RSTP Port Fast: No (configured:no)
Designated bridge Priority: 32768 Address: 00:02:4b:29:7a:00
Designated port id: 128.1 Designated path cost: 20000
Number of transitions to forwarding state: 1
BPDU: sent 2, received 120638

Port 2 (gi1/0/2) enabled
State: Forwarding Role: Designated
Port id: 128.2 Port cost: 20000
Type: Shared (configured: auto) Boundary STPPort Fast: No (configured:no)
Designated bridge Priority: 32768 Address: 00:02:4b:29:7a:00
Designated port id: 128.2 Designated path cost: 20000
Number of transitions to forwarding state: 1
BPDU: sent 2, received 170638

Port 3 (gi1/0/3) disabled
State: Blocking Role: Alternate
Port id: 128.3 Port cost: 20000
Type: Shared (configured: auto) Internal Port Fast: No (configured:no)
Designated bridge Priority: 32768 Address: 00:02:4b:29:1a:19
Designated port id: 128.78 Designated path cost: 20000
Number of transitions to forwarding state: 1
BPDU: sent 2, received 170638

Port 4 (gi1/0/4) enabled
State: Forwarding Role: Designated
Port id: 128.4 Port cost: 20000
Type: Shared (configured: auto) Internal Port Fast: No (configured:no)
Designated bridge Priority: 32768 Address: 00:02:4b:29:7a:00
Designated port id: 128.2 Designated path cost: 20000
Number of transitions to forwarding state: 1
BPDU: sent 2, received 170638
Console# `show spanning-tree`

Spanning tree enabled mode MSTP
Default port cost method: long

MST 0 Vlans Mapped: 1-9

<table>
<thead>
<tr>
<th>CST Root ID</th>
<th>Priority 32768</th>
<th>Address 00:01:42:97:e0:00</th>
<th>Path Cost 20000</th>
<th>Root gi1/0/1</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hello Time 2 sec</td>
<td>Max Age 20 sec</td>
<td>Forward Delay 15 sec</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IST Master ID</th>
<th>Priority 32768</th>
<th>Address 00:02:4b:19:7a:00</th>
<th>Path Cost 10000</th>
<th>Rem hops 19</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hello Time 2 sec</td>
<td>Max Age 20 sec</td>
<td>Forward Delay 15 sec</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bridge ID</th>
<th>Priority 32768</th>
<th>Address 00:02:4b:29:7a:00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hello Time 2 sec</td>
<td>Max Age 20 sec</td>
</tr>
<tr>
<td></td>
<td>Max hops 20</td>
<td></td>
</tr>
</tbody>
</table>

Console# `show spanning-tree`

Spanning tree enabled mode MSTP
Default port cost method: long

MST 0 Vlans Mapped: 1-9

<table>
<thead>
<tr>
<th>CST Root ID</th>
<th>Priority 32768</th>
<th>Address 00:01:42:97:e0:00</th>
</tr>
</thead>
</table>

This switch is root for CST and IST master.
show spanning-tree bpdu

Use the show spanning-tree bpdu EXEC mode command to display the BPDU handling when spanning-tree is disabled.

Syntax
show spanning-tree bpdu [interface-id]

Parameters
interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode
EXEC mode

Example
The following examples display spanning-tree information.

```
Console# show spanning-tree bpdu

Global: Flooding

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Mode</th>
<th>Oper Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Global</td>
<td>Flooding</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Global</td>
<td>STP</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>Flooding</td>
<td>STP</td>
</tr>
</tbody>
</table>
```
VLAN Commands

vlan database
Use the `vlan database` Global Configuration mode command to enter the VLAN Configuration mode.

Syntax
`vlan database`

Command Mode
Global Configuration mode

Example
The following example enters the VLAN database mode.

```
Console(config)# vlan database
Console(config-vlan)#
```

vlan
Use the `vlan` VLAN Configuration mode command to create a VLAN. Use the `no` form of this command to restore the default configuration or delete a VLAN.

Syntax
`vlan vlan-range [name vlan-name]`
`no vlan vlan-range`

The device accepts also the following syntax:
VLAN Commands

FILE LOCATION: C:\Users\gina\Desktop\Check out_new\CLI Folders\Dell Contax CLI\files\VLAN_ISCLI_Only.fm

DELL CONFIDENTIAL – PRELIMINARY 10/21/13 - FOR PROOF ONLY

```text
vlan  vlan-range [name vlan-name] [media ethernet] [state active]
no vlan  vlan-range
```

Parameters

- `vlan-range`—Specifies a list of VLAN IDs to add. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs.
- `name`—Specifies the VLAN name. The option is only valid in cases where only one VLAN is configured by the command (Range: 1–32 characters)

Command Mode

VLAN Configuration mode

Example

The following example creates VLAN number 1972.

```text
Console(config)# vlan database
Console(config-vlan)# vlan 1972
```

interface vlan

Use the `interface vlan` Global Configuration mode command to enter the Interface Configuration (VLAN) mode and enable configuration of the specified VLAN ID.

Syntax

```text
interface vlan vlan-id
```

Parameters

- `vlan-id`—Specifies an existing VLAN ID.

Command Mode

Global Configuration mode
User Guidelines
If the VLAN does not exist (ghost VLAN), not all of the commands are available under the interface VLAN context.

The commands that are supported for VLANs that do not exist are:

- IGMP snooping control commands
- Bridge multicast configuration commands

Example
The following example configures VLAN 1 with IP address 131.108.1.27 and subnet mask 255.255.255.0.

```
Console (config)# interface vlan 1
Console (config-if)# ip address 131.108.1.27 255.255.255.0
```

interface range vlan
Use the `interface range vlan` Global Configuration mode command to enable configuring multiple VLANs simultaneously.

Syntax
```
interface range vlan vlan-range
```

Parameters
- `vlan-range`—Specifies a list of VLAN IDs. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs.

Command Mode
Global Configuration mode

User Guidelines
Commands under the interface range context are executed independently on each interface in the range. If the command returns an error on one of the interfaces, an error message is displayed and command execution continues on the other interfaces.
Example
The following example groups VLANs 221 through 228 and 889 to receive the same command.

```console
Console(config)# interface range vlan 221-228, vlan 889
Console(config-if)#
```

name

Use the `name` Interface Configuration (VLAN) mode command to add a name to a VLAN. Use the `no` form of this command to remove the VLAN name.

Syntax

```plaintext
name string
no name
```

Parameters

- `string` — Specifies a unique name associated with this VLAN. (Length: 1–32 characters)

Default Configuration

No name is defined.

Command Mode

Interface Configuration (VLAN) mode. It cannot be configured for a range of interfaces (range context).

User Guidelines

The VLAN name must be unique.

Example

The following example gives VLAN number 19 the name Marketing.

```console
Console(config)# interface vlan 19
Console(config-if)# name Marketing
```
switchport protected-port

Use the `switchport protected-port` Interface Configuration mode command to isolate unicast, multicast, and broadcast traffic at Layer 2 from other protected ports on the same switch. Use the `no` form of this command to disable protection on the port.

Syntax

```plaintext
switchport protected-port
no switchport protected-port
```

Parameters

This command has no arguments or keywords.

Default Configuration

Unprotected

Command Mode

Interface configuration (Ethernet, port-channel)

User Guidelines

Use this command to isolate unicast, multicast, and broadcast traffic at Layer 2 from other protected ports (that are not associated with the same community as the ingress interface) on the same switch. Please note that the packet is still subject to FDB decision and to all filtering rules. Use the `switchport community` Interface Configuration command to associate the interface with a community.

Example

```console
console(config)# interface gi1/0/1
console(config-if)# switchport protected-port
```
switchport community

Use the `switchport community` Interface Configuration mode command to associate a protected port with a community. Use the `no` form of this command to return to default.

Syntax

```plaintext
switchport community community
no switchport community
```

Parameters

- `community`—Specifies the community number. (Range: 1 - 30)

Default Configuration

The port is not associated with any community.

Command Mode

Interface Configuration (Ethernet, port-channel) mode

User Guidelines

The command is relevant only when the port is defined as a protected port. Use the `switchport protected-port` Interface Configuration command to define a port as a protected port.

Example

```plaintext
console(config)# interface gi1/0/1
console(config-if)# switchport community 1
```

show interfaces protected-ports

Use the `show interfaces protected-ports` EXEC mode command to show protected ports configuration.

Syntax

```plaintext
show interfaces protected-ports [interface-id]
```
Parameters
interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode
EXEC mode

Example

console# show interfaces protected-ports

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Community</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Protected</td>
<td>1</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Protected</td>
<td>Isolated</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>Unprotected</td>
<td>20</td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>Unprotected</td>
<td>Isolated</td>
</tr>
</tbody>
</table>

Note: The Community column for unprotected ports is relevant only when the port state is changed to Protected.

switchport

Use the switchport Interface Configuration mode command with no keywords to put an interface that is in Layer 3 mode into Layer 2 mode for Layer 2 configuration. Use the no form of this command to put an interface in Layer 3 mode.

Syntax
switchport

no switchport

Default Configuration
Layer 2 mode
Command Mode
Interface Configuration (Ethernet, port-channel) mode

switchport mode
Use the `switchport mode` Interface Configuration (Ethernet, port-channel) mode command to configure the VLAN membership mode of a port. Use the `no` form of this command to restore the default configuration.

Syntax
```
switchport mode { access | trunk | general | private-vlan {promiscuous | host} | customer }
```
```
no switchport mode
```

Parameters
- **access**—Specifies an untagged layer 2 VLAN port.
- **trunk**—Specifies a trunking layer 2 VLAN port.
- **general**—Specifies a full 802-1q supported VLAN port.
- **customer**—Allows QinQ tagging. Specifies that the port is connected to customer equipment. Used when the switch is in a provider network.
- **private-vlan promiscuous**—Private-VLAN promiscuous port.
- **private-vlan host**—Private-VLAN host port.

Default Configuration

Command Mode
Interface Configuration (Ethernet, port-channel) mode

User Guidelines
- When the port mode is changed, it receives the configuration corresponding to the mode.
- If the port mode is changed to access and the access VLAN does not exist, then the port will not belong to any VLAN.
Example
The following example configures gigabitethernet port 1/0/1 as an untagged layer 2 VLAN port.

```
Console(config)# interface gi1/0/1
Console(config-if)# switchport mode access
```

switchport access vlan

Use the `switchport access vlan` Interface Configuration (Ethernet, port-channel) mode command to configure the VLAN ID when the interface is in access mode. Use the `no` form of this command to restore the default configuration.

Syntax

```
switchport access vlan { vlan-id | none }
```

Parameters

- **vlan-id**—Specifies the VLAN ID to which the port is configured.
- **none**—Specifies the access port cannot belong to any VLAN.

Default Configuration

If the default VLAN is enabled, the VLAN ID is 1. Otherwise, it is not a member of any VLAN.

Command Mode

Interface Configuration (Ethernet, port-channel) mode

User Guidelines

The command automatically removes the port from the previous VLAN and adds it to the new VLAN.
Example
The following example configures a VLAN ID of 23 to the untagged layer 2 VLAN gigabitethernet port 1/0/1.

Console(config)# interface gi1/0/1
Console(config-if)# switchport access vlan 23

switchport access multicast-tv vlan

Use the `switchport access multicast-tv vlan` Interface Configuration (Ethernet, Port-channel) mode command to enable receiving multicast transmissions from a VLAN that is not the Access port VLAN, while keeping the L2 segregation with subscribers on different Access port VLANs. Use the `no` form of this command to disable receiving multicast transmissions.

Syntax
`switchport access multicast-tv vlan vlan-id`
`no switchport access multicast-tv vlan`

Parameters
`vlan-id`—Specifies the Multicast TV VLAN ID.

Default Configuration
Receiving multicast transmissions is disabled.

Command Mode
Interface Configuration (Ethernet, Port-channel) mode

User Guidelines
The user cannot transmit multicast transmissions on the multicast TV VLAN.

A multicast TV VLAN cannot be enabled if a Guest VLAN is enabled on the interface.
Example
The following example enables gigabitethernet port 1/0/5 to receive multicast transmissions from VLAN 11.

Console(config)# interface gi1/0/5
Console(config-if)# switchport access multicast-tv vlan 11

switchport trunk allowed vlan
Use the switchport trunk allowed vlan Interface Configuration mode command to set the trunk characteristics when the interface is in trunking mode. Use the no form of this command to reset a trunking characteristic to the default.

Syntax
switchport trunk allowed vlan { all | none | add vlan-list | remove vlan-list | except vlan-list }

no switchport trunk allowed vlan

Parameters
all—Specifies all VLANs from 1 to 4094. At any time, the port belongs to all VLANs exiting at the time. (Range: 1–4094)

none—Specifies an empty VLAN list The port does not belong to any VLAN.

add vlan-list—List of VLAN IDs to add. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs.

remove vlan-list—List of VLAN IDs to remove. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs.

except vlan-list—List of VLAN IDs is calculated by inverting the defined list of VLANs (the calculated list will include all VLANs from interval 1..4094 except VLANs from the defined list.)
Default Configuration
The Default VLAN is its Native VLAN and the port belongs to either all VLANs or only to the Default VLAN depending on a value of parameter Trunk Port Default Configuration.

Command Mode
Interface Configuration (Ethernet, port-channel) mode

User Guidelines
The RS port model behavior allows only the following options: Add and Remove.

Inside except vlan-list is saved as add ~ vlan-list, where ~ vlan-list is a list of all VLANs from 1 to 4094 minus the VLANs from vlan-list. Command show running/startup always uses the latter format.

The port must be in trunk mode before the command can take effect.

Example

```bash
console(config)# interface gi1/0/1
console(config-if)# switchport mode trunk
console(config-if)# switchport trunk allowed vlan all
```

switchport trunk native vlan
Use the switchport trunk native vlan Interface Configuration (Ethernet, port-channel) mode command to define the native VLAN when the interface is in trunk mode. Use the no form of this command to restore the default configuration.

Syntax
switchport trunk native vlan { vlan-id | none }

no switchport trunk native vlan

Parameters
- vlan-id—Specifies the native VLAN ID.
- none—Specifies the access port cannot belong to any VLAN.
Default Configuration
If the default VLAN is enabled, the VLAN ID is 1. Otherwise, the VLAN ID is 4095.

Command Mode
Interface Configuration (Ethernet, port-channel) mode

User Guidelines
The command adds the port as a member of the VLAN. If the port is already a member of the VLAN (not a native), it must first be removed from the VLAN.

Example
The following example configures VLAN number 123 as the native VLAN when the port is in trunk mode.

```
Console# interface gi1/0/1
Console(config-if)# switchport trunk native vlan 123
```

switchport general allowed vlan
Use the `switchport general allowed vlan` Interface Configuration mode command to set the general characteristics when the interface is in general mode. Use the `no` form of this command to reset a general characteristic to the default.

Syntax

```
switchport general allowed vlan {add | remove} vlan-list [tagged|untagged]
no switchport general allowed vlan
```

Parameters
- `add vlan-list`—List of VLAN IDs to add. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs. (Range: 1–4094)
• **remove vlan-list**—List of VLAN IDs to remove. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs.

• **tagged** - Specify that packets would be transmitted tagged for the configured VLANs

• **untagged** - Specify that packets would be transmitted untagged for the configured VLANs (this is the default)

Default Configuration
The port’s PVID equals to the Default VLAN ID and belongs to the Default VLAN as untagged one.

Command Mode
Interface Configuration mode

Example

```
console(config-if)# interface gi1/0/1
console(config-if)# switchport mode general
console(config-if)# switchport general allowed vlan add 2-3 tagged
```

switchport general pvid

Use the `switchport general pvid` Interface Configuration (Ethernet, Port-channel) mode command to configure the Port VLAN ID (PVID) when the interface is in general mode. Use the `no` form of this command to restore the default configuration.

Syntax

```
switchport general pvid vlan-id

no switchport general pvid
```

Parameters

`vlan-id`—Specifies the Port VLAN ID (PVID).
Default Configuration
If the default VLAN is enabled, PVID is 1. Otherwise, PVID is =4095.

Command Mode
Interface Configuration (Ethernet, Port-channel) mode

Example
The following example configures PVID 234 for gigabitethernet port 1/0/2, when the interface is in general mode.

```
Console(config)# interface gi1/0/2
Console(config-if)# switchport mode general
Console(config-if)# switchport general pvid 234
```

switchport general ingress-filtering disable
Use the `switchport general ingress-filtering disable` Interface Configuration (Ethernet, Port-channel) mode command to disable port ingress filtering. Use the no form of this command to restore the default configuration.

Syntax

```
switchport general ingress-filtering disable
no switchport general ingress-filtering disable
```

Default Configuration
Ingress filtering is enabled.

Command Mode
Interface Configuration (Ethernet, port-channel) mode

Example
The following example disables port ingress filtering on gigabitethernet port 1/0/1.

```
Console(config)# interface gi1/0/1
Console(config-if)# switchport mode general
```
switchport general acceptable-frame-type

Use the `switchport general acceptable-frame-type` Interface Configuration mode command to configure ingress filtering based on packet type tagged/untagged. Use the `no` form of this command to return to default.

Syntax

```
switchport general acceptable-frame-type {tagged-only | untagged-only | all}
```

```
no switchport general acceptable-frame-type
```

Parameters

- **tagged-only**—Discard untagged packets and priority tagged packets.
- **untagged-only**—Discard VLAN tagged packets (not including Priority tagged packets)
- **all**—Do not discard packets based on whether the packet is VLAN tagged or not.

Default Configuration

All frame types are accepted at ingress.

Command Mode

Interface Configuration (Ethernet, port-channel) mode

Example

The following example configures gigabitethernet port 1/0/3 to discard untagged frames at ingress.

```
Console(config)# interface gi1/0/3
Console(config-if)# switchport mode general
Console(config-if)# switchport general acceptable-frame-type tagged-only
```
switchport customer vlan

Use the switchport customer vlan Interface Configuration (Ethernet, Port-channel) mode command to set the port’s VLAN when the interface is in customer mode. Use the no form of this command to restore the default configuration.

Syntax
switchport customer vlan vlan-id
no switchport customer vlan

Parameters
vlan-id—Specifies the customer VLAN ID.

Default Configuration
No VLAN is configured.

Command Mode
Interface Configuration (Ethernet, Port-channel) mode

Example
The following example defines gigabitethernet port 1/0/5 as a member of customer VLAN 5.

Console(config)# interface gi1/0/5
Console(config-if)# switchport mode customer
Console(config-if)# switchport customer vlan isolated 5

switchport general forbidden vlan

Use the switchport general forbidden vlan Interface Configuration (Ethernet, Port-channel) mode command to forbid adding or removing specific VLANs to or from a port. Use the no form of this command to restore the default configuration.
Syntax

switchport general forbidden vlan {add vlan-list | remove vlan-list}

no switchport general forbidden vlan {add vlan-list | remove vlan-list}

Parameters

- **add vlan-list**—Specifies a list of VLAN IDs to add. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs.
- **remove vlan-list**—Specifies a list of VLAN IDs to remove. Separate nonconsecutive VLAN IDs with a comma and no spaces. Use a hyphen to designate a range of IDs.

Default Configuration

All VLANs are allowed.

Command Mode

Interface Configuration (Ethernet, Port-channel) mode

Example

The following example forbids adding VLAN IDs 234 to 256 to gigabitethernet port 1/0/7.

```console
Console(config)# interface gi1/0/7
Console(config-if)# switchport mode general
Console(config-if)# switchport general forbidden vlan add 234-256
```

map protocol protocols-group

Use the `map protocol protocols-group` VLAN Configuration mode command to map a protocol to a group of protocols. Use the `no` form of this command to delete a protocol from a group.

Syntax

map protocol protocol [encapsulation] protocols-group group

no map protocol protocol [encapsulation]
Parameters

- **protocol**—Specifies a 16-bit protocol number or one of the reserved names listed in the User Guidelines. (Range: 0x0600–0xFFFF)

- **encapsulation**—Specifies one of the following values: Ethernet, rfc1042, llcOther. If no option is indicated, the default is Ethernet.

- **protocols-group group**—Specifies the group number of the group of protocols associated together. (Range: 1–2147483647)

Default Configuration
The default encapsulation is Ethernet.

Command Mode
VLAN Configuration mode

User Guidelines
The value 0x8100 is not valid as the protocol number for Ethernet encapsulation.

The following protocol names are reserved for Ethernet Encapsulation:

- ip
- arp
- ipv6
- ipx

Example
The following example maps protocol ip to protocol group number 213.

```
Console(config)# vlan database
Console(config-vlan)# map protocol ip protocols-group 213
```

```
switchport general map protocols-group vlan
```

Use the `switchport general map protocols-group vlan` Interface Configuration (Ethernet, Port-channel) mode command to set a protocol-based classification rule. Use the no form of this command to delete a classification.
Syntax
switchport general map protocols-group group vlan vlan-id
no switchport general map protocols-group group

Parameters
- group—Specifies the group number as defined in the map protocol
 protocols-group command. (Range: 1–65535)
- vlan-id—Defines the VLAN ID in the classifying rule.

Command Mode
Interface Configuration (Ethernet, port-channel) mode

Default Configuration
No classification is defined.

User Guidelines
The VLAN classification rule priorities are:
1. MAC-based VLAN (Best match among the rules)
2. Subnet-based VLAN (Best match among the rules)
3. Protocol-based VLAN
4. PVID

Example
The following example sets a protocol-based classification rule.

```
Console(config-if)# switchport general map protocols-group 1 vlan 8
```

private-vlan

Use the private-vlan Interface VLAN Configuration mode command to
configure a private VLAN. Use the no form of this command to return the
VLAN to normal VLAN configuration.
Syntax
private-vlan {primary | isolated}
no private-vlan

Parameters
- Primary—Designate the VLAN as Primary VLAN.
- Isolated—Designate the VLAN as Isolated VLAN.

Default Configuration
No private VLANs are configured.

Command Mode
Interface Configuration (VLAN) mode

User Guidelines
- The VLAN type cannot be changed if there is a private-VLAN port that is a member in the VLAN.
- The VLAN type cannot be changed if it is associated with other private VLANs.
- The VLAN type is not kept as a property of the VLAN when it is deleted.

private-vlan association
Use the private-vlan association Interface VLAN Configuration mode command to configure the association between the primary VLAN and the secondary VLANs. Use the no form of this command to remove the association.

Syntax
private-vlan association [add | remove] secondary-vlan-list
no private-vlan association

Parameters
- add—Associates a secondary VLAN to a primary VLAN. This is the default action.
• **remove**—Clears the association between a secondary VLAN and a primary VLAN.

• **secondary-vlan-list**—Specifies one or more secondary VLANs to be associated with a primary VLAN in a private VLAN.

Default Configuration
No private VLANs are configured.

Command Mode
Interface Configuration (VLAN) mode

User Guidelines
- The command can only be executed in the context of the primary VLAN.
- Private VLAN cannot be removed or change its type if it is associated with other private VLANs.
- Primary VLAN can be associated with only single isolated VLAN.
- A secondary VLAN can be associated with only one primary VLAN.
- The association of secondary VLANs with a primary VLAN cannot be removed if there are private VLAN ports that are members in the secondary VLAN.
- In MSTP mode, all the VLANs that are associated with a private VLAN should be mapped to the same instance.

switchport private-vlan mapping

Use the `switchport private-vlan mapping` Interface Configuration mode command to configure the VLANs of the private-vlan promiscuous port. Use the `no` form of this command to reset to default.

Syntax

```
switchport private-vlan mapping primary-vlan-id [add | remove] secondary-vlan-list

no switchport private-vlan mapping
```
Parameters

- primary-vlan-id—The VLAN ID of the primary VLAN.
- secondary-vlan-list—Specifies one or more secondary VLANs.

Default Configuration

No VLAN is configured.

Command Mode

Interface Configuration (Ethernet, port-channel) mode

User Guidelines

The secondary VLANs should be associated with the primary VLANs, otherwise the configuration is not accepted. See the command `private-vlan association`.

switchport private-vlan host-association

Use the `switchport private-vlan host-association` Interface Configuration mode command to configure the VLANs of the private-vlan host port. Use the `no` form of this command to reset to default.

Syntax

```
switchport private-vlan host-association primary-vlan-id secondary-vlan-id
no switchport private-vlan host-association
```

Parameters

- primary-vlan-id—The VLAN ID of the primary VLAN.
- secondary-vlan-list—Specifies the secondary VLANs. The secondary VLAN is an isolated port.

Default Configuration

No VLAN is configured.

Command Mode

Interface Configuration (Ethernet, port-channel) mode
User Guidelines
The secondary VLAN should be associated with the primary VLANs, otherwise the configuration is not accepted. See the command `private-vlan association`.

show vlan private-vlan
Use the `show vlan private-vlan` EXEC mode command to show the private VLANs information.

Syntax
`show vlan private-vlan [tag vlan-id]`

Parameters
`vlan-id`—VLAN ID

Command Mode
EXEC mode

User Guidelines
The `show` command does not include non-private-vlan ports that are members in private VLANs.

Example
`Console# show vlan private-vlan`

<table>
<thead>
<tr>
<th>Primary</th>
<th>Secondary</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td></td>
<td>primary</td>
<td>gi1/0/15</td>
</tr>
<tr>
<td>150</td>
<td>151</td>
<td>isolated</td>
<td>gi1/0/15</td>
</tr>
</tbody>
</table>

ip internal-usage-vlan
Use the `ip internal-usage-vlan` Interface Configuration (Ethernet, Port-channel) mode command to reserve a VLAN as the internal usage VLAN of
an interface. Use the no form of this command to restore the default configuration.

Syntax

`ip internal-usage-vlan vlan-id`

`no ip internal-usage-vlan`

Parameters

`vlan-id`—Specifies the internal usage VLAN ID.

Command Mode

Interface Configuration (Ethernet, Port-channel) mode. It cannot be configured for a range of interfaces (range context).

User Guidelines

An internal usage VLAN is required when an IP interface is defined on an Ethernet port or Port-channel.

Use this command to define the internal usage VLAN of a port.

If an internal usage VLAN is not defined for a port, the software chooses one of the unused VLANs.

If a VLAN ID was chosen by the software for internal usage, but it is desired to use that VLAN ID for a static or dynamic VLAN, do one of the following:

- Remove the IP interface, create the VLAN, and recreate the IP interface.
- Use this command to explicitly define the internal usage VLAN.

Example

The following example reserves unused VLAN 200 as the internal usage VLAN of Ethernet port 1/3gigabitethernet port 1/0/3.

```
Console(config)# interface gi1/0/3
Console(config-if)# ip internal-usage-vlan 200
```
show vlan

Use the `show vlan` Privileged EXEC mode command to display VLAN information for all VLANs or for a specific VLAN.

Syntax

`show vlan [tag vlan-id | name vlan-name]`

Parameters

- `tag vlan-id`—Specifies a VLAN ID.
- `name vlan-name`—Specifies a VLAN name string. (Length: 1–32 characters)

Command Mode

Privileged EXEC mode

Example

The following example displays information for all VLANs.

```
Console# show vlan

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Name</th>
<th>Ports</th>
<th>Type</th>
<th>Authorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>default</td>
<td>gi0/0/1-2</td>
<td>Other</td>
<td>Required</td>
</tr>
<tr>
<td>10</td>
<td>VLAN0010</td>
<td>gi0/0/3-4</td>
<td>dynamic</td>
<td>Required</td>
</tr>
<tr>
<td>11</td>
<td>VLAN0011</td>
<td>gi0/0/1-2</td>
<td>static</td>
<td>Required</td>
</tr>
<tr>
<td>20</td>
<td>VLAN0020</td>
<td>gi0/0/3-4</td>
<td>static</td>
<td>Required</td>
</tr>
<tr>
<td>21</td>
<td>VLAN0021</td>
<td></td>
<td>static</td>
<td>Required</td>
</tr>
<tr>
<td>30</td>
<td>VLAN0030</td>
<td></td>
<td>static</td>
<td>Required</td>
</tr>
<tr>
<td>31</td>
<td>VLAN0031</td>
<td>gi0/0/1-2</td>
<td>static</td>
<td>Required</td>
</tr>
<tr>
<td>91</td>
<td>VLAN0091</td>
<td>gi0/0/17</td>
<td>static</td>
<td>Not Required</td>
</tr>
<tr>
<td>3978</td>
<td>Guest VLAN</td>
<td></td>
<td>static</td>
<td>Guest</td>
</tr>
</tbody>
</table>
```
show vlan multicast-tv

Use the `show vlan multicast-tv` EXEC mode command to display information on the source ports and receiver ports of multicast-TV VLAN.

Syntax

`show vlan multicast-tv vlan vlan-id`

Parameters

`vlan-id`—Specifies the VLAN ID.

Command Mode

EXEC mode

Example

The following example displays information on the source and receiver ports of multicast-TV VLAN ID 1000.

```
Console # show vlan multicast-tv vlan 1000

Source ports    Receiver Ports
-----------------------
gi1/0/8, gi1/0/9    gi1/0/1-18, gi1/0/1-18, gi1/0/1-18
```

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source ports</td>
<td>Ports that can transmit and receive traffic to and from the VLAN.</td>
</tr>
<tr>
<td>Receiver ports</td>
<td>Ports that can only receive traffic from the VLAN.</td>
</tr>
</tbody>
</table>

show vlan protocols-groups

Use the `show vlan protocols-groups` EXEC mode command to display protocols-groups information.
Syntax
show vlan protocols-groups

Command Mode
EXEC mode

Example
The following example displays protocols-groups information.

```
Console> show vlan protocols-groups

Protocol       Encapsulation  Group
-------------  ---------------  ----
0x800 (IP)     Ethernet       1
0x806 (ARP)    Ethernet       1
0x86dd (IPv6)  Ethernet       2
0x8898         Ethernet       3
```

show vlan internal usage

Use the show vlan internal usage Privileged EXEC mode command to display a list of VLANs used internally by the device.

Syntax
show vlan internal usage

Command Mode
Privileged EXEC mode
Example
The following example displays VLANs used internally by the device.

```
Console# show vlan internal usage
```

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Usage</th>
<th>IP address</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1007</td>
<td>Eth 1/21</td>
<td>Active</td>
<td>No</td>
</tr>
<tr>
<td>1008</td>
<td>Eth 1/22</td>
<td>Inactive</td>
<td>Yes</td>
</tr>
<tr>
<td>1009</td>
<td>Eth 1/23</td>
<td>Active</td>
<td>Yes</td>
</tr>
</tbody>
</table>

show interfaces switchport

Use the `show interfaces switchport` Privileged EXEC command to display the administrative and operational status of all interfaces or a specific interface.

Syntax

`show interfaces switchport [interface-id]`

Parameters

- `Interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Example

```
console# show interfaces switchport gi2/0/1
Gathering information...

Name: gi1/0/1
Switchport: enable
Administrative Mode: access
Operational Mode: down
Access Mode VLAN: 1
Access Multicast TV VLAN: none
```
Trunking Native Mode VLAN: 1
Trunking VLANs Enabled: 1
2-4094 (Inactive)

General PVID: 1
General VLANs Enabled: none
General Egress Tagged VLANs Enabled: none
General Forbidden VLANs: none
General Ingress Filtering: enabled
General Acceptable Frame Type: all
General GVRP status: disabled
General GVRP VLANs: none
Customer Mode VLAN: none
Private-vlan promiscuous-association primary VLAN: none
Private-vlan promiscuous-association Secondary VLANs Enabled: none
Private-vlan host-association primary VLAN: none
Private-vlan host-association Secondary VLAN Enabled: none
DVA: disable
Protected: Enabled, Uplink is gi1/0/1

Classification rules:

<table>
<thead>
<tr>
<th>Classification type</th>
<th>Group ID</th>
<th>VLAN ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>Protocol</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Protocol</td>
<td>2</td>
<td>72</td>
</tr>
<tr>
<td>Subnet</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>MAC</td>
<td>6</td>
<td>11</td>
</tr>
</tbody>
</table>
IGMP Snooping Commands

ip igmp snooping (Global)

Use the `ip igmp snooping` Global Configuration mode command to enable Internet Group Management Protocol (IGMP) snooping. Use the `no` form of this command to disable IGMP snooping.

Syntax

`ip igmp snooping`

`no ip igmp snooping`

Default Configuration

IGMP snooping is disabled.

Command Mode

Global Configuration mode

Example

The following example enables IGMP snooping.

```
Console(config)# ip igmp snooping
```

ip igmp snooping vlan

Use the `ip igmp snooping vlan` Global Configuration mode command to enable Internet Group Management Protocol (IGMP) snooping on a specific VLAN. Use the `no` form of this command to disable IGMP snooping on a VLAN interface.
Syntax
ip igmp snooping vlan vlan-id
no ip igmp snooping vlan vlan-id

Parameters
vlan-id—Specifies the VLAN.

Default
Disabled

Command Mode
Global Configuration mode

User Guidelines
IGMP snooping can be enabled only on static VLANs.
IGMPv1, IGMPv2 and IGMPv3 are supported.
To activate IGMP snooping, the bridge multicast filtering should be enabled.
The User Guidelines of the bridge multicast mode Interface VLAN Configuration command describes the configuration that is written into the FDB as a function of the FDB mode and the IGMP version that is used in the network.

Example

```
console(config)# ip igmp snooping vlan 2
```

ip igmp snooping mrouter

Use the **ip igmp snooping mrouter** Global Configuration mode command to enable automatic learning of multicast router ports. Use the **no** form of this command to remove the configuration.

Syntax
ip igmp snooping vlan vlan-id mrouter learn pim-dvmrp
no ip igmp snooping vlan vlan-id mrouter learn pim-dvmrp
Parameters
vlan-id—Specifies the VLAN.

Default
Learning pim-dvmrp is enabled.

Command Mode
Global Configuration mode

User Guidelines
Multicast router ports are learned based on:
• Queries received on the port
• PIM/PIMv2 received on the port
• DVMRP received on the port
• MRDISC received on the port
• MOSPF received on the port
You can execute the command before the VLAN is created.

Example

console(config)# ip igmp snooping vlan 1 mrouter learn pim-dvmrp

ip igmp snooping mrouter interface

Use the ip igmp snooping mrouter interface Global Configuration mode command to define a port that is connected to a multicast router port. Use the no form of this command to remove the configuration.

Syntax
ip igmp snooping vlan vlan-id mrouter interface interface-list
no ip igmp snooping vlan vlan-id mrouter interface interface-list

Parameters
• vlan-id—Specifies the VLAN.
• `interface-list`—Specifies the list of interfaces. The interfaces can be one of the following types: Ethernet port or Port-channel.

Default
No ports defined

Command Mode
Global Configuration mode

User Guidelines
A port that is defined as a multicast router port receives all IGMP packets (reports and queries) as well as all multicast data.

You can execute the command before the VLAN is created.

Example

```
console(config)# ip igmp snooping vlan 1 mrouter interface gi1/0/1
```

ip igmp snooping forbidden mrouter interface

Use the `ip igmp snooping forbidden mrouter interface` Global Configuration mode command to forbid a port from being defined as a multicast router port by static configuration or by automatic learning. Use the `no` form of this command to remove the configuration.

Syntax

```
ip igmp snooping vlan vlan-id forbidden mrouter interface interface-list
no ip igmp snooping vlan vlan-id forbidden mrouter interface interface-list
```

Parameters

- `vlan-id`—Specifies the VLAN.
- `interface-list`—Specifies a list of interfaces. The interfaces can be from one of the following types: Ethernet port or Port-channel.

Default
No ports defined
Command Mode
Global Configuration mode

User Guidelines
A port that is a forbidden mrouter port cannot be a multicast router port (i.e. cannot be learned dynamically or assigned statically).

You can execute the command before the VLAN is created.

Example

console(config)# ip igmp snooping vlan 1 forbidden mrouter interface gi1/0/1

ip igmp snooping static
Use the ip igmp snooping static Global Configuration mode command to register an IP-layer multicast address to the bridge table, and to add statically ports to the group. Use the no form of this command to remove ports specified as members of a static multicast group.

Syntax
ip igmp snooping vlan vlan-id static ip-address [interface interface-list]
no ip igmp snooping vlan vlan-id static ip-address [interface interface-list]

Parameter
- vlan-id—Specifies the VLAN.
- ip-address—Specifies the IP multicast address.
- interface-list—Specifies a list of interfaces. The interfaces can be from one of the following types: Ethernet port or Port-channel.

Default Configuration
No multicast addresses are defined.

Command Mode
Global Configuration mode
User Guidelines
Static multicast addresses can only be defined on static VLANs.
You can execute the command before the VLAN is created.
You can register an entry without specifying an interface.
Using the `no` command without a port-list removes the entry.

Example

```
console(config)# ip igmp snooping vlan 1 static 239.2.2.2 gi1/0/
```

ip igmp snooping multicast-tv

Use the `ip igmp snooping multicast-tv` Global Configuration mode command to define the multicast ip-addresses that are associated with a multicast-tv VLAN. Use the `no` form of this command to remove all associations.

Syntax

```
ip igmp snooping vlan vlan-id multicast-tv ip-multicast-address [count number]

no ip igmp snooping vlan vlan-id multicast-tv ip-multicast-address [count number]
```

Parameters

- **vlan-id**—Specifies the VLAN
- **number**—Configures multiple contiguous multicast IP addresses. If not specified, the default is 1. (Range: 1–256)

Default

No multicast IP address is associated.

Command Mode

Global Configuration mode
User Guidelines
Use this command to define the multicast transmissions on a multicast-TV VLAN. The configuration is only relevant for an Access port that is a member in the configured VLAN as a multicast-TV VLAN.

If an IGMP message is received on such an Access port, it is associated with the multicast-TV VLAN only if it is for one of the multicast IP addresses that are associated with the multicast-TV VLAN.

Up to 256 VLANs can be configured.

ip igmp snooping querier

Use the ip igmp snooping querier Global Configuration mode command to enable the Internet Group Management Protocol (IGMP) querier on a specific VLAN. Use the no form of this command to disable the IGMP querier on a VLAN interface.

Syntax

```plaintext
ip igmp snooping vlan vlan-id querier
no ip igmp snooping vlan vlan-id querier
```

Parameters

- `vlan-id`—Specifies the VLAN

Default

Disabled

Command Mode

Global Configuration mode

User Guidelines

The IGMP snooping querier can be enabled on a VLAN only if IGMP snooping is enabled for that VLAN.

No more then one switch can be configured as an IGMP Querier for a VLAN.

When the IGMP snooping querier is enabled, it starts after a host-time-out/2 with no IGMP traffic detected from a multicast router.
The IGMP Snooping Querier disables itself if it detects IGMP traffic from a multicast router. It restarts automatically after host-time-out/2.

Following are the IGMP snooping querier parameters as a function of the IGMP snooping parameters:

- QueryInterval: host-time-out/3.

Example

```
console(config)# ip igmp snooping vlan 1 querier
```

ip igmp snooping querier address

Use the `ip igmp snooping querier address` Global Configuration mode command to define the source IP address that the IGMP snooping querier would use. Use the `no` form of this command to return to default.

Syntax

```
ip igmp snooping vlan vlan-id querier address ip-address
no ip igmp snooping vlan vlan-id querier address
```

Parameters

- `vlan-id`—Specifies the VLAN.
- `ip-address`—Source IP address.

Default

If an IP address is configured for the VLAN, it is used as the source address of the IGMP snooping querier.

Command Mode

Global Configuration mode

User Guidelines

If an IP address is not configured by this command, and no IP address is configured for the querier’s VLAN, the querier is disabled.
Example

console(config)# ip igmp snooping vlan 1 querier address 1.2.3.4

ip igmp robustness

Use the `ip igmp robustness` Interface Configuration mode command to change a value of the IGMP robustness variable. Use the `no` format of the command to return to default.

Syntax

```plaintext
ip igmp robustness count
no ip igmp robustness
```

Parameters

`count`—The number of expected packet loss on a link. Parameter range. (Range: 1–7)

Default

2

Command Mode

Interface Configuration (VLAN) mode

User Guidelines

You can execute the command before the VLAN is created.

console(config)# interface vlan 1
console(config-if)# ip igmp robustness 3

ip igmp query-interval

Use the `ip igmp query-interval` Interface Configuration mode command to configure the Query interval. Use the `no` format of the command to return to default.
Syntax
ip igmp query-interval seconds
no ip igmp query-interval

Parameters
seconds—Frequency, in seconds, at which IGMP query messages are sent on the interface. (Range: 30–18000)

Default
125

Command Mode
Interface Configuration (VLAN) mode

User Guidelines
You can execute the command before the VLAN is created.

Example

ip igmp query-max-response-time
Use the ip igmp query-max-response-time Interface Configuration mode command to configure the Query Maximum Response time. Use the no format of the command to return to default.

Syntax
ip igmp query-max-response-time seconds
no ip igmp query-max-response-time

Parameters
seconds—Maximum response time, in seconds, advertised in IGMP queries. (Range: 5–20)

Default
10
Command Mode
Interface Configuration (VLAN) mode

User Guidelines
You can execute the command before the VLAN is created.

Example

ip igmp last-member-query-count
Use the `ip igmp last-member-query-count` Interface Configuration mode command to configure the Last Member Query Counter. Use the `no` format of the command to return to default.

Syntax

ip igmp last-member-query-count *count*

no ip igmp last-member-query-count

Parameter

count—The number of times that group- or group-source-specific queries are sent upon receipt of a message indicating a leave. (Range: 1–7)

Default
A value of Robustness variable

Command Mode
Interface Configuration (VLAN) mode

User Guidelines
You can execute the command before the VLAN is created.

Example
ip igmp last-member-query-interval

Use the `ip igmp last-member-query-interval` Interface Configuration mode command to configure the Last Member Query interval. Use the `no` format of the command to return to default.

Syntax

```
ip igmp last-member-query-interval milliseconds
no ip igmp last-member-query-interval
```

Parameters

milliseconds—Interval, in milliseconds, at which IGMP group-specific host query messages are sent on the interface. (Range: 100–25500)

Default

1000

Command Mode

Interface Configuration (VLAN) mode

User Guidelines

You can execute the command before the VLAN is created.

Example

```
ip igmp snooping vlan immediate-leave
```

ip igmp snooping vlan immediate-leave

Use the `ip igmp snooping vlan immediate-leave` Global Configuration mode command to enable the IGMP Snooping Immediate-Leave processing on a VLAN. Use the `no` format of the command to disable IGMP Snooping Immediate-Leave processing.

Syntax

```
ip igmp snooping vlan vlan-id immediate-leave
no ip igmp snooping vlan vlan-id immediate-leave
```
Parameters
vlan-id—Specifies the VLAN ID value. (Range: 1–4094)

Default
Disabled

Command Mode
Global Configuration mode

User Guidelines
You can execute the command before the VLAN is created.

Example

```
show ip igmp snooping mrouter
```

The `show ip igmp snooping mrouter` EXEC mode command displays information on dynamically learned multicast router interfaces for all VLANs or for a specific VLAN.

Syntax
```
show ip igmp snooping mrouter [interface vlan-id]
```

Parameters
interface vlan-id—Specifies the VLAN ID.

Command Mode
EXEC mode
Example
The following example displays information on dynamically learned multicast router interfaces for VLAN 1000.

```
Console# show ip igmp snooping mrouter interface 1000

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Static</th>
<th>Dynamic</th>
<th>Forbidden</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>g1/0/1</td>
<td>g1/0/2</td>
<td>g1/0/3-g1/0/23</td>
</tr>
</tbody>
</table>
```

show ip igmp snooping interface
The `show ip igmp snooping interface` EXEC mode command displays the IGMP snooping configuration for a specific VLAN.

Syntax
`show ip igmp snooping interface vlan-id`

Parameters
- `vlan-id`—Specifies the VLAN ID.

Command Mode
EXEC mode

Example
The following example displays the IGMP snooping configuration for VLAN 1000

```
Console # show ip igmp snooping interface 1000
IGMP Snooping is globally enabled
IGMP Snooping admin: Enabled
IGMP Snooping oper: Enabled
Routers IGMP version: 3
Groups that are in IGMP version 2 compatibility mode:
231.2.2.3, 231.2.2.3
Groups that are in IGMP version 1 compatibility mode:
```
IGMP snooping querier admin: Enabled
IGMP snooping querier oper: Enabled
IGMP snooping querier address admin:
IGMP snooping querier address oper: 172.16.1.1
IGMP snooping querier version admin: 3

IGMP snooping robustness: admin 2 oper 2
IGMP snooping query interval: admin 125 sec oper 125 sec
IGMP snooping query maximum response: admin 10 sec oper 10 sec
IGMP snooping last member query counter: admin 2 oper 2
IGMP snooping last member query interval: admin 1000 msec oper 500 msec
IGMP snooping last immediate leave: enable

Automatic learning of multicast router ports is enabled

show ip igmp snooping groups

The `show ip igmp snooping groups` EXEC mode command displays the multicast groups learned by the IGMP snooping.

Syntax

```
show ip igmp snooping groups [vlan vlan-id] [address ip-multicast-address] [source ip-address]
```

Parameters

- `vlan vlan-id`—Specifies the VLAN ID.
- `address ip-multicast-address`—Specifies the IP multicast address.
- `source ip-address`—Specifies the IP source address.

Command Mode

EXEC mode
User Guidelines
To see the full multicast address table (including static addresses), use the `show bridge multicast address-table` command.

The Include list contains the ports which are in forwarding state for this group according to the snooping database. In general, the Exclude list contains the ports that have issued an explicit Exclude for that specific source in a multicast group. The Reporters That Are Forbidden Statically list contains the list of ports which have asked to receive a multicast flow but were defined as forbidden for that multicast group in multicast bridge.

Note: under certain circumstances, the Exclude list may not contain accurate information. For example, in the case when two Exclude reports were received on the same port for the same group but for different sources, the port will not be in the Exclude list but rather in the Include’ list.

Example
The following example shows the output for IGMP version 2.

```
Console# show ip igmp snooping groups

<table>
<thead>
<tr>
<th>Vlan</th>
<th>IP Address</th>
<th>Querier</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>----</td>
<td>----------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>231.2.2.2</td>
<td>Yes</td>
<td>gi1/0/1</td>
</tr>
<tr>
<td>1</td>
<td>231.2.2.3</td>
<td>No</td>
<td>gi1/0/2</td>
</tr>
<tr>
<td>19</td>
<td>231.2.2.4</td>
<td>Yes</td>
<td>gi1/0/9</td>
</tr>
</tbody>
</table>
```

show ip igmp snooping multicast-tv
The `show ip igmp snooping multicast-tv` EXEC mode command displays the IP addresses associated with Multicast TV VLANs.

Syntax
show ip igmp snooping multicast-tv [vlan vlan-id]

Parameters
- vlan vlan-id—Specifies the VLAN ID.
Command Mode
EXEC mode

Example
The following example displays the IP addresses associated with all Multicast TV VLANs.

```
Console# show ip igmp snooping multicast-tv
VLAN  IP Address
---  -----------
1000  239.255.0.0
1000  239.255.0.1
1000  239.255.0.2
1000  239.255.0.3
1000  239.255.0.4
1000  239.255.0.5
1000  239.255.0.6
1000  239.255.0.7
```
LACP Commands

lacp system-priority

Use the `lacp system-priority` Global Configuration mode command to set the system priority. Use the `no` form of this command to restore the default configuration.

Syntax

```
lacp system-priority value
no lacp system-priority
```

Parameters

- `value`—Specifies the system priority value. (Range: 1–65535)

Default Configuration

The default system priority is 1.

Command Mode

Global Configuration mode

Example

The following example sets the system priority to 120.

```
Console(config)# lacp system-priority 120
```
lACP Commands

lacp port-priority

Use the `lacp port-priority` Interface Configuration (Ethernet) mode command to set the physical port priority. Use the `no` form of this command to restore the default configuration.

Syntax

```
lacp port-priority value
no lacp port-priority
```

Parameters

value—Specifies the port priority. (Range: 1 to 65535)

Default Configuration

The default port priority is 1.

Command Mode

Interface Configuration (Ethernet) mode

Example

The following example sets the priority of gigabitethernet port 1/0/6.

```
console(config)# interface gi1/0/6
console(config-if)# lacp port-priority 247
```

lacp timeout

Use the `lacp timeout` Interface Configuration (Ethernet) mode command to assign an administrative LACP timeout to an interface. Use the `no` form of this command to restore the default configuration.

Syntax

```
lacp timeout {long | short}
no lacp timeout
```

Parameters

- `long`—Specifies the long timeout value.
- `short`—Specifies the short timeout value.

Default Configuration

The default port timeout value is Long.

Command Mode

Interface Configuration (Ethernet) mode

Example

The following example assigns a long administrative LACP timeout to gigabitethernet port 1/0/6.

```
Console(config)# interface gi1/0/6
Console(config-if)# lacp timeout long
```

show lacp

Use the `show lacp` EXEC mode command to display LACP information for all Ethernet ports or for a specific Ethernet port.

Syntax

```
show lacp interface-id [ parameters | statistics | protocol-state ]
```

Parameters

- `parameters`—Displays parameters only.
- `statistics`—Displays statistics only.
- `protocol-state`—Displays protocol state only.

Command Mode

EXEC mode
Example
The following example displays LACP information for gigabitethernet port 1/0/1.

Console> `show lacp` gil/0/1

Port gil/0/1 LACP parameters:

Actor

 system priority: 1
 system mac addr: 00:00:12:34:56:78
 port Admin key: 30
 port Oper key: 30
 port Oper number: 21
 port Admin priority: 1
 port Oper priority: 1
 port Admin timeout: LONG
 port Oper timeout: LONG
 LACP Activity: ACTIVE
 Aggregation: AGGREGATABLE
 synchronization: FALSE
 collecting: FALSE
 distributing: FALSE
 expired: FALSE

Partner
system priority: 0
system mac addr: 00:00:00:00:00:00
port Admin key: 0
port Oper key: 0
port Oper number: 0
port Admin priority: 0
port Oper priority: 0
port Admin timeout: LONG
port Oper timeout: LONG
LACP Activity: PASSIVE
Aggregation: AGGREGATABLE
synchronization: FALSE
collecting: FALSE
distributing: FALSE
expired: FALSE

Port gi1/0/1 LACP Statistics:
LACP PDUs sent: 2
LACP PDUs received: 2

Port gi1/0/1 LACP Protocol State:
LACP State Machines:
Receive FSM: Port Disabled State
Mux FSM: Detached State

Control Variables:
BEGIN: FALSE
LACP_Enabled: TRUE
Ready_N: FALSE
Selected: UNSELECTED
Port Moved: FALSE
NNT: FALSE
Port enabled: FALSE

Timer counters:
periodic tx timer: 0
current while timer: 0
wait while timer: 0
show lACP port-channel

Use the `show lACP port-channel` EXEC mode command to display LACP information for a port-channel.

Syntax

`show lACP port-channel [port_channel_number]`

Parameters

- `port_channel_number`—Specifies the port-channel number.

Command Mode

EXEC mode

Example

The following example displays LACP information about port-channel 1.

```
Console> show lACP port-channel 1

Port-Channel 1:Port Type 1000 Ethernet

Actor

    System: 1
    Priority: 000285:0E1C00
    MAC Address: 29
    Admin Key: 29
    Oper Key:

Partner

    System: 0
    Priority: 00:00:00:00:00:00
    MAC Address: 14
    Oper Key:
```
GVRP Commands

gvrp enable (Global)

Use the `gvrp enable` Global Configuration mode command to enable the Generic Attribute Registration Protocol (GARP) VLAN Registration Protocol (GVRP) globally. Use the `no` form of this command to disable GVRP on the device.

Syntax

`gvrp enable`

`no gvrp enable`

Default Configuration

GVRP is globally disabled.

Command Mode

Global Configuration mode

Example

The following example enables GVRP globally on the device.

```
Console(config)# gvrp enable
```

gvrp enable (Interface)

Use the `gvrp enable` Interface Configuration (Ethernet, Port-channel) mode command to enable GVRP on an interface. Use the `no` form of this command to disable GVRP on an interface.
Syntax

gvrp enable

no gvrp enable

Default Configuration
GVRP is disabled on all interfaces.

Command Mode
Interface Configuration (Ethernet, Port-channel) mode

User Guidelines
GVRP is only operational if it is enabled on a general mode port.

Example
The following example enables GVRP on gigabitethernet port 1/0/6.

Console(config)# interface gi1/0/6
Console(config-if)# gvrp enable

garp timer
Use the \texttt{garp timer} Interface Configuration (Ethernet, port channel) mode command to adjust the values of the join, leave and leaveall timers of GARP applications, such as GVRP. Use the \texttt{no} form of this command to restore the default configuration.

Syntax

garp timer \{join | leave | leaveall\} \textit{timer-value}

no garp timer

Parameters

- \texttt{join | leave | leaveall}—Specifies the type of timer for which the timer value is specified. The possible values are:
 - \texttt{join}—Specifies the GARP join timer. The GARP join timer value specifies the time interval between the two join messages sent by the GARP application.
• **leave**—Specifies the GARP leave timer. The GARP leave timer value specifies the time interval for a GARP application to wait for a join message after receiving a leave message for a GARP attribute, before it de-registers the GARP attribute.

• **leaveall**—Specifies the GARP leaveall timer. The GARP leaveall timer value specifies the time interval between leaveall messages for a GARP entity, which prompt other GARP entities to re-reregister all attribute information on this entity.

• **timer-value**—Specifies the timer value in milliseconds in multiples of 10. (Range: 10–2147483640)

Default Configuration
The following are the default timer values:

- **Join timer**—200 milliseconds
- **Leave timer**—600 milliseconds
- **Leaveall timer**—10000 milliseconds

Command Mode
Interface Configuration (Ethernet, Port-channel) mode

User Guidelines
The **timer-value** value must be a multiple of 10.

The following relationship must be maintained between the timers:

- The leave time must be greater than or equal to three times the join time.
- The leave-all time must be greater than the leave time.

Set the same GARP timer values on all Layer 2-connected devices to ensure proper operation of the GARP application.

Example
The following example sets the leave timer for gigabitethernet port 1/0/6 to 900 milliseconds.

```
Console(config)# interface gi1/0/6
Console(config-if)# garp timer leave 900
```
gvrp vlan-creation-forbid

Use the `gvrp vlan-creation-forbid` Interface Configuration (Ethernet, Port-channel) mode command to disable dynamic VLAN creation or modification. Use the `no` form of this command to enable dynamic VLAN creation or modification.

Syntax

gvrp vlan-creation-forbid

no gvrp vlan-creation-forbid

Default Configuration

Dynamic VLAN creation or modification is enabled.

Command Mode

Interface Configuration (Ethernet, Port-channel) mode

Example

The following example disables dynamic VLAN creation on gigabitethernet port 1/0/3.

```
Console(config)# interface gi1/0/3
Console(config-if)# gvrp vlan-creation-forbid
```

gvrp registration-forbid

Use the `gvrp registration-forbid` Interface Configuration (Ethernet, Port-channel) mode command to deregister all dynamic VLANs on a port and prevent VLAN creation or registration on the port. Use the `no` form of this command to allow dynamic registration of VLANs on a port.

Syntax

gvrp registration-forbid

no gvrp registration-forbid
Default Configuration
Dynamic registration of VLANs on the port is allowed.

Command Mode
Interface Configuration (Ethernet, Port-channel) mode

Example
The following example forbids dynamic registration of VLANs on gigabitethernet port 1/0/2.

```
Console(config)# interface gi1/0/2
Console(config-if)# gvrp registration-forbid
```

clear gvrp statistics
Use the `clear gvrp statistics` Privileged EXEC mode command to clear GVRP statistical information for all interfaces or for a specific interface.

Syntax
`clear gvrp statistics [interface-id]`

Parameters
`Interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode
Privileged EXEC mode

Example
The following example clears all GVRP statistical information on gigabitethernet port 1/0/5.

```
Console# clear gvrp statistics gi1/0/5
```
show gvrp configuration

Use the **show gvrp configuration** EXEC mode command to display GVRP configuration information, including timer values, whether GVRP and dynamic VLAN creation are enabled, and which ports are running GVRP.

Syntax

`show gvrp configuration [interface-id]`

Parameters

interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode

EXEC mode

Example

The following example displays GVRP configuration information.

```
console# show gvrp configuration

GVRP Feature is currently Enabled on the device.
Maximum VLANs: 4094

Port(s)  GVRP-Status  Registration   Dynamic VLAN    Timers(ms)   Leave
        VLAN           Join  Leave
------- ----------- -------- -------- ------- ----
g1/0/1   Enabled     Forbidden Disabled  200     600    10000

```

show gvrp statistics

Use the **show gvrp statistics** EXEC mode command to display GVRP statistics for all interfaces or for a specific interface.
Syntax
show gvrp statistics [interface-id]

Parameters
interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode
EXEC mode

Example
The following example displays GVRP statistical information.

```
Console# show gvrp statistics

GVRP statistics:
----------------
Legend:
  rJE : Join Empty     rJIn: Join In Received
  rEmp: Received       rLin: Leave In Received
  rLE : Empty Received rLA : Leave All Received
  sJE : Leave Empty    sJIn: Join In Sent
  sEmp: Received       sLin: Leave In Sent
  sLE : Join Empty Sent sLA : Leave All Sent
     Empty Sent
     Leave Empty Sent

<table>
<thead>
<tr>
<th>Port</th>
<th>rJE</th>
<th>rJIn</th>
<th>rEmp</th>
<th>rLin</th>
<th>rLE</th>
<th>rLA</th>
<th>sJE</th>
<th>sJIn</th>
<th>sEmp</th>
<th>sLin</th>
<th>sLE</th>
<th>sLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>0</td>
</tr>
<tr>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>1/3</td>
<td>0</td>
</tr>
<tr>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>1/5</td>
<td>0</td>
</tr>
<tr>
<td>1/6</td>
<td>0</td>
</tr>
<tr>
<td>1/7</td>
<td>0</td>
</tr>
<tr>
<td>1/8</td>
<td>0</td>
</tr>
</tbody>
</table>
```
show gvrp error-statistics

Use the show gvrp error-statistics EXEC mode command to display GVRP error statistics for all interfaces or for a specific interface.

Syntax

show gvrp error-statistics [interface-id]

Parameters

interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode

EXEC mode

Example

The following example displays GVRP error statistics.

console# show gvrp error-statistics

GVRP Error Statistics:

Legend:
INVPROT : Invalid Protocol Id
INVATYP : Invalid Attribute Type INVALEN : Invalid Attribute Length
INVAVAL : Invalid Attribute Value INVEVENT: Invalid Event

<table>
<thead>
<tr>
<th>Port</th>
<th>INVPROT</th>
<th>INVATYP</th>
<th>INVAVAL</th>
<th>INVALEN</th>
<th>INVEVENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi1/0/5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi1/0/6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gi1/0/0/7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Voice VLAN Commands

voice vlan id
The voice vlan id Global Configuration mode command specified the Voice VLAN Identified. The no format of the command returns the value to default.

Syntax
voice vlan id vlan-id
no voice vlan id

Parameters
vlan-id—Specifies the voice VLAN ID.

Parameters Range
vlan-id—1-4094.

Default Configuration
Default VLAN's Identifier.

Command Mode
Global Configuration mode

User Guidelines
If the Voice VLAN does not exist it is created automatically. It will not removed automatically.
Example
The following example enables VLAN 35 as the voice VLAN on the device.

Console(config)# voice vlan id 35

voice vlan oui-table

Use the voice vlan oui-table Global Configuration mode command to configure the voice OUI table. Use the no form of this command to restore the default configuration.

Syntax
voice vlan oui-table {add mac-address-prefix | remove mac-address-prefix} [text]

no voice vlan oui-table

Parameters
- add mac-address-prefix—Adds the specified MAC address to the voice VLAN OUI table. (Length: 3 bytes)
- text—Adds the specified text as a description of the specified MAC address to the voice VLAN OUI table. (Length: 1–32 characters)
- remove mac-address-prefix—Removes the specified MAC address from the voice VLAN OUI table. (Length: 3 bytes)

Default Configuration
The default voice VLAN OUI table is:

<table>
<thead>
<tr>
<th>OUI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:e0:bb</td>
<td>3COM Phone</td>
</tr>
<tr>
<td>00:03:6b</td>
<td>Cisco Phone</td>
</tr>
<tr>
<td>00:e0:75</td>
<td>Veritel Polycom Phone</td>
</tr>
<tr>
<td>00:d0:1e</td>
<td>Pingtel Phone</td>
</tr>
<tr>
<td>00:01:e3</td>
<td>Siemens AG Phone</td>
</tr>
<tr>
<td>00:60:b9</td>
<td>NEC/Philips Phone</td>
</tr>
</tbody>
</table>
Command Mode
Global Configuration mode

User Guidelines
The classification of a packet to Packets from VoIP Equipment/Phones is based on the packet’s OUI of the source Mac Address.

In MAC addresses, the first three bytes contain a manufacturer ID (Organizationally Unique Identifiers - OUI) and the last three bytes contain a unique station ID.

OUIs are globally assigned (administered) by the IEEE.

Since the number of IP phones manufacturers that dominates the market is limited and well known, the known OUI values can be configured (as a default and user configurable) to the switch.

Example
The following example adds an entry to the voice VLAN OUI table.

```
Console(config)# voice vlan oui-table add 00:AA:BB description experimental
```

voice vlan cos mode
Use the `voice vlan cos mode` Interface Configuration mode command to select the OUI Voice VLAN Class Of Service mode. Use the `no` form of this command to return to the default.

Syntax
voice vlan cos mode {src | all}

no voice vlan cos mode
Parameters

- src—QoS attributes are applied only on packets from IP phones. See the User Guidelines.
- all—QoS attributes are applied only on all packets that are classified to the Voice VLAN.

Command Mode

Interface Configuration (Ethernet, port-channel) mode

voice vlan cos

Use the `voice vlan cos` Global Configuration mode command to set the OUI Voice VLAN Class of Service (CoS). Use the `no` form of this command to restore the default configuration.

Syntax

```
voice vlan cos cos [remark]
no voice vlan cos
```

Parameters

- cos—Specifies the voice VLAN Class of Service. (Range: 0–7)
- remark—Specifies that the L2 User Priority is remarked.

Default Configuration

The default CoS value is 6.

The L2 User Priority is not remarked.

Command Mode

Global Configuration mode

User Guidelines

Example

The following example sets the OUI Voice VLAN CoS to 6.
voice vlan aging-timeout

Use the voice vlan aging-timeout Global Configuration mode command to set the OUI Voice VLAN aging timeout interval. Use the no form of this command to restore the default configuration.

Syntax

voice vlan aging-timeout minutes

no voice vlan aging-timeout

Parameters

minutes—Specifies the voice VLAN aging timeout interval in minutes. (Range: 1–43200)

Default Configuration

The default voice VLAN aging timeout interval is 1440 minutes.

Command Mode

Global Configuration mode

Example

The following example sets the OUI Voice VLAN aging timeout interval to 12 hours.

Console(config)# voice vlan aging-timeout 720

voice vlan enable

Use the voice vlan enable Interface Configuration (Ethernet, Port-channel) mode command to enable OUI Voice VLAN configuration on a port. Use the no form of this command to disable OUI Voice VLAN configuration on a port.
Syntax
voice vlan enable
no voice vlan enable

Default Configuration
Automatic voice VLAN configuration of a port is disabled.

Command Mode
Interface Configuration (Ethernet, Port-channel) mode

User Guidelines
The port is added to the voice VLAN if a packet with a source MAC address that is a telephony MAC address (defined by the voice vlan oui-table Global Configuration mode command) is trapped on the port. Note: The packet VLAN ID can be the voice VLAN ID or any other VLAN ID.

The port joins the voice VLAN as a tagged port.

If the time since the last MAC address with a telephony MAC address aged out exceeds the timeout limit (configured by the voice vlan aging-timeout Global Configuration mode command), the port is removed from the voice VLAN.

Voice VLAN cannot be enabled on a port if the port is already a static member of the defined Voice VLAN. This applies also to VLAN/switchport interface modes (general, trunk and so on) that are not currently active on a port. Therefore, before enabling voice VLAN on an interface, you must specifically remove the Voice VLAN ID for any switchport mode for that interface in which it is a member. Special attention is needed in relation to trunk mode configuration, because in this mode, interfaces are members of all VLANs by default.

Example
The following example enables OUI Voice VLAN 35 on gigabitethernet port 1/0/2. Note removal of VLAN 35 from interface trunk mode.

Console(config)# interface gi1/0/2
Console(config-if)# switchport trunk allowed vlan remove 35
Console(config-if)# voice vlan enable
voice vlan secure

Use the `voice vlan secure` Interface Configuration (Ethernet, Port-channel) mode command to enable the secure mode for the OUI Voice VLAN. Use the `no` form of this command to disable the secure mode.

Syntax

```plaintext
voice vlan secure

no voice vlan secure
```

Default Configuration

The voice VLAN secure mode is disabled.

Command Mode

Interface Configuration (Ethernet, Port-channel) mode

User Guidelines

Use this command to specify that packets that are classified to the voice VLAN with a source MAC address that is not a telephony MAC address (defined by the `voice vlan oui-table` Global Configuration mode command) are discarded.

This command is relevant only to ports that were added to the voice VLAN automatically.

Example

The following example enables the secure mode for the OUI Voice VLAN on gigabitethernet port 1/0/8.

```
Console(config)# interface gi1/0/8
Console(config-if)# voice vlan secure
```

show voice vlan

Use the `show voice vlan` EXEC mode command to display the voice VLAN status for all interfaces or for a specific interface.
Syntax

`show voice vlan [type {oui | auto}] [interface-id]`

Parameters

- **type {oui | auto}**—Specifies which information is printed:
 - `oui` - common and the OUI Voice VLAN specific parameters are printed
 - `auto` - common and the Auto Voice VLAN specific parameters are printed

 If the parameter is omitted the current Voice VLAN type is applied.

- **interface-id**—Specifies an interface ID. If the parameter is omitted then information about all interfaces are printed. Applied only for the OUI VLAN type.

Parameters Range

- **interface-id**—Ethernet, Port-channel

Command Mode

EXEC mode

Example

Example 1.

```
switch>show voice vlan
Administrative Voice VLAN state is auto-triggered
Operational Voice VLAN state is auto-enabled
Best Local Voice VLAN-ID is 20
Best Local VPT is 4
Best Local DSCP is 1
Voice VLAN is received from switch 00:01:22:01:ab:87:45
Agreed Voice VLAN priority is 0 (active UC device)
Agreed Voice VLAN-ID is 100
Agreed VPT is 0
Agreed DSCP is 0
Agreed VLAN Last Change is 10-Apr-10 20:01:00
```
Example 2.
Administrative Voice VLAN state is auto-enabled
Operational Voice VLAN state is auto-enabled
Best Local Voice VLAN-ID is 1 (default)
Best Local VPT is 0 (default)
Best Local DSCP is 0 (default)
Agreed Voice VLAN is received from switch 00:01:22:01:ab:87:45
Agreed Voice VLAN priority is 2 (static)
Agreed Voice VLAN-ID is 20
Agreed VPT is 7
Agreed DSCP is 20
Agreed VLAN Last Change is 10-Apr-10 20:01:00

Example 3.
Administrative Voice VLAN state is auto-triggered
Operational Voice VLAN state is disabled

Example 4.
Administrative Voice VLAN state is disabled
Operational Voice VLAN state is disabled
Best Local Voice VLAN-ID is 20
Best Local VPT is 0 (default)
Best Local DSCP is 0 (default)
Aging timeout: 1440 minutes
CoS: 6
Remark: Yes

Example 5.
Administrative Voice VLAN state is oui-enabled
Operational Voice VLAN state is oui-enabled
Best Local Voice VLAN-ID is 1 (default)
Best Local VPT is 4
Best Local DSCP is 1
Aging timeout: 1440 minutes
CoS: 6
Remark: Yes

OUI table

<table>
<thead>
<tr>
<th>MAC Address - Prefix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:E0:BB</td>
<td>3COM</td>
</tr>
<tr>
<td>00:03:6B</td>
<td>Cisco</td>
</tr>
<tr>
<td>00:E0:75</td>
<td>Veritel</td>
</tr>
<tr>
<td>00:D0:1E</td>
<td>Pingtel</td>
</tr>
<tr>
<td>00:01:E3</td>
<td>Simens</td>
</tr>
<tr>
<td>00:60:B9</td>
<td>NEC/Philips</td>
</tr>
<tr>
<td>00:0F:E2</td>
<td>Huawei-3COM</td>
</tr>
<tr>
<td>00:09:6E</td>
<td>Avaya</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface</th>
<th>Enabled</th>
<th>Secure</th>
<th>Activated</th>
<th>cos Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>all</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>src</td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>No</td>
<td>No</td>
<td>-</td>
<td>src</td>
</tr>
</tbody>
</table>
DHCP Snooping and ARP Inspection Commands

ip dhcp snooping

Use the ip dhcp snooping Global Configuration mode command to enable Dynamic Host Configuration Protocol (DHCP) Snooping globally. Use the no form of this command to restore the default configuration.

Syntax
ip dhcp snooping
no ip dhcp snooping

Default Configuration
DHCP snooping is disabled.

Command Mode
Global Configuration mode

User Guidelines
For any DHCP Snooping configuration to take effect, DHCP Snooping must be enabled globally. DHCP Snooping on a VLAN is not active until DHCP Snooping on a VLAN is enabled by using the ip dhcp snooping vlan Global Configuration mode command.

Example
The following example enables DHCP Snooping on the device.

Console(config)# ip dhcp snooping
ip dhcp snooping vlan

Use the `ip dhcp snooping vlan` Global Configuration mode command to enable DHCP Snooping on a VLAN. Use the `no` form of this command to disable DHCP Snooping on a VLAN.

Syntax

```
ip dhcp snooping vlan vlan-id
no ip dhcp snooping vlan vlan-id
```

Parameters

- `vlan-id`—Specifies the VLAN ID.

Default Configuration

DHCP Snooping on a VLAN is disabled.

Command Mode

Global Configuration mode

User Guidelines

DHCP Snooping must be enabled globally before enabling DHCP Snooping on a VLAN.

Example

The following example enables DHCP Snooping on VLAN 21.

```
Console(config)# ip dhcp snooping vlan 21
```

ip dhcp snooping trust

Use the `ip dhcp snooping trust` Interface Configuration (Ethernet, Port-channel) mode command to configure a port as trusted for DHCP snooping purposes. Use the `no` form of this command to restore the default configuration.
Syntax

```
ip dhcp snooping trust
no ip dhcp snooping trust
```

Default Configuration
The interface is untrusted.

Command Mode
Interface Configuration (Ethernet, Port-channel) mode

User Guidelines
Configure as trusted the ports that are connected to a DHCP server or to other switches or routers. Configure the ports that are connected to DHCP clients as untrusted.

Example
The following example configures gigabitethernet port 1/0/5 as trusted for DHCP Snooping.

```
Console(config)# interface gi1/0/5
Console(config-if)# ip dhcp snooping trust
```

ip dhcp snooping information option allowed-untrusted

Use the `ip dhcp snooping information option allowed-untrusted` Global Configuration mode command to allow a device to accept DHCP packets with option-82 information from an untrusted port. Use the `no` form of this command to drop these packets from an untrusted port.

Syntax

```
ip dhcp snooping information option allowed-untrusted
no ip dhcp snooping information option allowed-untrusted
```
Default Configuration
DHCP packets with option-82 information from an untrusted port are discarded.

Command Mode
Global Configuration mode

Example
The following example allows a device to accept DHCP packets with option-82 information from an untrusted port.

```
Console(config)# ip dhcp snooping information option allowed-untrusted
```

ip dhcp snooping verify

Use the `ip dhcp snooping verify` Global Configuration mode command to configure a device to verify that the source MAC address in a DHCP packet received on an untrusted port matches the client hardware address. Use the `no` form of this command to disable MAC address verification in a DHCP packet received on an untrusted port.

Syntax

- `ip dhcp snooping verify`
- `no ip dhcp snooping verify`

Default Configuration
The switch verifies that the source MAC address in a DHCP packet received on an untrusted port matches the client hardware address in the packet.

Command Mode
Global Configuration mode
Example
The following example configures a device to verify that the source MAC address in a DHCP packet received on an untrusted port matches the client hardware address.

Console(config)# ip dhcp snooping verify

ip dhcp snooping database
Use the ip dhcp snooping database Global Configuration mode command to enable the DHCP Snooping binding database file. Use the no form of this command to delete the DHCP Snooping binding database file.

Syntax
ip dhcp snooping database
no ip dhcp snooping database

Default Configuration
The DHCP Snooping binding database file is not defined.

Command Mode
Global Configuration mode

User Guidelines
The DHCP Snooping binding database file resides on Flash.
To ensure that the lease time in the database is accurate, the Simple Network Time Protocol (SNTP) must be enabled and configured.
The device writes binding changes to the binding database file only if the device system clock is synchronized with SNTP.

Example
The following example enables the DHCP Snooping binding database file.

Console(config)# ip dhcp snooping database
ip dhcp snooping database update-freq

Use the `ip dhcp snooping database update-freq` Global Configuration mode command to set the update frequency of the DHCP Snooping binding database file. Use the `no` form of this command to restore the default configuration.

Syntax

```
ip dhcp snooping database update-freq seconds
no ip dhcp snooping database update-freq
```

Parameters

- `seconds`—Specifies the update frequency in seconds. (Range: 600–86400)

Default Configuration

The default update frequency value is 1200 seconds.

Command Mode

Global Configuration mode

Example

The following example sets the DHCP Snooping binding database file update frequency to 1 hour.

```
Console(config)# ip dhcp snooping database update-freq 3600
```

ip dhcp snooping binding

Use the `ip dhcp snooping binding` Privileged EXEC mode command to configure the DHCP Snooping binding database and add binding entries to the database. Use the `no` form of this command to delete entries from the binding database.

Syntax

```
ip dhcp snooping binding mac-address vlan-id ip-address interface-id expiry
{seconds | infinite}
```

568 | DHCP Snooping and ARP Inspection Commands
no ip dhcp snooping binding mac-address vlan-id

Parameters

- **mac-address**— Specifies a MAC address.
- **vlan-id**—Specifies a VLAN number.
- **ip-address**—Specifies an IP address.
- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.
- **expiry seconds**—Specifies the time interval, in seconds, after which the binding entry is no longer valid. (Range: 10–4294967295)
- **expiry infinite**—Specifies infinite lease time.

Default Configuration

No static binding exists.

Command Mode

Privileged EXEC mode

User Guidelines

After entering this command, an entry is added to the DHCP Snooping database. If the DHCP Snooping binding file exists, the entry is also added to that file.

The entry is displayed in the show commands as a DHCP Snooping entry.

The user cannot delete dynamic temporary entries for which the IP address is 0.0.0.0.

Example

The following example adds a binding entry to the DHCP Snooping binding database.

```
Console# ip dhcp snooping binding 0060.704C.73FF 23 176.10.1.1 ethernet 1/5 expiry 900
```
clear ip dhcp snooping database
Use the **clear ip dhcp snooping database** Privileged EXEC mode command to clear the DHCP Snooping binding database.

Syntax
clear ip dhcp snooping database

Command Mode
Privileged EXEC mode

Example
The following example clears the DHCP Snooping binding database.

```
Console# clear ip dhcp snooping database
```

show ip dhcp snooping
Use the **show ip dhcp snooping** EXEC mode command to display the DHCP snooping configuration for all interfaces or for a specific interface.

Syntax
show ip dhcp snooping [interface-id]

Parameters
interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode
EXEC mode

Example
The following example displays the DHCP snooping configuration.

```
console# show ip dhcp snooping
DHCP snooping is Enabled
```
DHCP snooping is configured on following VLANs: 21
DHCP snooping database is Enabled
Relay agent Information option 82 is Enabled
Option 82 on untrusted port is allowed
Verification of hwaddr field is Enabled
DHCP snooping file update frequency is configured to: 6666 seconds

<table>
<thead>
<tr>
<th>Interface</th>
<th>Trusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Yes</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Yes</td>
</tr>
</tbody>
</table>

show ip dhcp snooping binding

Use the `show ip dhcp snooping binding` User EXEC mode command to display the DHCP Snooping binding database and configuration information for all interfaces or for a specific interface.

Syntax

```
show ip dhcp snooping binding [mac-address mac-address] [ip-address ip-address] [vlan vlan-id] [interface-id]
```

Parameters

- `mac-address mac-address`—Specifies a MAC address.
- `ip-address ip-address`—Specifies an IP address.
- `vlan vlan-id`—Specifies a VLAN ID.
- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode

User EXEC mode
Example
The following examples displays the DHCP snooping binding database and configuration information for all interfaces on a device.

Example
The following examples displays the DHCP snooping binding database and configuration information for all interfaces on a device.

```
Console# show ip dhcp snooping binding

Update frequency: 1200
Total number of binding: 2

Mac Address           IP Address Lease Type       VLAN Interface
--------------------- --------- ----- ---- -------- ---- --------
0060.704C.73FF        10.1.8.1 7983  snooping 3   1/21
0060.704C.7B           10.1.8.2 92332 snooping (s) 3   1/22

```

ip arp inspection

Use the **ip arp inspection** Global Configuration mode command globally to enable Address Resolution Protocol (ARP) inspection. Use the **no** form of this command to disable ARP inspection.

Syntax

- `ip arp inspection`
- `no ip arp inspection`

Default Configuration

ARP inspection is disabled.

Command Mode

Global Configuration mode

User Guidelines

Note that if a port is configured as an untrusted port, then it should also be configured as an untrusted port for DHCP Snooping, or the IP-address-MAC-address binding for this port should be configured statically. Otherwise, hosts that are attached to this port cannot respond to ARPs.
Example
The following example enables ARP inspection on the device.

```
Console(config)# ip arp inspection
```

ip arp inspection vlan
Use the **ip arp inspection vlan** Global Configuration mode command to enable ARP inspection on a VLAN, based on the DHCP Snooping database. Use the **no** form of this command to disable ARP inspection on a VLAN.

Syntax
```
ip arp inspection vlan vlan-id
no ip arp inspection vlan vlan-id
```

Parameters
vlan-id—Specifies the VLAN ID.

Default Configuration
DHCP Snooping based ARP inspection on a VLAN is disabled.

Command Mode
Global Configuration mode

User Guidelines
This command enables ARP inspection on a VLAN based on the DHCP snooping database. Use the **ip arp inspection list assign** Global Configuration mode command to enable static ARP inspection.

Example
The following example enables DHCP Snooping based ARP inspection on VLAN 23.

```
Console(config)# ip arp inspection vlan 23
```
ip arp inspection trust

Use the **ip arp inspection trust** Interface Configuration (Ethernet, Port-channel) mode command to configure an interface trust state that determines if incoming Address Resolution Protocol (ARP) packets are inspected. Use the **no** form of this command to restore the default configuration.

Syntax

- `ip arp inspection trust`
- `no ip arp inspection trust`

Default Configuration

The interface is untrusted.

Command Mode

Interface Configuration (Ethernet, Port-channel) mode

User Guidelines

The device does not check ARP packets that are received on the trusted interface; it only forwards the packets.

For untrusted interfaces, the device intercepts all ARP requests and responses. It verifies that the intercepted packets have valid IP-to-MAC address bindings before updating the local cache and before forwarding the packet to the appropriate destination. The device drops invalid packets and logs them in the log buffer according to the logging configuration specified with the **ip arp inspection log-buffer vlan** Global Configuration mode command.

Example

The following example configures gigabitethernet port 1/0/3 as a trusted interface.

```
Console(config)# interface gi1/0/3
Console(config-if)# ip arp inspection trust
```
ip arp inspection validate

Use the **ip arp inspection validate** Global Configuration mode command to perform specific checks for dynamic Address Resolution Protocol (ARP) inspection. Use the **no** form of this command to restore the default configuration.

Syntax

```
ip arp inspection validate
no ip arp inspection validate
```

Default Configuration

ARP inspection validation is disabled.

Command Mode

Global Configuration mode

User Guidelines

The following checks are performed:

- **Source MAC address**: Compares the source MAC address in the Ethernet header against the sender MAC address in the ARP body. This check is performed on both ARP requests and responses.

- **Destination MAC address**: Compares the destination MAC address in the Ethernet header against the target MAC address in the ARP body. This check is performed for ARP responses.

- **IP addresses**: Compares the ARP body for invalid and unexpected IP addresses. Addresses include 0.0.0.0, 255.255.255.255, and all IP multicast addresses.

Example

The following example executes ARP inspection validation.

```
Console(config)# ip arp inspection validate
```
ip arp inspection list create

Use the `ip arp inspection list create` Global Configuration mode command to create a static ARP binding list and enters the ARP list configuration mode. Use the `no` form of this command to delete the list.

Syntax

```
ip arp inspection list create name

no ip arp inspection list create name
```

Parameters

- `name`—Specifies the static ARP binding list name. (Length: 1–32 characters)

Default Configuration

No static ARP binding list exists.

Command Mode

Global Configuration mode

User Guidelines

Use the `ip arp inspection list assign` command to assign the list to a VLAN.

Example

The following example creates the static ARP binding list ‘servers’ and enters the ARP list configuration mode.

```
Console(config)# ip arp inspection list create servers
Console(config-ARP-list)#
```

ip mac

Use the `ip mac` ARP-list Configuration mode command to create a static ARP binding. Use the `no` form of this command to delete a static ARP binding.

Syntax

```
ip ip-address mac mac-address
```
no ip ip-address mac mac-address

Parameters

- ip-address—Specifies the IP address to be entered to the list.
- mac-address—Specifies the MAC address associated with the IP address.

Default Configuration

No static ARP binding is defined.

Command Mode

ARP-list Configuration mode

Example

The following example creates a static ARP binding.

```
Console(config)# ip arp inspection list create servers
Console(config-ARP-list)# ip 172.16.1.1 mac 0060.704C.7321
Console(config-ARP-list)# ip 172.16.1.2 mac 0060.704C.7322
```

ip arp inspection list assign

Use the `ip arp inspection list assign` Global Configuration mode command to assign a static ARP binding list to a VLAN. Use the `no` form of this command to delete the assignment.

Syntax

```
ip arp inspection list assign vlan-id name
```

```
no ip arp inspection list assign vlan
```

Parameters

- vlan-id—Specifies the VLAN ID.
- name—Specifies the static ARP binding list name.

Default Configuration

No static ARP binding list assignment exists.
Command Mode
Global Configuration mode

Example
The following example assigns the static ARP binding list Servers to VLAN 37.

```console
Console(config)# ip arp inspection list assign 37 servers
```

ip arp inspection logging interval
Use the `ip arp inspection logging interval` Global Configuration mode command to set the minimum time interval between successive ARP SYSLOG messages. Use the `no` form of this command to restore the default configuration.

Syntax
```
ip arp inspection logging interval {seconds / infinite}
```

Parameters
- **seconds**—Specifies the minimum time interval between successive ARP SYSLOG messages. A 0 value means that a system message is immediately generated. (Range: 0–86400)
- **infinite**—Specifies that SYSLOG messages are not generated.

Default Configuration
The default minimum ARP SYSLOG message logging time interval is 5 seconds.

Command Mode
Global Configuration mode
Example
The following example sets the minimum ARP SYSLOG message logging time interval to 60 seconds.

```
Console(config)# ip arp inspection logging interval 60
```

show ip arp inspection
Use the `show ip arp inspection` EXEC mode command to display the ARP inspection configuration for all interfaces or for a specific interface.

Syntax
```
show ip arp inspection [interface-id]
```

Parameters

- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode
EXEC mode

Example
The following example displays the ARP inspection configuration.

```
console# show ip arp inspection
IP ARP inspection is Enabled
IP ARP inspection is configured on following VLANs: 1
Verification of packet header is Enabled
IP ARP inspection logging interval is: 222 seconds

+---------+-------+
<table>
<thead>
<tr>
<th>Interface</th>
<th>Trusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Yes</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Yes</td>
</tr>
</tbody>
</table>
```
show ip arp inspection list

Use the `show ip arp inspection list` Privileged EXEC mode command to display the static ARP binding list.

Syntax

```
show ip arp inspection list
```

Command Mode

Privileged EXEC mode

Example

The following example displays the static ARP binding list.

```
Console# show ip arp inspection list

List name: servers
Assigned to VLANs: 1,2

<table>
<thead>
<tr>
<th>IP</th>
<th>ARP</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.1</td>
<td>0060.704C.7322</td>
</tr>
<tr>
<td>172.16.1.2</td>
<td>0060.704C.7322</td>
</tr>
</tbody>
</table>
```

show ip arp inspection statistics

Use the `show ip arp inspection statistics` EXEC command to display Statistics For The Following Types Of Packets That Have Been Processed By This Feature: Forwarded, Dropped, IP/MAC Validation Failure.

Syntax

```
show ip arp inspection statistics [vlan vlan-id]
```

Parameters

`vlan-id`—Specifies VLAN ID.
Command Mode
EXEC mode

User Guidelines
To clear ARP Inspection counters use the `clear ip arp inspection statistics` CLI command. Counters values are kept when disabling the ARP Inspection feature.

Example

```bash
console# show ip arp inspection statistics

Vlan Forwarded Packets Dropped Packets IP/MAC Failures
---- -----------------------------------------------
 2  1500100  80
```

clear ip arp inspection statistics
Use the `clear ip arp inspection statistics` Privileged EXEC mode command to clear statistics ARP Inspection statistics globally.

Syntax
clear ip arp inspection statistics [vlan vlan-id]

Parameters
vlan-id—Specifies VLAN ID

Command Mode
Privileged EXEC mode

Example

```bash
console# clear ip arp inspection statistics
```
ip dhcp information option

Use the `ip dhcp information option` Global Configuration command to enable DHCP option-82 data insertion. Use the `no` form of this command to disable DHCP option-82 data insertion.

Syntax

```
ip dhcp information option
no ip dhcp information option
```

Parameters

This command has no arguments or keywords.

Default Configuration

DHCP option-82 data insertion is disabled.

Command Mode

Global Configuration mode

User Guidelines

DHCP option 82 would be enabled only if DHCP snooping or DHCP relay are enabled.

Example

```
console(config)# ip dhcp information option
```

show ip dhcp information option

The `show ip dhcp information option` EXEC mode command displays the DHCP Option 82 configuration.

Syntax

```
show ip dhcp information option
```
Command Mode
EXEC mode

Example
The following example displays the DHCP Option 82 configuration.

```
console# show ip dhcp information option
Relay agent Information option is Enabled
```
iSCSI Commands

iscsi enable
Use the iscsi enable Global Configuration mode command to globally enable Internet Small Computer System Interface (iSCSI) awareness. This command changes the Flow Control global mode to receive-only, enables Flow Control on all interfaces, and enables jumbo frames.

Use the no form of this command to globally disable iSCSI awareness. This version of the command does not affect the Flow Control global mode, does not disable Flow Control on all interfaces, and does not disable jumbo frames.

Syntax
iscsi enable
no iscsi enable

Default Configuration
Disabled.

Command Mode
Global Configuration mode

User Guidelines
An iSCSI VLAN must be configured by using the iscsi vlan command before the device can assign a specific VLAN to iSCSI flows.

When executing the no iscsi enable command, iSCSI resources (TCAM) are released.
Example
The following example enables iSCSI awareness globally.

Console(config)# iscsi enable

iscsi target port
Use the iscsi target port Global Configuration mode command to configures iSCSI target ports. Use the no form of this command to delete the iSCSI target ports.

Syntax
iscsi target port tcp-port-1 [tcp-port-2,... tcp-port-8] [address ip-address] [name targetname]
no iscsi target port tcp-port-1 [tcp-port-2,... tcp-port-8] [address ip-address]

Parameters
- tcp-port—Specifies the TCP port number or list of TCP port numbers on which iSCSI targets listen to requests. Up to 8 TCP ports can be defined in the system, in one command or by using multiple commands. (Range: 1–65536)
- address ip-address—Specifies the iSCSI target IP address. If the no form is used and the TCP port to be deleted is one that was bound to a specific IP address, the IP address field must be present.
- name targetname—Specifies the iSCSI target name. The name can be statically configured, but it can also be obtained from iSNS or from the sendTargets response. The initiator must present both its iSCSI Initiator Name and the iSCSI Target Name to which it wishes to connect in the first login request of a new session or connection. The name must comprise valid characters, as specified by RFC 3722. (Length: 1–223 characters)

Default Configuration
iSCSI well-known ports 3260 and 860 are configured as the default target ports, but they can be removed just as any other configured target.
Command Mode
Global Configuration mode

User Guidelines
When working with private iSCSI ports (not IANA assigned iSCSI ports 3260 and 860), it is recommended that the target IP address also be specified, so that the device snoops only frames for which its TCP destination port is one of the configured TCP ports and their destination IP is the target's IP address. In this way, the CPU is not falsely loaded by non-iSCSI flows if other applications choose to use these un-reserved ports.

It is the user’s responsibility to not define as iSCSI ports any ports that are well-known or are configured on the product for other uses, such as Telnet, SSH, HTTP, HTTPS, SNMP, or DHCP.

To bind a port to an IP address, and the port is already defined but not bound to an IP address, first remove the port by using the `no` form of the command and then add it again with the relevant IP address.

Target names are displayed only when using the `show iscsi` command. These names are not used to match (or to perform any sanity check on) the iSCSI session information acquired by snooping.

A maximum of 16 TCP ports can be configured either bound to IP or not. This number can be changed by using the `iscsi max target ports` command. However, the change takes effect only after reset.

Example
The following example configures an iSCSI target port.

```
```

iscsi cos
Use the `iscsi cos` Global Configuration mode command to set the quality of service profile to apply to iSCSI flows. Use the `no` form of this command to restore the default configuration.
Syntax

```plaintext
iscsi cos enable
iscsi cos disable
iscsi cos {vpt vpt | dscp dscp} [remark]
```

Parameters

- **enable** — Enables iSCSI CoS
- **vpt** — Specifies the VLAN Priority Tag (VPT) that iSCSI frames are assigned. (Range: 0–7)
- **dscp** — Specifies the Differentiated Services Code Point (DSCP) that iSCSI frames are assigned. (Range: 0–63)
- **remark** — Marks the iSCSI frames with the configured VPT or DSCP when egressing the switch.

Default Configuration

iSCSI COS is disabled by default, the default profile is VPT 5.

Command Mode

Global Configuration mode

User Guidelines

The `iscsi cos enable` command is used to enable an iSCSI CoS profile (whether the default profile or one configured by using the `iscsi cos vpt/dscp` command).

When executing the `iscsi cos disable` command, iSCSI CoS configuration is not deleted.

Use the Remark option to prioritize iSCSI traffic in the next hop switch, which might be iSCSI-unaware.

iSCSI flows are assigned by default with a VPT/DSCP that is mapped to the highest queue not used for stack management or voice VLAN (if the mapping was not changed by the user). The user should also configure the relevant (vpt to queue/dscp to queue) table to complete the setting.

Setting the VPT/DSCP sets the QoS profile that determines the egress queue to which the frame is mapped. The switch default setting for egress queues...
scheduling is strict priority. The downside of strict priority queuing is that in certain circumstances (heavy high priority traffic), lower priority traffic may become bandwidth-starved. In WRR, the queue to which the flow is assigned can be set to get the required percentage. The user may want to complete the QoS setting by configuring the relevant ports to work in WRR mode with adequate weights.

Example
The following example sets the QoS profile to apply to iSCSI flows by assigning iSCSI frames with DSCP 31.

```
Console(config)# iscsi cos enable
Console(config)# iscsi cos dscp 31
```

iscsi aging-time
Use the `iscsi aging-time` Global Configuration mode command to set the idle time interval for iSCSI sessions. Use the `no` form of this command to cancel iSCSI session aging.

Syntax
iscsi aging-time minutes

no iscsi aging-time

Parameters

- minutes—Specifies the iSCSI session idle time interval in minutes before the session is terminated. (Minimum: 1 minute)

Default Configuration
The default idle time interval for iSCSI sessions is 120 minutes.

Command Mode
Global Configuration mode

User Guidelines
iSCSI session aging time may be longer than the defined aging time. This is due to a lack of ASIC counters used by the application for aging.
When changing the iSCSI session aging time, the following occurs:

- If the aging time is increased, the aging time for the current session is recalculated and increased by the difference between the new aging time and the current aging time.
- If the aging time is decreased, the aging time for the current session is recalculated and decreased by the difference between the new aging time and the current aging time. If, after recalculation, it is determined that the current session idle time is greater than the new aging time, the session is immediately terminated.

Example
The following example sets the aging time for iSCSI sessions to 10 minutes.

```bash
Console(config)# iscsi aging-time 10
```

iscsi max-tcp-connections
To set the maximum number of iSCSI sessions that can be supported use the `iscsi max-tcp-connections` command in global configuration mode. To return to default, use the no form of this command.

Syntax
```
iscsi max-tcp-connections max-connections
no iscsi max-tcp-connections
```

Parameters
- `max-connections`: Specifies the maximum number of iSCSI connections that can be supported. (5-1024)

Default Configuration
256 TCP connections

Command Mode
Global Configuration mode
User Guidelines
The new setting will take affect only after reset.

This command enables the user to define the number of iSCSI connections supported in the system.

The amount of iSCSI sessions has effect on the system memory consumption. The memory consumption is \(\sim 500 \) bytes per session and 20 bytes per connection (256 sessions each with 4 connections consumes \(\sim 145KB \)). In the current implementation, if more than 1024 connections exist, you will still get QoS, but only 1024 connections will be displayed.

show iscsi
Use the show iscsi Privileged EXEC mode command to display the iSCSI configuration.

Syntax
show iscsi

Command Mode
Privileged EXEC mode

User Guidelines
The iSCSI targets displayed are the statically configured targets only.
To display all iSCSI entities (targets and initiators), whether statically configured or dynamically discovered, use the show iscsi sessions command.
Example
The following example display the iSCSI configuration.

```
Console# show iscsi
iSCSI disabled
iSCSI COS disabled
iSCSI vpt is 5, Remark
iSCSI aging time: 5 min.

Maximum number of connections: 256

iSCSI targets and TCP ports:
-----------------------------------------------
   TCP Port   Target IP Address       Name
-----------------------------------------------
     860      0.0.0.0               
     3260     0.0.0.0               
     9876     0.0.0.0               
    20002     0.0.0.0               
    20003     0.0.0.0               
    25555     0.0.0.0               
```

show iscsi sessions

Use the `show iscsi sessions` Privileged EXEC mode command to display the iSCSI sessions.

Syntax
```
show iscsi sessions [detailed]
```

Parameters
- detailed—Specifies that the displayed list is detailed.

Command Mode
Privileged EXEC mode
User Guidelines

The target list is not sorted alphabetically.

The aging mechanism checks session activity in a group of N TCP iSCSI connections. In the worst case, if all 256 sessions are monitored and are not terminated gracefully, the existing mechanism causes inaccuracies; the last group of monitored iSCSI sessions are aged out after \((256/N)\times\text{aging-time}\).

In general, the higher the number of ungraceful terminated iSCSI TCP connections, the higher the aging-time inaccuracy.

Example

The following example displays the iSCSI sessions

```
Console# show iscsi sessions

--------------------------------------------------------
        ISID: 11
        ISID: 222
--------------------------------------------------------
--------------------------------------------------------
        ISID: 44
        ISID: 65
--------------------------------------------------------
Console# show iscsi sessions detailed
--------------------------------------------------------
Session 1:
---------
```
UP Time: 02:10:45 (DD:HH:MM)
Time for aging out: 10 min
ISID: 11

<table>
<thead>
<tr>
<th>Initiator IP Address</th>
<th>Initiator TCP Port</th>
<th>Target IP Address</th>
<th>Target IP Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.3</td>
<td>49154</td>
<td>172.16.1.20</td>
<td>30001</td>
</tr>
<tr>
<td>172.16.1.4</td>
<td>49155</td>
<td>172.16.1.21</td>
<td>30001</td>
</tr>
<tr>
<td>172.16.1.5</td>
<td>49156</td>
<td>172.16.1.22</td>
<td>30001</td>
</tr>
</tbody>
</table>

Session 2:

Status: Active
UP Time: 00:04:50 (DD:HH:MM)
Time for aging out: 2 min
ISID: 22

<table>
<thead>
<tr>
<th>Initiator IP Address</th>
<th>Initiator TCP Port</th>
<th>Target IP Address</th>
<th>Target IP Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.30</td>
<td>49200</td>
<td>172.16.1.20</td>
<td>30001</td>
</tr>
<tr>
<td>172.16.1.40</td>
<td>49201</td>
<td>172.16.1.21</td>
<td>30001</td>
</tr>
</tbody>
</table>
IP Addressing Commands

address
Use the `ip address` Interface Configuration (Ethernet, VLAN, Port-channel) mode command to define an IP address for an interface. Use the `no` form of this command to remove an IP address definition.

Syntax
If the product is a switch router.

`ip address ip-address {mask | prefix-length}`

`no ip address [ip-address]`

If the product is a switch only.

`ip address ip-address {mask | prefix-length} [default-gateway ip-address]`

`no ip address [ip-address]`

If the product is switch only and supports a single IP address:

`ip address ip-address {mask | prefix-length} [default-gateway ip-address]`

`no ip address`

Parameters

- `ip-address`— Specifies the IP address.
- `mask`— Specifies the network mask of the IP address.
- `prefix-length`— Specifies the number of bits that comprise the IP address prefix. The prefix length must be preceded by a forward slash (/). (Range: 8–30)
- `default-gateway ip-address`— Specifies the default gateway IP address.
Default Configuration
No IP address is defined for interfaces.

Command Mode
Interface Configuration (Ethernet, VLAN, Port-channel) mode. It cannot be configured for a range of interfaces (range context).

User Guidelines
Defining a static IP address on an interface implicitly removes the DHCP client configuration on the interface.

If the product supports multiple IP addresses:

The product supports up to x IP addresses. The IP addresses should be from different IP subnets. When adding an IP address from a subnet that already exists in the list, the new IP address replaces the existing IP address from that subnet.

If the product is switch only and supports a single IP address.

If the IP address configured in global context then it would be bound to the currently defined management interface. If the management interface is Default VLAN and the VID of the default VLAN is changed then when new setting is applied, the IP address will be automatically redefined on the new Default VLAN.

If the IP address is configured in Interface context then the IP address is bound to the interface in context.

If a static IP address is already defined, the user must do no IP address in the relevant interface context before changing the IP address.

If a dynamic IP address is already defined, the user must do no ip address in the relevant interface context before configuring another dynamic IP address.

The Interface context could be a port, LAG or VLAN, depending on support that is defined for the product.

Example
The following example configures VLAN 1 with IP address 131.108.1.27 and subnet mask 255.255.255.0.

Console(config)# interface vlan 1
Console(config-if)# **ip address** 131.108.1.27 255.255.255.0

ip address dhcp

Use the **ip address dhcp** Interface Configuration (Ethernet, VLAN, Port-channel) mode command to acquire an IP address for an Ethernet interface from the Dynamic Host Configuration Protocol (DHCP) server. Use the no form of this command to release an acquired IP address.

Syntax

- ip address dhcp
- no ip address dhcp

Parameters

No parameters

Command Mode

Interface Configuration (Ethernet, VLAN, Port-channel) mode. It cannot be configured for a range of interfaces (range context).

User Guidelines

The **ip address dhcp** command allows any interface to dynamically learn its IP address by using the DHCP protocol.

DHCP client configuration on an interface implicitly removes the static IP address configuration on the interface.

If the device is configured to obtain its IP address from a DHCP server, it sends a DHCPDISCOVER message to provide information about itself to the DHCP server on the network.

If the **ip address dhcp** command is used with or without the optional keyword, the DHCP option 12 field (host name option) is included in the DISCOVER message. By default, the host name specified in the option 12 field is the globally configured device host name.

The **no ip address dhcp** command releases any IP address that was acquired, and sends a DHCPRELEASE message.
Example
The following example acquires an IP address for gigabitethernet port 1/0/16 from DHCP.

Console(config)# interface gi1/0/16
Console(config-if)# ip address dhcp

renew dhcp
Use the renew dhcp Privileged EXEC mode command to renew an IP address that was acquired from a DHCP server for a specific interface.

Syntax
renew dhcp [interface-id] [force-autoconfig]

Parameters
interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port, Port-channel or VLAN.

force-autoconfig - In the case the DHCP server holds a DHCP option 67 record for the assigned IP address, the file would overwrite the existing device configuration

Command Mode
Privileged EXEC mode

User Guidelines
Note that this command does not enable DHCP on an interface. If DHCP is not enabled on the requested interface, the command returns an error message.

If DHCP is enabled on the interface and an IP address was already acquired, the command tries to renew that IP address.

If DHCP is enabled on the interface and an IP address has not yet been acquired, the command initiates a DHCP request.
Example
The following example renews an IP address that was acquired from a DHCP server for VLAN 19.

```
Console# renew dhcp vlan 19
```

ip default-gateway
The `ip default-gateway` Global Configuration mode command defines a default gateway (device). Use the `no` form of this command to restore the default configuration.

Syntax
```
ip default-gateway ip-address
no ip default-gateway
```

Parameters
- `ip-address`—Specifies the default gateway IP address.

Command Mode
Global Configuration mode

Default Configuration
No default gateway is defined.

Example
The following example defines default gateway 192.168.1.1.

```
Console(config)# ip default-gateway 192.168.1.1
```

show ip interface
Use the `show ip interface` EXEC mode command to display the usability status of configured IP interfaces.
Syntax
show ip interface [interface-id]

Parameters
interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port, Port-channel or VLAN.

Command Mode
EXEC mode

Example
The following example displays the configured IP interfaces and their types.

```
console# show ip interface
IP Address       I/F     Type    Directed   Precedence Status
Broadcast
-------------    ------  ------- --------   ---------- -------
10.5.234.232/24  vlan 1  Static  disable    No         Valid
```

arp
Use the arp Global Configuration mode command to add a permanent entry to the Address Resolution Protocol (ARP) cache. Use the no form of this command to remove an entry from the ARP cache.

Syntax
arp ip-address mac-address [interface-id]

no arp ip-address

Parameters
- ip-address—IP address or IP alias to map to the specified MAC address.
- mac-address—MAC address to map to the specified IP address or IP alias.
- interface-id—interface ID. Can be Ethernet port, Port-channel or VLAN.
Command Mode
Global Configuration mode

Default Configuration
No permanent entry is defined.

User Guidelines
The software uses ARP cache entries to translate 32-bit IP addresses into 48-bit hardware (MAC) addresses. Because most hosts support dynamic address resolution, static ARP cache entries generally do not need to be specified.

Example
The following example adds IP address 198.133.219.232 and MAC address 00:00:0c:40:0f:bc to the ARP table.

```
Console(config)# arp 198.133.219.232 00:00:0c:40:0f:bc
```

arp timeout (Global)
Use the `arp timeout` Global Configuration mode command to set the time interval during which an entry remains in the ARP cache. Use the `no` form of this command to restore the default configuration.

Syntax
arp timeout `seconds`

no arp timeout

Parameters
`seconds`—Specifies the time interval (in seconds) during which an entry remains in the ARP cache.
(Range: 1–40000000)

Default Configuration
The default ARP timeout is 60000 seconds in Router mode, and 300 seconds in Switch mode.
Command Mode
Global Configuration mode

Example
The following example configures the ARP timeout to 12000 seconds.

 Console(config)# arp timeout 12000

arp timeout
Use the arp timeout inTerface Configuration command to configure how long an entry remains in the ARP cache for specific interface. Use the no form of this command restore the default value.

Syntax
arp timeout seconds
no arp timeout

Parameters
seconds—Time (in seconds) that an entry remains in the ARP cache. It is recommended not to set it to less than 3600. (Range: 1–40000000)

Default
Defined by the arp timeout Global Configuration command

Command Mode
Interface Configuration (Ethernet, VLAN, Port-channel) mode. It cannot be configured for a range of interfaces (range context).

User Guidelines
This configuration can be applied only if at least one IP address defined on specific interface.

Example

 Console (config)# interface vlan 1
 Console(config-if)# arp timeout 12000
ip arp proxy disable
Use the **ip arp proxy disable** Global Configuration mode command to globally disable proxy Address Resolution Protocol (ARP). Use the **no** form of this command reenable proxy ARP.

Syntax

```
ip arp proxy disable
no ip arp proxy disable
```

Parameters

This command has no arguments or key words.

Default

Enabled by default.

Command Mode

Global Configuration mode

User Guidelines

The **ip arp proxy disable** command overrides any proxy ARP interface configuration.

ip proxy-arp
Use the **ip proxy-arp** Interface Configuration mode command to enable an ARP proxy on specific interfaces. Use the **no** form of this command disable it.

Syntax

```
ip proxy-arp
no ip proxy-arp
```

Default Configuration

ARP Proxy is disabled.
Command Mode
Interface Configuration (Ethernet, VLAN, Port-channel) mode. It cannot be configured for a range of interfaces (range context).

User Guidelines
This configuration can be applied only if at least one IP address is defined on a specific interface.

Example
The following example enables the ARP proxy.

```
Console(config-if)# ip proxy-arp
```

clear arp-cache
Use the clear arp-cache Privileged EXEC mode command to delete all dynamic entries from the ARP cache.

Syntax
clear arp-cache

Command Mode
Privileged EXEC mode

Example
The following example deletes all dynamic entries from the ARP cache.

```
Console# clear arp-cache
```

show arp
Use the show arp Privileged EXEC mode command to display entries in the ARP table.

Syntax
```
show arp [ip-address ip-address] [mac-address mac-address] [interface-id]
```
Parameters

- `ip-address ip-address`—Specifies the IP address.
- `mac-address mac-address`—Specifies the MAC address.
- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode
Privileged EXEC mode

User Guidelines
Since the associated interface of a MAC address can be aged out from the FDB table, the Interface field can be empty.

If an ARP entry is associated with an IP interface that is defined on a port or port-channel, the VLAN field is empty.

Example
The following example displays entries in the ARP table.

```
Console# show arp

ARP timeout: 80000 Seconds

VLAN  Interface    IP Address    HW Address    Status
-------  ---------    ---------    ----------    ------
VLAN 1    gi1/0/1    10.7.1.102  00:10:B5:04:DB:4B Dynamic
VLAN 1    gi1/0/2    10.7.1.135  00:50:22:00:2A:A4 Static
```

show arp configuration
Use the `show arp configuration` privileged EXEC command to display the global and interface configuration of the ARP protocol.

Syntax
`show arp configuration`
Parameters
This command has no arguments or key words.

Command Mode
Privileged EXEC mode

Example

```
Console# show arp configuration

Global configuration:
   ARP Proxy: enabled
ARP timeout:    80000 Seconds

Interface configuration:
  g2:
     ARP Proxy: disabled
ARP timeout:60000 Seconds
VLAN 1:
     ARP Proxy: enabled
ARP timeout:70000 Seconds
VLAN 2:
     ARP Proxy: enabled
ARP timeout:80000 Second (Global)
```

interface ip

Use the *interface ip* Global Configuration mode command to enter the IP Interface Configuration mode.

Syntax

```
interface ip ip-address
```

Parameters

ip-address—Specifies one of the IP addresses of the device.
Command Mode
Global Configuration mode

Example
The following example enters the IP interface configuration mode.

Console (config)# interface ip 192.168.1.1
Console (config-ip)#

directed-broadcast
Use the `directed-broadcast` IP Interface Configuration mode command to enable the translation of a directed broadcast to physical broadcasts. Use the `no` form of this command to disable this function.

Syntax

```
directed-broadcast
```

```
no directed-broadcast
```

Default Configuration
Translation of a directed broadcast to physical broadcasts is disabled. All IP directed broadcasts are dropped.

Command Mode
IP Interface Configuration mode

Example
The following example enables the translation of a directed broadcast to physical broadcasts.

Console (config)# interface ip 192.168.1.1
Console (config-ip)# directed-broadcast
broadcast-address

Use the broadcast-address IP Interface Configuration mode command to define a broadcast address for an interface. Use the no form of this command to restore the default IP broadcast address.

Syntax

```
broadcast-address {255.255.255.255 | 0.0.0.0}
```

no broadcast-address

Parameters

- **255.255.255.255**—Specifies 255.255.255.255 as the broadcast address.
- **0.0.0.0**—Specifies 0.0.0.0 as the broadcast address.

Default Configuration

The default broadcast address is 255.255.255.255.

Command Mode

IP Interface Configuration mode

Example

The following example enables the translation of a directed broadcast to physical broadcasts.

```
Console(config)# interface ip 192.168.1.1
Console(config-ip)# broadcast-address 255.255.255.255
```

ip helper-address

Use the ip helper-address Global Configuration mode command to enable the forwarding of User Datagram Protocol (UDP) broadcast packets received on an interface to a specific (helper) address. Use the no form of this command to disable the forwarding of broadcast packets to a specific (helper) address.
Syntax
ip helper-address {ip-interface | all} address [udp-port-list]
no ip helper-address {ip-interface | all} address

Parameters
- **ip-interface**—Specifies the IP interface.
- **all**—Specifies all IP interfaces.
- **address**—Specifies the destination broadcast or host address to which to forward UDP broadcast packets. A value of 0.0.0.0 specifies that UDP broadcast packets are not forwarded to any host.
- **udp-port-list**—Specifies the destination UDP port number to which to forward broadcast packets. (Range: 1–65535)

Default Configuration
Forwarding of User Datagram Protocol (UDP) broadcast packets received on an interface to a specific (helper) address is disabled.

If **udp-port-list** is not specified, packets for the default services are forwarded to the helper address.

Command Mode
Global Configuration mode

User Guidelines
The **ip helper-address** command forwards specific UDP broadcast packets from one interface to another.

Many helper addresses may be defined. However, the total number of address-port pairs is limited to 128 for the device.

The setting of a helper address for a specific interface has precedence over the setting of a helper address for all the interfaces.

Forwarding of BOOTP/DHCP (ports 67, 68) cannot be enabled with this command. Use the DHCP relay commands to relay BOOTP/DHCP packets.

The **ip helper-address** command specifies a UDP port number to which UDP broadcast packets with that destination port number are forwarded. By
default, if no UDP port number is specified, the device forwards UDP broadcast packets for the following six services:

- IEN-116 Name Service (port 42)
- DNS (port 53)
- NetBIOS Name Server (port 137)
- NetBIOS Datagram Server (port 138)
- TACACS Server (port 49)
- Time Service (port 37)

Example
The following example enables the forwarding of User Datagram Protocol (UDP) broadcasts received on all interfaces to specific UDP ports of a destination IP address.

```
Console (config)# ip helper-address all 172.16.9.9 49 53
```

show ip helper-address
Use the `show ip helper-address` Privileged EXEC mode command to display the IP helper addresses configuration on the system.

Syntax
```
show ip helper-address
```

Parameters
This command has no arguments or key words.

Command Mode
Privileged EXEC mode
Example
The following example displays the IP helper addresses configuration on the system.

```
Console# show ip helper-address
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Helper Address</th>
<th>Udp ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.1</td>
<td>172.16.8.8</td>
<td>37, 42, 49, 53, 137, 138</td>
</tr>
<tr>
<td>192.168.2.1</td>
<td>172.16.9.9</td>
<td>37, 49</td>
</tr>
</tbody>
</table>

source-precedence

Use the `source-precedence` IP Interface Configuration mode command to define a preference for an IP address as a source IP address for DHCP relayed messages on an interface. Use the `no` form of this command to restore the default configuration.

Syntax

```
source-precedence
no source-precedence
```

Default Configuration

Source precedence is not defined for the address.

Command Mode

IP Interface Configuration mode

User Guidelines

For relayed DHCP messages, the source IP address selected is:

1. The lowest of the IP addresses defined as source-precedence IP addresses.
2. The lowest of the IP addresses if there are no source-precedence IP addresses.
Example
The following example defines a preference for an IP address as a source IP address for DHCP relayed messages on an interface.

```
Console (config-ip)# source-precedence
```

ip domain lookup
Use the `ip domain lookup` Global Configuration mode command to enable the IP Domain Name System (DNS)-based host name-to-address translation. Use the `no` form of this command to disable DNS-based host name-to-address translation.

Syntax
- `ip domain lookup`
- `no ip domain lookup`

Default Configuration
IP Domain Name System (DNS)-based host name-to-address translation is enabled.

Command Mode
Global Configuration mode

Example
The following example enables IP Domain Name System (DNS)-based host name-to-address translation.

```
Console(config)# ip domain lookup
```

ip domain name
Use the `ip domain name` Global Configuration mode command to define a default domain name used by the software to complete unqualified host names (names without a dotted-decimal domain name). Use the `no` form of this command to remove the default domain name.
Syntax

`ip domain name name`

`no ip domain name`

Parameters

`name`—Specifies the default domain name used to complete unqualified host names. Do not include the initial period that separates an unqualified name from the domain name. (Length: 1–158 characters. Maximum label length: 63 characters)

Default Configuration

A default domain name is not defined.

Command Mode

Global Configuration mode

User Guidelines

Domain names and host names are restricted to the ASCII letters A through Z (case-insensitive), the digits 0 through 9, the underscore and the hyphen. A period (.) is used to separate labels.

The maximum size of a label is 63 characters. The maximum name size is 158 bytes.

Example

The following example defines the default domain name as ‘www.website.com’.

```
Console(config)# ip domain name www.website.com
```

ip name-server

Use the `ip name-server` Global Configuration mode command to define the available name servers. Use the `no` form of this command to remove a name server.
Syntax
ip name-server { server1-ipv4-address | server1-ipv6-address} [server-
address2 ... server-address8]
no ip name-server [server-address ... server-address8]

Parameters
server-address—IP addresses of the name server. Up to 8 servers can be
defined in one command or by using multiple commands. The IP address can
be IPv4 address or IPv6 address. When the IPv6 address is a Link Local
address (IPv6Z address), the outgoing interface name must be specified.
Refer to the User Guidelines for the interface name syntax.

Default Configuration
No name server IP addresses are defined.

Command Mode
Global Configuration mode

User Guidelines
The preference of the servers is determined by the order in which they were
entered.
Up to 8 servers can be defined using one command or using multiple
commands.
The format of an IPv6Z address is: <ipv6-link-local-address>%<interface-
name>

interface-name = vlan<integer> | ch<integer> | isatap<integer> | |
<physical-port-name> | 0

integer = <decimal-number> | <integer><decimal-number>
decimal-number = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

physical-port-name = Designated port number, for example 1/0/16.
If the egress interface is not specified, the default interface is selected.
Specifying interface zone=0 is equal to not defining an egress interface.
Example
The following example defines the available name server.

Console(config)# ip name-server 176.16.1.18

ip host
Use the **ip host** Global Configuration mode command to define the static host name-to-address mapping in the host cache. Use the **no** form of this command to remove the static host name-to-address mapping.

Syntax

```markdown
ip host name address [address2 address3 address4]
no ip host name
```

Parameters

- **name**—Specifies the host name. (Length: 1–158 characters. Maximum label length: 63 characters)
- **address**—Specifies the associated IP address. Up to 4 addresses can be defined.

Default Configuration
No host is defined.

Command Mode
Global Configuration mode

User Guidelines
Host names are restricted to the ASCII letters A through Z (case-insensitive), the digits 0 through 9, the underscore and the hyphen. A period (.) is used to separate labels.

Example
The following example defines a static host name-to-address mapping in the host cache.
clear host

Use the `clear host` Privileged EXEC mode command to delete entries from the host name-to-address cache.

Syntax

define host {name | *}

Parameters

- `name`—Specifies the host entry to remove. (Length: 1–158 characters. Maximum label length: 63 characters)
- `*`—Removes all entries.

Command Mode

Privileged EXEC mode

Example

The following example deletes all entries from the host name-to-address cache.

```
Console# clear host *
```

clear host dhcp

Use the `clear host dhcp` Privileged EXEC mode command to delete entries from the host name-to-address mapping received from Dynamic Host Configuration Protocol (DHCP).

Syntax

define host dhcp {name | *}

Parameters

- `name`—Specifies the host entry to remove. (Length: 1–158 characters. Maximum label length: 63 characters)
• *—Removes all entries.

Command Mode
Privileged EXEC mode

User Guidelines
This command deletes the host name-to-address mapping temporarily until the next refresh of the IP addresses.

Example
The following example deletes all entries from the host name-to-address mapping received from DHCP.

```
Console# clear host dhcp *
```

show hosts
Use the `show hosts` EXEC mode command to display the default domain name, the list of name server hosts, the static and the cached list of host names and addresses.

Syntax
```
show hosts [name]
```

Parameters
- `name`—Specifies the host name. (Length: 1–158 characters. Maximum label length: 63 characters)

Command Mode
EXEC mode
Example
The following example displays host information.

Console> **show hosts**

System name: Device
Default domain is gm.com, sales.gm.com, usa.sales.gm.com(DHCP)
Name/address lookup is enabled
Name servers (Preference order): 176.16.1.18 176.16.1.19

Configured host name-to-address mapping:

<table>
<thead>
<tr>
<th>Host</th>
<th>Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>accounting.gm.com</td>
<td>176.16.8.8 176.16.8.9 (DHCP) 2002:0:130F::0A0:1504:0BB4</td>
</tr>
<tr>
<td>www.stanford.edu</td>
<td>IP 171.64.14.203</td>
</tr>
<tr>
<td></td>
<td>Total: 72 Elapse: 3</td>
</tr>
</tbody>
</table>
IPv6 Addressing Commands

ipv6 enable
Use the ipv6 enable Interface Configuration (Ethernet, VLAN, Port-channel) mode command to enable the IPv6 addressing mode on an interface. Use the no form of this command to disable the IPv6 addressing mode on an interface.

Syntax
ipv6 enable [no-autoconfig]
no ipv6 enable

Parameters
no-autoconfig—Enables processing of IPv6 on an interface without stateless address autoconfiguration procedure

Default Configuration
IPv6 addressing is disabled.
Unless you are using the no-autoconfig parameter, when the interface is enabled stateless address autoconfiguration procedure is enabled.

Command Mode
Interface Configuration (Ethernet, VLAN, Port-channel) mode. It cannot be configured for a range of interfaces (range context).

User Guidelines
The ipv6 enable command automatically configures an IPv6 link-local unicast address on the interface, while also enabling the interface for IPv6
processing. The **no ipv6 enable** command removes the entire IPv6 interface configuration.

To enable stateless address autoconfiguration on an enabled IPv6 interface, use the IPv6 address autoconfig command.

Example
The following example enables VLAN 1 for the IPv6 addressing mode.

```plaintext
Console(config)# interface vlan 1  
Console(config-if)# ipv6 enable
```

ipv6 address autoconfig
Use the **ipv6 address autoconfig** Interface Configuration mode command to enable automatic configuration of IPv6 addresses, using stateless autoconfiguration on an interface. Addresses are configured depending on the prefixes received in Router Advertisement messages. Use the **no** form of this command to disable address autoconfiguration on the interface.

Syntax
`ipv6 address autoconfig`
`no ipv6 address autoconfig`

Parameters
This command has no arguments or keywords.

Default Configuration
Address autoconfiguration is enabled on the interface, no addresses are assigned by default.

Command Mode
Interface Configuration (Ethernet, VLAN, Port-channel) mode.
User Guidelines

When *address autoconfig* is enabled, router solicitation ND procedure is initiated to discover a router and assign IP addresses to the interface, based on the advertised on-link prefixes.

When disabling address autoconfig, automatically generated addresses that are assigned to the interface are removed.

The default state of the address autoconfig is enabled. Use the `enable ipv6 no-autoconfig` command to enable an IPv6 interface without address autoconfig.

Example

```
console(config)# interface vlan 1
console(config-if)# ipv6 address autoconfig
```

ipv6 icmp error-interval

Use the `ipv6 icmp error-interval` Global Configuration mode command to configure the rate limit interval and bucket size parameters for IPv6 Internet Control Message Protocol (ICMP) error messages. Use the `no` form of this command to return the interval to its default setting.

Syntax

```
ipv6 icmp error-interval milliseconds [bucketsize]
```

no ipv6 icmp error-interval

Parameters

- **milliseconds**—The time interval between tokens being placed in the bucket. Each token represents a single ICMP error message. The acceptable range is from 0–2147483647 with a default of 100 milliseconds. Setting milliseconds to 0 disables rate limiting. (Range: 0–2147483647)

- **bucketsize**—(Optional) The maximum number of tokens stored in the bucket. The acceptable range is from 1–200 with a default of 10 tokens.
Default Configuration
The default interval is 100ms and the default bucketsize is 10 i.e. 100 ICMP error messages per second

Command Mode
Global Configuration mode

User Guidelines
To set the average ICMP error rate limit, calculate the interval with the following formula:

Average Packets Per Second = \((1/ \text{interval}) \times \text{bucket size}\)

Example

```
console(config)# ipv6 icmp error-interval 123 45
```

show ipv6 icmp error-interval
Use the `show ipv6 icmp error-interval` command in the EXEC mode to display the IPv6 ICMP error interval.

Syntax

```
show ipv6 icmp error-interval
```

Command Mode
EXEC mode

Example

```
Console> show ipv6 icmp error-interval
Rate limit interval: 100 ms
Bucket size: 10 tokens
```
ipv6 address

Use the `ipv6 address` Interface Configuration mode command to configure an IPv6 address for an interface. Use the `no` form of this command to remove the address from the interface.

Syntax

```plaintext
ipv6 address ipv6-address/prefix-length [eui-64] [anycast]
no ipv6 address [ipv6-address/prefix-length] [eui-64]
```

Parameters

- **ipv6-address**—Specifies the IPv6 network assigned to the interface. This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.
- **prefix-length**—Specifies the length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark (/) must precede the decimal.
- **eui-64**—(Optional) Builds an interface ID in the low order 64 bits of the IPv6 address based on the interface MAC address.
- **anycast**—(Optional) Indicates that this address is an anycast address.
- **prefix-length**—3–128 (64 when the `eui-64` parameter is used.

Default Configuration

No IP address is defined for the interface.

Command Mode

Interface configuration (Ethernet, VLAN, Port-channel) mode. It cannot be configured for a range of interfaces (range context).

User Guidelines

If the value specified for the `/prefix-length` argument is greater than 64 bits, the prefix bits have precedence over the interface ID.
Using the no IPv6 address command without arguments removes all manually configured IPv6 addresses from an interface, including link local manually configured addresses.

Example

```
console(config)# interface vlan 1
console(config-if)# ipv6 address 3000::123/64 eui-64 anycast
```

ipv6 address link-local

Use the `ipv6 address link-local` command to configure an IPv6 link-local address for an interface. Use the `no` form of this command to return to the default link local address on the interface.

Syntax

```
ipv6 address ipv6-address/prefix-length link-local
no ipv6 address [ipv6-address/prefix-length link-local]
```

Parameters

- `ipv6-address`—Specifies the IPv6 network assigned to the interface. This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimals using 16-bit values between colons.
- `prefix-length`—Specifies the length of the IPv6 prefix. A decimal value indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark (/) must precede the decimal. Only 64-bit length is supported, according to IPv6 over Ethernet’s well-known practice.

Default Configuration

IPv6 is enabled on the interface, link local address of the interface is FE80::EUI64 (interface MAC address).

Command Mode

Interface Configuration (Ethernet, VLAN, Port-channel) mode. It cannot be configured for a range of interfaces (range context).
User Guidelines
Using the `no ipv6 link-local address` command removes the manually configured link local IPv6 address from an interface. Multiple IPv6 addresses can be configured per interface, but only one link-local address. When the `no ipv6 link-local address` command is used, the interface is reconfigured with the standard link local address (the same IPv6 link-local address that is set automatically when the `enable ipv6` command is used). The system automatically generates a link-local address for an interface when IPv6 processing is enabled on the interface. To manually specify a link-local address to be used by an interface, use the `ipv6 link-local address` command. The system supports only 64 bits prefix length for link-local addresses.

Example

```
console(config)# interface vlan 1
console(config-if)# ipv6 address fe80::123/64 link-local
```

ipv6 unreachable

Use the `ipv6 unreachable` Interface Configuration mode command to enable the generation of Internet Control Message Protocol for IPv6 (ICMPv6) unreachable messages for any packets arriving on a specified interface. Use the `no` form of this command To prevent the generation of unreachable messages.

Syntax
ipv6 unreachable

`no ipv6 unreachable`

Parameters
This command has no arguments or keywords.

Default Configuration
ICMP unreachable messages are sent by default.

Command Mode
Interface Configuration (Ethernet, VLAN, Port-channel) mode.
User Guidelines
When ICMP unreachable messages are enabled, when receiving a packet addressed to one of the interface’s IP address with TCP/UDP port not assigned, the device sends ICMP unreachable messages. Use the no ipv6 unreachables command to disable sending ICMP unreachable messages on the interface.

Example

```
console(config)# interface gi1/0/1
console(config-if)# ipv6 unreachables
```

ipv6 default-gateway
Use the ipv6 default-gateway Global Configuration mode command to define an IPv6 default gateway. Use the no form of this command To remove the default gateway.

Syntax
ipv6 default-gateway ipv6-address
no ipv6 default-gateway

Parameters
ipv6-address—Specifies the IPv6 address of the next hop that can be used to reach that network. When the IPv6 address is a Link Local address (IPv6Z address), the outgoing interface name must be specified. Refer to the user guidelines for the interface name syntax.

Default Configuration
No default gateway is defined.

Command Mode
Global Configuration mode

User Guidelines
The format of an IPv6Z address is: <ipv6-link-local-address>%<interface-name>
interface-name = vlan<integer> | ch<integer> | <physical-port-name> | 0

integer = <decimal-number> | <integer><decimal-number>

decimal-number = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

physical-port-name = Designated port number, for example 1/0/16.

Configuring a new default GW without deleting the previous configured information overwrites the previous configuration. A configured default GW has a higher precedence over automatically advertised (via router advertisement message). Precedence takes effect once the configured default GW is reachable. Reachability state is not verified automatically by the neighbor discovery protocol. Router reachability can be confirmed by either receiving Router Advertisement message containing router's MAC address or manually configured by user using the IPv6 neighbor CLI command. Another option to force reachability confirmation is to ping the router link-local address (this will initiate the neighbor discovery process).

If the egress interface is not specified, the default interface is selected. Specifying interface zone=0 is equal to not defining an egress interface.

Example

```
console(config)# ipv6 default-gateway fe80::abcd
```

show ipv6 interface

Use the `show ipv6 interface` EXEC command mode to display the usability status of interfaces configured for IPv6.

Syntax

```
show ipv6 interface [interface-id]
```

Parameters

- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port, Port-channel or VLAN.

Default Configuration

Displays all IPv6 interfaces.
Command Mode
EXEC mode

User Guidelines
Use the `show ipv6 neighbors` command in the privileged EXEC mode to display IPv6 neighbor discovery cache information.

Example

```
Console# show ipv6 interface
Interface    IP addresses                               Type
-----------  --------------------------------------  ------------
VLAN 1       4004::55/64 [ANY]                       manual
VLAN 1       fe80::200::b0ff:fe00:0                   linklayer
VLAN 1       ff02::1                                 linklayer
VLAN 1       ff02::77                                manual
VLAN 1       ff02::1::ff00:0                         manual
VLAN 1       ff02::1::ff00:1                         manual
VLAN 1       ff02::1::ff00:55                        manual

Default Gateway IP address     Type     Interface   State
----------------------------   -------- ---------   -----
fe80::77                       Static   VLAN 1     unreachable
fe80::200::b0ff:fe00:0         Dynamic  VLAN 1     stale

Console# show ipv6 interface Vlan 15
IPv6 is disabled

Console# show ipv6 interface Vlan 1
Number of ND DAD attempts: 1
MTU size: 1500
Stateless Address Autoconfiguration state: enabled
ICMP unreachable message state: enabled
MLD version: 2

IP addresses                           Type        DAD State
--------------------------------------- -------- 
```
show IPv6 route
Use the show ipv6 route command to display the current state of the IPv6 routing table.

Syntax
show ipv6 route

Command Mode
EXEC mode

Example

Console> show ipv6 route
Codes: L - Local, S - Static, I - ICMP, ND - Router Advertisement
The number in the brackets is the metric.

S ::/0 via fe80::77 [0] VLAN 1 Lifetime Infinite
ND ::/0 via fe80::200:cff:fe4a:dfa8 [0] VLAN 1 Lifetime 1784 sec
L 2001::/64 is directly connected, g2 Lifetime Infinite
L 2002:1:1:1::/64 is directly connected, VLAN 1 Lifetime 2147467 sec
L 3001::/64 is directly connected, VLAN 1 Lifetime Infinite
L 4004::/64 is directly connected, VLAN 1 Lifetime Infinite
L 6001::/64 is directly connected, g2 Lifetime Infinite
ipv6 nd dad attempts

Use the **ipv6 nd dad attempts** Interface Configuration (Ethernet, VLAN, Port-channel) mode command to configure the number of consecutive neighbor solicitation messages that are sent on an interface while Duplicate Address Detection (DAD) is performed on the unicast IPv6 addresses of the interface. Use the **no** form of this command to restore the number of messages to the default value.

Syntax

`ipv6 nd dad attempts attempts`

Parameters

`attempts`—Specifies the number of neighbor solicitation messages. A value of 0 disables DAD processing on the specified interface. A value of 1 configures a single transmission without follow-up transmissions. (Range: 0–600)

Default Configuration

Duplicate Address Detection on unicast IPv6 addresses with the sending of one neighbor solicitation message is enabled.

Command Mode

Interface Configuration (Ethernet, VLAN, Port-channel) mode. It cannot be configured for a range of interfaces (range context).

User Guidelines

Duplicate Address Detection (DAD) verifies the uniqueness of new unicast IPv6 addresses before the addresses are assigned to interfaces (the new addresses remain in a tentative state while DAD is performed). DAD uses neighbor solicitation messages to verify the uniqueness of unicast IPv6 addresses.

An interface returning to the administrative Up state restarts DAD for all of the unicast IPv6 addresses on the interface. While DAD is performed on the Link Local address of an interface, the state of the other IPv6 addresses is still set to TENTATIVE. When DAD is completed on the Link Local address, DAD is performed on the remaining IPv6 addresses.
When DAD identifies a duplicate address, the address state is set to DUPLICATE and the address is not used. If the duplicate address is the Link Local address of the interface, the processing of IPv6 packets is disabled on the interface and an error message is displayed.

All configuration commands associated with the duplicate address remain as configured while the address state is set to DUPLICATE.

If the Link Local address for an interface changes, DAD is performed on the new Link Local address and all of the other IPv6 address associated with the interface are regenerated (DAD is performed only on the new Link Local address).

Configuring a value of 0 with the `ipv6 nd dad attempts` Interface Configuration mode command disables duplicate address detection processing on the specified interface. A value of 1 configures a single transmission without follow-up transmissions. The default is 1 message.

Until the DAD process is completed, an IPv6 address is in the tentative state and cannot be used for data transfer. It is recommended to limit the configured value.

Example
The following example configures the number of consecutive neighbor solicitation messages sent during DAD processing to 2 on gigabitethernet port 1/0/9.

```
Console (config)# interface gi1/0/9
Console (config-if)# ipv6 nd dad attempts 2
```

ipv6 host
Use the `ipv6 host` Global Configuration mode command to define a static host name-to-address mapping in the host name cache. Use the `no` form of this command to remove the host name-to-address mapping.

Syntax
ipv6 host name ipv6-address1 [ipv6-address2...ipv6-address4]

no ipv6 host name
Parameters

nameName of the host. (Range: 1–158 characters)

- **ipv6-address1**—Associated IPv6 address. This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons. When the IPv6 address is a Link Local address (IPv6Z address), the outgoing interface name must be specified. Refer to the user guidelines for the interface name syntax.

- **ipv6-address2-4**—(Optional) Additional IPv6 addresses that may be associated with the host’s name

Default Configuration

No host is defined.

Command Mode

Global Configuration mode

User Guidelines

The format of an IPv6Z address is: `<ipv6-link-local-address>%<interface-name>`

interface-name = vlan<integer> | ch<integer> | isatap<integer> | <physical-port-name>

integer = <decimal-number> | <integer><decimal-number>

decimal-number = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

physical-port-name = Designated port number, for example 1/0/16.

Example

```
console(config)# ipv6 host server 3000::a31b
```

ipv6 neighbor

Use the `ipv6 neighbor` command to configure a static entry in the IPv6 neighbor discovery cache. Use the `no` form of this command to remove a static IPv6 entry from the IPv6 neighbor discovery cache.
Syntax
ipv6 neighbor ipv6_addr interface-id hw_addr
no ipv6 neighbor ipv6_addr interface-id

Parameters
• Ipv6_addr—Specifies the IPv6 address to map to the specified MAC address.
• interface-id—Specifies the interface that is associated with the IPv6 address
• hw_addr—Specifies the MAC address to map to the specified IPv6 address.

Command Mode
Global Configuration mode

User Guidelines
The IPv6 neighbor command is similar to the ARP (global) command.

If an entry for the specified IPv6 address already exists in the neighbor discovery cache—learned through the IPv6 neighbor discovery process—the entry is automatically converted to a static entry.

A new static neighbor entry with a global address can be configured only if a manually configured subnet already exists in the device.

Use the show IPv6 neighbors command to view static entries in the IPv6 neighbor discovery cache.

Example

```
console(config)# ipv6 neighbor 3000::a31b vlan 1 001b.3f9c.84ea
```

ipv6 set mtu

Use the ipv6 mtu Interface Configuration mode command to set the maximum transmission unit (MTU) size of IPv6 packets sent on an interface. Use the default parameter to restore the default MTU size.
Syntax
ipv6 set mtu \{ interface-id \} \{ bytes | default \}

Parameters
- interface-id—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.
- bytes—Specifies the MTU in bytes.
- default—Sets the default MTU size 1500 bytes. Minimum is 1280 bytes

Default Configuration
1500 bytes

Command Mode
Privileged EXEC mode

User Guidelines
This command is intended for debugging and testing purposes and should be used only by technical support personnel.

Example

```
console# ipv6 set mtu gi1/0/1 default
```

ipv6 mld version

Use the `ipv6 mld version` Interface Configuration mode command to change the version of the Multicast Listener Discovery Protocol (MLD). Use the `no` form of this command to change to the default version.

Syntax
ipv6 mld version \{1 | 2\}

no ipv6 mld version

Parameters
1—Specifies MLD version 1.
2—Specifies MLD version 2.
Default Configuration
MLD version 1.

Command Mode
Interface Configuration (Ethernet, VLAN, Port-channel) mode

```console
console(config)# interface vlan 1
console(config-if)# ipv6 mld version 2
```

ipv6 mld join-group
Use the `ipv6 mld join-group` Interface Configuration mode command to configure Multicast Listener Discovery (MLD) reporting for a specified group. Use the `no` form of this command to cancel reporting and leave the group.

Syntax

```
ipv6 mld join-group group-address
no ipv6 mld join-group group-address
```

Parameters

- `group-address`—Specifies the IPv6 address of the multicast group.

Default Configuration

Command Mode
Interface Configuration (Ethernet, VLAN, Port-channel) mode

User Guidelines
The `ipv6 mld join-group` command configures MLD reporting for a specified group. The packets that are addressed to a specified group address will be passed up to the client process in the device.
Example
The following example configures MLD reporting for specific groups:

```
ipv6 mld join-group ff02::10
```

show ipv6 neighbors

Use the `show ipv6 neighbors` Privileged EXEC mode command to display IPv6 neighbor discovery cache information.

Syntax

```
show ipv6 neighbors {static | dynamic}[ipv6-address ipv6-address] [mac-address mac-address] [interface-id]
```

Parameters

- `static`—Shows static neighbor discovery cash entries.
- `dynamic`—Shows dynamic neighbor discovery cash entries.
- `ipv6-address`—Shows the neighbor discovery cache information entry of a specific IPv6 address.
- `mac-address`—Shows the neighbor discovery cache information entry of a specific MAC address.
- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port, Port-channel or VLAN.

Command Mode

Privileged EXEC mode

User Guidelines

Since the associated interface of a MAC address can be aged out from the FDB table, the Interface field can be empty.

When an ARP entry is associated with an IP interface that is defined on a port or port-channel, the VLAN field is empty.

The possible neighbor cash states are:
• **INCMP (Incomplete)**—Address resolution is being performed on the entry. Specifically, a Neighbor Solicitation has been sent to the solicited-node multicast address of the target, but the corresponding Neighbor Advertisement has not yet been received.

• **REACH (Reachable)**—Positive confirmation was received within the last ReachableTime milliseconds that the forward path to the neighbor was functioning properly. While REACHABLE, no special action takes place as packets are sent.

• **STALE**—More than ReachableTime milliseconds have elapsed since the last positive confirmation was received that the forward path was functioning properly. While stale, no action takes place until a packet is sent.

• **DELAY**—More than ReachableTime milliseconds have elapsed since the last positive confirmation was received that the forward path was functioning properly, and a packet was sent within the last DELAY_FIRST_PROBE_TIME seconds. If no reachability confirmation is received within DELAY_FIRST_PROBE_TIME seconds of entering the DELAY state, send a Neighbor Solicitation and change the state to PROBE.

• **PROBE**—A reachability confirmation is actively sought by retransmitting Neighbor Solicitations every RetransTimer milliseconds until a reachability confirmation is received.

Example

Console# show ipv6 neighbors dynamic

<table>
<thead>
<tr>
<th>Interface</th>
<th>IPv6 address</th>
<th>HW address</th>
<th>State</th>
<th>Router</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN 1</td>
<td>fe80::200:cff:fe4a:dfa8 00:00:0c:4a:df:a8</td>
<td>stale yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLAN 1</td>
<td>fe80::2d0:b7ff:fea1:264d 00:d0:b7:a1:26:4d</td>
<td>stale no</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

clear ipv6 neighbors

Use the `clear ipv6 neighbors` Privileged EXEC mode command to delete all entries in the IPv6 neighbor discovery cache, except for static entries.
Syntax
clear ipv6 neighbors

Parameters
This command has no keywords or arguments.

Command Mode
Privileged EXEC mode

Example

console# clear ipv6 neighbors
Tunnel Commands

interface tunnel
Use the `interface tunnel` Global Configuration mode command to enter the Interface Configuration (Tunnel) mode.

Syntax
`interface tunnel number`

Parameters
`number`—Specifies the tunnel index.

Command Mode
Global Configuration mode

Example
The following example enters the Interface Configuration (Tunnel) mode.

```
Console(config)# interface tunnel 1
Console(config)#
```

tunnel mode ipv6ip
Use the `tunnel mode ipv6ip` Interface Configuration (Tunnel) mode command to configure an IPv6 transition-mechanism global support mode. Use the `no` form of this command to remove an IPv6 transition mechanism.

Syntax
`tunnel mode ipv6ip {isatap}`
no tunnel mode ipv6ip

Parameters

Default Configuration
The IPv6 transition-mechanism global support mode is disabled.

Command Mode
Interface Configuration (Tunnel) mode

User Guidelines
The system can be enabled to ISATAP tunnel. When enabled, an automatic tunnel interface is created on each interface that is assigned an IPv4 address.

Note that on a specific interface (for example, port or VLAN), both native IPV6 and transition-mechanisms can coexist. The host implementation chooses the egress interface according to the scope of the destination IP address (such as ISATAP or native IPv6).

Example
The following example configures an IPv6 transition mechanism global support mode.

```
Console(config)# interface tunnel 1
Console(config-tunnel)# tunnel mode ipv6ip isatap
```

tunnel isatap router

Use the tunnel isatap router Interface Configuration (Tunnel) mode command to configure a global string that represents a specific automatic tunnel router domain name. Use the no form of this command to remove the string associated with the router domain name and restore the default configuration.

Syntax
tunnel isatap router router-name
no tunnel isatap router

Parameters
router-name—Specifies the router’s domain name.

Default Configuration
The automatic tunnel router’s default domain name is ISATAP.

Command Mode
Interface Configuration (Tunnel) mode

User Guidelines
The `ipv6 tunnel routers-dns` command determines the string that the host uses for automatic tunnel router lookup in the IPv4 DNS procedure. By default, the string ISATAP is used for the corresponding automatic tunnel types.

Only one string can represent the automatic tunnel router name per tunnel. Using this command, therefore, overwrites the existing entry.

Example
The following example configures the global string ISATAP2 as the automatic tunnel router domain name.

```
Console(config)# tunnel 1
Console(config-tunnel)# tunnel isatap router ISATAP2
```

tunnel source

Use the `tunnel source` Interface Configuration (Tunnel) mode command to set the local (source) IPv4 address of a tunnel interface. The `no` form deletes the tunnel local address.

Syntax
`tunnel source { auto | ipv4-address }`

`no tunnel source`
Parameters

- **auto**—The system minimum IPv4 address is used as the source address for packets sent on the tunnel interface. If the IPv4 address is changed, then the local address of the tunnel interface is changed too.

- **ip4-address**—Specifies the IPv4 address to use as the source address for packets sent on the tunnel interface. The local address of the tunnel interface is not changed when the IPv4 address is moved to another interface (only if StackTable is changed).

Default

No source address is defined.

Command Mode

Interface Configuration (Tunnel) mode

User Guidelines

The configured source IPv4 address is used for forming the tunnel interface identifier. The interface identifier is set to the 8 least significant bytes of the SIP field of the encapsulated IPv6 tunneled packets.

Example

```
console(config)# interface tunnel 1
console(config-tunnel)# tunnel source auto
```

tunnel isatap query-interval

Use the `tunnel isatap query-interval` Global Configuration mode command to set the time interval between Domain Name System (DNS) queries (before the ISATAP router IP address is known) for the automatic tunnel router domain name. Use the `no` form of this command to restore the default configuration.

Syntax

```
tunnel isatap query-interval seconds
no tunnel isatap query-interval
```
Parameters
seconds—Specifies the time interval in seconds between DNS queries. (Range: 10–3600)

Default Configuration
The default time interval between DNS queries is 10 seconds.

Command Mode
Global Configuration mode

User Guidelines
This command determines the time interval between DNS queries before the ISATAP router IP address is known. If the IP address is known, the robustness level that is set by the `tunnel isatap robustness` Global Configuration mode command determines the refresh rate.

Example
The following example sets the time interval between DNS queries to 30 seconds.

```
Console(config)# tunnel isatap query-interval 30
```

tunnel isatap solicitation-interval

Use the `tunnel isatap solicitation-interval` Global Configuration mode command to set the time interval between ISATAP router solicitation messages. Use the `no` form of this command to restore the default configuration.

Syntax
```
tunnel isatap solicitation-interval seconds
```
```
no tunnel isatap solicitation-interval
```

Parameters
seconds—Specifies the time interval in seconds between ISATAP router solicitation messages. (Range: 10–3600)
Default Configuration
The default time interval between ISATAP router solicitation messages is 10 seconds.

Command Mode
Global Configuration mode

User Guidelines
This command determines the interval between router solicitation messages when there is no active ISATAP router. If there is an active ISATAP router, the robustness level set by the `tunnel isatap robustness` Global Configuration mode command determines the refresh rate.

Example
The following example sets the time interval between ISATAP router solicitation messages to 30 seconds.

```
Console(config)# tunnel isatap solicitation-interval 30
```

tunnel isatap robustness
Use the `tunnel isatap robustness` Global Configuration mode command to configure the number of DNS query/router solicitation refresh messages that the device sends. Use the `no` form of this command to restore the default configuration.

Syntax
```
tunnel isatap robustness number
no tunnel isatap robustness
```

Parameters
number—Specifies the number of DNS query/router solicitation refresh messages that the device sends. (Range: 1–20)

Default Configuration
The default number of DNS query/router solicitation refresh messages that the device sends is 3.
Command Mode
Global Configuration mode

User Guidelines
The DNS query interval (after the ISATAP router IP address is known) is the Time-To-Live (TTL) that is received from the DNS, divided by (Robustness + 1).

The router solicitation interval (when there is an active ISATAP router) is the minimum-router-lifetime that is received from the ISATAP router, divided by (Robustness + 1).

Example
The following example sets the number of DNS query/router solicitation refresh messages that the device sends to 5.

```
Console(config)# tunnel isatap robustness 5
```

show ipv6 tunnel
Use the `show ipv6 tunnel` EXEC mode command to display information on the ISATAP tunnel.

Syntax
`show ipv6 tunnel`

Command Mode
EXEC mode

Example
The following example displays information on the ISATAP tunnel.

```
Console> show ipv6 tunnel
Tunnel 1
-------

Tunnel status : DOWN
```
Tunnel protocol : NONE
Tunnel Local address type : auto
Tunnel Local Ipv4 address : 0.0.0.0
Router DNS name : ISATAP
Router IPv4 address : 0.0.0.0
DNS Query interval : 300 seconds
Min DNS Query interval : 0 seconds
Router Solicitation interval : 10 seconds
Min Router Solicitation interval : 0 seconds
Robustness : 2
DHCP Relay Commands

ip dhcp relay enable (Global)
Use the `ip dhcp relay enable` Global Configuration mode command to enable Dynamic Host Configuration Protocol (DHCP) relay features on the device. Use the `no` form of this command to disable the DHCP relay agent.

Syntax
- `ip dhcp relay enable`
- `no ip dhcp relay enable`

Default Configuration
DHCP relay features are disabled.

Command Mode
Global Configuration mode

Example
The following example enables DHCP features on the device.

```plaintext
Console(config)# ip dhcp relay enable
```

ip dhcp relay enable (Interface)
Use the `ip dhcp relay enable` Interface Configuration (VLAN, Ethernet, Port-channel) mode command to enable Dynamic Host Configuration Protocol (DHCP) relay features on the router. Use the `no` form of this command to disable the DHCP relay agent features.
Syntax
ip dhcp relay enable
no ip dhcp relay enable

Default Configuration
Disabled

Command Mode
Interface Configuration (VLAN) mode
Interface Configuration (VLAN, Ethernet, Port-channel) mode

User Guidelines
Enable DHCP relay globally before enabling DHCP relay on an interface.

Example
The following example enables DHCP features on VLAN 21.

```
Console(config)# interface vlan 21
Console(config-if)# ip dhcp relay enable
```

ip dhcp relay address (Global)
Use the `ip dhcp relay address` Global Configuration mode command to
define the DHCP servers available for the DHCP relay. Use the `no` form of
this command to remove servers from the list.

Syntax

```
ip dhcp relay address ip-address
no ip dhcp relay address [ip-address]
```

Parameters

```
ip-address—Specifies the DHCP server IP address. Up to 8 servers can be
defined.
```

Default Configuration
No server is defined.
Command Mode
Global Configuration mode

Example
The following example defines the DHCP server on the device.

```
Console(config)# ip dhcp relay address 176.16.1.1
```

ip dhcp relay address (Interface)
Use the `ip dhcp relay address` Interface Configuration (VLAN, Ethernet, Port-channel) command to define the DHCP servers available by the DHCP relay for DHCP clients connected to the interface. Use the no form of this command to remove the server from the list.

Syntax
```
ip dhcp relay address ip-address
no ip dhcp relay address [ip-address]
```

Parameters
- `ip-address`—Specifies the DHCP server IP address. Up to 8 servers can be defined.

Default Configuration
No server is defined.

Command Mode
Interface Configuration (VLAN, Ethernet, Port-channel) mode

User Guidelines
Use the `ip dhcp relay address` command to define a DHCP Server IP address per the interface. To define a few DHCP Servers, use the command a few times.

To remove a DHCP Server, use the no form of the command with the ip-address argument. The no form of the command without the ip-address argument deletes all DHCP servers defined per the interface.
You can use the command regardless if DHCP Relay is enabled on the interface.

Example
The following example defines the DHCP server on VLAN 21.

```console
Console(config)# interface vlan 21
Console(config-if)# ip dhcp relay address 176.16.1.1
```

show ip dhcp relay
Use the `show ip dhcp relay` `EXEC` mode command to display the server addresses on the DHCP relay.

Syntax
`show ip dhcp relay`

Command Mode
`EXEC` mode

Example
The following example displays the server addresses on the DHCP relay.

```console
Console> show ip dhcp relay

DHCP relay is globally enabled.

DHCP relay is enabled on VLANs: 1, 2
DHCP relay is enabled on ports: 1/1
DHCP relay is enabled on port-channels:

Servers: 172.16.1.11, 172.16.8.11
```

```console
Console> show ip dhcp relay
```
DHCP relay is globally enabled.

DHCP relay is enabled on VLANs: 1, 2

Servers: 172.16.1.11, 172.16.8.11

ip dhcp information option

Use the `ip dhcp information option` Global Configuration command to enable DHCP option-82 data insertion. Use the `no` form of this command to disable DHCP option-82 data insertion.

Syntax

ip dhcp information option

no ip dhcp information option

Parameters

N/A

Default Configuration

DHCP option-82 data insertion is disabled.

Command Mode

Global Configuration mode

User Guidelines

DHCP option 82 would be enabled only if DHCP snooping or DHCP relay are enabled.

Example

The following example enable DHCP option-82 data insertion.

```console
Console(config)# ip dhcp information option
```
show ip dhcp information option

The `show ip dhcp information option` EXEC mode command displays the DHCP Option 82 configuration.

Syntax

```plaintext
show ip dhcp information option
```

Command Mode

EXEC mode

Example

The following example displays the DHCP Option 82 configuration.

```plaintext
Console> show ip dhcp information option
Relay agent Information option is Enabled
```
DHCP Server Commands

ip dhcp server
Use the `ip dhcp server` Global Configuration mode command to enable the Dynamic Host Configuration Protocol (DHCP) server features on the device. Use the `no` form of this command to disable the DHCP server.

Syntax

```
ip dhcp server
no ip dhcp server
```

Default Configuration
The DHCP server is disabled.

Command Mode
Global Configuration mode

Example
The following example enables the DHCP server on the device:

```
Console(config)# ip dhcp server
```

ip dhcp pool host
Use the `ip dhcp pool host` Global Configuration mode command to configure a Dynamic Host Configuration Protocol (DHCP) static address on a DHCP Server and enter the DHCP Pool Host Configuration mode. Use the `no` form of this command to remove the address pool.
Syntax

`ip dhcp pool host name`

`no ip dhcp pool host name`

Parameters

`name`—Specifies the DHCP address pool name. It can be either a symbolic string (such as Engineering) or an integer (such as 8). (Length: 1–32 characters)

Default Configuration

DHCP hosts are not configured.

Command Mode

Global Configuration mode

User Guidelines

During execution of this command, the configuration mode changes to the DHCP Pool Configuration mode, which is identified by the (config-dhcp)# prompt. In this mode, the administrator can configure host parameters, such as the IP subnet number and default router list.

Example

The following example configures Station as the DHCP address pool:

```plaintext
Console(config)# ip dhcp pool host station
Console(config-dhcp)#
```

ip dhcp pool network

Use the `ip dhcp pool network` Global Configuration mode command to configure a Dynamic Host Configuration Protocol (DHCP) address pool on a DHCP Server and enter DHCP Pool Configuration mode. Use the `no` form of this command to remove the address pool.

Syntax

`ip dhcp pool network name`
no ip dhcp pool network name

Parameters
name—Specifies the DHCP address pool name. It can be either a symbolic string (such as ‘engineering’) or an integer (such as 8). (Length: 1–32 characters)

Default Configuration
DHCP address pools are not configured.

Command Mode
Global Configuration mode

User Guidelines
During execution of this command, the configuration mode changes to DHCP Pool Network Configuration mode, which is identified by the (config-dhcp)# prompt. In this mode, the administrator can configure pool parameters, such as the IP subnet number and default router list.

Example
The following example configures Pool1 as the DHCP address pool.

```
Console(config)# ip dhcp pool network pool1
Console(config-dhcp)#
```

address (DHCP Host)
Use the address DHCP Pool Host Configuration mode command to manually bind an IP address to a Dynamic Host Configuration Protocol (DHCP) client. Use the no form of this command to remove the IP address binding to the client.

Syntax
address ip-address {mask | prefix-length} {client-identifier unique-identifier | hardware-address mac-address}

no address
Parameters
- **address**—Specifies the client IP address.
- **mask**—Specifies the client network mask.
- **prefix-length**—Specifies the number of bits that comprise the address prefix. The prefix is an alternative way of specifying the client network mask. The prefix length must be preceded by a forward slash (/).
- **unique-identifier**—Specifies the distinct client identification in dotted hexadecimal notation: Each byte in a hexadecimal character string is two hexadecimal digits. Bytes are separated by a period or colon. For example, 01b7.0813.8811.66.
- **hardware-address**—Specifies the MAC address.

Default Configuration
DHCP hosts are not configured.

Command Mode
DHCP Pool Host Configuration mode

Example
The following example manually binds an IP address to a Dynamic Host Configuration Protocol (DHCP) client.

```
Console(config-dhcp)# address 10.12.1.99 255.255.255.0 01b7.0813.8811.66
```

address (DHCP Network)
Use the **address** DHCP Pool Network Configuration mode command to configure the subnet number and mask for a Dynamic Host Configuration Protocol (DHCP) address pool on DHCP Server. Use the **no** form of this command to remove the subnet number and mask.

Syntax
```
address {network-number | low low-address high high-address} {mask / prefix-length}
no address
```
Parameters

- **network-number**—Specifies the IP address of the DHCP address pool.
- **mask**—Specifies the pool network mask.
- **prefix-length**—Specifies the number of bits that comprise the address prefix. The prefix is an alternative way of specifying the client network mask. The prefix length must be preceded by a forward slash (/).
- **low low-address**—Specifies the first IP address to use in the address range.
- **high high-address**—Specifies the last IP address to use in the address range.

Default Configuration

DHCP address pools are not configured.

If the low address is not specified, it defaults to the first IP address in the network.

If the high address is not specified, it defaults to the last IP address in the network.

Command Mode

DHCP Pool Network Configuration mode

Example

The following example configures the subnet number and mask for a Dynamic Host Configuration Protocol (DHCP) address pool on DHCP Server.

```
Console(config-dhcp)# address 10.12.1.0 255.255.255.0
```

lease

Use the **lease** DHCP Pool Network Configuration mode command to configure the time duration of the lease for an IP address that is assigned from a Dynamic Host Configuration Protocol (DHCP) Server to a DHCP client. Use the **no** form of this command to restore the default value.
Syntax
lease \{days \{hours\} \{minutes\}\} / infinite
no lease

Parameters
- **days**—Specifies the number of days in the lease.
- **hours**—Specifies the number of hours in the lease. A **days** value must be supplied before configuring an **hours** value.
- **minutes**—Specifies the number of minutes in the lease. A **days** value and an **hours** value must be supplied before configuring a **minutes** value.
- **infinite**—Specifies that the duration of the lease is unlimited.

Default Configuration
The default lease duration is 1 day.

Command Mode
DHCP Pool Network Configuration mode

Examples
The following example shows a 1-day lease.

```
Console(config-dhcp)# lease 1
```

The following example shows a one-hour lease.

```
Console(config-dhcp)# lease 0 1
```

The following example shows a one-minute lease.

```
Console(config-dhcp)# lease 0 0 1
```

The following example shows an infinite (unlimited) lease.

```
Console(config-dhcp)# lease infinite
```
client-name

Use the client-name DHCP Pool Host Configuration mode command to define the name of a DHCP client. The client name should not include the domain name. Use the no form of this command to remove the client name.

Syntax

client-name name

no client-name

Parameters

name—Specifies the client name, using standard ASCII characters. The client name should not include the domain name. For example, the name Mars should not be specified as mars.yahoo.com. (Length: 1–32 characters)

Command Mode

DHCP Pool Host Configuration mode

Default Configuration

No client name is defined.

Example

The following example defines the string Client1 as the client name.

```console
Console(config-dhcp)# client-name client1
```

default-router

Use the default-router DHCP Pool Configuration mode command to configure the default router list for a Dynamic Host Configuration Protocol (DHCP) client. Use the no form of this command to remove the default router list.

Syntax

default-router ip-address [ip-address2 ... ip-address8]

no default-router
Parameters
ip-address—Specifies the IP address of a router. One IP address is required, although up to eight addresses can be specified in one command line.

Command Mode
DHCP Pool Host Configuration mode
DHCP Pool Network Configuration mode

Default Configuration
No default router is defined.

User Guidelines
The router IP address should be on the same subnet as the client subnet.

Example
The following example specifies 10.12.1.99 as the default router IP address.

```
Console(config-dhcp)# default-router 10.12.1.99
```

dns-server
Use the dns-server DHCP Pool Configuration mode command to configure the Domain Name System (DNS) IP servers available to a Dynamic Host Configuration Protocol (DHCP) client. Use the no form of this command to remove the DNS server list.

Syntax
dns-server ip-address [ip-address2 ... ip-address8]
no dns-server

Parameters
ip-address—Specifies a DNS Server IP address. One IP address is required, although up to eight addresses can be specified in one command line.

Command Mode
DHCP Pool Host Configuration mode
DHCP Pool Network Configuration mode

Default Configuration
No DNS server is defined.

User Guidelines
If DNS IP servers are not configured for a DHCP client, the client cannot correlate host names to IP addresses.

Example
The following example specifies 10.12.1.99 as the client domain name server IP address.

```
Console(config-dhcp)# dns-server 10.12.1.99
```

domain-name
Use the `domain-name` DHCP Pool Configuration mode command to specify the domain name for a Dynamic Host Configuration Protocol (DHCP) client. Use the `no` form of this command to remove the domain name.

Syntax
```
domain-name domain
```

no domain-name

Parameters
`domain`—Specifies the DHCP client domain name string. (Length: 1–32 characters)

Command Mode
DHCP Pool Host Configuration mode
DHCP Pool Network Configuration mode

Default Configuration
No domain name is defined.
Example
The following example specifies yahoo.com as the DHCP client domain name string.

```
Console(config-dhcp)# domain-name yahoo.com
```

netbios-name-server
Use the **netbios-name-server** DHCP Pool Configuration mode command to configure the NetBIOS Windows Internet Naming Service (WINS) servers that are available to Microsoft Dynamic Host Configuration Protocol (DHCP) clients. Use the **no** form of this command to remove the NetBIOS name server list.

Syntax
```
netbios-name-server ip-address [ip-address2 ... ip-address8]
```
```
o netbios-name-server
```

Parameters
- **ip-address**—Specifies the NetBIOS WINS name server IP address. One IP address is required, although up to eight addresses can be specified in one command line.

Command Mode
- DHCP Pool Host Configuration mode
- DHCP Pool Network Configuration mode

Default Configuration
No bios server is defined.

Example
The following example specifies the IP address of a NetBIOS name server available to the DHCP client.

```
Console(config-dhcp)# netbios-name-server 10.12.1.90
```
netbios-node-type

Use the `netbios-node-type` DHCP Pool Configuration mode command to configure the NetBIOS node type for Microsoft Dynamic Host Configuration Protocol (DHCP) clients. Use the `no` form of this command to remove the NetBIOS node type.

Syntax

```plaintext
netbios-node-type {b-node | p-node | m-node | h-node}
no netbios-node-type
```

Parameters

- **b-node**—Specifies the Broadcast NetBIOS node type.
- **p-node**—Specifies the Peer-to-peer NetBIOS node type.
- **m-node**—Specifies the Mixed NetBIOS node type.
- **h-node**—Specifies the Hybrid NetBIOS node type.

Command Mode

- DHCP Pool Host Configuration mode
- DHCP Pool Network Configuration mode

Default Configuration

No bios node type is defined.

Example

The following example specifies the client's NetBIOS type as hybrid.

```
Console(config-dhcp)# netbios node-type h-node
```

next-server

Use the `next-server` DHCP Pool Configuration mode command to configure the next server in the boot process of a Dynamic Host Configuration Protocol (DHCP) client. Use the `no` form of this command to remove the boot server.
Syntax
next-server *ip-address*
no next-server

Parameters
ip-address—Specifies the IP address of the next server in the boot process, which is typically a Trivial File Transfer Protocol (TFTP) server.

Default Configuration
If the `next-server` command is not used to configure a boot server list, the DHCP Server uses inbound interface helper addresses as boot servers.

Command Mode
DHCP Pool Host Configuration mode
DHCP Pool Network Configuration mode

Example
The following example specifies 10.12.1.99 as the IP address of the next server in the boot process.

```
Console(config-dhcp)# next-server 10.12.1.99
```

next-server-name

Use the `next-server-name` DHCP Pool Configuration mode command to configure the next server name in the boot process of a Dynamic Host Configuration Protocol (DHCP) client. Use the `no` form of this command to remove the boot server name.

Syntax
next-server-name *name*
no next-server-name

Parameters
name—Specifies the name of the next server in the boot process. (Length: 1–64 characters)
Command Mode
DHCP Pool Host Configuration mode
DHCP Pool Network Configuration mode

Default Configuration
No next server name is defined.

Example
The following example specifies www.bootserver.com as the name of the next server in the boot process of a DHCP client.

```
Console(config-dhcp)# next-server www.bootserver.com
```

bootfile
Use the `bootfile` DHCP Pool Configuration mode command to specify the default boot image file name for a Dynamic Host Configuration Protocol (DHCP) client. Use the `no` form of this command to delete the boot image file name.

Syntax
```
bootfile filename
no bootfile
```

Parameters
- `filename`—Specifies the file name used as a boot image. (Length: 1–128 characters)

Command Mode
DHCP Pool Host Configuration mode
DHCP Pool Network Configuration mode
Example
The following example specifies boot_image_file as the default boot image file name for a DHCP client.

Console(config-dhcp)# bootfile boot_image_file

time-server
Use the time-server DHCP Pool Configuration mode command to specify the time servers list for a Dynamic Host Configuration Protocol (DHCP) client. Use the no form of this command to remove the time servers list.

Syntax
time-server ip-address [ip-address2 ... ip-address8]

no time-server

Parameters
ip-address—Specifies the IP address of a time server. One IP address is required, although up to eight addresses can be specified in one command line.

Command Mode
DHCP Pool Host Configuration mode
DHCP Pool Network Configuration mode

Default Configuration
No time server name is defined.

User Guidelines
The router IP address should be on the same subnet as the client subnet.

Example
The following example specifies 10.12.1.99 as the time server IP address.

Console(config-dhcp)# time-server 10.12.1.99
option
Use the option DHCP Pool Configuration mode command to configure the Dynamic Host Configuration Protocol (DHCP) Server options. Use the no form of this command to remove the options.

Syntax
option code {ascii ascii-string | hex hex-string | ip ip-address}
option ip-list code ip-address1 [ip-address2 …]
no option code

Parameters
• code—Specifies the DHCP option code.
• ascii ascii-string—Specifies an NVT ASCII character string. ASCII character strings, which contain white space, must be delimited by quotation marks.
• hex hex-string—Specifies dotted hexadecimal data: Each byte in hexadecimal character strings is two hexadecimal digits. Bytes are separated by a period or colon.
• ip ip-address—Specifies an IP address.
• ip-list—Specifies that a list of IP addresses immediately follows the option code.
• ip-address1 [ip-address2 …]—Specifies a list of one or more IP addresses.

Command Mode
DHCP Pool Host Configuration mode
DHCP Pool Network Configuration mode

User Guidelines
DHCP provides a framework for passing configuration information to hosts on a TCP/IP network. Configuration parameters and other control information are carried in tagged data items that are stored in the DHCP message options field. The data items themselves are also called options. The
current set of DHCP options are documented in RFC 2131, *Dynamic Host Configuration Protocol*.

For options in hexadecimal format, the string parameter should include all the bytes in the option value, including leading zeros.

Examples
The following example configures DHCP option 19, which specifies whether the client should configure its IP layer for packet forwarding. A value of 0 means disable IP forwarding. A value of 1 means enable IP forwarding. IP forwarding is enabled in the following example.

```
Console(config-dhcp)# option 19 hex 01
```

The following example configures DHCP option 2, which specifies the offset of the client's subnet in seconds from Coordinated Universal Time (UTC). A value of 0xE10 in the following example indicates a location 1 hour east of the meridian.

```
Console(config-dhcp)# option 2 hex 00000E10
```

The following example configures DHCP option 72, which specifies the World Wide Web servers for DHCP clients. World Wide Web servers 172.16.3.252 and 172.16.3.253 are configured in the following example.

```
Console(config-dhcp)# option ip-list 72 172.16.3.252 172.16.3.253
```

ip dhcp excluded-address

Use the `ip dhcp excluded-address` Global Configuration mode command to specify the IP addresses that a Dynamic Host Configuration Protocol (DHCP) Server should not assign to DHCP clients. Use the `no` form of this command to remove the excluded IP addresses.

Syntax

```
ip dhcp excluded-address low-address [high-address]
no ip dhcp excluded-address low-address [high-address]
```
Parameters

- **low-address**— Specifies the excluded IP address, or first IP address in an excluded address range.
- **high-address**— Specifies the last IP address in the excluded address range.

Default Configuration
All IP pool addresses are assignable.

Command Mode
Global Configuration mode

User Guidelines
The DHCP Server assumes that all pool addresses can be assigned to clients. Use this command to exclude a single IP address or a range of IP addresses.

Example
The following example configures an excluded IP address range from 172.16.1.100 through 172.16.1.199.

```
Console(config)# ip dhcp excluded-address 172.16.1.100 172.16.1.199
```

ip dhcp ping enable

Use the `ip dhcp ping enable` Global Configuration mode command to enable the Dynamic Host Configuration Protocol (DHCP) Server to send ping packets before assigning the address to a requesting client. Use the no form of this command to prevent the server from pinging pool addresses.

Syntax
- `ip dhcp ping enable`
- `no ip dhcp ping enable`

Default Configuration
DHCP pinging is disabled.
Command Mode
Global Configuration mode

User Guidelines
The DHCP Server pings a pool address before assigning the address to a requesting client. If the ping is unanswered, the DHCP Server assumes (with a high probability) that the address is not in use and assigns the address to the requesting client.

Example
The following example enables the DHCP Server to send ping packets before assigning the address to a requesting client.

```
Console(config)# ip dhcp ping enable
```

ping enable
Use the ping enable DHCP Pool Network Configuration mode command to enable the Dynamic Host Configuration Protocol (DHCP) Server to send ping packets before assigning the address to a requesting client. Use the no form of this command to prevent the server from pinging pool addresses.

Syntax
```
ping enable
no ping enable
```

Default Configuration
The default configuration is set to enable.

Command Mode
DHCP Pool Network Configuration mode

User Guidelines
The DHCP Server pings a pool address before assigning the address to a requesting client. If the ping is unanswered, the DHCP Server assumes (with a high probability) that the address is not in use and assigns the address to the requesting client.
Example
The following example enables the DHCP Server to send ping packets before assigning the address to a requesting client.

Console(config-dhcp)# ping enable

ip dhcp ping count
Use the `ip dhcp ping count` Global Configuration mode command to specify the number of packets a Dynamic Host Configuration Protocol (DHCP) Server sends to a pool address as part of a ping operation. Use the `no` form of this command to restore the default configuration.

Syntax
`ip dhcp ping count number`
`no ip dhcp ping count`

Parameters
`number`—Specifies the number of ping packets that are sent before assigning the address to a requesting client. (Range: 1-10)

Default Configuration
A Dynamic Host Configuration Protocol (DHCP) Server sends two packets to a pool address as part of a ping operation.

Command Mode
Global Configuration mode

Example
The following example specifies that a DHCP Server sends five packets to a pool address as part of a ping operation.

Console(config)# `ip dhcp ping count 5`
ip dhcp ping timeout

The *ip dhcp ping timeout* Global Configuration mode command specifies the time interval during which a Dynamic Host Configuration Protocol (DHCP) Server waits for a ping reply from an address pool. To restore the default timeout, use the *no* form of this command.

Syntax

ip dhcp ping timeout milliseconds

no ip dhcp ping timeout

Parameters

milliseconds—Specifies the amount of time (in milliseconds) that the DHCP server waits for a ping reply before it stops attempting to reach a pool address for client assignment. The timeout range is 300-10000 milliseconds.

Default Configuration

The default timeout is 500 milliseconds.

Command Mode

Global Configuration mode

User Guidelines

This command specifies how long to wait for a ping reply (in milliseconds).

Example

The following example specifies that a DHCP Server waits 1 second for a ping reply from an address pool before it stops attempting to reach a pool address for client assignment.

```
Console(config)# ip dhcp ping timeout 1000
```
clear ip dhcp binding

The `clear ip dhcp binding` Privileged EXEC mode command deletes the dynamic address binding from the Dynamic Host Configuration Protocol (DHCP) Server database.

Syntax

clear ip dhcp binding `{address | *}`

Parameters

- `address`—Specifies the binding address to delete from the DHCP database.
- `*`—Clears all automatic bindings.

Command Mode

Privileged EXEC mode

User Guidelines

Typically, the address denotes the client IP address. If the asterisk (`*`) character is specified as the address parameter, DHCP clears all dynamic bindings.

Use the `no ip dhcp pool` Global Configuration mode command to delete a manual binding.

Example

The following example deletes the address binding 10.12.1.99 from a DHCP server database:

```
Console# clear ip dhcp binding 10.12.1.99
```

show ip dhcp

The `show ip dhcp` EXEC mode command displays the DHCP configuration.

Syntax

show ip dhcp
Command Mode
EXEC mode

Example
The following example displays the DHCP configuration.

```console
Console> show ip dhcp

DHCP server is enabled.
DHCP ping packets is enabled with 2 retries and 500 milliseconds.
```

show ip dhcp excluded-addresses
The `show ip dhcp excluded-addresses` EXEC mode command displays the excluded addresses.

Syntax
```
show ip dhcp excluded-addresses
```

Command Mode
EXEC mode

Example
The following example displays the excluded addresses.

```console
Console> show ip dhcp excluded-addresses

The number of excluded addresses ranges is 2
Excluded addresses:
10.1.1.212- 10.1.1.219, 10.1.2.212- 10.1.2.219
```

show ip dhcp pool host
The `show ip dhcp pool host` EXEC mode command displays the DHCP pool host configuration.
Syntax

show ip dhcp pool host [address | name]

Parameters

- *address*—Specifies the client IP address.
- *name*—Specifies the DHCP pool name. (Length: 1-32 characters)

Command Mode

EXEC mode

Example

The following example displays the DHCP pool host configuration.

```
Console> show ip dhcp pool host
The number of host pools is 1

Name          IP Address  Hardware Address  Client Identifier
------------- -------------- -------------- ----------------
Station       172.16.1.11  01b7.0813.8811.66

Console> show ip dhcp pool host station

Name          IP Address  Hardware Address  Client Identifier
------------- -------------- -------------- ----------------
Station       172.16.1.11  01b7.0813.8811.66
```
show ip dhcp pool network

The show ip dhcp pool network EXEC mode command displays the DHCP network configuration.

Syntax
show ip dhcp pool network [name]

Parameters
name—Specifies the DHCP pool name. (Length: 1-32 characters)

Command Mode
EXEC mode

Example

Router> show ip dhcp pool network
The number of network pools is 2
Name Address range mask Lease
--
Mask: 255.255.0.0
Default router: 172.16.1.1
Client name: client1
DNS server: 10.12.1.99
Domain name: yahoo.com
NetBIOS name server: 10.12.1.90
NetBIOS node type: h-node
Next server: 10.12.1.99
Next-server-name: 10.12.1.100
Bootfile: Bootfile
Time server 10.12.1.99
Options:

<table>
<thead>
<tr>
<th>Code</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Ox01</td>
</tr>
</tbody>
</table>
marketing 10.1.1.17-10.1.1.178 255.255.255.0 0d:12h:0m
finance 10.1.2.8-10.1.2.178 255.255.255.0 0d:12h:0m
Router> show ip dhcp pool network marketing
Name Address range mask Lease
--
marketing 10.1.1.17-10.1.1.178 255.255.255.0 0d:12h:0m
Statistics:
All-range Available Free Pre-allocated Allocated Expired Declined
----------------- ----------------- --------- --------- --------- --------- -------
162 150 68 50 20 3 9
Default router: 10.1.1.1
Ping packets: enabled
DNS server: 10.12.1.99
Domain name: yahoo.com
NetBIOS name server: 10.12.1.90
NetBIOS node type: h-node
Next server: 10.12.1.99
Next-server-name: 10.12.1.100
Bootfile: Bootfile
Time server 10.12.1.99
Options:
Code Value

19 0x01

show ip dhcp binding

Use the show ip dhcp binding EXEC mode command to display the specific one or all the address bindings on the Dynamic Host Configuration Protocol (DHCP) Server.

Syntax

`show ip dhcp binding [ip-address]`

Parameters

ip-address—Specifies the IP address
Command Mode
EXEC mode

Example
The following example displays the DHCP Server binding address parameters.

Router> show ip dhcp binding
DHCP server enabled
The number of used (all types) entries is 5
The number of pre-allocated entries is 1
The number of allocated entries is 1
The number of expired entries is 1
The number of declined entries is 2

IP address Hardware Address Lease Expiration Type State
---------- ---------------- ------------- ------- ---------
1.16.1.11 00a0.9802.32de Feb 01 1998 dynamic allocated
1.16.3.23 02c7.f801.0422 12:00AM dynamic expired
1.16.3.24 02c7.f802.0422 dynamic declined
1.16.3.25 02c7.f803.0422 dynamic pre-allocated
1.16.3.26 02c7.f804.0422 dynamic declined

Router> show ip dhcp binding 1.16.1.11
DHCP server enabled
The number of used (all types) entries is 5
The number of pre-allocated entries is 1
The number of allocated entries is 1
The number of expired entries is 1
The number of declined entries is 2

IP address Hardware Address Lease Expiration Type State
---------- ---------------- ------------- ------- ---------
1.16.1.11 00a0.9802.32de Feb 01 1998 dynamic allocated
12:00 AM

Router> show ip dhcp binding 1.16.3.24
DHCP server enabled
The number of used (all types) entries is 5
The number of pre-allocated entries is 1
The number of allocated entries is 1
The number of expired entries is 1
The number of declined entries is 2

<table>
<thead>
<tr>
<th>IP address</th>
<th>Hardware Address</th>
<th>Lease Expiration</th>
<th>Type</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.16.3.24</td>
<td>02c7.f802.0422</td>
<td></td>
<td>dynamic</td>
<td>declined</td>
</tr>
</tbody>
</table>

The following table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>The host IP address as recorded on the DHCP Server.</td>
</tr>
<tr>
<td>Hardware address</td>
<td>The MAC address or client identifier of the host as recorded on the DHCP Server.</td>
</tr>
<tr>
<td>Lease expiration</td>
<td>The lease expiration date of the host IP address.</td>
</tr>
<tr>
<td>Type</td>
<td>The manner in which the IP address was assigned to the host.</td>
</tr>
<tr>
<td>State</td>
<td>The IP Address state.</td>
</tr>
</tbody>
</table>

show ip dhcp server statistics

Use the `show ip dhcp server statistics` EXEC command to display Dynamic Host Configuration Protocol (DHCP) Server statistics.

Syntax

`show ip dhcp server statistics`

Command Mode

EXEC mode
Example
The following example displays DHCP Server statistics

DHCP server enabled
The number of network pools is 6
The number of excluded pools is 2
The number of used (all types) entries is 7
The number of pre-allocated entries is 1
The number of allocated entries is 3
The number of static entries is 1
The number of dynamic entries is 1
The number of automatic entries is 1
The number of expired entries is 1
The number of declined entries is 2

show ip dhcp allocated
Use the `show ip dhcp allocated` EXEC mode command to display the specific one or all the allocated address on the Dynamic Host Configuration Protocol (DHCP) Server.

Syntax
show ip dhcp allocated `[ip-address]`

Parameters
`ip-address`—Specifies the IP address

Command Mode
EXEC mode

Example
The following example displays the DHCP Server allocated IP addresses.

Router> show ip dhcp allocated
DHCP server enabled
The number of allocated entries is 3
The number of static entries is 1
The number of dynamic entries is 1
The number of automatic entries is 1

<table>
<thead>
<tr>
<th>IP address</th>
<th>Hardware address</th>
<th>Lease expiration</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.11</td>
<td>00a0.9802.32de</td>
<td>Feb 01 1998 12:00 AM</td>
<td>Dynamic</td>
</tr>
<tr>
<td>172.16.3.253</td>
<td>02c7.f800.0422</td>
<td>Infinite</td>
<td>Automatic</td>
</tr>
<tr>
<td>172.16.3.254</td>
<td>02c7.f800.0422</td>
<td>Infinite</td>
<td>Static</td>
</tr>
</tbody>
</table>

Router> show ip dhcp allocated 172.16.1.11
DHCP server enabled
The number of allocated entries is 2
The number of static entries is 0
The number of dynamic entries is 2

<table>
<thead>
<tr>
<th>IP address</th>
<th>Hardware address</th>
<th>Lease expiration</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.11</td>
<td>00a0.9802.32de</td>
<td>Feb 01 1998 12:00 AM</td>
<td>Dynamic</td>
</tr>
</tbody>
</table>

Router> show ip dhcp allocated 172.16.3.254
DHCP server enabled
The number of allocated entries is 2
The number of static entries is 0
The number of dynamic entries is 2

<table>
<thead>
<tr>
<th>IP address</th>
<th>Hardware address</th>
<th>Lease expiration</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.3.254</td>
<td>02c7.f800.0422</td>
<td>Infinite</td>
<td>Static</td>
</tr>
</tbody>
</table>
The following table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>The host IP address as recorded on the DHCP Server.</td>
</tr>
<tr>
<td>Hardware address</td>
<td>The MAC address or client identifier of the host as recorded on the DHCP Server.</td>
</tr>
<tr>
<td>Lease expiration</td>
<td>The lease expiration date of the host IP address.</td>
</tr>
<tr>
<td>Type</td>
<td>The manner in which the IP address was assigned to the host.</td>
</tr>
</tbody>
</table>

show ip dhcp declined

Use the `show ip dhcp declined` EXEC command to display the specific one or all the declined addresses on the Dynamic Host Configuration Protocol (DHCP) server.

Syntax

`show ip dhcp declined [ip-address]`

Parameters

- **ip-address**—Specifies the IP address.

Command Mode

EXEC mode

Example

Router> show ip dhcp declined
DHCP server enabled

IP address Hardware address
172.16.1.11 00a0.9802.32de
172.16.3.254 02c7.f800.0422

Router> show ip dhcp declined 172.16.1.11
DHCP server enabled
show ip dhcp declined Field Descriptions

- **IP address**—The IP address of the host as recorded on the DHCP Server.
- **Hardware address**—The MAC address or client identifier of the host as recorded on the DHCP Server.

show ip dhcp expired

Use the `show ip dhcp expired` EXEC command to display the specific one or all the expired addresses on the Dynamic Host Configuration Protocol (DHCP) server.

Syntax

```
show ip dhcp expired [ip-address]
```

Parameters

- **ip-address**—Specifies the IP.

Command Mode

EXEC mode

Example

```
Router> show ip dhcp expired
DHCP server enabled

IP address Hardware address
172.16.1.11 00a0.9802.32de
172.16.1.12

Router> show ip dhcp expired 172.16.1.11
DHCP server enabled
```

FILE LOCATION: C:\Users\gina\Desktop\Check out_new\CLI Folders\Dell Contax CLI\files\DCHP_Server.fm
show ip dhcp expired Field Descriptions

- **IP address**—The IP address of the host as recorded on the DHCP Server.
- **Hardware address**—The MAC address or client identifier of the host as recorded on the DHCP Server.

show ip dhcp pre-allocated

Use the `show ip dhcp pre-allocated` EXEC command to display the specific one or all the pre-allocated addresses on the Dynamic Host Configuration Protocol (DHCP) server.

Syntax

`show ip dhcp pre-allocated [ip-address]`

Parameters

- **ip-address**—Specifies the IP.

Command Mode

EXEC mode

Examples

Router> show ip dhcp pre-allocated
DHCP server enabled

IP address Hardware address
172.16.1.11 00a0.9802.32de
172.16.3.254 02c7.f800.0422

Router> show ip dhcp pre-allocated 172.16.1.11
DHCP server enabled
show ip dhcp declined Field Descriptions

- **IP address**—The IP address of the host as recorded on the DHCP Server.
- **Hardware address**—The MAC address or client identifier of the host as recorded on the DHCP Server.
IP Routing Protocol-Independent Commands

ip route
Use the `ip route` Global Configuration mode command to configure static routes. Use the `no` form of this command to remove static routes.

Syntax
```
ip route prefix {mask | prefix-length} ip-address [metric distance] [reject-route]
no ip route prefix {mask | prefix-length} [ip-address]
```

Parameters
- `prefix`—Specifies the IP address that is the IP route prefix for the destination IP.
- `mask`—Specifies the network subnet mask of the IP address prefix.
- `prefix-length`—Specifies the number of bits that comprise the IP address prefix. The prefix length must be preceded by a forward slash (/). (Range: 0–32)
- `ip-address`—Specifies the IP address or IP alias of the next hop that can be used to reach the network.
- `metric distance`—Specifies an administrative distance. (Range: 1–255)
- `reject-route`—Stops routing to the destination network via all gateways.

Default Configuration
The default administrative distance is 1.
Command Mode
Global Configuration mode

Example
The following example configures a static route with prefix 172.16.0.0, prefix length 16, and gateway 131.16.1.1.

```
Console(config)# ip route 172.16.0.0 /16 131.16.1.1
```

ip routing
Use the `ip routing` Global Configuration mode command to enable IPv4 Routing. Use the `no` format of the command to disable IPv4 Routing.

Syntax
```
ip routing
no ip routing
```

Default Configuration
Enabled by default.

Command Mode
Global Configuration mode

Default Configuration
No routing is defined

show ip route
Use the `show ip route` EXEC mode command to display the current routing table state.

Syntax
```
show ip route [connected | static | {address address [mask | prefix-length] [longer-prefixes]}]
```
Parameters

- **connected**—Displays connected routing entries only.
- **static**—Displays static routing entries only.
- **address address**—Specifies the address for which routing information is displayed.
- **mask**—Specifies the network subnet mask of the IP address.
- **prefix-length**—Specifies the number of bits that comprise the IP address prefix. The prefix length must be preceded by a forward slash (/). (Range: 1–32)
- **longer-prefixes**—Specifies that the address and mask pair becomes a prefix and any routes that match that prefix are displayed.

Command Mode

EXEC mode

Example

The following example displays the current routing table state.

```
Console> show ip route
console# show ip route
Maximum Parallel Paths: 1 (1 after reset)
IP Forwarding: enabled

Codes: C - connected, S - static, D - DHCP

S 0.0.0.0/0 [1/1] via 10.5.234.254 119:9:27 vlan 1
C 10.5.234.0/24 is directly connected vlan 1

Console> show ip route address 172.1.1.0 255.255.255.0

Codes: C - connected, S - static, E - OSPF external, * - candidate default

S 172.1.1.0/24 [5/3] via 10.0.2.1, 17:12:19, Ethernet1
```
Console> `show ip route address 172.1.1.0 255.255.255.0 longer-prefixes`

Codes: C - connected, S - static, E - OSPF external

S 172.1.1.0/24 [5/3] via 10.0.2.1, 17:12:19, Ethernet1
S 172.1.1.1/32 [5/3] via 10.0.3.1, 19:51:18, Ethernet1

The following table describes the significant fields shown in the display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>The protocol that derived the route.</td>
</tr>
<tr>
<td>10.8.1.0/24</td>
<td>The remote network address.</td>
</tr>
<tr>
<td>[30/2000]</td>
<td>The first number in the brackets is the administrative distance of the</td>
</tr>
<tr>
<td></td>
<td>information source; the second number is the metric for the route.</td>
</tr>
<tr>
<td>via 10.0.1.2</td>
<td>The address of the next router to the remote network.</td>
</tr>
<tr>
<td>00:39:08</td>
<td>The last time the route was updated, in hours:minutes:seconds.</td>
</tr>
<tr>
<td>Ethernet 1</td>
<td>The interface through which the specified network can be reached.</td>
</tr>
</tbody>
</table>
ACL Commands

ip access-list
Use the ip access-list global configuration mode command to define an IPv4 access list and to place the device in IPv4 Access List Configuration mode. Use the no form of this command to remove the access list.

Syntax
ip access-list extended access-list-name
no ip access-list extended access-list-name

Parameters
- access-list-name—Name of the IPv4 access list.
- access-list-name—0–32 characters. (Use "" for empty string)

Default
No IPv4 access list is defined.

Command Mode
Global Configuration mode

User Guidelines
IPv4 ACL is defined by a unique name. IPv4 ACLs, IPv6 ACLs, MAC ACLs or policy maps cannot have the same name.

Example

console(config)# ip access-list extended server
permit (IP)

Use the permit IP Access-list Configuration mode command to set permit conditions for IPv4 access list.

Syntax

```
permit protocol {any | source source-wildcard} {any | destination destination-wildcard} [dscp number | precedence number] [time-range time-range-name]

permit icmp {any | source source-wildcard} {any | destination destination-wildcard} [any | icmp-type] [any | icmp-code] [dscp number | precedence number] [time-range time-range-name]

permit igmp {any | source source-wildcard} {any | destination destination-wildcard} [dscp number | precedence number] [time-range time-range-name]

permit tcp {any | source source-wildcard} {any | source-port/port-range} {any | destination destination-wildcard} {any | destination-port/port-range} [dscp number | precedence number] [match-all list-of-flags] [time-range time-range-name]

permit udp {any | source source-wildcard} {any | source-port/port-range} {any | destination destination-wildcard} {any | destination-port/port-range} [dscp number | precedence number] [match-all time-range-name] [time-range time-range-name]
```

Parameters

- **protocol**—The name or the number of an IP protocol. Available protocol names icmp, igmp, ip, tcp, egp, igrp, udp, hmp, rdp, idpr, ipv6, ipv6:rout, ipv6:frag, idrp, rsvp, gre, esp, ah, ipv6:icmp, eigrp, ospf, ipinip, pim, l2tp, isis. To match any protocol use the IP keyword. (Range: 0–255)

- **source**—Source IP address of the packet.

- **source-wildcard**—Wildcard bits to be applied to the source IP address. Use ones in the bit position that you want to be ignored.

- **destination**—Destination IP address of the packet.

- **destination-wildcard**—Wildcard bits to be applied to the destination IP address. Use ones in the bit position that you want to be ignored.
- **dscp number**—Specifies the DSCP value.
- **precedence number**—Specifies the IP precedence value.
- **icmp-type**—Specifies an ICMP message type for filtering ICMP packets. Enter a number or one of the following values: echo-reply, destination-unreachable, source-quench, redirect, alternate-host-address, echo-request, router-advertisement, router-solicitation, time-exceeded, parameter-problem, timestamp, timestamp-reply, information-request, information-reply, address-mask-request, address-mask-reply, traceroute, datagram-conversion-error, mobile-host-redirect, mobile-registration-request, mobile-registration-reply, domain-name-request, domain-name-reply, skip, photuris. (Range: 0–255)
- **icmp-code**—Specifies an ICMP message code for filtering ICMP packets. (Range: 0–255)
- **igmp-type**—IGMP packets can be filtered by IGMP message type. Enter a number or one of the following values: host-query, host-report, dvmrp, pim, cisco-trace, host-report-v2, host-leave-v2, host-report-v3. (Range: 0–255)
- **destination-port**—Specifies the UDP/TCP destination port. You can enter range of ports by using hyphen. E.g. 20 - 21. For TCP enter a number or one of the following values: bgp (179), chargen (19), daytime (13), discard (9), domain (53), drip (3949), echo (7), finger (79), ftp (21), ftp-data (20), gopher (70), hostname (42), irc (194), klogin (543), kshell (544), lpd (515), nntp (119), pop2 (109), pop3 (110), smtp (25), sunrpc (1110), syslog (514), tacacs-ds (49), talk (517), telnet (23), time (37), uucp (117), whois (43), www (80). For UDP enter a number or one of the following values: biff (512), bootpc (68), bootps (67), discard (9), dnsix (90), domain (53), echo (7), mobile-ip (434), nameserver (42), netbios-dgm (138), netbios-ns (137), on500-isakmp (4500), ntp (123), rip (520), snmp (161), snmptrap (162), sunrpc (111), syslog (514), tacacs-ds (49), talk (517), tftp (69), time (37), who (513), xdmcp (177). (Range: 0–65535)
- **source-port**—Specifies the UDP/TCP source port. Predefined port names are defined in the destination-port parameter. (Range: 0–65535)
• **match-all list-of-flags**—List of TCP flags that should occur. If a flag should be set, it is prefixed by “+”. If a flag should be unset, it is prefixed by “-”. Available options are +urg, +ack, +psh, +rst, +syn, +fin, -urg, -ack, -psh, -rst, -syn and -fin. The flags are concatenated to a one string. For example: +fin-ack.

• **time-range-name**—Name of the time range that applies to this permit statement. (Range: 1–32)

Default
No IPv4 access list is defined.

Command Mode
IP Access-list Configuration mode

User Guidelines
Enter IP-access list configuration mode by using the IP Access-list Global Configuration command.

After an access control entry (ACE) is added to an access control list, an implied **deny any any** condition exists at the end of the list. That is, if there are no matches, the packets are denied. However, before the first ACE is added, the list permits all packets.

The number of TCP/UDP ranges that can be defined in ACLs is limited. You can define up to #ASIC-specific ranges for TCP and up to #ASIC-specific ranges for UDP. If a range of ports is used for source port in ACE it would be not be counted again if it is also used for source port in another ACE. If a range of ports is used for destination port in ACE it would be not be counted again if it is also used for destination port in another ACE.

If a range of ports is used for source port it would be counted again if it is also used for destination port.

Example

```
console(config)# ip access-list extended server
console(config-ip-al)# permit ip 1.1.1.0 0.0.0.255 1.1.2.0 0.0.0.0
```
deny (IP)

Use the deny IP Access-list Configuration mode command to set deny conditions for IPv4 access list.

Syntax

deny protocol {any | source source-wildcard} {any | destination destination-wildcard} [dscp number | precedence number] [time-range time-range-name] [disable-port | log-input]

deny icmp {any | source source-wildcard} {any | destination destination-wildcard} [dscp number | precedence number] [time-range time-range-name] [disable-port | log-input]

deny igmp {any | source source-wildcard} {any | destination destination-wildcard} [dscp number | precedence number] [time-range time-range-name] [disable-port | log-input]

deny tcp {any | source source-wildcard} {any | destination destination-wildcard} [dscp number | precedence number] [match-all list-of-flags] [time-range time-range-name] [disable-port | log-input]

deny udp {any | source source-wildcard} {any | destination destination-wildcard} [dscp number | precedence number] [match-all time-range-name] [time-range time-range-name] [disable-port | log-input]

Parameters

• protocol—The name or the number of an IP protocol. Available protocol names: icmp, igmp, ip, tcp, egp, igp, udp, hmp, rdp, idpr, ipv6, ipv6:rout, ipv6:frag, idrp, rsvp, gre, esp, ah, ipv6:icmp, eigrp, ospf, ipinip, pim, l2tp, isis. To match any protocol use the IP keyword. (Range: 0–255)

• source—Source IP address of the packet.

• source-wildcard—Wildcard bits to be applied to the source IP address. Use 1s in the bit position that you want to be ignored.

• destination—Destination IP address of the packet.

• destination-wildcard—Wildcard bits to be applied to the destination IP address. Use 1s in the bit position that you want to be ignored.
• **dscp number**—Specifies the DSCP value.

• **precedence number**—Specifies the IP precedence value.

• **icmp-type**—Specifies an ICMP message type for filtering ICMP packets. Enter a number or one of the following values: echo-reply, destination-unreachable, source-quench, redirect, alternate-host-address, echo-request, router-advertisement, router-solicitation, time-exceeded, parameter-problem, timestamp, timestamp-reply, information-request, information-reply, address-mask-request, address-mask-reply, traceroute, datagram-conversion-error, mobile-host-redirect, mobile-registration-request, mobile-registration-reply, domain-name-request, domain-name-reply, skip, photuris. (Range: 0–255)

• **icmp-code**—Specifies an ICMP message code for filtering ICMP packets. (Range: 0–255)

• **igmp-type**—IGMP packets can be filtered by IGMP message type. Enter a number or one of the following values: host-query, host-report, dvmrp, pim, cisco-trace, host-report-v2, host-leave-v2, host-report-v3. (Range: 0–255)

• **destination-port**—Specifies the UDP/TCP destination port. You can enter range of ports by using hyphen. E.g. 20 - 21. For TCP enter a number or one of the following values: bgp (179), chargen (19), daytime (13), discard (9), domain (53), drip (3949), echo (7), finger (79), ftp (21), ftp-data (20), gopher (70), hostname (42), irc (194), klogin (543), kshell (544), lpd (515), nntp (119), pop2 (109), pop3 (110), smtp (25), sunrpc (1110), syslog (514), tacacs-ds (49), talk (517), telnet (23), time (37), uucp (117), whois (43), www (80). For UDP enter a number or one of the following values: biff (512), bootpc (68), bootps (67), discard (9), dnsix (90), domain (53), echo (7), mobile-ip (434), nameserver (42), netbios-dgm (138), netbios-ns (137), non500-isakmp (4500), ntp (123), rip (520), snmp (161), snmptrap (162), sunrpc (111), syslog (514), tacacs-ds (49), talk (517), tftp (69), time (37), who (513), xdmcp (177). (Range: 0–65535)

• **source-port**—Specifies the UDP/TCP source port. Predefined port names are defined in the destination-port parameter. (Range: 0–65535)
• match-all list-of-flags—List of TCP flags that should occur. If a flag should be set it is prefixed by “+”. If a flag should be unset it is prefixed by “-”. Available options are +urg, +ack, +psh, +rst, +syn, +fin, -urg, -ack, -psh, -rst, -syn and -fin. The flags are concatenated to a one string. For example: +fin-ack.

• time-range-name—Name of the time range that applies to this permit statement. (Range: 1–32)

• disable-port—The Ethernet interface is disabled if the condition is matched.

• log-input—Specifies sending an informational syslog message about the packet that matches the entry. Because forwarding is done in hardware and logging is done in software, if a large number of packets match a deny ACE containing a log-input keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged.

Default

No IPv4 access list is defined.

Command Mode

IP Access-list Configuration mode

User Guidelines

Enter IP-access list configuration mode by using the IP Access-list Global Configuration command.

After an access control entry (ACE) is added to an access control list, an implied deny any any condition exists at the end of the list. That is, if there are no matches, the packets are denied. However, before the first ACE is added, the list permits all packets.

The number of TCP/UDP ranges that can be defined in ACLs is limited. You can define up to #ASIC-specific ranges for TCP and up to #ASIC-specific ranges for UDP. If a range of ports is used for source port in ACE it would be not be counted again if it is also used for source port in another ACE. If a range of ports is used for destination port in ACE it would be not be counted again if it is also used for destination port in another ACE.

If a range of ports is used for source port, it would be counted again if it is also used for destination port.
Example

console(config)# ip access-list extended server
console(config-ip-al)# deny ip 1.1.1.0 0.0.0.255 1.1.2.0 0.0.0.0

ipv6 access-list
Use the ipv6 access-list global configuration mode command to define an IPv6 access list and to place the device in IPv6 access list configuration mode. Use the no form of this command to remove the access list.

Syntax
ipv6 access-list [access-list-name]
no ipv6 access-list [access-list-name]

Parameters
• access-list-name—Name of the IPv6 access list.
• access-list-name—0–32 characters (use "" for empty string)

Default
No IPv6 access list is defined.

Command Mode
Global Configuration mode

User Guidelines
IPv6 ACL is defined by a unique name. IPv4 ACLs, IPv6 ACLs, MAC ACLs or policy maps cannot have the same name.

Every IPv6 ACL has implicit permit icmp any any nd-ns any, permit icmp any any nd-na any, and deny ipv6 any any statements as its last match conditions. (The former two match conditions allow for ICMPv6 neighbor discovery.)

The IPv6 neighbor discovery process uses the IPv6 network layer service, therefore, by default, IPv6 ACLs implicitly allow IPv6 neighbor discovery packets to be sent and received on an interface. In IPv4, the Address Resolution Protocol (ARP), which is equivalent to the IPv6 neighbor
discovery process, uses a separate data link layer protocol; therefore, by
default, IPv4 ACLs implicitly allow ARP packets to be sent and received on an
interface.

Example

Switch (config)# ipv6 access-list acl1
Switch(config-ipv6-acl)# permit tcp 2001:0DB8:0300:0201::/64 any any 80

permit (IPv6)

Use the permit command in IPv6 Access-list Configuration mode to set
permit conditions for IPv6 access list.

Syntax

permit protocol {any | {source-prefix/length }{any | destination-
prefix/length } [dscp number | precedence number] [time-range time-range-
name]}

permit icmp {any | {source-prefix/length }{any | destination- prefix/length } {any|icmp-type} {any|icmp-code} [dscp number | precedence number] [time-range time-range-name]}

permit tcp {any | {source-prefix/length } {any | source-port/port-range} }
 {any | destination- prefix/length } {any | destination-port/port-range} [dscp number | precedence number] [match-all list-of-flags] [time-range time-range-name]}

permit udp {any | {source-prefix/length } {any | source-port/port-range} }
 {any | destination- prefix/length } {any | destination-port/port-range} [dscp number | precedence number] [time-range time-range-name]

Parameters

• protocol—The name or the number of an IP protocol. Available protocol
 names are: icmp (58), tcp (6) and udp (17). To match any protocol, use the
 IPv6 keyword. (Range: 0–255)
• **source-prefix/length**—The source IPv6 network or class of networks about which to set permit conditions. This argument must be in the form documented in RFC 3513 where the address is specified in hexadecimal using 16-bit values between colons.

• **destination-prefix/length**—The destination IPv6 network or class of networks about which to set permit conditions. This argument must be in the form documented in RFC 3513 where the address is specified in hexadecimal using 16-bit values between colons.

• **dscp number**—Specifies the DSCP value. (Range: 0–63)

• **precedence number**—Specifies the IP precedence value.

• **icmp-type**—Specifies an ICMP message type for filtering ICMP packets. Enter a number or one of the following values: destination-unreachable (1), packet-too-big (2), time-exceeded (3), parameter-problem (4), echo-request (128), echo-reply (129), mld-query (130), mld-report (131), mldv2-report (143), mld-done (132), router-solicitation (133), router-advertisement (134), nd-ns (135), nd-na (136). (Range: 0–255)

• **icmp-code**—Specifies an ICMP message code for filtering ICMP packets. (Range: 0–255)

• **destination-port**—Specifies the UDP/TCP destination port. You can enter a range of ports by using a hyphen. E.g. 20 - 21. For TCP enter a number or one of the following values: bgp (179), chargen (19), daytime (13), discard (9), domain (53), drip (3949), echo (7), finger (79), ftp (21), ftp-data (20), gopher (70), hostname (42), irc (194), klogin (543), kshell (544), lpd (515), mnt (119), pop (109), pop3 (110), smtp (25), syslog (514), tacacs (49), talk (517), telnet (23), time (37), uucp (117), whois (43), www (80). For UDP enter a number or one of the following values: biff (512), bootpc (68), bootps (67), discard (9), dnsix (90), domain (53), echo (7), mobile-ip (434), name server (42), netbios-dgm (138), netbios-ns (137), non500-isakmp (4500), ntp (123), rip (520), snmp (161), snmptrap (162), snr (111), syslog (514), tacacs (49), talk (517), tftp (69), time (37), who (513), xdmcp (177). (Range: 0–65535)

• **source-port**—Specifies the UDP/TCP source port. Predefined port names are defined in the destination-port parameter. (Range: 0–65535)
• **match-all list-of-flag**—List of TCP flags that should occur. If a flag should be set it is prefixed by “+”. If a flag should be unset it is prefixed by “-”. Available options are +urg, +ack, +psh, +rst, +syn, +fin, -urg, -ack, -psh, -rst, -syn and -fin. The flags are concatenated to a one string. For example: +fin-ack.

• **time-range-name**—Name of the time range that applies to this permit statement. (Range: 1–32)

Default
No IPv6 access list is defined.

Command Mode
IPv6 Access-list Configuration mode

User Guidelines
The number of TCP/UDP ranges that can be defined in ACLs is limited. You can define up to #ASIC-specific ranges for TCP and up to #ASIC-specific ranges for UDP. If a range of ports is used for a source port in ACE it would be not be counted again if it is also used for a source port in another ACE. If a range of ports is used for destination port in ACE it would be not be counted again if it is also used for destination port in another ACE.

If a range of ports is used for source port it would be counted again if it is also used for destination port.

Example

```
console(config)# ipv6 access-list server
console(config-ipv6-al)# permit tcp 3001::2/64 any any 80
```

deny (IPv6)
Use the **deny** command in IPv6 access list configuration mode to set permit conditions for IPv6 access list.
Syntax

deny protocol {any | {source-prefix/length} | {destination-prefix/length} [dscp number | precedence number] [time-range time-range-name] [disable-port | log-input]}

deny icmp {any | {source-prefix/length} | {destination-prefix/length} {any | icmp-type} | {any | icmp-code} [dscp number | precedence number] [time-range time-range-name] [disable-port | log-input]}

deny tcp {any | {source-prefix/length} | {any | source-port/port-range} }{any | destination-prefix/length} | {any | destination-port/port-range} [dscp number | precedence number] [match-all list-of-flags] [time-range time-range-name] [disable-port | log-input]

deny udp {any | {source-prefix/length} | {any | source-port/port-range} }{any | destination-prefix/length} | {any | destination-port/port-range} [dscp number | precedence number] [time-range time-range-name] [disable-port | log-input]

Parameters

• **protocol**—The name or the number of an IP protocol. Available protocol names are: icmp (58), tcp (6) and udp (17). To match any protocol use the IPv6 keyword. (Range: 0–255)

• **source-prefix/length**—The source IPv6 network or class of networks about which to set permit conditions. This argument must be in the form documented in RFC 3513 where the address is specified in hexadecimal using 16-bit values between colons.

• **destination-prefix/length**—The destination IPv6 network or class of networks about which to set permit conditions. This argument must be in the form documented in RFC 3513 where the address is specified in hexadecimal using 16-bit values between colons.

• **dscp number**—Specifies the DSCP value. (Range: 0–63)

• **precedence number**—Specifies the IP precedence value.

• **icmp-type**—Specifies an ICMP message type for filtering ICMP packets. Enter a number or one of the following values: destination-unreachable (1), packet-too-big (2), time-exceeded (3), parameter-problem (4), echo-
request (128), echo-reply (129), mld-query (130), mld-report (131),
mldv2-report (143), mld-done (132), router-solicitation (133), router-
advertisement (134), nd-ns (135), nd-na (136). (Range: 0–255)

- **icmp-code**—Specifies an ICMP message code for filtering ICMP packets.
 (Range: 0–255)

- **destination-port**—Specifies the UDP/TCP destination port. You can
 enter a range of ports by using a hyphen. E.g. 20 - 21. For TCP enter a
 number or one of the following values: bgp (179), chargen (19), daytime
 (13), discard (9), domain (53), drip (3949), echo (7), finger (79), ftp (21),
 ftp-data 20), gopher (70), hostname (42), irc (194), klogin (543), kshell
 (544), lpd (515), nntp (119), pop2 (109), pop3 (110), smtp (25), sunrpc
 (1110), syslog (514), talk (517), telnet (23), time (37), uucp
 (117), whois (43), www (80). For UDP enter a number or one of the
 following values: biff (512), bootpc (68), bootps (67), discard (9), dnsix
 (90), domain (53), echo (7), mobile-ip (434), nameserver (42), netbios-
 dgm (138), netbios-ns (137), non500-ismakmp (4500), ntp (123), rip (520),
 snmp (161), snmptrap (162), sunrpc (111), syslog (514), talk
 (517), tftp (69), time (37), who (513), xdmcp (177). (Range: 0–65535)

- **source-port**—Specifies the UDP/TCP source port. Predefined port names
 are defined in the destination-port parameter. (Range: 0–65535)

- **match-all list-of-flags**—List of TCP flags that should occur. If a flag
 should be set it is prefixed by “+”. If a flag should be unset it is prefixed by
 “-“. Available options are +urg, +ack, +psh, +rst, +syn, +fin, -urg, -ack, -
 psh, -rst, -syn and -fin. The flags are concatenated to a one string. For
 example: +fin-ack.

- **time-range-name**—Name of the time range that applies to this permit
 statement. (Range: 1–32)

- **disable-port**—The Ethernet interface would be disabled if the condition
 is matched.

- **log-input**—Specifies to send an informational syslog message about the
 packet that matches the entry. Because forwarding is done in hardware and
 logging is done in software, if a large number of packets match a deny ACE
 containing a log-input keyword, the software might not be able to match
 the hardware processing rate, and not all packets will be logged.
Default
No IPv6 access list is defined.

Command Mode
IPv6 Access-list Configuration mode

User Guidelines
The number of TCP/UDP ranges that can be defined in ACLs is limited. You can define up to #ASIC-specific ranges for TCP and up to #ASIC-specific ranges for UDP. If a range of ports is used for source port in ACE it would be not be counted again if it is also used for source port in another ACE. If a range of ports is used for a destination port in ACE it would be not be counted again if it is also used for a destination port in another ACE.

If a range of ports is used for source port it would be counted again if it is also used for destination port.

Example

```
console(config)# ipv6 access-list server
console(config-ipv6-al)# deny tcp 3001::2/64 any any 80
```

mac access-list
Use the **mac access-list** Global Configuration mode command to define a Layer 2 access list and to place the device in MAC Access List Configuration mode. Use the no form of this command to remove the access list.

Syntax
```
mac access-list extended access-list-name
no mac access-list extended access-list-name
```

Parameters
- **access-list-name**—Specifies the name of the MAC access list. (Range: access-list-name0–32 characters - use "" for empty string)

Default
No MAC access list is defined.
Command Mode
Global Configuration mode

User Guidelines
MAC ACLs are defined by a unique name. IPv4 ACLs, IPv6 ACLs, MAC ACLs or policy maps cannot have the same name.

Example

```
console(config)# mac access-list extended server1
```

permit (MAC)

Use the `permit` command in MAC Access List Configuration mode to set permit conditions for an MAC access list.

Syntax

```plaintext
permit   {any | source source-wildcard} {any | destination destination-wildcard} [eth-type 0 | aarp | amber | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000] [vlan vlan-id] [cos cos cos-wildcard] [time-range time-range-name]
```

Parameters

- **source**—Source MAC address of the packet.
- **source-wildcard**—Wildcard bits to be applied to the source MAC address. Use 1s in the bit position that you want to be ignored.
- **destination**—Destination MAC address of the packet.
- **destination-wildcard**—Wildcard bits to be applied to the destination MAC address. Use 1s in the bit position that you want to be ignored.
- **eth-type**—The Ethernet type in hexadecimal format of the packet.
- **vlan-id**—The VLAN ID of the packet. (Range: 1–4094)
- **cos**—The Class of Service of the packet. (Range: 0–7)
- **cos-wildcard**—Wildcard bits to be applied to the CoS.
- **time-range-name**—Name of the time range that applies to this permit statement. (Range: 1–32)
Default
No MAC access list is defined.

Command Mode
MAC Access-list Configuration mode

User Guidelines
Enter MAC-access list configuration mode by using the MAC Access-list Global Configuration command.

After an access control entry (ACE) is added to an access control list, an implied **deny any any** condition exists at the end of the list. That is, if there are no matches, the packets are denied. However, before the first ACE is added, the list permits all packets.

Example

```
console(config)# mac access-list extended server1
console(config-mac-al)# permit 00:00:00:00:00:01 00:00:00:00:ff any
```

service-acl input

Use the **service-acl input** command in Interface Configuration mode to control access to an interface. Use the **no** form of this command to remove the access control.

Syntax

```
service-acl input acl-name1 [acl-name2]
no service-acl input
```

Parameters

- **acl-name**—Specifies an ACL to apply to the interface. See the usage guidelines. (Range: acl-name 0–32 characters. Use "" for empty string)

Default
No ACL is assigned.
Command Mode
Interface Configuration (Ethernet, Port-Channel) mode.

User Guidelines
IPv4 ACLs and IPv6 ACLs can be bound together to an interface.
MAC ACLs cannot be bound on an interface with an IPv4 ACL or IPv6 ACL.
Two ACLs of the same type cannot be added to a port.
An ACL cannot be added to a port that is already bounded to an ACL, without first removing the current ACL and binding the two ACLs together.

Example
```
console(config)# mac access-list extended server
console(config-mac-al)# permit 00:00:00:00:00:01 00:00:00:00:ff any
console(config-mac-al)# exit
console(config)# interface gi1/0/1
console(config-if)# service-acl input server
```

service-acl output
Use the **service-acl output** command in Interface Configuration mode to control access to an interface on the egress (transmit path). Use the no form of this command to remove the access control.

Syntax
```
service-acl output acl-name1 [acl-name2]
```
```
no service-acl output
```

Parameters
- acl-name—Specifies an ACL to apply to the interface. See the Usage Guidelines. Range: acl-name –32 characters. Use "" for empty string

Default
No ACL is assigned.
Command Mode
Interface Configuration (Ethernet, Port-Channel) mode.

User Guidelines
The deny rule actions: log-input and disable-port are not supported. Using these actions will result in an error.

IPv4 ACLs and IPv6 ACLs can be bound together on an interface.
A MAC ACL cannot be bound on an interface together with an IPv4 ACL or IPv6 ACL.
Two ACLs of the same type cannot be added to a port.
An ACL cannot be added to a port that is already bound to an ACL, without first removing the current ACL and binding the two ACLs together

Example

console(config)# mac access-list extended server
console(config-mac-al)# permit 00:00:00:00:00:01 00:00:00:00:ff any
console(config-mac-al)# exit
console(config)# interface gi1/0/1
console(config-if)# service-acl output server

service-acl input block
Use the service-acl input block Interface Configuration mode commands to discard packets that are classified to specific protocols. Use the no form of those commands to disable discarding of the packets.

Syntax
service-acl input protocol1 [protocol2 ... protocol6]
no service-acl input

Parameters
protocol—Specifies a protocol to filter. Available values are: blockcdp, blockvtp, blockdtp, blockudld, blockpagp, blocksstp, and blockall.
Default Configuration
No protocol is defined

Command Mode
Interface Configuration ((Ethernet, Port-Channel) mode

User Guidelines
To define multiple protocols on the same interface, define them in the same command.

To change configuration of the protocol filtering for an interface, first remove the current assignment of protocol filtering assignment, and then assign the new configuration of the protocol filtering.

If Proprietary Protocol Filtering rules are assigned on an interface, you cannot assign ACL or Policy Map or Security suite rules to that interface and enable 802.1X Dynamic Policy Assignment to that interface.

If ACL or Policy Map or Security suite rules are assigned to an interface or 802.1X Dynamic Policy Assignment is enabled for an interface, you cannot assign Proprietary Protocol Filtering rules to that interface.

The following table defines the DA and protocol types of the packets that are subject for discarding per each command:

<table>
<thead>
<tr>
<th>Command</th>
<th>Destination Address</th>
<th>Protocol Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>blockcdp</td>
<td>0100.0ccc.cccc</td>
<td>0x2000</td>
</tr>
<tr>
<td>blockvtp</td>
<td>0100.0ccc.cccc</td>
<td>0x2003</td>
</tr>
<tr>
<td>blockdtp</td>
<td>0100.0ccc.cccc</td>
<td>0x2004</td>
</tr>
<tr>
<td>blockudld</td>
<td>0100.0ccc.cccc</td>
<td>0x0111</td>
</tr>
<tr>
<td>blockpdpp</td>
<td>0100.0ccc.cccc</td>
<td>0x0104</td>
</tr>
<tr>
<td>blockstp</td>
<td>0100.0ccc.cccc</td>
<td>-</td>
</tr>
<tr>
<td>blockall</td>
<td>0100.0ccc.cccc0 - 0100.0ccc.cccf</td>
<td>-</td>
</tr>
</tbody>
</table>

Example

Console (Config-if)# service-acl input blockcdp blockvtp
time-range

Use the `time-range` global configuration mode command to enable Time-Range Configuration mode and define time ranges for functions (such as access lists). Use the `no` form of this command to remove the time range configuration.

Syntax

`time-range time-range-name`

`no time-range time-range-name`

Parameters

- **time-range-name**—Specifies the name for the time range. (Range: 1–32 characters)

Default

No time range is defined

Command Mode

Global Configuration mode

User Guidelines

After the `time-range` command, use the periodic time-range configuration command and the absolute time-range configuration command. Multiple periodic commands are allowed in a time range. Only one absolute command is allowed.

If a time-range command has both absolute and periodic values specified, the periodic items are evaluated only after the absolute start time is reached, and are not further evaluated after the absolute end time is reached.

All time specifications are interpreted as local time.

To ensure that the time range entries take effect at the desired times, the software clock should be set by the user or by SNTP. If the software clock is not set by the user or by SNTP, time range ACEs are not activated.

The user cannot delete a time-range that is bounded to an ACE or to any other feature.
Example

Console (config)# time-range http-allowed
Console (config-time-range)# absolute start 12:00 1 jan 2005 end 12:00 31 dec 2005
Console (config-time-range)# periodic monday 8:00 to friday 20:00

absolute

Use the `absolute` Time-range Configuration mode command to specify an absolute time when a time range is in effect. Use the `no` form of this command To remove the time limitation.

Syntax

`absolute start hh:mm day month year`

`no absolute start`

`absolute end hh:mm day month year`

`no absolute end`

Parameters

- `start`—Absolute time and date that the permit or deny statement of the associated access list starts going into effect. If no start time and date are specified, the permit or deny statement is in effect immediately.

- `end`—Absolute time and date that the permit or deny statement of the associated access list is no longer in effect. If no end time and date are specified, the permit or deny statement is in effect indefinitely.

- `hh:mm`—Time in hours (military format) and minutes (Range: 0–23, mm: 0–5)

- `day`—Day (by date) in the month. (Range: 1–31)

- `month`—Month (first three letters by name). (Range: Jan...Dec)

- `year`—Year (no abbreviation) (Range: 2000–2097)

Default

There is no absolute time when the time range is in effect.
Command Mode

Time-Range Configuration mode

periodic

Use the **periodic** Time-Range Configuration mode command to specify a recurring (weekly) time range for functions that support the time-range feature. Use the **no** form of this command to remove the time limitation.

Syntax

- **periodic** *day-of-the-week hh:mm to day-of-the-week hh:mm*
- **no periodic** *day-of-the-week hh:mm to day-of-the-week hh:mm*
- **periodic** *list hh:mm to hh:mm day-of-the-week1 [day-of-the-week2… day-of-the-week7]*
- **no periodic** *list hh:mm to hh:mm day-of-the-week1 [day-of-the-week2… day-of-the-week7]*
- **periodic** *list hh:mm to hh:mm all*
- **no periodic** *list all hh:mm to hh:mm all*

Parameters

- **day-of-the-week**—The starting day that the associated time range is in effect. The second occurrence is the ending day the associated statement is in effect. The second occurrence can be the following week (see description in the User Guidelines). Possible values are: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, and Sunday.

- **hh:mm**—The first occurrence of this argument is the starting hours:minutes (military format) that the associated time range is in effect. The second occurrence is the ending hours:minutes (military format) the associated statement is in effect. The second occurrence can be at the following day (see description in the User Guidelines). (Range: 0–23, mm: 0–59)

- **list day-of-the-week1**—Specifies a list of days that the time range is in effect.
Default
There is no periodic time when the time range is in effect.

Command Mode
Time-range Configuration mode

User Guidelines
The second occurrence of the day can be at the following week. E.g. Thursday–Monday means that the time range is effective on Thursday, Friday, Saturday, Sunday, and Monday.

The second occurrence of the time can be at the following day. E.g. “22:00–2:00”.

show time-range
Use the show time-range EXEC command To display the time range configuration.

Syntax
show time-range time-range-name

Parameters
- time-range-name—Specifies the name of the time range. (Range: 1–32)

Command Mode
EXEC mode

Example
Console# show time-range
http-allowed

absolute start 12:00 1 jan 2005
absolute end 12:00 31 dec 2005
periodic monday 8:00 to friday 20:00
show access-lists

Use the show access-lists Privileged EXEC mode command to display access control lists (ACLs) configured on the switch.

Syntax

show access-lists [name | access-list-number]

show access-lists time-range-active [name]

Parameters

- **name**—Specifies the name of the ACL.
- **access-list-number**—Specifies the number of the IP standard ACL list.
- **time-range-active**—Shows only the Access Control Entries (ACEs) that their time-range is currently active (including those that are not associated with time-range).

Command Mode

Privileged EXEC mode

Example

Switch# show access-lists
Router# show access-lists
Standard IP access list 1
deny any
Standard IP access list 2
deny 192.168.0.0, wildcard bits 0.0.0.255
permit any
Standard IP access list 3
deny 0.0.0.0
deny 192.168.0.1, wildcard bits 0.0.0.255
permit any
Standard IP access list 4
permit 0.0.0.0
permit 192.168.0.2, wildcard bits 0.0.0.255
Extended IP access list ACL1
permit 234 172.30.40.1 0.0.0.0 any
permit 234 172.30.8.8 0.0.0.0 any

Extended IP access list ACL2
permit 234 172.30.19.1 0.0.0.255 any time-range weekdays
permit 234 172.30.23.8 0.0.0.255 any time-range weekends

Switch# show access-lists time-range-active
Extended IP access list ACL1
permit 234 172.30.40.1 0.0.0.0 any
permit 234 172.30.8.8 0.0.0.0 any

Extended IP access list ACL2
permit 234 172.30.19.1 0.0.0.255 any time-range weekdays

Switch# show access-lists

show interfaces access-lists

Use the **show interfaces access-lists** Privileged EXEC mode command to display access lists applied on interfaces.

Syntax

```
show interfaces access-lists [interface-id]
```

Parameters

- `interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port, Port-channel or VLAN.

Command Mode

Privileged EXEC mode
Example

```
Example

Console# show interfaces access-lists
Interface    ACL
----------    -------
gi1/0/1      Ingress: ip,ipv6
              Egress : mac
gi1/0/4      Egress : mac
gi1/0/5      Ingress: ip
```

clear access-lists counters

Use the Clear Access-lists Counters Privileged EXEC mode command to clear access-lists counters.

Syntax
```
clear access-lists counters [interface-id]
```

Parameters
- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode
Privileged EXEC mode

Example
```
Example

console# clear access-lists counters gi1/0/1
```

show interfaces access-lists counters

Use the show interfaces access-lists counters Privileged EXEC mode command to display Access List counters.
Syntax

```
show interfaces access-lists counters  [ ethernet interface | port-channel port-channel-number ]
```

Parameters

`interface-id`—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port or Port-channel.

Command Mode

Privileged EXEC mode

User Guidelines

The counter of deny ACE hits counts only ACEs with the log-input keyword. Because forwarding is done in hardware and counting is done in software, if a large number of packets match a deny ACE containing a log-input keyword, the software might not be able to match the hardware processing rate, and some packets might not be counted.

Example

```
console# show interfaces access-lists counters
Interface            Deny ACE hits
---------------------- ------------
  gi1/0/1             79
  gi1/0/2             9
  gi1/0/3             0
Number of hits that were counted in global counter (due to lack of resources) =19
```
Quality of Service (QoS) Commands

qos
Use the `qos` Global Configuration mode command to enable Quality of Service (QoS) on the device. Use the `no` form of this command to disable QoS on the device.

Syntax
```
qos [basic | advanced ]
no qos
```

Parameters
- `basic`—QoS basic mode. If no option is specified, the QoS mode defaults to the basic mode.
- `advanced`—Specifies the QoS advanced mode, which enables the full range of QoS configuration.

Default Configuration
If the `qos` command is entered without any parameters, the QoS `basic` mode is enabled.

Command Mode
Global Configuration mode

Example
The following example enables the QoS basic mode on the device.

```
Console(config)# qos basic
```
show qos

Use the `show qos` EXEC mode command to display the Quality of Service (QoS) mode for the device. The trust mode is displayed for the QoS basic mode.

Syntax

```
show qos
```

Parameters

This command has no arguments or keywords.

Default Configuration

Disabled Command Mode

Command Mode

EXEC mode

User Guidelines

Trust mode is displayed if QoS is enabled in basic mode.

Example

The following example displays QoS attributes when QoS is enabled in basic mode on the device and the advanced mode is supported.

```
Console> show qos
Qos: basic
Basic trust: dscp
```

The following example displays QoS attributes when QoS is enabled in basic mode on the device and the advanced mode is not supported.

```
Console> show qos
```
Qos: disable
Trust: dscp

class-map
Use the class-map Global Configuration mode command to create or modify a class map and enters the Class-map Configuration mode. Use the no form of this command to delete a class map.

Syntax
class-map class-map-name [match-all | match-any]
no class-map class-map-name

Parameters
- class-map-name—Specifies the class map name.
- match-all—Performs a logical AND of all the matching statements under this class map. All match criteria in this class map must be matched.
- match-any—Performs a logical OR of all the matching statements under this class map. One or more match criteria in this class map must be matched.

Default Configuration
If neither match-all nor match-any is specified, the match-all parameter is selected by default.

Command Mode
Global Configuration mode

User Guidelines
The class-map Global Configuration mode command specifies the name of the class map for which class-map match criteria are to be created or modified and enters class-map configuration mode. In this mode, up to two match commands can be entered to configure the match criteria for this class. When using two match commands, each has to point to a different type of ACL (one IP and one MAC). The classification is by first match, therefore, the
order is important. The class-map command and its subcommands are used to define packet classification, marking, and aggregate policing as part of a globally named service policy applied on a per-interface basis. If there is more than one match statement in a match-all class map and if there is a repetitive classification field in the participating ACLs, an error message is generated.

After entering the Quality of Service (QoS) Class-map Configuration mode, the following configuration commands are available:

exit: Exits the QoS Class-map Configuration mode.

match: Configures classification criteria.

no: Removes a match statement from a class map.

Example
The following example creates a class map called Class1 and configures it to check that packets match all classification criteria in the class map match statement.

```
Console(config) # class-map class1 match-all
Console(config-cmap) #
```

show class-map
The show class-map EXEC mode command displays all class maps.

Syntax
```
show class-map [class-map-name]
```

Parameters
class-map-name—Specifies the name of the class map to be displayed.

Command Mode
EXEC mode

Example
The following example displays the class map for Class1.

```
```
Console> `show class-map class1`

Class Map match-any class1 (id4)
Match Ip dscp 11 21

match

Use the `match` Class-map Configuration mode command to define the match criteria for classifying traffic. Use the `no` form of this command to delete the match criteria.

Syntax

```
match access-group acl-name
```

```
no match access-group acl-name
```

Parameters

- `acl-name`—Specifies the MAC or IP Access Control List (ACL) name.

Default Configuration

No match criterion is supported.

Command Mode

Class-map Configuration mode.

Example

The following example defines the match criterion for classifying traffic as an access group called Enterprise in a class map called Class1.

```
Console(config)# class-map class1
Console(config-cmap)# match access-group enterprise
```

policy-map

Use the `policy-map` Global Configuration mode command to creates a policy map and enter the Policy-map Configuration mode. Use the `no` form of this command to delete a policy map.
Syntax
policy-map policy-map-name
no policy-map policy-map-name

Parameters
policy-map-name—Specifies the policy map name.

Default Configuration
The default behavior of the policy map is to set the DSCP value to 0 if the packet is an IP packet, and to set the CoS value to 0 if the packet is tagged.

Command Mode
Global Configuration mode

User Guidelines
Use the policy-map Global Configuration mode command to specify the name of the policy map to be created, added to, or modified before configuring policies for classes whose match criteria are defined in a class map.

Entering the policy-map Global Configuration mode command also enables configuring or modifying the class policies for that policy map. Class policies in a policy map can be configured only if the classes have match criteria defined for them. Use the class-map Global Configuration mode and match Class-map Configuration mode commands to configure the match criteria for a class.

The match criteria is for a class. Only one policy map per interface per direction is supported. The same policy map can be applied to multiple interfaces and directions.

Example
The following example creates a policy map called Policy1 and enters the Policy-map Configuration mode.

```
Console(config)# policy-map policy1
Console(config-pmap)#
```
class

The class Policy-map Configuration mode command defines a traffic classification and enters the Policy-map Class Configuration mode. Use the no form of this command to detach a class map from the policy map.

Syntax
class class-map-name [access-group acl-name]
no class class-map-name

Parameters
- class-map-name—Specifies the name of an existing class map. If the class map does not exist, a new class map is created under the specified name.
- acl-name—Specifies the name of an IP or MAC Access Control List (ACL).

Default Configuration
No class map is defined for the policy map.

Command Mode
Policy-map Configuration mode

User Guidelines
Use the policy-map Global Configuration mode command to identify the policy map and to enter the Policy-map Configuration mode before using the class command. After specifying a policy map, a policy for new classes can be configured or a policy for any existing classes in that policy map can be modified.

Use the service-policy Interface Configuration (Ethernet, Port-channel) mode command to attach a policy map to an interface. Use an existing class map to attach classification criteria to the specified policy map and use the access-group parameter to modify the classification criteria of the class map.

If this command is used to create a new class map, the name of an IP or MAC ACL must also be specified with the access-group parameter.
Example
The following example defines a traffic classification called Class1 with an access-group called Enterprise. The class is in a policy map called policy1.

```
Console(config)# policy-map policy1
Console(config-pmap)# class class1 access-group enterprise
```

show policy-map
Use the `show policy-map` EXEC mode command to display all policy maps or a specific policy map.

Syntax
```
show policy-map [policy-map-name]
```

Parameters
- `policy-map-name`—Specifies the policy map name.

Command Mode
EXEC mode

Example
The following example displays all policy maps.

```
Console> show policy-map
Policy Map policy1
  class class1
  set Ip dscp 7
Policy Map policy2
  class class 2
  police 96000 48000 exceed-action drop
  class class3
  police 124000 96000 exceed-action policed-dscp-transmit
```
trust

Use the `trust` Policy-map Class Configuration mode command to configure the trust state, which selects the value that QoS uses as the source of the internal DSCP value. Use the `no` form of this command to return to the default trust state.

Syntax

```
trust cos-dscp
no trust
```

Parameters

`cos-dscp`—Specifies that if the packet is IP, then QoS acts as for `dscp`; otherwise QoS acts as for `cos`.

Default Configuration

The default state is untrusted.

If the `trust` command is specified with no parameters, the default mode is `dscp`.

Command Mode

Policy-map Class Configuration mode

User Guidelines

Use this command to distinguish the Quality of Service (QoS) trust behavior for certain traffic from others. For example, incoming traffic with certain DSCP values can be trusted. A class map can be configured to match and trust the DSCP values in the incoming traffic.

Trust values set with this command supersede trust values set on specific interfaces with the `qos trust` Interface Configuration mode command.

The `trust` command and the `set` Policy-map Class Configuration mode command are mutually exclusive within the same policy map.

Policy maps that contain `set` or `trust` Policy-map Class Configuration mode commands cannot be attached, or that have Access Control List (ACL) classification to an egress interface by using the `service-policy` Interface Configuration mode command.
If specifying trust cos, QoS maps a packet to a queue, the received or default port CoS value, and the CoS-to-queue map.

If specifying trust dscp, QoS maps the packet using the DSCP value from the ingress packet.

If specifying tcp-udp-port, QoS maps the packet to a queue using the TCP/UDP port value from the ingress packet and the tcp-udp-port-to-queue map.

Example
The following example creates an ACL, places it into a class map, places the class map into a policy map and configures the trust state using the DSCP value in the ingress packet.

```
console(config)# mac access-list extended m1
console(config-mac-al)# permit any any
console(config-mac-al)# exit
console(config)# class-map c1
console(config-cmap)# match access-group m1
console(config-cmap)# exit
console(config)# policy-map p1
console(config-pmap)# class c1
console(config-pmap-c)# trust cos-dscp
```

set
Use the set Policy-map Class Configuration mode command to set new values in the IP packet.

Syntax
set {dscp new-dscp | queue queue-id | cos new-cos}

Parameters
- dscp new-dscp—Specifies the new DSCP value for the classified traffic. (Range: 0–63)
• **queue** **queue-id**—Specifies the explicit queue id to set the egress queue.

• **cos** **new-cos**—Specifies the new User priority to be marked in the packet. (Range: 0–7)

Command Mode
Policy-map Class Configuration mode

User Guidelines
This command and the **trust** Policy-map Class Configuration mode command are mutually exclusive within the same policy map.

Policy maps that contain **set** or **trust** Policy-map Class Configuration mode commands or that have ACL classifications cannot be attached to an egress interface using the Service-policy Interface Configuration mode command.

To return to the Policy-map Configuration mode, use the **exit** command. To return to the Privileged EXEC mode, use the **end** command.

Example
The following example creates an ACL, places it into a class map, places the class map into a policy map and sets the DSCP value in the packet to 56 for classes in policy map called p1.

```console
console(config)# mac access-list extended m1
console(config-mac-al)# permit any any
console(config-mac-al)# exit
console(config)# class-map c1
console(config-cmap)# match access-group m1
console(config-cmap)# exit
console(config)# policy-map p1
console(config-pmap)# class c1
Console(config-pmap-c)# set dscp 56
```

police
Use the **police** Policy-map Class Configuration mode command to define the policer for classified traffic. Use the **no** form of this command to remove a policer.
Syntax
police committed-rate-kbps committed-burst-byte [exceed-action {drop | policed-dscp-transmit}]}

no police

Parameters
• committed-rate-kbps—Specifies the average traffic rate (CIR) in kbits per second (bps). (Range: 3–12582912)
• committed-burst-byte—Specifies the normal burst size (CBS) in bytes. (Range: 3000–19173960)
• exceed-action {drop | policed-dscp-transmit}—Specifies the action taken when the rate is exceeded. The possible values are:
 • drop—Drops the packet.
 • policed-dscp-transmit—Remarks the packet DSCP, according to the policed-DSCP map as configured by the qos map policed-dscp Global Configuration mode command.

Command Mode
Policy-map Class Configuration mode

User Guidelines
Policing uses a token bucket algorithm. CIR represents the speed with which the token is removed from the bucket. CBS represents the depth of the bucket.

Example
The following example defines a policer for classified traffic. When the traffic rate exceeds 124,000 kbps or the normal burst size exceeds 9600 bytes, the packet is dropped. The class is called Class1 and is in a policy map called Policy1.

```
Console(config)# policy-map policy1
Console(config-pmap)# class class1
Console(config-pmap-c)# police 124000 9600 exceed-action drop
```
service-policy

Use the service-policy Interface Configuration (Ethernet, VLAN, Port-channel) mode command to apply a policy map to the input of a particular interface. Use the no form of this command to detach a policy map from an interface.

Syntax

```
service-policy input policy-map-name
no service-policy input
```

Parameters

`policy-map-name`—Specifies the policy map name to apply to the input interface. (Length: 1–32 characters)

Command Mode

Interface Configuration (Ethernet, VLAN, Port-channel) mode

User Guidelines

Only one policy map per interface per direction is supported.

Example

The following example attaches a policy map called Policy1 to the input interface.

```
Console(config-if)# service-policy input policy1
```

qos aggregate-policer

Use the qos aggregate-policer Global Configuration mode command to define the policer parameters that can be applied to multiple traffic classes. Use the no form of this command to remove an existing aggregate policer.

Syntax

```
qos aggregate-policer aggregate-policer-name committed-rate-kbps excess-burst-byte [exceed-action {drop | policed-dscp-transmit}]
```
no qos aggregate-policer aggregate-policer-name

Parameters

- aggregate-policer-name—Specifies the aggregate policer name.
- committed-rate-kbps—Specifies the average traffic rate (CIR) in kbits per second (kbps). (Range: 3–57982058)
- excess-burst-byte—Specifies the normal burst size (CBS) in bytes. (Range: 3000–19173960)
- exceed-action {drop | policed-dscp-transmit}—Specifies the action taken when the rate is exceeded. The possible values are:
 - drop—Drops the packet.
 - policed-dscp-transmit—Remarks the packet DSCP.

Default Configuration

No aggregate policer is defined.

Command Mode

Global Configuration mode

User Guidelines

Define an aggregate policer if the policer is shared with multiple classes.

Policers in one port cannot be shared with other policers in another device. Traffic from two different ports can be aggregated for policing purposes.

An aggregate policer can be applied to multiple classes in the same policy map. An aggregate policer cannot be applied across multiple policy maps.

An aggregate policer cannot be deleted if it is being used in a policy map. The no police aggregate Policy-map Class Configuration mode command must first be used to delete the aggregate policer from all policy maps before using the no mls qos aggregate-policer command.

Policing uses a token bucket algorithm. CIR represents the speed with which the token is removed from the bucket. CBS represents the depth of the bucket.
Example
The following example defines the parameters of a policer called Policer1 that can be applied to multiple classes in the same policy map. When the average traffic rate exceeds 124,000 kbps or the normal burst size exceeds 9600 bytes, the packet is dropped.

Console(config)# qos aggregate-policer policer1 124000 9600 exceed-action drop

show qos aggregate-policer
Use the show qos aggregate-policer EXEC mode command to display the aggregate policer parameter.

Syntax
show qos aggregate-policer [aggregate-policer-name]

Parameters
aggregate-policer-name—Specifies the aggregate policer name.

Command Mode
EXEC mode

Example
The following example displays the parameters of the aggregate policer called Policer1.

Console> show qos aggregate-policer policer1
aggregate-policer policer1 96000 4800 exceed-action drop
not used by any policy map

police aggregate
Use the police aggregate Policy-map Class Configuration mode command to apply an aggregate policer to multiple classes within the same policy map. Use
the **no** form of this command to remove an existing aggregate policer from a policy map.

Syntax
```
police aggregate *aggregate-policer-name*

no police aggregate *aggregate-policer-name*
```

Parameters
aggregate-policer-name—Specifies the aggregate policer name.

Command Mode
Policy-map Class Configuration mode

User Guidelines
An aggregate policer can be applied to multiple classes in the same policy map. An aggregate policer cannot be applied across multiple policy maps or interfaces.

Use the **exit** command to return to the Policy-map Configuration mode. Use the **end** command to return to the Privileged EXEC mode.

Example
The following example applies the aggregate policer called Policer1 to a class called Class1 in a policy map called Policy1.

```
Console(config)# policy-map policy1
Console(config-pmap)# class class1
Console(config-pmap-c)# police aggregate policer1
```

wrr-queue cos-map

Use the **wrr-queue cos-map** Global Configuration mode command maps Class of Service (CoS) values to a specific egress queue. Use the **no** form of this command to restore the default configuration.

Syntax
```
wrr-queue cos-map queue-id cos0 ... cos7
```
no wrr-queue cos-map [queue-id]

Parameters

- queue-id—Specifies the queue number to which the CoS values are mapped.
- cos0 ... cos7—Specifies up to 7 CoS values to map to the specified queue number. (Range: 1–7)

Default Configuration

The default CoS value mapping to 8 queues is as follows:

- CoS value 0 is mapped to queue 3.
- CoS value 1 is mapped to queue 1.
- CoS value 2 is mapped to queue 2.
- CoS value 3 is mapped to queue 4.
- CoS value 4 is mapped to queue 5.
- CoS value 5 is mapped to queue 6.
- CoS value 6 is mapped to queue 7.
- CoS value 7 is mapped to queue 8.

Command Mode

Global Configuration mode

User Guidelines

Use this command to distribute traffic to different queues, where each queue is configured with different weighted round robin (WRR) and Weighted Random Early Detection (WRED) parameters.

The expedite queues are enabled using the priority-queue out Interface Configuration mode commands

Example

The following example maps CoS value 7 to queue 2.

```
Console(config)# wrr-queue cos-map 2 7
```
wrr-queue bandwidth

Use the `wrr-queue bandwidth` global Configuration command to assign Weighted Round Robin (WRR) weights to egress queues. The weight ratio determines the frequency at which the packet scheduler removes packets from each queue. Use the `no` form of this command to restore the default configuration.

Syntax

```plaintext
wrr-queue bandwidth weight1 weight2 ... weight_n
no wrr-queue bandwidth
```

Parameters

- `weight1 weight2 ... weight_n`—Specifies the ratio of the bandwidth assigned by the WRR packet scheduler to the packet queues. Separate values by a space. (Range: 0–255)

Default Configuration

wrr is disabled by default. The default wrr weight is '1' for all queues.

Command Mode

Global Configuration mode

User Guidelines

The ratio for each queue is defined as the queue weight divided by the sum of all queue weights (the normalized weight). This sets the bandwidth allocation of each queue.

A weight of 0 indicates that no bandwidth is allocated for the same queue, and the shared bandwidth is divided among the remaining queues. It is not recommended to set the weight of a queue to a 0 as it might stop transmission of control-protocols packets generated by the device.

All eight queues participate in the WRR, excluding the expedite queues, in which case the corresponding weight is ignored (not used in the ratio calculation). The expedite queue is a priority queue; it is serviced until empty before the other queues are serviced. The expedite queues are enabled by using the `priority-queue out` Interface Configuration mode command.
Example
The following WRR queues.

```
Console(config)# wrr-queue bandwidth 6 6 6 6 6 6 6
```

priority-queue out num-of-queues

Use the `priority-queue out num-of-queues` Global Configuration mode command to configure the number of expedite queues. Use the `no` form of this command to restore the default configuration.

Syntax

```
priority-queue out num-of-queues number-of-queues
no priority-queue out num-of-queues
```

Parameters

`number-of-queues`—Specifies the number of expedite queues. Expedite queues have higher indexes. (Range: 0–8). If `number-of-queues = 0`, all queues are assured forwarding. If `number-of-queues = 8`, all queues are expedited.

Default Configuration

All queues are expedite queues.

Command Mode

Global Configuration mode

User Guidelines

While configuring the `priority-queue num-of-queues` command, the weighted round robin (WRR) weight ratios are affected because there are fewer queues participating in WRR. This indicates that the corresponding weight in the `wrr-queue bandwidth` Interface Configuration mode command is ignored (not used in the ratio calculation).
Example
The following example configures the number of expedite queues as 2.

Console(config)# priority-queue out num-of-queues 2

traffic-shape
Use the traffic-shape Interface Configuration (Ethernet, Port-channel) mode command to configure the egress port shaper. Use the no form of this command to disable the shaper.

Syntax
traffic-shape committed-rate [committed-burst]
no traffic-shape

Parameters
- committed-rate—Specifies the average traffic rate (CIR) in kbits per second (kbps). (Range: FE, GE: 64kbps–maximum port speed; 10GE: 64Kbps–maximum port speed)
- committed-burst—Specifies the excess burst size (CBS) in bytes. (Range: 4KB –16MB)

Default Configuration
The shaper is disabled.

Command Mode
Interface Configuration (Ethernet, Port-channel) mode

Example
The following example sets a shaper on gigabitethernet port 1/0/5 on queue 1 when the average traffic rate exceeds 124000 kbps or the normal burst size exceeds 9600 bytes.

Console(config)# interface gi1/0/5
Console(config-if)# traffic-shape 1 124000 9600
traffic-shape queue

Use the `traffic-shape queue` Interface Configuration (Ethernet, Port-channel) mode command to configure the egress queue shaper. Use the `no` form of this command to disable the shaper.

Syntax

```
traffic-shape queue queue-id committed-rate [committed-burst]
no traffic-shape queue queue-id
```

Parameters

- **queue-id**—Specifies the queue number to which the shaper is assigned.
- **committed-rate**—Specifies the average traffic rate (CIR) in kbits per second (kbps). (Range: 64 kbps–maximum port speed)
- **committed-burst**—Specifies the excess burst size (CBS) in bytes. (Range: 4 KB - 16 MB)

Default Configuration

The shaper is disabled.

Command Mode

Interface Configuration (Ethernet, Port-channel) mode

Example

The following example sets a shaper on gigabitethernet port 1/0/5 when the average traffic rate exceeds 124000 kbps or the normal burst size exceeds 9600 bytes.

```
Console(config)# interface gi1/0/5
Console(config-if)# traffic-shape 124000 9600
```
rate-limit (Ethernet)
Use the rate-limit Interface Configuration (Ethernet) mode command to limit the incoming traffic rate on a port. Use the no form of this command to disable the rate limit.

Syntax
rate-limit committed-rate-kbps [burst committed-burst-byte]
no rate-limit

Parameters
- rate—Specifies the maximum number of kilobits per second of ingress traffic on a port. The range is 3–10000000.
- burst bytes—The burst size in bytes (3000–19173960). If unspecified, defaults to 128K.

Default Configuration
Rate limiting is disabled.

Command Mode
Interface Configuration (Ethernet) mode

User Guidelines

Example
The following example limits the incoming traffic rate on gigabitethernet port 1/0/5 to 150,000 kbps.

```
Console(config)# interface gi1/0/5
Console(config-if)# rate-limit 150000
```

qos wrr-queue wrtd
Use the qos wrr-queue wrtd Global Configuration mode command to enable Weighted Random Tail Drop (WRTD). Use the no form of this command to disable WRTD.
Syntax

qos wrr-queue wrtd
no qos wrr-queue wrtd

Parameters

This command has no arguments or keywords.

Default

Disabled

Command Mode

Global Configuration mode

User Guidelines

The command is effective after reset.

show qos wrr-queue wrtd

Use the `show qos wrr-queue wrtd` Exec mode command to display the Weighted Random Tail Drop (WRTD) configuration.

Syntax

show qos wrr-queue wrtd

Parameters

N/A

Default Configuration

N/A

Command Mode

Exec mode

Example

```
switchxxxxxx# show qos wrr-queue wrtd
Weighted Random Tail Drop is disabled
```
show qos interface

Use the `show qos interface` EXEC mode command to display Quality of Service (QoS) information on the interface.

Syntax

```
show qos interface [buffers | queueing | policers | shapers | rate-limit] [interface-id]
```

Parameters

- **buffers**—Displays the buffer settings for the interface's queues. For GE ports, displays the queue depth for each of the 8 queues. For FE ports, displays the minimum reserved setting.

- **queueing**—Displays the queue's strategy (WRR or EF), the weight for WRR queues, the CoS to queue map and the EF priority.

- **policers**—Displays all the policers configured for this interface, their settings, and the number of policers currently unused.

- **shapers**—Displays the shaper of the specified interface and the shaper for the queue on the specified interface.

- **rate-limit**—Displays the rate-limit configuration.

- **interface-id**—Specifies an interface ID. The interface ID can be one of the following types: Ethernet port, or Port-channel.

Default Configuration

There is no default configuration for this command.

Command Mode

EXEC mode

User Guidelines

The `policers` option is relevant for a VLAN interface only.

If no parameter is specified with the `show qos interface` command, the port QoS mode (DSCP trusted, CoS trusted, untrusted, and so on), default CoS
value, DSCP-to-DSCP- map (if any) attached to the port, and policy map (if any) attached to the interface are displayed. If a specific interface is not specified, the information for all interfaces is displayed.

Example
This is an example of the output from the `show qos interface buffers` command for 8 queues.

```
Console> show qos interface buffers gi1/0/1

gi1/0/1
Notify Q depth:
buffers gi2/0/1
Ethernet gi2/0/1

qid     thresh0  thresh1  thresh2
1       100      100      80
2       100      100      80
3       100      100      80
4       100      100      80
5       100      100      80
6       100      100      80
7       100      100      80
8       100      100      80
```
This is an example of the output from the `show qos interface shapers` command for 8 queues.

```
Console> show qos interface shapers gi1/0/1

Port shaper: enable
Committed rate: 192000 bps
Committed burst: 9600 bytes

<table>
<thead>
<tr>
<th>QID</th>
<th>Status</th>
<th>Target Committed Rate [bps]</th>
<th>Target Committed Burst [bytes]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enable</td>
<td>100000</td>
<td>17000</td>
</tr>
<tr>
<td>2</td>
<td>Disable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>Enable</td>
<td>200000</td>
<td>19000</td>
</tr>
<tr>
<td>4</td>
<td>Disable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>Disable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>6</td>
<td>Disable</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>7</td>
<td>Enable</td>
<td>178000</td>
<td>80000</td>
</tr>
<tr>
<td>8</td>
<td>Enable</td>
<td>23000</td>
<td>1000</td>
</tr>
</tbody>
</table>
```
This is an example of the output from the `show qos interface policer` command.

```
Console> show qos interface policer gi1/0/1
Ethernet gi1/0/1
Class map: A
   Policer type: aggregate
   Committed rate: 192000 bps
   Committed burst: 9600 bytes
   Exceed-action: policed-dscp-transmit

Class map: B
   Policer type: single
   Committed rate: 192000 bps
   Committed burst: 9600 bytes
   Exceed-action: drop

Class map: C
   Policer type: none
   Committed rate: N/A
   Committed burst: N/A
   Exceed-action: N/A
```

This is an example of the output from the `show qos interface rate-limit` command.

```
Console> show qos interface rate-limit gi1/0/1

<table>
<thead>
<tr>
<th>Port</th>
<th>rate-limit [kbps]</th>
<th>Burst [KBytes]</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>1000</td>
<td>512K</td>
</tr>
</tbody>
</table>
```

qos wrr-queue threshold

Use the `qos wrr-queue threshold` Global Configuration mode command to assign queue thresholds globally. Use the `no` form of this command to restore the default configuration.
Syntax

qos wrr-queue threshold \{gigabitethernet / tengigabitethernet\} queue-id threshold-percentage

no qos wrr-queue threshold \{gigabitethernet / tengigabitethernet\} queue-id

Parameters

- **gigabitethernet**—Specifies that the thresholds are to be applied to Gigabit Ethernet ports.
- **tengigabitethernet**—Specifies that the thresholds are to be applied to 10 Gigabit Ethernet ports.
- **queue-id**—Specifies the queue number to which the tail-drop threshold is assigned.
- **threshold-percentage**—Specifies the queue threshold percentage value.

Default Configuration

The default threshold is 80 percent.

Command Mode

Global Configuration mode

User Guidelines

If the threshold is exceeded, packets with the corresponding DP are dropped until the threshold is no longer exceeded.

Example

The following example assigns a threshold of 80 percent to WRR queue 1.

```
Console(config)# qos wrr-queue threshold gigabitethernet 1 80
```

qos map policed-dscp

Use the `qos map policed-dscp` Global Configuration mode command to configure the policed-DSCP map for remarking purposes. Use the `no` form of this command to restore the default configuration.
Syntax
qos map policed-dscp dscp-list to dscp-mark-down
no qos map policed-dscp [dscp-list]

Parameters
- dscp-list—Specifies up to 8 DSCP values, separated by spaces. (Range: 0–63)
- dscp-mark-down—Specifies the DSCP value to mark down. (Range: 0–63)

Default Configuration
The default map is the Null map, which means that each incoming DSCP value is mapped to the same DSCP value.

Command Mode
Global Configuration mode.

Example
The following example marks incoming DSCP value 3 as DSCP value 43 on the policed-DSCP map.

```
Console(config)# qos map policed-dscp 3 to 43
Reserved DSCP. DSCP 3 was not configured.
```

qos map dscp-queue
Use the qos map dscp-queue Global Configuration mode command to configure the DSCP to CoS map. Use the no form of this command to restore the default configuration.

Syntax
qos map dscp-queue dscp-list to queue-id
no qos map dscp-queue [dscp-list]
Parameters

- **dscp-list**—Specifies up to 8 DSCP values, separated by spaces. (Range: 0–63)
- **queue-id**—Specifies the queue number to which the DSCP values are mapped.

Default Configuration

The default map for 8 queues is as follows.

<table>
<thead>
<tr>
<th>DSCP value</th>
<th>0-7</th>
<th>8-15</th>
<th>16-23</th>
<th>24-31</th>
<th>32-39</th>
<th>40-47</th>
<th>48-56</th>
<th>57-63</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue-ID</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Command Mode

Global Configuration mode

Example

The following example maps DSCP values 33, 40 and 41 to queue 1.

```
Console(config)# qos map dscp-queue 33 40 41 to 1
```

qos map dscp-dp

Use the **qos map dscp-dp** Global Configuration mode command to map the DSCP to Drop Precedence. Use the **no** form of this command to restore the default configuration.

Syntax

```
qos map dscp-dp  dscp-list to  dp
no  qos map dscp-dp  [dscp-list]
```

Parameters

- **dscp-list**—Specifies up to 8 DSCP values, with values separated by a space. (Range: 0–63)
• dp—Specifies the Drop Precedence value to which the DSCP values are mapped. (values: 0,2) where 2 is the highest Drop Precedence

Default Configuration
All the DSCPs are mapped to Drop Precedence 0.

Command Mode
Global Configuration mode.

Example
The following example maps DSCP values 25, 27 and 29 to Drop Precedence 2.

```
Console(config)# qos map dscp-dp 25 27 29 to 2
```

qos trust (Global)
Use the `qos trust` Global Configuration mode command to configure the system to the basic mode and trust state. Use the `no` form of this command to return to the default configuration.

Syntax
```
qos trust {cos | dscp }
no qos trust
```

Parameters
- **cos**—Specifies that ingress packets are classified with packet CoS values. Untagged packets are classified with the default port CoS value.
- **dscp**—Specifies that ingress packets are classified with packet DSCP values.

Default Configuration
CoS is the default trust mode.

Command Mode
Global Configuration mode
User Guidelines
This command can be used only in QoS basic mode.

Packets entering a quality of service (QoS) domain are classified at the edge of the QoS domain. When the packets are classified at the edge, the switch port within the QoS domain can be configured to one of the trusted states because there is no need to classify the packets at every switch within the domain.

Use this command to specify whether the port is trusted and which fields of the packet to use to classify traffic.

When the system is configured with trust DSCP, the traffic is mapped to the queue by the DSCP-queue map.

When the system is configured with trust CoS, the traffic is mapped to the queue by the CoS-queue map.

Example
The following example configures the system to the DSCP trust state.

```
Console(config)# qos trust dscp
```

qos trust (Interface)
Use the `qos trust` Interface Configuration (Ethernet, Port-channel) mode command to enable each port trust state while the system is in the basic QoS mode. Use the `no` form of this command to disable the trust state on each port.

Syntax
```
qos trust
no qos trust
```

Default Configuration
Each port is enabled while the system is in basic mode.

Command Mode
Interface Configuration (Ethernet, Port-channel) mode
Example
The following example configures gigabitethernet port 1/0/15 to the default trust state.

```
Console(config)# interface gi1/0/15
Console(config-if)# qos trust
```

QoS cos
Use the `qos cos` Interface Configuration (Ethernet, Port-channel) mode command to define the default CoS value of a port. Use the `no` form of this command to restore the default configuration.

Syntax
```
qos cos default-cos
no qos cos
```

Parameters
- `default-cos`—Specifies the default CoS value of the port. If the port is trusted and the packet is untagged, then the default CoS value become the CoS value. (Range: 0–7)

Default Configuration
The default CoS value of a port is 0.

Command Mode
Interface Configuration (Ethernet, Port-channel) mode

User Guidelines
Use the default CoS value to assign a CoS value to all untagged packets entering the port. Use the `qos cos override` command to assign this default CoS value to tagged packets.

Example
The following example defines the port `gi1/0/15` default CoS value as 3.
Console(config)# interface gi1/0/15
Console(config-if)# qos cos 3

qos dscp-mutation

Use the *qos dscp-mutation* Global Configuration mode command to apply the DSCP Mutation map to system DSCP trusted ports. Use the *no* form of this command to restore the trusted port with no DSCP mutation.

Syntax

```
qos dscp-mutation
no qos dscp-mutation
```

Command Mode

Global Configuration mode.

User Guidelines

Apply the DSCP-to-DSCP-mutation map to a port at the boundary of a Quality of Service (QoS) administrative domain. If two QoS domains have different DSCP definitions, use the DSCP-to-DSCP-mutation map to translate a set of DSCP values to match the definition of another domain. Apply the map to ingress and to DSCP-trusted ports only. Applying this map to a port causes IP packets to be rewritten with newly mapped DSCP values at the ingress ports. If applying the DSCP mutation map to an untrusted port, to class of service (CoS), or to an IP-precedence trusted port, the command has no immediate effect until the port becomes DSCP-trusted.

Example

The following example applies the DSCP Mutation map to system DSCP trusted ports.

```
Console(config)# qos dscp-mutation
```
qos map dscp-mutation

Use the `qos map dscp-mutation` Global Configuration mode command to configure the DSCP to DSCP Mutation table. Use the `no` form of this command to restore the default configuration.

Syntax

```
qos map dscp-mutation in-dscp to out-dscp
no qos map dscp-mutation [in-dscp]
```

Parameters

- `in-dscp`—Specifies up to 8 DSCP values to map, separated by spaces. (Range: 0–63)
- `out-dscp`—Specifies up to 8 DSCP mapped values, separated by spaces. (Range: 0–63)

Default Configuration

The default map is the Null map, which means that each incoming DSCP value is mapped to the same DSCP value.

Command Mode

Global Configuration mode.

User Guidelines

This is the only map that is not globally configured. It is possible to have several maps and assign each one to a different port.

Example

The following example changes DSCP values 1, 2, 4, 5 and 6 to DSCP Mutation Map value 63.

```
Console(config)# qos map dscp-mutation 1 2 4 5 6 to 63
```
show qos map

Use the `show qos map` EXEC mode command to display the QoS mapping information.

Syntax

```
show qos map [dscp-queue | dscp-dp | policed-dscp | dscp-mutation]
```

Parameters

- `dscp-queue`—Displays the DSCP to queue map.
- `dscp-dp`—Displays the DSCP to Drop Precedence map.
- `policed-dscp`—Displays the DSCP to DSCP remark table.
- `dscp-mutation`—Displays the DSCP-DSCP mutation table.

Command Mode

EXEC mode

Example

The following example displays the QoS mapping information.

```console
Console> show qos map

Dscp-queue map:

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>d2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>01</td>
<td>01</td>
<td>01</td>
<td>01</td>
<td>01</td>
<td>01</td>
<td>01</td>
<td>02</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>02</td>
<td>02</td>
<td>02</td>
<td>02</td>
<td>02</td>
<td>03</td>
<td>03</td>
<td>03</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>03</td>
<td>03</td>
<td>03</td>
<td>03</td>
<td>04</td>
<td>04</td>
<td>04</td>
<td>04</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>04</td>
<td>04</td>
<td>05</td>
<td>05</td>
<td>05</td>
<td>05</td>
<td>05</td>
<td>05</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>06</td>
<td>06</td>
<td>06</td>
<td>06</td>
<td>06</td>
<td>06</td>
<td>07</td>
<td>07</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>07</td>
<td>07</td>
<td>07</td>
<td>07</td>
<td>07</td>
<td>08</td>
<td>08</td>
<td>08</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>08</td>
<td>08</td>
<td>08</td>
<td>08</td>
<td>08</td>
<td>08</td>
<td>08</td>
<td>08</td>
</tr>
</tbody>
</table>
```
The following table appears:

<table>
<thead>
<tr>
<th>Dscp-DP map:</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>0 :</td>
</tr>
<tr>
<td>1 :</td>
</tr>
<tr>
<td>2 :</td>
</tr>
<tr>
<td>3 :</td>
</tr>
<tr>
<td>4 :</td>
</tr>
<tr>
<td>5 :</td>
</tr>
<tr>
<td>6 :</td>
</tr>
</tbody>
</table>

The following table appears:

<table>
<thead>
<tr>
<th>Policed-dscp map:</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>0 :</td>
</tr>
<tr>
<td>1 :</td>
</tr>
<tr>
<td>2 :</td>
</tr>
<tr>
<td>3 :</td>
</tr>
<tr>
<td>4 :</td>
</tr>
<tr>
<td>5 :</td>
</tr>
<tr>
<td>6 :</td>
</tr>
</tbody>
</table>

The following table appears:

<table>
<thead>
<tr>
<th>Dscp-dscp mutation map:</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>0 :</td>
</tr>
<tr>
<td>1 :</td>
</tr>
<tr>
<td>2 :</td>
</tr>
<tr>
<td>3 :</td>
</tr>
<tr>
<td>4 :</td>
</tr>
<tr>
<td>5 :</td>
</tr>
<tr>
<td>6 :</td>
</tr>
</tbody>
</table>
clear qos statistics
Use the clear qos statistics EXEC mode command to clear the QoS statistics counters.

Syntax
clear qos statistics

Command Mode
EXEC mode

Example
The following example clears the QoS statistics counters.

```console
Console# clear qos statistics
```

qos statistics policer
Use the qos statistics policer Interface Configuration (Ethernet, Port-channel) mode command to enable counting in-profile and out-of-profile. Use the no form of this command to disable counting.

Syntax
qos statistics policer policy-map-name class-map-name
no qos statistics policer policy-map-name class-map-name

Parameters
- policy-map-name—Specifies the policy map name.
- class-map-name—Specifies the class map name.

Default Configuration
Counting in-profile and out-of-profile is disabled.

Command Mode
Interface Configuration (Ethernet, Port-channel) mode
Example
The following example enables counting in-profile and out-of-profile on the interface.

```
Console(config-if)# qos statistics policer policy1 class1
```

qos statistics aggregate-policer
Use the `qos statistics aggregate-policer` Global Configuration mode command to enable counting in-profile and out-of-profile. Use the `no` form of this command to disable counting.

Syntax
```
qos statistics aggregate-policer aggregate-policer-name
no qos statistics aggregate-policer aggregate-policer-name
```

Parameters
- `aggregate-policer-name`: Specifies the aggregate policer name.

Default Configuration
Counting in-profile and out-of-profile is disabled.

Command Mode
Global Configuration mode

Example
The following example enables counting in-profile and out-of-profile on the interface.

```
Console(config)# qos statistics aggregate-policer policer1
```

qos statistics queues
Use the `qos statistics queues` Global Configuration mode command to enable QoS statistics for output queues. Use the `no` form of this command to disable QoS statistics for output queues.
Syntax
qos statistics queues set {queue | all} {dp | all} {interface | all}
no qos statistics queues set

Parameters
- **set**—Specifies the counter set number.
- **interface**—Specifies the Ethernet port.
- **queue**—Specifies the output queue number.
- **dp**—Specifies the drop precedence. The available values are: **high**, **low**.

Default Configuration
Set 1: All interfaces, all queues, high DP.
Set 2: All interfaces, all queues, low DP.

Command Mode
Global Configuration mode

User Guidelines
There are no user guidelines for this command.

Example
The following example enables QoS statistics for output queues for counter set 1.

```
Console(config)# qos statistics queues 1 all all all
```

show qos statistics
Use the `show qos statistics` EXEC mode command to display Quality of Service statistical information.

Syntax
show qos statistics
Command Mode
EXEC mode

User Guidelines
Up to 16 sets of counters can be enabled for policers. The counters can be enabled in the creation of the policers.

Use the `qos statistics queues` Global Configuration mode command to enable QoS statistics for output queues.

Example
The following example displays Quality of Service statistical information.

```
Console# show qos statistics

Policers
--------

<table>
<thead>
<tr>
<th>Interface</th>
<th>Policy map</th>
<th>Class Map</th>
<th>In-profile bytes</th>
<th>Out-of-profile bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>Policy1</td>
<td>Class1</td>
<td>7564575</td>
<td>5433</td>
</tr>
<tr>
<td>gi1/0/1</td>
<td>Policy1</td>
<td>Class2</td>
<td>8759</td>
<td>52</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Policy1</td>
<td>Class1</td>
<td>746587458</td>
<td>3214</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>Policy1</td>
<td>Class2</td>
<td>5326</td>
<td>23</td>
</tr>
</tbody>
</table>

Aggregate Policers
-------------------

<table>
<thead>
<tr>
<th>Name</th>
<th>In-profile bytes</th>
<th>Out-of-profile bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policer1</td>
<td>7985687</td>
<td>121322</td>
</tr>
</tbody>
</table>
```
Output Queues

<table>
<thead>
<tr>
<th>Interface</th>
<th>Queue</th>
<th>DP</th>
<th>Total packets</th>
<th>%TD packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>2</td>
<td>High</td>
<td>799921</td>
<td>1.2%</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>All</td>
<td>High</td>
<td>5387326</td>
<td>0.2%</td>
</tr>
</tbody>
</table>
Revision History

Table 1: Revision History Dell PowerConnect 5500 Series

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev. A08</td>
<td>21-Oct-13</td>
<td>Added text to user guidelines for command: voice vlan enable. Added text mention QtoQ to customer parameter of command: switchport mode.</td>
</tr>
<tr>
<td>Rev. A07</td>
<td>8-Sep-13</td>
<td>Added detailed parameter to the following commands:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• show dot1x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• show dot1x advanced</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• show interfaces configuration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• show interfaces advertise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• show interfaces description</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• show interfaces counters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• show storm-control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• show cable-diagnostics tdr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• show cable-diagnostics cable-length</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• show green-ethernet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• show ports security</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• show ports security addresses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• show lldp configuration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• show lldp statistics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• show spanning-tree</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added all-ports parameter to the show fiber-ports optical-transceiver command</td>
</tr>
<tr>
<td>Rev. A06</td>
<td>1-August-13</td>
<td>• Removed: show flowcontrol in Ethernet chapter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Removed references to OOB in SNMP chapter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Changed default to Enable of service cpu-utilization</td>
</tr>
<tr>
<td>Revision</td>
<td>Date</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Rev. A05</td>
<td>11-Mar-13</td>
<td>• Added: ssl version and show ssl version</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Removed flowcontrol (global)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Entered new user guidelines for gvrp enable (Interface)</td>
</tr>
<tr>
<td>Rev. A04</td>
<td>6-Sept-12</td>
<td>• service-acl input - Deleted redundant Command Mode text.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• port monitor - Fixed port name in example</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added power inline limit-mode</td>
</tr>
<tr>
<td>Rev. A03</td>
<td>30-Apr-12</td>
<td>Removed empty pages</td>
</tr>
<tr>
<td>Rev. A02.4</td>
<td>4-Apr-12</td>
<td>1. Remove "ip source guard" command</td>
</tr>
<tr>
<td>Rev. A02.3</td>
<td>3-Apr-12</td>
<td>1. Add the following commands:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>service-acl output</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Change the example of show interfaces</td>
</tr>
<tr>
<td></td>
<td></td>
<td>access-lists command to support egress ACL</td>
</tr>
<tr>
<td>Rev. A02.2</td>
<td>2-Apr-12</td>
<td>1. Add the following commands:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"power inline limit-mode"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"clear dot1x statistics"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"ip dhcp relay address (Interface)"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"ip dhcp information option"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"show ip dhcp information option"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"show errdisable interfaces"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Rename "iscsi aging time" to "iscsi aging-time"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Rename "iscsi max tcp connections" to "iscsi max-tcp-connections"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Remove "ip igmp snooping vlan querier version" command</td>
</tr>
<tr>
<td>Rev. A02.1</td>
<td>5-Mar-12</td>
<td>Removed show processes cpu.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added "service password-recovery" on page 225</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modified "negotiation" on page 330</td>
</tr>
<tr>
<td>Revision</td>
<td>Date</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>Rev. A02</td>
<td>21-Sept-11</td>
<td>Version with flowcontrol (global) and show flowcontrol commands (version 4.0.1.1 of software)</td>
</tr>
<tr>
<td>Rev. A00</td>
<td>6-Dec-10</td>
<td>Initial version.</td>
</tr>
</tbody>
</table>